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SUPPLEMENTARY NOTE: INPUT PARAMETERS AND MONTE CARLO SETTINGS

Algorithm 1 SRNM: Monte Carlo update moves pseudo-code
Require: W (d)

ij andW (a)
ij , ∀ij

Require: rnd is a uniformly distributed random number, ∈ [0, 1)

for ij ∈ network do . loop over all netwrok’s edges

if σij = σα then
if (|∆Vij | > ∆V th) and (rnd < Pnl) then

σij ← σβ . try to apply nonlinear update move

else . try to apply thermal dissipation-based update move (a link with σij = σα can only be upgraded)

if (W th1
up +W th0

up > W
(a)
ij ≥W th0

up ) and (rnd < Pup) then
σij ← σβ

else if (W th2
up +W th1

up +W th0
up > W

(a)
ij ≥W th1

up +W th0
up ) and (rnd < Pup) then

σij ← σγ
else if (W (a)

ij > W th2
up +W th1

up +W th0
up ) and (rnd < Pup) then

σα ← σδ

else if σij = σβ then . try to apply nonlinear update move

if (∆V th > |∆Vij |) and (rnd < Pnl) then
σij ← σα

else . try to apply thermal dissipation-based update move

if (W (d)
ij ≥W th0

up ) and (rnd < Pdown) then σij ← σα

else if (W th2
up +W th1

up > W
(a)
ij ≥W th1

up ) and (rnd < Pup) then
σij ← σγ

else if (W (a)
ij > W th2

up +W th1
up ) and (rnd < Pup) then

σij ← σδ

else if σij = σγ then
if (W th1

up +W th0
up > W

(d)
ij ≥W th1

up ) and (rnd < Pdown) then . try to apply thermal dissipation-based update move

σγ ← σβ
else if (W (d)

ij ≥W th1
up +W th0

up ) and (rnd < Pdown) then
σij ← σα

else if (W (a)
ij > W th2

up ) and (rnd < Pup) then
σγ ← σδ

else if σij = σδ then
if (W th2

down +W th1
down > W

(d)
ij ≥W

th2
down) and (rnd < Pdown) then

σij ← σγ . try to apply thermal dissipation-based update move (a link with σij = σδ can only be downgraded)

else if (W th2
down +W th1

down +W th0
down > W

(d)
ij ≥W

th1
down +W th0

down) and (rnd < Pdown) then
σij ← σβ

else if (W (d)
ij ≥W

th2
down +W th1

down +W th0
down) and (rnd < Pdown) then

σij ← σα

Here follows a list of optimal parameters for the simulation input and for the MC moves.
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• reasonable ranges of values for the (inital) abundance of each conductance are: σα : 1% −

10%, σβ : 1% − 10%, σγ : 10% − 30%, σδ : 50% − 80%, for having a highly conductive

network at the beginning of the simulation

• nonlinear move: Pnl = 0.0003, with a threshold potential of 0.06V .

• thermal dissipation based moves: Pup = Pdown = 0.0015 (probability to accept any move

that changes σij upwards or downwards, regardless of the specific value of σij):

1. σα ↔ σβ : W th0
up = 2× 10−6 J/s = 2×W th0

down

2. σβ ↔ σγ : W th1
up = 10−6 J/s = 2×W th1

down

3. σγ ↔ σδ : W th2
up = 2× 10−4 J/s = 2×W th2

down

An example will immediately clarify the link update mechanism, according to its thermal

dissipation: choose an edge ij, suppose that σij = σδ = 4 × 10−3 1/Ω and evaluate W d
ij .

If W th2
down < W d

ij ≤ W th1
down + W th2

down the downgrade of σij value to σγ = 2 × 10−3 1/Ω

is proposed (and accepted with probability 0.0015). But if the dissipated power is large

enough thatW th2
down +W th1

down +W th0
down > W d

ij ≥ W th1
down +W th2

down, the link conductance will be

decreased down toσβ = 10−3 1/Ωwith probability 0.0015, and so on. A completely identical

mechanism holds for the absorbed power coming from each link neighbors. Obviously, links

whose initial conductance is σij = σα = 10−11 1/Ω can not be further downgraded.

Clearly, these particular choices of the threshold and probability values are not unique, but

this set allows to approximately retrieve the essential experimental features in the simulated data,

as largely discussed in the paper. Slight variations of these thresholds were found to generate

analogous results.

MINIMAL COMPLEXITY: NETWORK SMALL SIZE EFFECTS

Figure S1 represents I(∆V ) cycles performed with networks of different sizes, aiming to

highlight the minimal complexity required for the qualitative reproduction of the experimental

data. In these simulations, ∆V ranges from -8 V to 8 V, with 8000 MC steps for each applied

voltage, and each network size has been investigated with 10 independent runs. If the network

features a single layer, made by Nx × Ny = 32 × 15 nodes, the system presents a nonphysical

behavior with wild current oscillations (see top panel).

3



FIG. S1. I(∆V ) cycles, from -8 V to 8 V and back again to -8, simulated networks with differentNx, Ny, Nz

values. Top: 15 × 32 × 1. Middle: 15 × 32 × 2. Bottom: 15 × 32 × 3. Errorbars are computed as the
standard deviation of the mean over 10 independent runs.

