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ABSTRACT

Combined MEK-BRAF inhibition is a well-established treat-
ment strategy in BRAF-mutated cancer, most prominently in
malignant melanoma with durable responses being achieved
through this targeted therapy. However, a subset of patients
face primary unresponsiveness despite presence of the acti-
vating mutation at position V600E, and others acquire resis-
tance under treatment. Underlying resistance mechanisms
are largely unknown, and diagnostic tests to predict tumor
response to BRAF-MEK inhibitor treatment are unavailable.

Multiple myeloma represents the second most common
hematologic malignancy, and point mutations in BRAF are
detectable in about 10% of patients. Targeted inhibition has
been successfully applied, with mixed responses observed in a

substantial subset of patients mirroring the widespread spatial
heterogeneity in this genomically complex disease. Central
nervous system (CNS) involvement is an extremely rare,
extramedullary formofmultiplemyeloma that can be diagnosed
in less than 1% of patients. It is considered an ultimate high-risk
feature, associated with unfavorable cytogenetics, and, even
with intense treatment applied, survival is short, reaching less
than 12 months in most cases. Here we not only describe the
first patient with an extramedullary CNS relapse responding to
targeted dabrafenib and trametinib treatment, we furthermore
provide evidence that a point mutation within the capicua tran-
scriptional repressor (CIC) gene mediated the acquired resis-
tance in this patient. TheOncologist 2020;25:112–118

KEY POINTS

• BRAF mutations constitute an attractive druggable target in multiple myeloma. This is the first genomic dissection of
the central nervous system involvement in a multiple myeloma patient harboring a druggable BRAFV600E mutation.
Deep genomic characterization of the extramedullary lesion prompted a personalized therapeutic approach.

• Acquisition of CIC mutation confers a mechanism of BRAF-MEK inhibitor drug resistance in multiple myeloma.
• The in silico interrogation of the CoMMpass clinical study revealed 10 patients with somatic mutations of CIC and its

downregulation at gene expression level in multiple myeloma.
• CIC gene silencing decreases the sensitivity of multiple myeloma cells to BRAF-MEK inhibition in vitro. The correlation between

CIC downregulation and ETV4/5 nuclear factor expression in multiple myeloma BRAF-mutant cells is shown for the first time.
• CIC mutation, its downregulation, and the related downstream effect on MMP24 support disseminative potential pro-

viding new clues in the extramedullary biology definition.

PATIENT HISTORY

An 81-year-old patient with κ light chain multiple myeloma
(MM) was referred to our center after having a seizure and

increasingM-proteins. MMhad been diagnosed 2 years before
and the patient had undergone nine cycles of bortezomib-
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based combination therapy (VMP) resulting in an initial good
disease control. Magnetic resonance imaging of the brain and
additional experimental whole body 11C-methionine positron
emission tomography (PET)-computed tomography (CT) scan,
which increased MM imaging sensitivity [1], demonstrated
metabolic active disease supra- and infratentorial in the clivus,
as well as in the right femur as the underlying cause of the clini-
cal scenario (Fig. 1A). A high load of clonal plasma cells (PCs)
was detected in his cerebrospinal fluid (CSF), whereas in the
bone marrow (BM), only a few CD138pos MM cells could
be detected. Thus, we diagnosed extramedullary central ner-
vous system (CNS) relapse, and intrathecal triple therapy
(methotrexate, cytarabine, and dexamethasone) along with
age-adjusted systemic chemotherapy (cytarabine and thiotepa)
was initiated.

MOLECULAR TUMOR BOARD 1

Genotyping Results and Interpretation of the
Molecular Results
Given the peculiar clinical course and the poor prognosis
associated with a CNS localization, with limited effective
therapeutic options available, we performed a deep molec-
ular characterization of CSF and BM tumoral plasma cells.

