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Abstract—Image-to-image (121) translation models typically
refer to a class of adversarial architectures aiming to transfer
an image content from a source domain to a target domain.
To increase the image quality, data augmentation techniques
or collecting new samples represent valid options yet lack of
diversity and overfitting may negatively impact on the final
results. In this regard, several practical scenarios do not permit
to include new samples, or to employ powerful hardware, due
to privacy policies or insufficient financial resources, leading to
use imbalanced sets of images and favoring the more populated
domain. To overcome these issues, we propose a simple and
effective procedure to take advantage of the combination of
critical learning parameters and demonstrate that averaging
weights of multiple pre-trained 121 models is beneficial for
increasing model performance, which can be optimized for edge
computing without hurting the quality of synthesized images.
To this end, we define a tree-based structure, including multiple
121 translation models, that outputs a single and more reliable
network. We demonstrate that this strategy increases image
quality and also show that our binary-tree learning procedure
has a beneficial impact on edge devices, and i t  can be easily
applied to architectures trained on different domains.

Index Terms—Image-to-image translation, fine-tuning, edge
devices, generative adversarial networks, optimization.

I .  INTRODUCTION

Generative methods for image manipulation represent a
key-component of several computer vision areas due to their
powerful impact on real-world applications [1]. Remarkable
results o f  state-of—the-art models [2]—[4] demonstrate their
ability to learn both local and global characteristics. To gener-
ate synthetic samples, adversarial training is widely employed
with different types of objective functions to increase quality
perception. In this respect, image translation aims at converting
the content of an image from a source to a target domain. Early
approaches [5], [6] were defined to consider only one domain,
yet they were rapidly extended to multiple domains [7], [8]
mainly to include different styles. Image-to-image (121) trans-
lation techniques are applied for increasing scene perception of
autonomous vehicles, processing satellite images or segment
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medical images. Nevertheless, these models demand large-
scale datasets for achieving satisfactory quality, and their train-
ing on low-power devices is impractical. One major limitation
in applying I21 models for synthesizing realistic images in
specific contexts, e.g., industrial domain for defect generation,
or style transfer for paintings, i s ,  in fact, represented by  the
limited samples that can be collected leading to imbalanced
domains. Such imbalance may introduce biases during training
and lead to poor image translation quality. To overcome these
problems, pre-trained models on large-scale datasets represent
a valid alternative for different downstream tasks. For example,
fine-tuning from multiple models has the advantage to increase
the performance using an appropriate ensemble modeling and
creates more robust architectures to domain shifts and out-
of—distribution samples. Differently from classification tasks,
where multiple predictions can be easily combined using their
logits to output more confident results, image generation tasks
are typically based on adversarial architectures, making it hard
using pre-trained models. Several works address this important
limitation in different ways, e.g., Via features interpolation [9]
or creating synthesis networks as generative priors [10]. For
image classification, Wortsman et al. [11] also improve out-
of-distribution and zero-shot performance on different down-
stream tasks.

On the other hand, current advances in computer vision
research have enabled safe and secure applications which can
be more responsive if their inference is carried out on edge
devices to prevent data leakage or because network connec-
tions to data centers may introduce unavoidable lags. Several
industrial scenarios, in fact, demand to use these devices for
optimizing some tasks (e.g., instrumentation control or image
classification). Nevertheless, edge devices typically offer lim-
ited computational capabilities, requiring ad—hoc optimization
procedures to reach performance similar to more powerful
hardware or cloud services. Lowering weights precision of  pre-
trained networks from 32-bit floating point numbers (FP32) to
8-bit integers (INT8) is a typical optimization step used to
save resource requirements and avoid privacy issues, but not
sufficient to preserve optimal performance.

To train an accurate 121 translation model [12 ]  in case of
imbalanced datasets, we propose a simple and effective tree-
based procedure able to take advantage of multiple available
pre-trained models. Each node of  this tree represents a model



trained on large-scale or similar datasets;  two models are then
coupled to fuse their weights and fine-tuned on the dataset of
interest. This procedure is  repeated at each level of the tree to
converge to the best model used at inference time. We validate
our approach simulating different degrees of imbalance that
are typically met in  practical scenarios, and propose several
variants to only consider specific network layers. We also
simulate a quantization procedure to train our model on an
8-bit device.

