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Abstract. The paper surveys the basic ideas of stochastic calculus via regu-
larizations in Banach spaces and its applications to the study of strict solutions
of Kolmogorov path dependent equations associated with windows of diffusion

processes. One makes the link between the Banach space approach and the so
called functional stochastic calculus. When no strict solutions are available one
describes the notion of strong-viscosity solution which alternative (in infinite
dimension) to the classical notion of viscosity solution.

1. Introduction

The present work is a survey (with some new considerations) of recent results
on stochastic integration in Banach spaces, with applications to Kolmogorov path-
dependent partial differential equations (PDEs).

The extension of Itô stochastic integration theory for Hilbert valued processes
dates from only a few decades ago, the results of which can be found in the mono-
graphs [Mét82, DPZ92] and [Wal86] with different techniques. Extension to
nuclear valued spaces is simpler and was done in [KMW90, Ust82]. One of
the most natural but difficult situations arises when the processes are Banach
space valued. Big steps forward have been made for instance in [vNVW07]
when the space is of UMD type; on the other hand the separable Banach space
C([−T, 0]) of continuous functions η : [−T, 0] → R (endowed with the supremum
norm ‖η‖∞ := supx∈[−T,0] |η(x)|) is not UMD. This context appears naturally in the

study of path-dependent stochastic differential equations (SDEs), as for instance
delay equations. An example of such an equation is given by

(1.1) dXt = σ(t,Xt)dWt,
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where W is a Brownian motion and σ : [0, T ] × C([−T, 0]) → R is continuous and
with linear growth. Given a continuous real valued process X, X, also indicated
by X(·), will denote the so called window process associated with X, i.e. Xt :=
{Xt+x, x ∈ [−T, 0]}. Since X is a continuous process, the natural state space for
X is C([−T, 0]). However, also due to the difficulty of stochastic integration and
calculus in that space, most of the authors consider X as valued in some ad hoc
Hilbert space H, for example given by the direct sum of L2([−T, 0]) and R (see
for instance [CM78]). To avoid this artificial formulation, a stochastic calculus
with C([−T, 0])-valued stochastic integrators is needed. However, if X = W is a
classical Brownian motion (therefore we take σ ≡ 1 in (1.1)), then the corresponding
Brownian window process X = X(·) has no natural quadratic variation in the
sense of Dinculeanu [Din00] or Métivier and Pellaumail [MP80], see Proposition
4.7 in [DGR14]. That quadratic variation is a natural generalization of the one
coming from the finite dimensional case. If B is a separable Banach space and X

is a B-valued process, the notion of quadratic variation (called tensor quadratic
variation) of a process X introduced by [Din00] is a process [X,X] taking values
in the projective tensor product B⊗̂πB, see Definition 3.2. If B = R

d and X =
(X1, . . . , Xd), [X,X] corresponds to the matrix [Xi, Xj ]1≤i,j≤d. As mentioned,
even though the window Brownian motion does not have a quadratic variation
in that sense, it has a more general quadratic variation, known as χ-quadratic
variation, first introduced in [DGR10] together with the stochastic calculus via
regularizations in Banach spaces, for which we also refer to [DGR11, DGR14,
DGFR14, DGR, DGR12]. The first part of the paper will be devoted to the
presentation of the main ideas and results of stochastic calculus via regularizations
in Banach spaces, and also to the study of its relation with functional Itô calculus
recently introduced by [Dup09] and [CF10a, CF10b].

As an application of this infinite dimensional calculus, we will present a robust
representation of a random variable. For illustration, let fix X to be a real contin-
uous process with finite quadratic variation [X]t = t, such that X0 = 0. Then that
representation can be seen as a robust Clark-Ocone formula. More precisely, let h
be a random variable given by h = G(XT ) for some functional G : C([−T, 0]) → R.
We look for a representation (when it is possible) of h of the following type (we

remind that
∫ T

0
Zsd

−Xs is the forward integral via regularizations defined first in
[RV93], which will be recalled in the next section)

(1.2) G(XT ) = Y0 +

∫ T

0

Zsd
−Xs,

which, for all 0 ≤ t ≤ T , can be written as

(1.3) Yt = G(XT )−

∫ T

t

Zsd
−Xs,

where the pair (Y,Z) = (Yt, Zt)t∈[0,T ] is required to be adapted to the canonical
filtration of X. The robust aspect is characterized by the fact that Y and Z are
characterized in analytic terms, i.e., through functions u, v : [0, T ]×C([−T, 0]) → R

such that the representation (1.2) becomes

G(XT ) = u(0,X0) +

∫ T

0

v(s,Xs)d
−Xs.
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Here u and v only depend on the quadratic variation (volatility) of the process
and it turns out that they are related to the following infinite dimensional partial
differential equation:

(1.4)

{
LU(t, η) = 0, ∀ (t, η) ∈ [0, T [×C([−T, 0]),

U(T, η) = G(η), ∀ η ∈ C([−T, 0]),

where (we denote by D−t := {(x, x) : x ∈ [−t, 0]})

LU(t, η) = ∂tU(t, η) +

∫

]−t,0]

D⊥
dxU(t, η)d

−η(x) +
1

2

∫

D−t

D2
dx dyU(t+ x, η).

Equation (1.4) will be called Kolmogorov path-dependent PDEs. This is the same
for all (even non-semimartingale) processes X with the same quadratic variation
[X]t = t. As a consequence, this procedure provides a Clark-Ocone type representa-
tion formula for h which is robust with respect to quadratic variation. In Chapter IV
of [Moh84] a functional analytic approach is used to derive a formula for the weak
infinitesimal generator of the window process X of a stochastic functional differen-
tial equation. Indeed, the monograph [Moh84] by S.E.A. Mohammed constitutes
an excellent early contribution to the theory of this class of stochastic differential
equations. For future research, it would be interesting to establish a link between
the work in the present article and the analytic approach in Chapter IV of [Moh84].

We shall also address the more general problem of characterizing analytically
the pair (Y,Z) solution to the following backward stochastic differential equation
(here F : [0, T ]× C([−T, 0])× R× R → R is a given function)

Yt = G(XT ) +

∫ T

t

F (s,Xs, Ys, Zs)d[X]s −

∫ T

t

Zsd
−Xs,

which is a natural generalization of relation (1.3). Another interesting extension cor-
responds to the case [X] =

∫ ·

0
σ2(s,Xs)ds, for some function σ : [0, T ]×C([−T, 0]) →

R.

The last part of the paper is devoted to study more in detail Kolmogorov path-
dependent PDEs of the form (1.4) and also of more general type, which naturally
arise in stochastic calculus via regularizations in Banach space. Even in the infinite
dimensional case, Kolmogorov equations is a very active area of research between
stochastic calculus and the theory of partial differential equations. On this subject
we refer to [Cer01] and the references therein, and also to [DPZ02] for processes
taking values in separable Hilbert spaces, to [FT02] for relations with stochastic
control theory, to [FG98, RS07] for applications to Navier-Stokes equation, and
to [DPF10] for connections with infinite dimensional SDEs with irregular drift.
Recently, some interest was devoted to Kolmogorov equations related to Banach
space-valued processes, as for instance in [Mas08, CDP12]. In the present paper
we are interested in Kolmogorov equations on the Banach space C([−T, 0]), so that
the solution is a functional defined on [0, T ] × C([−T, 0]). C([−T, 0]) is a natural
state space when studying path-dependent stochastic differential equations, as for
instance delay equations (even though, as already recalled, the choice of the space
C([−T, 0]) is not usual in the literature, since it is in general more convenient and
simpler to work with an Hilbert state space).