DNA extracted from CD138pos purified cells obtained
from CSF and BM paired samples was analyzed by next-
generation sequencing (NGS). We applied the M3P (v3.0)
panel [2, 3], a disease-specific in-house customized, NGS-
targeted deep sequencing panel for MM (Ion torrent plat-
form) that includes an 88-gene selection of most commonly

mutated genes such as TP53, DIS3, FAM46C, CYLD, MAF,
XBP1, MYC, MAX [4, 5], actionable drug targets (i.e., NRAS,
KRAS, BRAF) [6], and genes being associated with drug
resistance [7, 8] (e.g., CRBN, IKZF1/3, NR3C1, PSMB5). The
average sequencing depth increased 700×. The CSF cells
harbored a clonal BRAFV600E mutation (allele frequency vari-
ance 52%) that was absent in the BM, highlighting spatial
genomic heterogeneity [9]; no other somatic point muta-
tions were detected within the M3P genes and no circulat-
ing PCs were identified by peripheral blood flow-cytometry
analysis.

Functional and Clinical Significance
The BRAFV600E mutation in exon 15 of BRAF gene is present in
between 4% and 10% of patients withMMat diagnosis [4–6, 10],
rising to almost 20% at relapse [7], displaying a role in the
extramedullary disease and exerting a negative impact overall
survival (45 vs. 105 months, p = .04) [11, 12]. Applying the M3P
gene panel, we sequenced 608 MM patients at different disease
stages. Concerning BRAF, we have identified 59 (9.7%) mutated
patients with a total of 25 distinctive mutations. Among our
patient cohort, 21 of 59 (35%) harbored the BRAFV600E mutation;
within the remaining 38 patients with 24 BRAFnon-V600E muta-
tions, we found 12 alterations conferring a kinase domain activa-
tion, comprising also a rare K601 mutation, and 12 leading to
BRAF functional impairment (supplemental online Fig. 1) [13].
BRAF exon 15 mutations confer sensitivity to target therapies
such as vemurafenib, dabrafenib, and trametinib [14, 15].
Heuck et al. reported BRAF-MEK targeted therapy approach
in 58 patients with MM with either BRAF, NRAS, and KRAS
mutations or high-risk gene expression profiling; out of

Figure 1. Patient disease history schematic view. (A): Clinical characteristics (left panel). 11C-methionine positron emission tomogra-
phy (PET)-computed tomography central nervous system showing disease manifestation at first relapse (right panel): remission (B),
and second brain recurrence (C).
Abbreviation: MM, multiple myeloma.
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58 patients, 11 displayed an extramedullary localization. Ten
patients received a combination therapy with trametinib, and
two of them were additionally treated with dabrafenib or
vemurafenib. Interestingly, within the patients with ameasurable
disease (40 patients), 16 patients achieved a reduction of at least
50% of the MM protein, and 9 achieved a complete remission
evaluated by PET-CT. Raab et al. described a case of a patient
with MMwith a disseminated disease harbor a BRAFV600E muta-
tion. The patient was successfully treated with vemurafenib
upfront and with a subsequent combination therapy with borte-
zomib at disease relapse owing to a clonal selection of NRAS
mutants’ resistant subclones. [16, 17]. These published real-life
based evidences and ongoing clinical trials (i.e., BIRMA trial) com-
bining BRAF and MEK inhibitors, highlight the clinical relevance
of circumventing the paradoxical RAS pathway activation upon
BRAF inhibition already described in melanoma [18, 19]. Lohr
et al. tested in vitro the combination of trametinib and
dabrafenib in several MM cell lines harboring distinct BRAF or
RAS mutations; the U266 BRAFK601N proved most sensitive and
displayed a similar paradoxical feedback loop of RAS-activation
[5].

Recently a combination of dabrafenib and trametinib
effectively eliminated in BRAFV600E mutant melanoma brain
metastases, demonstrating that the drug can cross the blood
brain barrier [20, 21].

Patient Update
Although neutropenic, because of the cytarabine-based che-
motherapy, the patient developed a Gram-positive septice-
mia. Taking into account the risk profile, the therapy-related
infectious episode, and the sequencing results, and according
to German law and ethical approval (Einzelheilversuch), the
patient started a combinational targeted therapy with contin-
uous BRAF-MEK inhibitor (dabrafenib 150 mg twice daily and
trametinib 2 mg daily). Neurological examination revealed a
significant clinical improvement on the basis of the absence of
pathological signs and symptoms, which was confirmed by
11C-methionine PET subtotal tumor shrinkage (Fig. 1B).