The errorbars are almost anywhere extremely large, and a similar tendency is retrieved even
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when a second layer is stacked on the top of the first one (panel b). This can be ascribed to the

small amount of links in the network which, in turn, induce huge fluctuations in the availability of

effective paths for the current to flow through the system. The addition of a third layer induces the

onset of two distinct regimes, at low and high voltages, with a partial reduction of the errorbars

(bottom panel). Fig. S1c begins to feature some similarities with the analogue experimental

picture. We decided to use 3 layers and a much larger network (Nx × Ny = 42 × 27), with the

aim to further reduce the errorbars onto the I(∆V ) curves and to provide more alternative paths

for the input current to flow towards the output node. Nonetheless, the complexity of our system

clearly remains much smaller than the experimental sample one, and this is - for instance - the

origin of the current saturation at high voltages which is present in our SRN model, even in the

largest simulated one.

SUPPLEMENTARY NOTE: SHORTEST PATHS ANALYSIS

Asmentioned in the main text, the structure and the topology of the network were studied via the

investigation of the shortest path connecting the source and the sink of the system, thus exploring

the possible paths in which the current could flow. This has been achieved thanks to the analysis

we carried out with NetworkX tools [44]. We anticipate here that the application of a high voltage

is found to dramatically reduce the number of alternative options to reach the output node.

What does it mean ‘shortest’? Distances between pairs of nodes within a graph can be indeed

measured, once that a metrics has been chosen. We consider here the I matrix (Nn × Nn, i.e.

3404 × 3404) as a weighted graph for each MC step. Here we sketch the procedure, based on a

Python custom code which integrates some NetworkX functions:

• load, for each time frame t saved during the simulation, the corresponding matrices I|t and

A|t into 2D numpy arrays.

• loop over I|t elements: each entry Iij of I|t corresponds to a weight Wij =
1

|Iij|
, if

Aij ≥ 10−3 1/Ω, otherwise Wij = ∞ (it is a sort of distance). The current values cover

a wide range, typically between 10−11A and 10−2A. The rationale behind the construction

of this weight matrix W is that those links where the conductance is non–vanishing should

be used by the current, while connecting node 0 and node Nn − 1. Conversely, highly

(infinitely) resistive edges are essentially never crossed by the electrical current; assigning
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them an infinite weight means excluding these edges (because the nodes they link are

substantially disconnected) from the search of the SP connecting the source and sink nodes.

• once built the weight matrix W, given two nodes i and j, it is possible to calculate the

shortest path between them, where the notion of distance is given by the weight matrix W.

NetworkX includes some methods for calculating the shortest path between a pair of nodes,

in particular those by Dĳkstra [10] and Bellman-Ford [11, 12].

Therefore, two quantities of interest can be defined:

• LSP , i.e. the length of the shortest path, measured as an inverse current in 1/A. We underline

that, with this metrics, the shortest paths correspond to the most conductive source-drain

pathways.

• NSP , the number of equivalent shortest paths

In Figs. S2 and S3 we show, for a typical simulation, LSP · ∆V (which has the units of a

resistance) and of NSP as a function of the MC step tMC . On the one hand, it is evident that

the length of the shortest path is strongly dependent on the applied voltage: Figure S2 shows the

evolution of LSP · ∆V for a simulation with ∆Vtot = 1 V (grey), before the application of the

high voltage phase (green), which (at equilibrium, around 10000 MC steps) is very similar to the

equilibrium LSP reached by the system at the same voltage after the conditioning step (blue).
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FIG. S2. LSP ·∆V (tMC), measured in Ω, for a typical simulation. Grey: ∆V = 1 V, green: ∆V = 15 V,
blue: ∆V = 1 V after the writing phase.
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FIG. S3. NSP (tMC), for a typical simulation. Grey: ∆V = 1 V, green: ∆V = 15 V, blue: ∆V = 1 V
after the writing phase.

Conversely, the cardinality of the set of the shortest paths NSP is much different between the

pre-conditioning and the post-conditioning phase. Note the y−log scale in Fig. S3: the grey curve

signals the presence of a number of shortest paths comprised between 1 and 105, approximately,

while the blue curve always stays between 1 and 10. This means that the number of paths traversed

by a huge amount of current is dramatically reduced by the application of ∆V = 15 V. Figure 4 in

the main text contains complementary information: the number of highly resistive links increases

in the last part of the simulation, thus inducing a worsening of the percolative paths for current,

reducing the options that easily connect the source and the sink.

SUPPLEMENTARY NOTE: SPATIAL COARSE-GRAINING

In Fig. S4 it is shown the spatial coarse-graining method adopted for the network analysis via

Information Theory tools. Black lines are the boundaries of a parallelepiped whose links are sent

onto the coarse-grained region with index 7, as an example. An analogous procedure sends the

other 6 subregions of the original system (left), onto the corresponding coarse-grained indexes

(right). Note that also links connecting source/sink at the nods of the first layer participate into the

spatial coarse-graining. Links of the original systems are colored according to their conductance,

apart from the σα ones which are left white.
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FIG. S4. Left: a typical snapshot of the resistor network, with link conductances colored with the same
color scale used in Fig. 4. Realized with NetworkX [9]. Right: scheme of the spatially coarse-grained
system obtained by dividing the network in 7 sub-regions. The sub-region of the original system which is
mapped onto the coarse-grained group of index 7 is bounded by thick black lines.
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