We first consider strict solutions, namely smooth solutions, to Kolmogorov
path-dependent PDEs, for which we discuss uniqueness results which are also valid
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in the case that σ is path-dependent. We also recall existence results proved in
[CR14] and in [DGR] in the prolongation of [DGR10]. Recently, a new ap-
proach for existence theorems of smooth solutions has been described in [FZ13].
Since, however, strict solutions require quite strong assumptions, we also intro-
duce a weaker notion of solution, called strong-viscosity solution, first introduced in
[CR14] (we also refer to [CR15b] for some new results in this direction), for which
we provide a well-posedness result. A strong-viscosity solution is defined, in a few
words, as the pointwise limit of classical solutions to perturbed equations. This
definition is similar in spirit to the vanishing viscosity method, which represents
one of the primitive ideas leading to the conception of the modern definition of
viscosity solution. This justifies the presence of the term viscosity in the name of
strong-viscosity solution together with the fact that, as shown in Theorem 3.7 of
[CR14], in the finite dimensional case we have an equivalence result between the
notion of strong-viscosity solution and that of viscosity solution.

The paper is organized as follows. In Section 2 we recall the notion of for-
ward stochastic integral via regularizations for real processes, together with the
notion of covariation, and we state the Itô formula; we end Section 2 with some
results on deterministic calculus via regularizations. Section 3 is devoted to the
introduction of stochastic calculus via regularizations in Banach spaces, with a
particular attention to the case of window processes; in Section 3 we also discuss
a robust Clark-Ocone formula. Finally, in Section 4 we study linear and semilin-
ear Kolmogorov path-dependent equations, we introduce the notions of strict and
strong-viscosity solutions, and we investigate their well-posedness.

2. Stochastic calculus via regularizations

2.1. Generalities. Let T ∈]0,∞[ and consider a probability space (Ω,F ,P).
We denote by C([−T, 0]) the usual non-reflexive Banach space of continuous func-
tions η : [−T, 0] → R endowed with the supremum norm ‖η‖ := supx∈[−T,0] |η(x)|.

Given a real-valued continuous stochastic process X = (Xt)t∈[0,T ] on (Ω,F ,P), we
extend it to all t ∈ R as follows: Xt = X0, ∀ t < 0, and Xt = XT , ∀ t > T . We then
introduce the so-called window process X = X(·) associated with X, which is a
C([−T, 0])-valued stochastic process given by

Xt := {Xt+x, x ∈ [−T, 0]}, t ∈ R.

Stochastic calculus via regularizations in the finite dimensional framework has
been largely investigated in the two last decades. It was introduced in [RV91,
RV93] and then developed in several papers (see [RV07] for a survey on the sub-
ject). In that calculus, the central object is the forward integral. In the present
context we will make use of a slightly more general (improper) form.

Definition 2.1. Let X = (Xt)t∈[0,T ] and Y = (Yt)t∈[0,T ] be two real-valued

stochastic processes on (Ω,F ,P), with X continuous and
∫ T

0
|Yt|dt < ∞ P-a.s..

Suppose that there exists a real continuous process A = (At)t∈[0,T ] given by

(2.1) At := lim
ε→0+

∫ t

0

Ys

Xs+ε −Xs

ε
ds, ∀ t ∈ [0, T [,

where the convergence holds in probability.
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(1) The process A will be referred to as the forward integral (process) of
Y with respect to X (on [0, T [) and it will be denoted by

∫ ·

0
Y d−X or∫ ·

0
Ysd

−Xs.
(2) If the limit AT = limt→T− At holds P-a.s., then AT will be referred to as

the (improper) forward integral of Y with respect to X (on [0, T ])

and it will be denoted by
∫ T

0
Y d−X or

∫ T

0
Ysd

−Xs.
(3) For completeness we also refer to AT as the (proper) forward integral

of Y with respect to X (on [0, T ]) if, in addition to the previous two
items, we have

AT = lim
ε→0+

∫ T

0

Ys

Xs+ε −Xs

ε
ds,

where the convergence holds in probability.

Definition 2.2. If I is a real subinterval of [0, T ], we say that a family of pro-

cesses (H
(ε)
t )t∈[0,T ] converges to (Ht)t∈[0,T ] in the ucp sense on I, if supt∈I |H

(ε)
t −

Ht| goes to 0 in probability, as ε → 0+. If the interval I is not specified, it will be
assumed to be I = [0, T ].

Remark 2.3. If the limit (2.1) holds in the ucp sense on [0, T [ (resp. on [0, T ]),
then the forward integral

∫ ·

0
Y d−X of Y with respect to X exists on [0, T [ (resp.

[0, T ]).

We review now the key notion of covariation. Let us suppose that Y , as X, is
a continuous process.

Definition 2.4. The covariation of X and Y (whenever it exists) is given
by a continuous process (denoted by [X,Y ]) such that

(2.2) [X,Y ]t = lim
ε→0+

1

ε

∫ t

0

(Xs+ε −Xs)(Ys+ε − Ys)ds,

whenever the limit exists in probability for any t ∈ [0, T ].
If X = Y , X is called a finite quadratic variation process and we denote
[X] := [X,X].

If the convergence in (2.2) holds in the ucp sense then [X,Y ] exists. We remark
that, when X = Y , the convergence in probability of (2.2) for any t ∈ [0, T ] to
[X,X] implies that the convergence in (2.2) is also ucp, see Lemma 2.1 of [RV00].

Forward integral and covariation are generalizations of the classical Itô integral
and the covariation for semimartingales, as the following result shows (for a proof
we refer, e.g., to [RV07]). We fix a filtration F = (Ft)t∈[0,T ], FT ⊂ F , satisfying
the usual conditions.

Proposition 2.5.

(i) Consider two continuous F-semimartingales S1 and S2. Then, [S1, S2]
coincides with the standard bracket [S1, S2] = 〈M1,M2〉 (M1 and M2

denote the local martingale parts of S1 and S2, respectively).
(ii) Consider a continuous F-semimartingale S and a càdlàg F-predictable sto-

chastic process Y , then the forward integral
∫ ·

0
Y d−S exists and equals the

Itô integral
∫ ·

0
Y dS.
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We finally provide Itô formula in the present finite dimensional setting of sto-
chastic calculus via regularizations, which extends the well-known result for semi-
martingales to the case of finite quadratic variation processes (see Theorem 2.1 in
[RV95] for a proof).

Theorem 2.6 (Itô formula). Let F ∈ C1,2 ([0, T ]× R;R) and consider a real-
valued continuous stochastic process X = (Xt)t∈[0,T ] with finite quadratic variation.
Then, P-a.s., we have

F (t,Xt) = F (0, X0) +

∫ t

0

∂tF (s,Xs)ds+

∫ t

0

∂xF (s,Xs)d
−Xs(2.3)

+
1

2

∫ t

0

∂2
x xF (s,Xs)d[X]s,

for any 0 ≤ t ≤ T .

2.2. The deterministic calculus via regularizations. In the sequel, it will
be useful to consider a particular case of finite dimensional stochastic calculus via
regularizations, namely the deterministic case which arises when Ω is a singleton.
Let us first fix some useful notations. In this setting we make use of the definite
integral on an interval [a, b], where a < b are two real numbers (generally, a = −T

or a = −t and b = 0). We introduce the set M([a, b]) of finite signed Borel measures
on [a, b]. We also denote by BV ([a, b]) the set of càdlàg bounded variation functions
on [a, b], which is a Banach space when equipped with the norm

‖η‖BV ([a,b]) := |η(b)|+ ‖η‖Var([a,b]), η ∈ BV ([a, b]),

where ‖η‖Var([a,b]) = |dη|([a, b]) and |dη| is the total variation measure associated
to the measure dη ∈ M([a, b]) generated by η: dη(]a, x]) = η(x) − η(a), x ∈
[a, b]. Every bounded variation function f : [a, b] → R is always supposed to be
càdlàg. Moreover, for every function f : [a, b] → R we will consider the following
two extensions to the entire real line:

fJ (x) :=





f(b), x > b,

f(x), x ∈ [a, b],

f(a), x < a,

fJ(x) :=





f(b), x > b,

f(x), x ∈ [a, b],

0, x < a,

where J := ]a, b].