Regrettably, only 3 months after the treatment initiation,
11C-methionine PET revealed local MM recurrence and dis-
seminated bone while on continuous therapy (Fig. 1C). To con-
firm the disease relapse, we repeated the CSF assessment,
revealing, as expected, a high mononucleated tumoral plasma
cells load. The patient underwent palliation with hyper-
fractionated radiotherapy of the cerebrum (cumulative irradi-
ation dose: 30 Gy); because of compromised performance
status of the patient, no further systemic therapy could be
applied, and best supportive care was adopted until patient
exitus occurred at the end of October 2017.

MOLECULAR TUMOR BOARD 2

Genotyping Results and Interpretation of the
Molecular Results
To investigate the underlyingmechanisms of resistance develop-
ment upon targetedMEK-BRAF inhibitor therapy, we performed
a whole exome DNA sequencing (Illumina platform) on the
pretherapy sample and on CD138pos purifiedMM cells obtained
from the CSF after confirmed disease relapse. Sequencing depth
of 115×was applied. A total number of 97 nonsilent coding vari-
ants (missense, nonsense, indels, splice) with an allele frequency
higher than 5% were identified, of which 74 were shared
between the timepoints. Sequencing revealed 19 additional
point mutations acquired at relapse. According to published
guidelines, we performed an extensive literature revision, and
we systematically selected four potential clinically relevant non-
synonymous point mutations (Table 1) [22]. Dispatched RND
transporter family member 2 (DISP2; p.P1271L) is a key regula-
tor of the hedgehog signaling pathway [23, 24] and has been
associated with the development of bortezomib resistance in
MM [25]. It further impacts fibroblast growth factor receptor
3 signaling to RAS pathway, thus potentially mediating the
paradoxical activation of the downstream pathway in a BRAF-
independent manner [26]. CREB binding protein (CREBBP;
p.V429F) represents an epigenetic modulator able to control the
TP53 apoptosis machinery activation [27] and the downstream
regulation of the RAS-RAF pathway [28]. The pyrimidinergic
receptor P2Y4 (P2RY4, p.R314Q) is an upstream regulator of
PLCβ/PI3K pathway able to cross-talk with the EGFR-RAS path-
way [29], a well-known mechanism of resistance described in
BRAFV600E mutated melanoma [30]. We also identify a missense
mutation in capicua transcriptional repressor (CIC; p.A984P)
mapped on chromosome 19 with an allelic variance of 17%
(Table 1). CIC represents a transcriptional repressor gene directly
involved in the downstream regulation of the RAS-RAF pathway
able to drive the development of BRAF-MEK inhibitor resis-
tance [31]. Based on this correlation, we hypothesized that
the acquisition of CIC mutation may mechanistically underlie
the BRAF-MEK resistance in our patient.

Functional and Clinical Significance of CIC in Cancer
Next, we aimed to functionally validate the molecular signifi-
cance of CIC alteration in mediating resistance to BRAF andMEK
inhibitors. Wang et al. demonstrated in lung, colon, pancreatic
[31, 32], and melanoma [31, 33] human cancer models the piv-
otal role of low CIC expression in inducing resistance to
vemurafenib and trametinib; however, evidences of its role of
resistance induction inMMor other hematological malignancies

Table 1. Clinically relevant single nucleotide variations

Chr
h19
position

SNV base
change Gene SIFT Polyphen2

Mut.
taster Effect

Amino
acid dbSNP

15 40662125 c.3812 C>T DISP2 Damaging Damaging Damaging Missense p.P1271L

16 3842027 c.1285 C>A CREBBP Damaging Damaging Damaging Missense p.V429F

19 42796301 c.2950 G>C CIC Damaging Damaging Damaging Missense p.A984P

X 69478534 c.941 C>T P2RY4 Tolerated Damaging Damaging Missense p.R314Q rs775064288

Abbreviations: Chr, chromosome, dbSNP, Short Genetic Variations Database; Mut. taster, Mutation taster tool; Polyphen2, Polymorphism
Phenotyping v2 tool; SIFT, Sorting Intolerant From Tolerant tool; SNV, single nucleotide variant.
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are lacking. Le Blanc et al. reported that CIC missense mutations
result in a gene expression downregulation [34]. Interrogating
the Multiple Myeloma Research Foundation CoMMpass study
we found a similar correlation: the 10 patients that harbored a

CIC mutation (Fig. 2A) had a significant gene downregulation
compared with the unmutated ones (p = .03). Mutations in the
proline-rich (Fig. 2B) region are reported to impair the protein
expression [35]. Therefore, we established a CIC knockdown