11. RELATED WORK

Image-to-image translation. Generative adversarial net-
works (GANs) represent a powerful class of generative meth-
ods able to produce high-quality images and videos, and
also the main methodology employed for I2I translation [13].
Isola e t  a l .  [6] define a conditional GAN for paired image-
to-image translation while Zhu e t  al .  [12] investigate the
unpaired case introducing a cycle-consistency loss able to
reconstruct the input image from the source domain. These
works have been extended for many tasks using ad-hoc models
(e.g., super-resolution [14], conditional image synthesis [15]
and unsupervised learning [16]). Several approaches adopt
contrastive learning for obtaining more useful representations
of the content o f  images,  and to solve the data imbalance
problem, exploiting relations between positive and negative
pairs [17], [18]. Cao e t  a l .  [9], instead, propose an interpolation
at features level and impose a properly defined perceptual loss
for estimating unknown image targets.

Fine-tuning. Fine—tuning typically involves a number of
models trained using different hyperparameters, or large-scale
datasets, and selects the model with the best performance
on a held-out validation set. Several approaches to leverage
pre-trained models as generative prior are proposed for con-
ditional image generation, modification and restoration [19] ,
[20]. Grigoryev e t  a l .  [21] investigate the usefulness of pre-
trained generators and discriminators on large-scale datasets
while Karris e t  a l .  [22] analyze low—data regimes proposing
an adaptive discriminator augmentation technique for training
stabilization. Mo  e t  a l .  [23 ]  demonstrate that fine-tuning GANs
without modifying lower layers of the discriminator positively
affects their learning process.

Edge devices. Edge devices provide several benefits in
terms of privacy and scalability [24], [25]. Nevertheless,
intensive computation and low-latency requirements of deep
learning models cannot be  met without proper optimization
procedures. Pruning or fusion schemes are commonly adopted
for faster computation [26], as well as reducing floating-point
representation down to 16  or 8 bits [27]—[29]. Several li-
braries also propose efficient representations and compression
schemes for edge hardware [30].

I I I .  METHOD

121 models represent a class of generative architectures able
to synthesize images related to a target domain. To increase
the quality of images synthesized by I2I models in case of
imbalanced domains, we propose multiple fine-tuning steps

that can be  iteratively applied, focusing on critical learning
parameters. In the following, we firstly describe an approach
to increase perceptual performance on imbalanced datasets and
then present an optimization procedure.

Problem formulation. Our aim is to translate an image
x E RHXWXC from an input domain X to an image y E
RHXWXC from an output domain Y. We are given two sets
of unpaired instances, X = {x  E X} and 3/ = {y  E Y},
composing a dataset D, where |X| >>  | y |  (I - | denotes the
number of images of the corresponding set). To solve our task,
let M1 and M2 denote two models, trained to minimize an
objective function £1  and £2 ,  respectively, able to synthesize
new images. For the sake of simplicity, we assume that M1
and M2 represent the same model containing L layers. Let wi
be the vector of weights for the i th layer. The output of each
network is  obtained as follows:

f7¥(x) = <I>L o <I>L_1 o o <I>1(x), (1 )

where x E X represents the input, <I>() is a function (e.g.,
a convolution or linear layer) and 0 denotes the composition
operator.

To combine the weights of the ith layer of these networks,
we consider a weighted average as follows:

w], =fi.w;311”1 “hm-@132 .  (2)

Here, nlwl and W353” denote the weights of M1 and M2
previously trained on the datasets D1 and D2, respectively,
while ,6 E [0, 1] represents the interpolation parameter defining
the importance of a model compared to the other one. The
trivial case with B = 0 (or fl = 1)  would simply correspond
to a copy of one of the two models. Our procedure can be
represented using a binary tree structure (see Fig. 1). More
specifically, each node acts as a model (or subnetwork) that
is  obtained as a combination of two nodes from a previous
level. Once the weights are combined, a fine-tuning step on
D is performed to adapt them to the specific task. Let N
denote the number of levels. The total number of nodes can
be obtained as 2N — 1. Once this procedure is  applied to all the
pairs of models at the nth level, it is repeated at the (n — 1 ) “
level, containing half of the models of the previous level. In
case of an even number of models,  two nodes can be randomly
chosen, combined and fine-tuned. This represents a symmetric
binary tree. By contrast, an odd number of models does not
allow a combination of two arbitrary networks; in this case ,
one model can be  fine-tuned and then “copied” to the next
level. This represents an asymmetric binary tree.