Definition 2.7. Let f : [a, b] → R be a càdlàg function and g : [a, b] → R be
in L1([a, b]).
(i) Suppose that the following limit

∫

[a,b]

g(s)d−f(s) := lim
ε→0+

∫

R

gJ(s)
fJ (s+ ε)− fJ(s)

ε
ds,

exists and it is finite. Then, the obtained quantity is denoted by
∫
[a,b]

gd−f and

called the (deterministic) forward integral of g with respect to f (on [a, b]).
(ii) Suppose that the following limit

∫

[a,b]

g(s)d+f(s) := lim
ε→0+

∫

R

gJ(s)
fJ (s)− fJ(s− ε)

ε
ds,

exists and it is finite. Then, the obtained quantity is denoted by
∫
[a,b]

gd+f and

called the (deterministic) backward integral of g with respect to f (on
[a, b]).
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Definition 2.8. Let f : [a, b] → R be a càdlàg function and g : [a, b] → R be
in L1([a, b]).
(i) Suppose that the following limit

∫

]a,b]

g(s)d−f(s) := lim
ε→0+

∫ b

a

gJ(s)
fJ (s+ ε)− fJ(s)

ε
ds,

exists and it is finite. Then, the obtained quantity is denoted by
∫
]a,b]

gd−f and

called the (deterministic) forward integral of g with respect to f (on ]a, b]).
(ii) Suppose that the following limit

∫

]a,b]

g(s)d+f(s) := lim
ε→0+

∫ b

a

gJ(s)
fJ (s)− fJ(s− ε)

ε
ds,

exists and it is finite. Then, the obtained quantity is denoted by
∫
]a,b]

gd+f and

called the (deterministic) backward integral of g with respect to f (on
]a, b]).

Notice that when the two deterministic integrals
∫
[a,b]

gd+f and
∫
]a,b]

gd+f

exist, they coincide.

Remark 2.9. (i) Let f ∈ BV ([a, b]) and g : [a, b] → R be a càdlàg function.
Then, the forward integral

∫
]a,b]

gd−f exists and is given by
∫

]a,b]

g(s)d−f(s) =

∫

]a,b]

g(s−)df(s),

where the integral on the right-hand side denotes the classical Lebesgue-Stieltjes
integral.
(ii) Let f ∈ BV ([a, b]) and g : [a, b] → R be a càdlàg function. Then, the backward
integral

∫
]a,b]

gd+f exists and is given by
∫

]a,b]

g(s)d+f(s) =

∫

[a,b]

g(s)df(s) =

∫

]a,b]

g(s)df(s) + g(a)f(a),

where the integral on the right-hand side denotes the classical Lebesgue-Stieltjes
integral. ✷

Let us now introduce the deterministic covariation.

Definition 2.10. Let f, g : [a, b] → R be continuous functions and suppose
that 0 ∈ [a, b]. The (deterministic) covariation of f and g (on [a, b]) is defined
by

[f, g] (x) = [g, f ] (x) = lim
ε→0+

1

ε

∫ x

0

(f(s+ε)−f(s))(g(s+ε)−g(s))ds, x ∈ [a, b],

if the limit exists and it is finite for every x ∈ [a, b]. If f = g, we set [f ] := [f, f ]
and it is called the quadratic variation of f (on [a, b]).

We denote by V 2 the set of continuous functions f : [−T, 0] → R having a
deterministic quadratic variation.

Finally, we shall need the following generalization of the deterministic integral
when the integrand g = g(ds) is a measure on [a, b] (when the measure g(ds)
admits a density with respect to the Lebesgue measure ds on [a, b], we recover the
deterministic integral introduced in Definition 2.8).
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Definition 2.11. Let f : [a, b] → R be a càdlàg function and g ∈ M([a, b]).
(i) Suppose that the following limit

∫

]a,b]

g(ds)d−f(s) := lim
ε→0+

∫

[a,b]

g(ds)
fJ (s+ ε)− fJ(s)

ε
,

exists and it is finite. Then, the obtained quantity is denoted by
∫
]a,b]

gd−f and

called the (deterministic) forward integral of g with respect to f (on ]a, b]).
(ii) Suppose that the following limit

∫

]a,b]

g(ds)d+f(s) := lim
ε→0+

∫

[a,b]

g(ds)
fJ(s)− fJ(s− ε)

ε
,

exists and it is finite. Then, the obtained quantity is denoted by
∫
]a,b]

gd+f and

called the (deterministic) backward integral of g with respect to f (on
]a, b]).

Indeed, for the sequel, we need to strengthen a previous notion.

Definition 2.12. (1) We define the following set associated to η ∈ C([−T, 0])

(2.4) Kη =
{
γ ∈ C([−T, 0]) : γ(x) = ηJ(x− ε), x ∈ [−T, 0], ε ∈ [0, 1]

}
.

We observe that Kη is a compact subset of C([−T, 0]).

(2) Let Γ ⊂ C([−T, 0]). Let G : [0, T ]×C([−T, 0]) → M([−T, 0]), G be weakly
measurable and bounded. We say that

(2.5) I−(t, η) :=

∫

]−t,0]

Gdx(t, η)d
−η(x), t ∈ [0, T ],

Γ-strongly exists if the following holds for any η ∈ Γ.
(i)
∫
]−t,0]

Gdx(t, η)d
−η(x) exists for every t ∈ [0, T ].

(ii) Kη is a subset of Γ. For ε > 0, t ∈ [0, T ], we set I−(t, η, ε) :=∫
[−t,0]

Gdx(t, η)
η
J
(x+ε)−η

J
(x)

ε
dx. We suppose that for any η ∈ Γ, there

is Iη : [0, T ] → R, Lebesgue integrable with respect to t ∈ [0, T ] and
such that

(2.6) |I−(t, γ, ε)| ≤ Iη(t), for all ε ∈ [0, 1], t ∈ [0, T [, and γ ∈ Kη.

Typical choices of Γ are the following.

(1) Γ = C([−T, 0]);
(2) Γ = V 2;
(3) Γ is the linear span of the support of the law of a process X.

Sufficient conditions and examples of strong existence of the integrals above are
provided in Section 7 of [DGFR14].

We conclude this section by a refinement of the notion of real finite quadratic
variation process. If Γ = V 2, a typical example of process X such that X(·) takes
values in Γ is for instance a γ-Hölder continuous process with γ > 1

2 , typically a

fractional Brownian motion with Hurst index H > 1
2 . If X is a Brownian motion,

then X(·) has also a pathwise finite quadratic variation, see for instance [GN03].
Consequently, if X is the sum of a Wiener process and a Hölder continuous process
with index γ > 1

2 , X(·) takes values in V 2. A real process X is said to be of

pathwise finite quadratic variation if dP(ω)-a.s. η = X(ω) belongs to V 2

Informally we can say that the trajectories of X have a.s. a 2-variation.
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3. Stochastic calculus via regularizations in Banach spaces

3.1. General calculus. In this section we recall briefly basic notions of sto-
chastic calculus for processes X with values in a Banach space B and its application
to window processes X = X(·), see [DGR10, DGR14, DGR12] where those no-
tions were introduced. A key ingredient of the stochastic calculus via regularizations
in Banach spaces is the notion of Chi-subspace χ, and related χ-covariation. We
recall that a Chi-subspace χ is a (continuously injected) subspace of (B⊗̂πB)∗, see
Definition 3.3 below.