Figure 2. Capicua transcriptional repressor (CIC) is altered in multiple myeloma and is mutated after BRAF target treatment in cancer. (A):
Report from in silico interrogation on CoMMpass study data set: comparison between RNA expression levels of CICwild-type andmutated
patients (upper panel); list of single nucleotide variations among patients enrolled in the CoMMpass study (lower panel, t test performed);
(B): CIC somatic mutations acquired in melanoma and central nervous systemmultiple myeloma after BRAF inhibition therapy.
Abbreviations: *, stop codon; FPKM, fragments per kilobase of exonmodel per million readsmapped.

Figure 3. Functional validation of capicua transcriptional repressor (CIC) downregulation biological effect in multiple myeloma. (A): Cell
viability assay measured with bioluminescence upon drug treatment with escalating doses of trametinib and dabrafenib in U266 human
multiple myeloma cell line: scrambled versus CIC small interfering RNA (siRNA) transduced percentage of living cells are compared by
ANOVA test. Experiments were conducted in three biological and technical replicates following manufacturer’s instructions (CellTiter-
Glo Luminescent Cell Viability Assay; Promega, Madison,WI). (B): Scratch-wound healing assay was performed as previously described
[44, 45]. Briefly, wound areas were analyzed with ImageJ Lab 1.51 software and quantified as percentage of total surface. (C):Western-
Blot analysis after CIC knockdown on U266 cells and corresponding densitometric quantification. (D): Dabrafenib and trametinib targets
on RAS-RAF pathway overview and CIC axis schematic interaction with the RAS-RAF downstream signaling. ***p < .001; ****p < .0001.
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in vitro model, using a small interfering RNA as specific gene
silencing technique. We employed the U266 MM cell line har-
boring an activating BRAFK601N mutation, usually sensitive to
BRAF-MEK inhibition [5], as a commercially availableMMmodel
harboring a BRAF activating mutation. Of note, upon CIC gene
silencing, we observed drug resistance induction to BRAF-MEK
inhibition (Fig. 3A); in detail, we cultured the silenced and not-
silenced MM cells with trametinib and dabrafenib, either as sin-
gle agents or in combination, and we observed resistance induc-
tion to the combination of the two drugs (row factor, 91.16%;
p < .0001, two-way ANOVA test). Next, we investigated whether
this drug-resistance phenotype also coincided with a more inva-
sive behavior. Thus, we performed a motility and migration
assay. CIC knockdown in U266 BRAFK601N cells significantly
enhanced MM migration in a scratch wound healing assay
(Fig. 3B). These findings prompted us to investigate potential
mechanism able to explain the CIC-impairment-related biologi-
cal effects. In particular, CIC is the direct master regulator of sev-
eral transcription factors such as ETV4 and ETV5 two oncogenes
able to modulate the RAS downstream pathway [31–33]. More-
over, indirectly CIC induces an invasiveness related protein
namely MMP24 [32, 33]. Consequently, we confirmed by West-
ern blotting an upregulation of ETV4, ETV5, andMMP24 protein
expression in the CIC-knockdown U266, as mediators of drug
resistance and MM invasiveness (Fig. 3C). The upregulation of
these transcription factors can activate the MAPK signaling, in
an independent p-MEK manner [31], providing an escape mech-
anism from BRAF-MEK inhibition (Fig. 3D) [36].

POTENTIAL STRATEGIES TO TARGET THE PATHWAY AND

IMPLICATIONS FOR CLINICAL PRACTICE

CIC has recently been identified as a candidate gene related
to MEK-BRAF resistance development [31, 33]. Our clinical
observations, the subsequent in vitro MM model, and the
public datasets interrogations support that the acquisition
of CIC mutation and its subsequent downregulation confers
MEK-BRAF inhibitors resistance for the first time in MM.