We extend the notion of the forward integral introduced in Section 2 for real-
valued stochastic processes to the Banach space case. Let B be a separable Banach
space equipped with its norm | · |. Given a B-valued continuous stochastic process
X = (Xt)t∈[0,T ] we extend it to all t ∈ R as follows: Xt = X0, ∀ t < 0, and Xt = XT ,
∀ t > T .

Definition 3.1. Consider a B-valued stochastic process X = (Xt)t∈[0,T ] and
a B∗-valued stochastic process Y = (Yt)t∈[0,T ] on (Ω,F ,P), with X continuous

and
∫ T

0
‖Yt‖B∗dt < ∞ P-a.s. Suppose that there exists a real continuous process

A = (At)t∈[0,T ] such that

(3.1) At := lim
ε→0+

∫ t

0

∣∣∣
B∗

〈
Ys,

Xs+ε − Xs

ε

〉
B
ds, ∀ t ∈ [0, T [,

where the convergence holds in probability. Then, the process A will be called the
forward integral (process) of Y with respect to X (on [0, T [) and it will be
denoted by

∫ ·

0 B∗〈Ys, d
−
Xs〉B , or simply by

∫ ·

0
〈Ys, d

−
Xs〉 when the spaces B and

B∗ are clear from the context.

When B = R, given a continuous process X = (Xt)t∈[0,T ] and a P-a.s. inte-

grable process Y = (Yt)t∈[0,T ], we denote
∫ ·

0 R〈Y, d
−X〉R simply by

∫ ·

0
Y d−X. Thus

we recover the forward integral process of Y with respect to X on [0, T [ introduced
in Definition 2.1(1).

Let us now introduce some useful facts about tensor products of Banach spaces.

Definition 3.2. Let (E, ‖ · ‖E) and (F, ‖ · ‖F ) be two Banach spaces.
(i) We shall denote by E ⊗F the algebraic tensor product of E and F , defined
as the set of elements of the form v =

∑n
i=1 ei ⊗ fi, for some positive integer n,

where e ∈ E and f ∈ F . The map ⊗ : E × F → E ⊗ F is bilinear.
(ii) We endow E ⊗ F with the projective norm π:

π(v) := inf

{ n∑

i=1

‖ei‖E‖fi‖F : v =

n∑

i=1

ei ⊗ fi

}
, ∀ v ∈ E ⊗ F.

(iii) We denote by E⊗̂πF the Banach space obtained as the completion of E ⊗ F

for the norm π. We shall refer to E⊗̂πF as the tensor product of the Banach
spaces E and F .

The definition below was given in [DGR10].

Definition 3.3. Let E be a Banach space. A Banach subspace (χ, ‖ · ‖χ)
continuously injected into (E⊗̂πE)∗, i.e., ‖ · ‖χ ≥ ‖ · ‖(E⊗̂πE)∗ , will be called a

Chi-subspace (of (E⊗̂πE)∗).
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As already mentioned, the notion of Chi-subspace plays a central role in the
present Banach space framework, as well as the notion of χ-quadratic variation
associated to a Chi-subspace χ, for which we refer to Section 3.2 in [DGR14], and
in particular to Definitions 3.8 and 3.9. If X is a process admitting χ-quadratic

variation, then there exist two maps [X] : χ → C ([0, T ]) and [̃X] : Ω × [0, T ] → χ∗

such that [X] is linear and continuous, [̃X] has P-a.s. bounded variation and [̃X] is
a version of [X].

We now present some results of this calculus to window processes, i.e., when
B = C([−T, 0]) and X = X(·) where Xt(x) = Xt+x, ∀x ∈ [−T, 0]. A first re-
sult about an important integral appearing in the Itô formula, in relation to the
deterministic forward integral via regularizations, is the following.

Proposition 3.4. Let Γ ⊂ C([−T, 0]). Let X = X(·) be the window process
associated with a continuous process X = (Xt)t∈[0,T ] such that X ∈ Γ a.s. Let G be
weakly bounded and measurable. Suppose that the forward deterministic integral

I−(t, η) :=

∫

]−t,0]

Gdx(t, η)d
−η(x), ∀ t ∈ [0, T ],

Γ-strongly exists. Then

(3.2)

∫ t

0

〈G(s,Xs), d
−
Xs〉 =

∫ t

0

I−(s,Xs)ds.

We will concentrate now on the Chi-subspace χ0
Diag, which is the following

subspace of C([−T, 0])⊗̂πC([−T, 0]).

χ0
Diag :=

{
µ ∈ M([−T, 0]2) : µ(dx, dy) = g1(x, y)dxdy + λδ0(dx)⊗ δ0(dy)

+ g2(x)dx⊗ δ0(dy) + δ0(dx)⊗ g3(y)dy + g4(x)δy(dx)⊗ dy,

g1 ∈ L2([−T, 0]2), g2, g3 ∈ L2([−T, 0]), g4 ∈ L∞([−T, 0]), λ ∈ R
}
.

In general, we refer to the term g4(x)δy(dx)⊗ dy as the diagonal component.
According to Sections 3 and 4 of [DGR14] (see also [DGR]) one can calcu-

late χ-quadratic variations of a window process associated with a finite quadratic
variation real process. In particular, we have the following result.

Proposition 3.5. Let X be a real finite quadratic variation process and X =
X(·) its associated window process. Then X = X(·) admits a χ0

Diag-quadratic vari-

ation which equals (we denote by D−t := {(x, x) : x ∈ [−t, 0]})

(3.3) [̃X]t(µ) = µ({(0, 0)})[X]t +

∫ 0

−t

g4(x)[X]t+xdx =

∫

D−t

dµ(x, y)[X]t+x,

where µ is a generic element in χ0
Diag with diagonal component of type g4(x)δy(dx)dy,

g4 in L∞([−T, 0]). In particular, if [X]t =
∫ t

0
Zsds for an adapted real valued pro-

cess (Zs)s∈[0,T ], then

(3.4) [̃X]t(µ) =

∫ t

0

(∫

D−s

dµ(x, y)Zs+x

)
ds.

This allows to state the following theorem, which is an application to window
processes X = X(·) of the infinite dimensional Itô formula stated in Theorem 5.2
in [DGR14]. In the sequel, σ : [0, T ]× C([−T, 0]) → R is a continuous map.
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Theorem 3.6. Let X be a real finite quadratic variation process and X =
X(·) its associated window process. Let B = C([−T, 0]) and F : [0, T ] × B → R

in C1,2 ([0, T [×C([−T, 0])) in the Fréchet sense, such that (t, η) 7→ D2F (t, η) is
continuous with values in χ := χ0

Diag.

(1) We have

F (t,Xt) = F (0,X0) +

∫ t

0

〈D⊥
dxF (s,Xs), d

−
Xs〉+

∫ t

0

Dδ0F (s,Xs)d
−Xs(3.5)

+
1

2

∫ t

0

〈D2F (s,Xs), d[̃X]s〉, t ∈ [0, T [,

whenever either the first or the second integral in the right-hand side exists.

(2) If [X]t =
∫ t

0
σ2(s,Xs(·))ds then, if t ∈ [0, T [,

(3.6)

∫ t

0

〈D2F (s,Xs), d[̃X]s〉 =

∫ t

0

(∫

D−s

D2
dx dyF (s,Xs)σ

2(s+ x,Xs+x)

)
ds.

Remark 3.7. Notice that when the map F in Theorem 3.6 satisfies F (t, η) =
F (t, η(0)), for all (t, η) ∈ [0, T ]×C([−T, 0]), so that it does not depend on the “past”
but only on the “present value” of the path η, then we recover the Itô formula (2.3).

Remark 3.8. As already mentioned, the Itô formula (3.5) holds if either the
first or the second integral in the right-hand side exists. This happens for instance
in the two following cases.

(1) X is a semimartingale.
(2) X(·) takes values in some subset Γ of C([−T, 0]) and

∫
]−t,0]

D⊥
dxF (t, η)d−η(x)

Γ-strongly exists in the sense of Definition 2.12. In that case, Proposition

3.4 implies that
∫ t

0 B∗〈D⊥F (s,Xs), d
−
Xs〉B =

∫ t

0
I−(s,Xs)ds as in (3.2).

Proof of Theorem 3.6.
Proposition 3.5 states that X admits a χ0

Diag-quadratic variation [X] with version

[̃X]. Item 1. is a consequence of Theorem 5.2 in [DGR14] for X = X(·). This

implies that the forward integral
∫ t

0 B∗〈DF (s,Xs), d
−
Xs〉B , t ∈ [0, T [, exists and it

decomposes into the sum

(3.7)

∫ t

0

Dδ0F (s,Xs)d
−Xs +

∫ t

0
B∗〈D⊥F (s,Xs), d

−
Xs〉B ,

provided that at least one of the two addends exists.

Suppose now that [X]t =
∫ t

0
σ2(s,Xs(·))ds. Then [̃X]t(µ) =

∫
D−t

[X]t+xdµ(x, y)

for any µ ∈ χ0
Diag. If µ ∈ χ0

Diag, by (3.4) setting Zs = σ2(s,Xs(·)), we get

(3.8)

[̃X]t(µ) =

∫

D−t

(∫ t+x

0

σ2(s,Xs(·))ds

)
dµ(x, y) =

∫ t

0

(∫

D−s

dµ(x, y)σ2(s,Xs(·))

)
ds.

Finally, by elementary integration arguments in Banach spaces it follows

(3.9)

∫ t

0

〈D2F (s,Xs), d[̃X]s〉 =

∫ t

0

(∫

D−s

D2
dx dyF (s,Xs)σ

2(s+ x,Xs+x)

)
ds,

and the result is established. ✷

Now we introduce an important notation.
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Definition 3.9. Let U : [0, T ]×C([−T, 0]) → R be in C1,2([0, T [×C([−T, 0])).
Provided that, for a given η ∈ C([−T, 0]), η ∈ C([−T, 0),

∫
]−t,0]

D⊥
dxU(t, η)d

−η(x)

Γ-strongly exists for any t ∈ [0, T [, η ∈ Γ, we define

LU(t, η) = ∂tU(t, η) +

∫

]−t,0]

D⊥
dxU(t, η)d

−η(x)(3.10)

+
1

2

∫

D−t

D2
dx dyU(t+ x, η)σ2(t+ x, η(x+ ·)).

Proposition 3.10. Let Γ ⊂ C([−T, 0]). Let F : [0, T ]×C([−T, 0]) → C([−T, 0])
be of class C1,2 ([0, T [×C([−T, 0])) fulfilling the following assumptions.

(i)
∫
]−t,0]

D⊥
dxF (t, η)d−η(x), t ∈ [0, T [, Γ-strongly exists.

(ii) D2F : [0, T [×C([−T, 0]) → χ0
Diag exists and it is continuous.

Let X be a finite quadratic variation process such that X(·) a.s. lies in Γ.

(3.11) [X]t =

∫ t

0

σ2(s,Xs)ds.

Then, the indefinite forward integral
∫ t

0
Dδ0F (s,Xs)d

−Xs, t ∈ [0, T [, exists and

(3.12) F (t,Xt) = F (0,X0) +

∫ t

0

Dδ0F (s,Xs)d
−Xs +

1

2

∫ t

0

LF (s,Xs)ds,

where LF (t, η) is introduced in Definition 3.9, see (3.10).

Proof. The proof follows from Theorem 3.6, which applies Itô formula for
window processes to u(s,Xs(·)) between 0 and t < T . ✷

Proposition 3.10, i.e., the Itô formula, can be used, in this paper, in two appli-
cations.

(1) To characterize probabilistically the solution of the Kolmogorov equation
when X is a standard stochastic flow. In particular this is useful to prove
uniqueness of strict solutions.

(2) To show the robustness representation of a random variable, when X is a
general finite quadratic variation process.

3.2. Link with functional Itô calculus. Recently a new branch of stochas-
tic calculus has appeared, known as functional Itô calculus, introduced by [Dup09]
and then rigorously developed by [CF10a, CF10b, CF13]. It is a stochastic
calculus for functionals depending on the entire path of a stochastic process, and
not only on its current value as in the classical Itô calculus. One of the main is-
sues of functional Itô calculus is the definition of the functional (or pathwise or
Dupire) derivatives, i.e., the horizontal and vertical derivatives. Roughly speaking,
the horizontal derivative looks only at the past values of the path, while the vertical
derivative looks only at the present value of the path.

In the present section, we shall illustrate how functional Itô calculus can be
interpreted in terms of stochastic calculus via regularizations for window processes.
To this end, it will be useful to work within the setting introduced in [CR14], where
functional Itô calculus was developed by means of stochastic calculus via regular-
izations. It is worth noting that this is not the only difference between [CR14]
and the work of [CF10a] together with [CF10b, CF13]. For more information



CALCULUS VIA REGULARIZATION IN BANACH SPACES & PATH-DEPENDENT PDE’S 13

on this point we refer to [CR14]. Here, we just observe that in [CF10a] it is es-
sential to consider functionals defined on the space of càdlàg trajectories, since the
definition of functional derivatives necessitates discontinuous paths. Therefore, if
a functional is defined only on the space of continuous trajectories (because, e.g.,
it depends on the paths of a continuous process as Brownian motion), we have to
extend it anyway to the space of càdlàg trajectories, even though, in general, there
is no unique way to extend it. In contrast to this approach, in [CR14] an interme-
diate space is introduced between the space of continuous trajectories C([−T, 0])
and the space of càdlàg trajectories D([−T, 0]), denoted C ([−T, 0]), which allows
us to define functional derivatives. Let C ([−T, 0]) denote the space of bounded
trajectories on [−T, 0], continuous on [−T, 0[ and possibly with a jump at 0. Then
C ([−T, 0]) is endowed with a topology such that C([−T, 0]) is dense in C ([−T, 0])
with respect to this topology. Therefore, any functional U : [0, T ]×C([−T, 0]) → R,
continuous with respect to the topology of C ([−T, 0]), admits a unique extension
to C ([−T, 0]), denoted u : [0, T ] × C ([−T, 0]) → R. In addition, the time variable
and the path have two distinct roles in [CR14], as for the time variable and the
space variable in the classical Itô calculus. This, in particular, allows to define the
horizontal derivative independently of the time derivative, so that, the horizontal
derivative defined in [CF10a] corresponds to the sum of the horizontal derivative
and of the time derivative in [CR14]. We mention that an alternative approach to
functional derivatives was introduced in [BMZ13].

In the following, we work within the framework introduced in [CR14]. In
particular, given a functional U : C([−T, 0]) → R we denote by DHU and DV U
its horizontal and vertical derivatives, respectively (see Definition 2.11 in [CR14]).
Our aim is now to illustrate how the functional derivatives can be expressed in terms
of the Fréchet derivatives characterizing stochastic calculus via regularizations for
window processes. In particular, while it is clear that the vertical derivative DV U
corresponds to Dδ0U , the form of the horizontal derivative DHU is more difficult to
guess. This latter point is clarified by the following two results, which were derived
in [CR14], see Propositions 2.6 and 2.7.