As large BRAF-RAS treated cohorts in MM are not avail-
able, we screened for published datasets to answer the ques-
tion of whether mutation acquisition in CIC under BRAF-RAS
targeted therapy can be observed in a significant number of
patients being resistant to BRAF inhibitors. Remarkably, Van
Allen et al. recently published a comprehensive genomic char-
acterization of 45 patients with metastatic melanoma resis-
tant to BRAF inhibitors; 5 of them (11%) harbored a somatic
CIC mutation (4 missense and 1 frame shift). Intriguingly, two
of the single nucleotide variations out of these five were
acquired at time of relapse (Fig. 2B). One out of these five
patients harboring a pretherapy CIC mutation experienced a
very early disease relapse under dabrafenib therapy [37].
Given that almost 30% of patients with MM harbor mutations
affecting the BRAF-RAS pathway, this may represent a poten-
tial biomarker to predict therapy response. Based on prior
published findings [31, 33, 34], public available datasets [37]
and previous [31–34] and original in vitro validations pinpoint
CIC mutation as one of the mechanisms of drug resistance of
BRAF-MEK inhibition therapy. Extramedullary (EMD) dissemi-
nation in MM typically correlates with very poor prognosis,
especially when the clinical onset manifests at disease relapse

[12, 38–42]. Furthermore, given the scanty evidences available
about the disease biology behind the EMD [43], CIC onco-
suppressive functions might be also expressed as ancillary
mechanism that sustain the EMD phenotype inMM [39].

Prospective clinical trials including the BRAF andMEK inhibi-
tion are ongoing in multiple myeloma in Europe (NCT02834364)
and in the U.S. (NCT03091257) as well as in different solid
cancers such as melanoma and colon cancer (NCT02974803,
NCT03668431); these ongoing studies represent the ideal oppor-
tunity to determine and validate the role of CIC mutations as
potential disease biomarker in a large clinical and controlled-
prospective setting.

GLOSSARY OF GENOMIC TERMS AND NOMENCLATURE

Allelic frequency: percentage of reads referred to the mutated allele
Average sequencing depth: mean number of unique reads for each single
nucleotide aligned to a reference sequence

Spatial genomic heterogeneity: presence of distinctive genomic alterations
in different anatomical sites

BRAF: B-Raf Proto-Oncogene, Serine/Threonine Kinase
MEK: Mitogen-Activated Protein Kinase Kinase 1
CIC: Capicua Transcriptional Repressor
DISP2: Dispatched RND Transporter Family Member 2
CREBBP: CREB Binding Protein
P2RY4: Pyrimidinergic receptor P2Y4
ETV4: ETS Variant 4
ETV5: ETS Variant 5
MMP24: Matrix Metallopeptidase 24
TP53: Tumor Protein P53
DIS3: DIS3 Homolog, Exosome Endoribonuclease And 3’-5’ Exoribonuclease
FAM46C: Terminal Nucleotidyltransferase 5C
CYLD: CYLD Lysine 63 Deubiquitinase
MAF: MAF BZIP Transcription Factor
XBP1: X-Box Binding Protein 1
MYC: MYC Proto-Oncogene, BHLH Transcription Factor
MAX: MYC Associated Factor X
KRAS: Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
NRAS: Neuroblastoma Ras viral oncogene homolog
CRBN: Cereblon
IKZF1: IKAROS Family Zinc Finger 1
IKZF3: IKAROS Family Zinc Finger 3
NR3C1: Nuclear Receptor Subfamily 3 Group C Member 1
PSMB5: Proteasome Subunit Beta 5
PLCβ/PI3K: Phospholipase C beta/Phosphatidil-Inositol-3-Kinase pathway
EGFR: Epidermal grow factor receptor
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For Further Reading:
Winnie S. Liang, Jo‐Anne Vergilio, Bodour Salhia et al. Comprehensive Genomic Profiling of Hodgkin Lymphoma
Reveals Recurrently Mutated Genes and Increased Mutation Burden. The Oncologist 2018;24:219–228; first published
August 14, 2018.

Implications for Practice:
This study provides the first evidence that comprehensive genomic profiling can be performed to map the genomic
landscape of Hodgkin lymphoma and that a subpopulation of patients has mutations in TP53, B2M, XPO1, and other
genes. It was found that 15% of patients have high mutation burden, which, in cancers such as melanoma, may
indicate sensitivity to immune checkpoint inhibitors, and may thus be explored for Hodgkin lymphoma. Lastly, this
work demonstrates that changes in the mutant allele frequency of XPO1 in serially collected plasma cell‐free DNA
samples correspond with treatment outcomes measured with conventional radiographic imaging.
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