Proposition 3.11. Consider a continuously Fréchet differentiable map U :
C([−T, 0]) → R. We make the following assumptions.

(i) ∀ η ∈ C([−T, 0]) there exists Dac
x U(η) ∈ BV ([−T, 0]) such that

D⊥
dxU(η) = Dac

x U(η)dx.

(ii) There exist continuous extensions (necessarily unique)

u : C ([−T, 0]) → R, Dac
x u : C ([−T, 0]) → BV ([−T, 0])

of U and Dac
x U , respectively.

Then, ∀ η ∈ C([−T, 0]),

(3.13) DHU(η) =

∫

[−T,0]

Dac
x U(η)d+η(x).

In particular, the horizontal derivative DHU(η) and the backward integral in (3.13)
exist.

Proposition 3.12. Consider a continuous path η ∈ C([−T, 0]) with finite qua-
dratic variation on [−T, 0]. Consider a twice continuously Fréchet differentiable
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map U : C([−T, 0]) → R satisfying

D2U : C([−T, 0]) −→ χ0 ⊂ (C([−T, 0])⊗̂πC([−T, 0]))∗ continuously with respect to χ0.

Moreover, assume the following.

(i) D2,Diag
x U(η), the diagonal component of D2

xU(η), has a set of discontinuity
which has null measure with respect to [η] (in particular, if it is countable).

(ii) There exist continuous extensions (necessarily unique):

u : C ([−T, 0]) → R, D2
dx dyu : C ([−T, 0]) → χ0

of U and D2
dx dyU , respectively.

(iii) The horizontal derivative DHU(η) exists at η.

Then

(3.14) DHU(η) =

∫

]−T,0]

D⊥
dxU(η)d

+η(x)−
1

2

∫

[−T,0]

D2,Diag
x U(η)d[η](x).

In particular, the backward integral in (3.14) exists.

4. Kolmogorov path-dependent PDE

4.1. The framework. We fix Γ ⊂ C([−T, 0]). Let us consider the following
semilinear Kolmogorov path-dependent equation:

(4.1)

{
LU(t, η) + F (t, η,U , σ(t, η)Dδ0U) = 0, ∀ (t, η) ∈ [0, T [×C([−T, 0]),

U(T, η) = G(η), ∀ η ∈ C([−T, 0]),

where G : C([−T, 0]) → R and F : [0, T ] × C([−T, 0]) × R × R → R are Borel
measurable functions, while the symbol LU(t, η) is introduced in Definition 3.9,
see (3.10). In the sequel, we think of L as an operator on C([0, T ] × C([−T, 0]))
with domain

D(L) :=

{
U ∈ C1,2([0, T [×C([−T, 0])) ∩ C([0, T ]× C([−T, 0])) :

∫

]−t,0]

D⊥
dxU(t, η) d

−η(x) Γ-strongly exists ∀ t ∈ [0, T [

}
.

In the sequel, we will consider the case σ ≡ 1 and give references for more general
cases, which are however partly under investigation. When σ ≡ 1 we refer to L as
path-dependent heat operator.

4.2. Strict solutions. We provide the definition of strict solution for equation
(4.1) and we study its well-posedness.

Definition 4.1. We say that U : [0, T ]× C([−T, 0]) → R is a strict solution
to the semilinear Kolmogorov path-dependent equation (4.1) if U belongs to D(L)
and solves equation (4.1).

Concerning the existence and uniqueness of strict solutions, we first consider
the linear Kolmogorov path-dependent PDE:

(4.2)

{
LU(t, η) + F (t, η) = 0, ∀ (t, η) ∈ [0, T [×C([−T, 0]),

U(T, η) = G(η), ∀ η ∈ C([−T, 0]).
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We have the following uniqueness and existence results for equation (4.2), for which
we need to introduce some additional notations. In particular, we consider a com-
plete probability space (Ω,F ,P) and a real Brownian motion W = (Wt)t≥0 defined
on it. We denote by F = (Ft)t≥0 the natural filtration generated by W , completed
with the P-null sets of F .

Definition 4.2. Let t ∈ [0, T ] and η ∈ C([−T, 0]). Then, we define the sto-
chastic flow:

W
t,η
s (x) =

{
η(x+ s− t), −T ≤ x ≤ t− s,

η(0) +Wx+s −Wt, t− s < x ≤ 0,

for any t ≤ s ≤ T .

Theorem 4.3. Let Γ = V 2. Consider a strict solution U to (4.2) and suppose
that there exist two positive constants C and m such that

(4.3) |G(η)|+|F (t, η)|+|U(t, η)| ≤ C
(
1+‖η‖m∞

)
, ∀ (t, η) ∈ [0, T ]×C([−T, 0]).

Then, U is given by

U(t, η) = E

[
G(Wt,η

T ) +

∫ T

t

F (s,Wt,η
s )ds

]
, ∀ (t, η) ∈ [0, T ]× C([−T, 0]).

In particular, there exists at most one strict solution to the semilinear Kolmogorov
path-dependent equation (4.1) satisfying a polynomial growth condition as in (4.3).

Proof. Fix (t, η) ∈ [0, T [×C([−T, 0]) and T0 ∈ [0, T [. Applying Itô formula
(3.5) to U(s,Wt,η

s ) between t and T0, and using (3.6), we obtain

U(t, η) = U(T0,W
t,η
T0

)−

∫ T0

t

LU(s,Wt,η
s )ds−

∫ T0

t

Dδ0U(s,Wt,η
s )dWs.

Since U solves equation (4.2), we have

(4.4) U(t, η) = U(T0,W
t,η
T0

) +

∫ T0

t

F (s,Wt,η
s )ds−

∫ T0

t

Dδ0U(s,Wt,η
s )dWs.

Consider now the process M = (Ms)s∈[t,T0] given by

Ms :=

∫ s

t

Dδ0U(s,Wt,η
s )dWs, ∀ s ∈ [t, T0].

Using the polynomial growth condition of U and F , and recalling that, for any
q ≥ 1,

(4.5) E

[
sup

t≤s≤T

‖Wt,η
s ‖q∞

]
< ∞,

we see that M satisfies

E

[
sup

s∈[t,T0]

|Ms|
]

< ∞.

This implies that M is a martingale. Therefore, taking the expectation in (4.4), we
find

(4.6) U(t, η) = E

[
U(T0,W

t,η
T0

) +

∫ T0

t

F (s,Wt,η
s )ds

]
.

From the polynomial growth condition (4.3), together with (4.5), we can apply
Lebesgue’s dominated convergence theorem and pass to the limit in (4.6) as T0 →
T−, from which the claim follows. ✷
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We remark that the previous proof can be easily adapted to the more general
case when σ is not necessarily constant.

Theorem 4.4. We suppose Γ = C([−T, 0]). Let F ≡ 0 and G admits the
cylindrical representation

(4.7) G(η) = g

(∫

[−T,0]

ϕ1(x+ T )d−η(x), . . . ,

∫

[−T,0]

ϕN (x+ T )d−η(x)

)
,

for some functions g ∈ C2
p(R

N ) (g and its first and second derivatives are contin-

uous and have polynomial growth) and ϕ1, . . . , ϕN ∈ C2([0, T ]), with N ∈ N\{0},
where the deterministic integrals in (4.7) are defined according to Definition 2.7(i).
Then, there exists a unique strict solution U to the path-dependent heat equation
(4.2) satisfying a polynomial growth condition as in (4.3), which is given by

U(t, η) = E
[
G(Wt,η

T )
]
, ∀ (t, η) ∈ [0, T ]× C([−T, 0]).

Proof. The proof can be done along the lines of Theorem 3.2 in [CR14].
We simply notice that the idea of the proof is first to show that U , as G, admits a
cylindrical representation. This in turn allows us to express U in terms of a function
defined on a finite dimensional space: Ψ: [0, T ] × R

N → R. Using the regularity
of g, together with the property of the Gaussian density, we can prove that Ψ is a
smooth solution to a certain partial differential equation on [0, T ] × R

N . Finally,
using the relation between U and Ψ, we conclude that U solves equation (4.2). ✷

Remark 4.5. An alternative existence result for strict solutions is represented
by Proposition 9.53 in [DGR10]. We suppose (4.7) with ϕ1, . . . , ϕN ∈ C2([−T, 0])
such that

• g : RN → R
N in continuous with linear growth;

• the matrix Σt = (
∫ T

t
ϕi(s)ϕj(s)ds)1≤i,j≤N , ∀ t ∈ [0, T ], has a strictly

positive determinant for all t ∈ [0, T ].

Then, it follows from Proposition 9.53 in [DGR10] that the functional U given by

U(t, η) = E
[
G(Wt,η

T )
]
, ∀ (t, η) ∈ [0, T ]× C([−T, 0]),

is still the unique strict solution to the path-dependent heat equation (4.2) satisfying
a polynomial growth condition as in (4.3).

Another existence result is given below. It is stated and proved in [DGR] and
its proof is an adaptation of the proof of Theorem 9.41 in [DGR10].

Theorem 4.6. We suppose Γ = C([−T, 0]). Let G ∈ C3 (C([−T, 0])) such that

D3G has polynomial growth. Let U be defined by U(t, η) = E
[
G
(
W

t,η
T

)]
.

1) Then u ∈ C0,2([0, T ]× C([−T, 0])).
2) Suppose moreover

i) DG(η) ∈ H1([−T, 0]), i.e., function x 7→ DxG(η) is in H1([−T, 0]),
every fixed η;

ii) DG has polynomial growth in H1([−T, 0]), i.e., there is p ≥ 1 such
that

(4.8) η 7→ ‖DG(η)‖H1 ≤ const (‖η‖p∞ + 1) .

iii) The map
(4.9)
η 7→ DG(η) considered C([−T, 0]) → H1([−T, 0]) is continuous.
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Then U ∈ C1,2([0, T ] × C([−T, 0])) and U is a strict solution of (4.1) in
the sense of Definition 4.1.

For more existence results concerning strict solutions, with σ not necessar-
ily identically equal to 1 and possibly even degenerate, we refer to [DGR] and
[CR15a].

We end this section proving a uniqueness result for the general semilinear Kol-
mogorov path-dependent PDE (4.1). To this end, we shall rely on the theory of
backward stochastic differential equations, for which we need to introduce the fol-
lowing spaces of stochastic processes.

• S
2(t, T ), 0 ≤ t ≤ T , the family of real continuous F-adapted stochastic

processes Y = (Ys)t≤s≤T satisfying

‖Y ‖2
S2(t,T )

:= E

[
sup

t≤s≤T

|Ys|
2
]

< ∞.

• H
2(t, T ), 0 ≤ t ≤ T , the family of R

d-valued F-predictable stochastic
processes Z = (Zs)t≤s≤T satisfying

‖Z‖2
H2(t,T )

:= E

[ ∫ T

t

|Zs|
2ds

]
< ∞.

Theorem 4.7. Suppose that there exist two positive constants C and m such
that

|F (t, η, y, z)− F (t, η, y′, z′)| ≤ C
(
|y − y′|+ |z − z′|

)
,

|G(η)|+ |F (t, η, 0, 0)| ≤ C
(
1 + ‖η‖m∞

)
,

∀ (t, η) ∈ [0, T ] × C([−T, 0]), y, y′ ∈ R, and z, z′ ∈ R. Consider a strict solution U
to (4.1), satisfying

(4.10) |U(t, η)| ≤ C
(
1 + ‖η‖m∞

)
, ∀ (t, η) ∈ [0, T ]× C([−T, 0]).

Then
U(t, η) = Y

t,η
t , ∀ (t, η) ∈ [0, T ]× C([−T, 0]),

where (Y t,η
s , Zt,η

s )s∈[t,T ] = (U(s,Wt,η
s ), Dδ0U(s,Wt,η

s )1[t,T [(s))s∈[t,T ] ∈ S
2(t, T ) ×

H
2(t, T ) is the solution to the backward stochastic differential equation: P-a.s.,

Y t,η
s = G(Wt,η

T ) +

∫ T

s

F (r,Wt,η
r , Y t,η

r , Zt,η
r )dr −

∫ T

s

Zt,η
r dWr, t ≤ s ≤ T.

In particular, there exists at most one strict solution to the semilinear Kolmogorov
path-dependent equation (4.1).

Proof. The proof can be done along the lines of Theorem 3.1 in [CR14],
simply observing that the role of the vertical derivative DV U in [CR14] is now
played by Dδ0U . ✷

4.3. A robust BSDE representation formula. Let X = (Xt)t∈[0,T ] be a
real process such that its corresponding window process X = X(·) takes values
in Γ = V 2, i.e. X is a pathwise finite quadratic variation process. For simplic-
ity we suppose that [X]t = t and X0 = 0. Conforming to what we have men-
tioned in the introduction, given a random variable h = G(XT ) for some functional
G : C([−T, 0]) → R, we aim at finding functionals u, v : [0, T ]×C([−T, 0]) → R such
that

Yt = u(t,Xt), Zt = v(t,Xt)
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and

Yt = G(XT ) +

∫ T

t

F (s,Xs, Ys, Zs)ds−

∫ T

t

Zsd
−Xs,

for all t ∈ [0, T ]. In particular, h admits the representation formula

h = u(0,X0)−

∫ T

0

F (s,Xs, u(s,Xs), v(s,Xs))ds+

∫ T

0

v(s,Xs)d
−Xs.

As a consequence of Itô formula in Proposition 3.10, we have the following result.

Proposition 4.8. Suppose that G and F are continuous and u ∈ C1,2([0, T [×
C([−T, 0])) ∩C([0, T ]×C([−T, 0])). In addition, assume that items (i) and (ii) of
Proposition 3.10 hold with u in place of F . Suppose that u solves the Kolmogorov
path-dependent PDE (4.1). Then

(4.11) h = Y0 −

∫ T

0

F (s,Xs, u(s,Xs), v(s,Xs))ds+

∫ T

0

Zsd
−Xs,

with

Y0 = u(0,X0), Zs = Dδ0u(s,Xs).

We refer to (4.11) as the robust BSDE representation formula for h, and, when
F ≡ 0, as the robust Clark-Ocone formula.

4.4. Strong-viscosity solutions. As we have seen in Section 4.2, we are able
to prove an existence result for strict solutions only when the coefficients are regular
enough. To deal with more general cases, we need to introduce a weaker notion of
solution. We are in particular interested in viscosity-type solutions, i.e., solutions
which are not required to be differentiable.

The issue of providing a suitable definition of viscosity solutions for path-
dependent PDEs has attracted a great interest. We recall that [EKTZ14], [ETZ13a,
ETZ13b], and [RTZ14] recently provided a definition of viscosity solution to path-
dependent PDEs, replacing the classical minimum/maximum property, which ap-
pears in the standard definition of viscosity solution, with an optimal stopping
problem under nonlinear expectation [ETZ14]. We also recall that other defini-
tions of viscosity solutions for path-dependent PDEs were given by [Pen12] and
[TZ13]. In contrast with the above cited papers, in the present section we shall
adopt the definition of strong-viscosity solution introduced in [CR14], which is not
inspired by the standard definition of viscosity solution given in terms of test func-
tions or jets. Instead, it can be thought, roughly speaking, as the pointwise limit
of strict solutions to perturbed equations. We notice that this definition is more
similar in spirit to the concept of good solution, which turned out to be equivalent
to the definition of Lp-viscosity solution for certain fully nonlinear partial differen-
tial equations, see, e.g., [CEF93], [CKSŚ96], [Jen96], and [JKŚ02]. It has also
some similarities with the vanishing viscosity method, which represents one of the
primitive ideas leading to the conception of the modern definition of viscosity solu-
tion. This definition is likewise inspired by the notion of strong solution, as defined
for example in [Cer01], [GR06a], and [GR06b], even though strong solutions are
required to be more regular than strong-viscosity solutions. We also emphasize that
a similar notion of solution, called stochastic weak solution, has been introduced in
the recent paper [LaOS14] in the context of variational inequalities for the Snell
envelope associated to a non-Markovian continuous process X.
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A strong-viscosity solution, according to its viscosity nature, is only required
to be locally uniformly continuous and with polynomial growth. The term viscosity
in its name is also justified by the fact that in the finite dimensional case we have
an equivalence result between the notion of strong-viscosity solution and that of
viscosity solution, see Theorem 3.7 in [CR14].

We now introduce the notion of strong-viscosity solution for the semilinear
Kolmogorov path-dependent equation (4.1), which is written in terms of Fréchet
derivatives, while in [CR14] the concept of strong-viscosity solution was used for an
equation written in terms of functional derivatives. Apart from this, the definition
we now provide coincides with Definition 3.4 in [CR14]. First, we recall the notion
of a locally equicontinuous collection of functions.

Definition 4.9. Let F be a collection of Rd-valued functions on [0, T ] × X,
where (X, ‖ · ‖) is a normed space. We say that F is locally equicontinuous if
to any R, ε > 0 corresponds a δ such that |f(t, x) − f(s, y)| < ε for every f ∈ F

and for all pair of points (t, x), (s, y) with |t− s|, ‖x− y‖ < δ and ‖x‖, ‖y‖ < R.

Definition 4.10. A function U : [0, T ] × C([−T, 0]) → R is called a strong-
viscosity solution to the semilinear Kolmogorov path-dependent equation (4.1)
if there exists a sequence (Un, Gn, Fn)n satisfying the properties below.

(i) Un : [0, T ] × C([−T, 0]) → R, Gn : C([−T, 0]) → R, and Fn : [0, T ] ×
C([−T, 0]) × R × R → R are locally equicontinuous functions such that,
for some positive constants C and m, independent of n,

|Fn(t, η, y, z)− Fn(t, η, y
′, z′)| ≤ C(|y − y′|+ |z − z′|),

|Un(t, η)|+ |Gn(η)|+ |Fn(t, η, 0, 0)| ≤ C
(
1 + ‖η‖m∞

)
,

for all (t, η) ∈ [0, T ]× C([−T, 0]), y, y′ ∈ R, and z, z′ ∈ R.
(ii) Un is a strict solution to

{
LUn = Fn(t, η,Un, D

δ0Un), ∀ (t, η) ∈ [0, T )× C([−T, 0]),

Un(T, η) = Gn(η), ∀ η ∈ C([−T, 0]).

(iii) (Un(t, η), Gn(η), Fn(t, η, y, z)) → (U(t, η), G(η), F (t, η, y, z)), as n tends to
infinity, for any (t, η, y, z) ∈ [0, T ]× C([−T, 0])× R× R.

The uniqueness result below for strong-viscosity solution holds.

Theorem 4.11. Let U : [0, T ] × C([−T, 0]) → R be a strong-viscosity solution
to the semilinear Kolmogorov path-dependent equation (4.1). Then

U(t, η) = Y
t,η
t , ∀ (t, η) ∈ [0, T ]× C([−T, 0]),

where (Y t,η
s , Zt,η

s )s∈[t,T ] ∈ S
2(t, T ) × H

2(t, T ), with Y t,η
s = U(s,Wt,η

s ), solves the
backward stochastic differential equation: P-a.s.,

Y t,η
s = G(Wt,η

T ) +

∫ T

s

F (r,Wt,η
r , Y t,η

r , Zt,η
r )dr −

∫ T

s

Zt,η
r dWr, t ≤ s ≤ T.

In particular, there exists at most one strong-viscosity solution to the semilinear
Kolmogorov path-dependent equation (4.1).

Proof. Let us give only a sketch of the proof (for a similar argument and
more details, see Theorem 3.3 in [CR14]). Consider a sequence (Un, Gn, Fn)n
satisfying conditions (i)-(ii)-(iii) of Definition 4.10. For every n ∈ N and any
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(t, η) ∈ [0, T ]×C([−T, 0]), we know from Theorem 4.7 that (Y n,t,η
s , Zn,t,η

s )s∈[t,T ] =

(Un(s,W
t,η
s ), Dδ0Un(s,W

t,η
s ))s∈[t,T ] ∈ S

2(t, T )×H
2(t, T ) is the solution to the back-

ward stochastic differential equation: P-a.s.,

Y n,t,η
s = Gn(W

t,η
T )+

∫ T

s

Fn(r,W
t,η
r , Y n,t,η

r , Zn,t,η
r )dr−

∫ T

s

Zn,t,η
r dWr, t ≤ s ≤ T.

Thanks to a limit theorem for BSDEs (see Proposition C.1 in [CR14]), and using
the hypotheses on the coefficients, we can pass to the limit in the above backward
equation as n → ∞, from which the thesis follows. ✷

We finally address the existence problem for strong-viscosity solutions in the
linear case, and in particular when F ≡ 0.

Theorem 4.12. Let F ≡ 0 and G : C([−T, 0]) → R be a locally uniformly
continuous map satisfying

|G(η)| ≤ C(1 + ‖η‖m∞), ∀ η ∈ C([−T, 0]),

for some positive constants C and m. Then, there exists a unique strong-viscosity
solution U to equation (4.1), which is given by

U(t, η) = E
[
G(Wt,η

T )
]
, ∀ (t, η) ∈ [0, T ]× C([−T, 0]).

Proof. The proof can be done along the lines of Theorem 3.4 in [CR14]. Let us
give an idea of it. We first fix η ∈ C([−T, 0]) and derive a Fourier series expansion
of η in terms of a smooth orthonormal basis of L2([−T, 0]). This allows us to
approximate G with a sequence of functions (Gn)n, where Gn depends only on the
first n terms of the Fourier expansion of η. Noting that the Fourier coefficients can
be written in terms of a forward integral with respect to η, we see that every Gn has
a cylindrical form. Moreover, even if Gn is not necessarily smooth, we can regularize
it. After this final smoothing, we end up with a terminal condition, that we still
denote Gn, which is smooth and cylindrical. As a consequence, from Theorem 4.4
it follows that the corresponding Kolmogorov path-dependent equation admits a
unique strict solution Un given by

Un(t, η) = E
[
Gn(W

t,η
T )
]
, ∀ (t, η) ∈ [0, T ]× C([−T, 0]).

It is then easy to show that the sequence (Un, Gn)n satisfies points (i)-(ii)-(iii) of
Definition 4.10, from which the thesis follows. ✷
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Probabilités de Saint Flour XIV-1984, Lecture Notes in Math., vol. 1180, Springer,
1986, pp. 265–439.



CALCULUS VIA REGULARIZATION IN BANACH SPACES & PATH-DEPENDENT PDE’S 23
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