Since 121 models typically involve multiple generators and
discriminators as well as multiple encoders and decoders, this
step can be applied to each subnetwork. Depending on the
number of layers to use in this process, multiple fine-tuning
strategies can be considered:

0 All the weights of M1 and M2 are combined, as reported
in Eq.  2 ,  and then fine-tuned on D (81 ) ;

a Only the weights of specific layers (for example, layers
related to low-level features) of M1 and M2 are combined



Fig. 1:  Our strategy involves a binary-tree structure using images from two domains (X and y )  collected in a dataset D .

(a) Symmetric

GX2YConsidering a model containing two generators, and GY2X

(b) Asymmetric

, we  firstly apply, at each level, a weighted average on the
weights of the two models from the previous level and then fine-tune on D each combined model using fixed hyperparameters
selected a—priori. If  an odd number of models i s  available (b) ,  one  model i s  randomly selected, fine—tuned on D ,  and then
“copied” to the next level to be merged with another one. Likewise, this strategy can be applied to the weights of subnetworks
or parts of the models.

and fine-tuned on D while the remaining part of the
network is  trained from scratch (SZ-A);

o Only the weights of specific layers (for example, layers
related to low-level features) of  M1 and M2 are combined
and not fine-tuned (i.e., freezed) while the remaining part
of the network is  trained from scratch (SZ-B);

0 Specific subnetworks of M1 and M2 can mix the above
strategies (S3);

Given the large availability of pre-trained architectures on
large-scale datasets, this procedure can be easily extended
to models trained on different data and potentially applied
to multiple combinations of parameters that may affect the
training process (e.g., learning rate, optimizer or batch size).

Imbalance-aware loss. 121 models typically permit both
a direct and inverse mapping, i .e. ,  X —> y and y —> X.
Nevertheless, the objective function may combine the training
samples from both domains and, i n  case  of imbalanced data,
one set would certainly count more than the other limiting
the model to focus on relevant features of the less populated
domain. To increase the awareness towards these images
during the training stage, assuming a loss function defined
as £ 2 £X_’y +1337 3X  , we consider a weighted combination
as follows:

I caware  = AILX—n/ + (1  _ AI)£Y—)X7 (3 )

where AI 6 [0, 1] refers to the imbalance degree between the
two domains. In this way, operations on images from X count
more than operations on images from 3?.

Optimization. We also experiment the deployment of our
models on edge devices using the Neural Network Compres-
sion Framework (NNCF) of the OpenVINOTM toolkit for 8—
bit quantization in  PyTorch. We consider the quantization-
aware training (QAT) which is  more robust to quantization
after training. This process simulates a quantization procedure

2—levels 3—levels 77

Model 1 (Very Slow) / / 0.00005
Model 2 (Slow) X J 0.00015
Model 3 (Fast) ./ ./ 0.0015

Model 4 (Very Fast) X ./ 0.030

TABLE 1: Learning rates used with a 2-levels/3-levels binary
tree.

Dataset Imbalance (%) |X  | | y |

90  100
Apple —> Orange 95  995  50

99  10

90  102
Orange —> Apple 95  1 ,  019  51

99  10

90  107
Horse —> Zebra 95  1 ,  067 53

99  11

90  133
Zebra —> Horse 95 1 ,  334  67

99  13

TABLE H: Number of training images per domain for each
considered imbalance percentage.

during training in order to treat the models as 8-bit networks
at inference time.

IV. RESULTS

To measure the impact on quality metrics when imbalanced
domains are used, we compute the imbalance percentage 1
as ( l  — |y|)/|X| ~ 100. The bigger this value, the greater
the imbalance between the two domains is. For example,
considering two domains including 1,000 images each, i.e.,
|X |  = | y |  = 1,000, if the imbalance is set to 90%, we use
17 000 images from domain X and 100 images from domain
3}.



Apple —> Orange Orange —> Apple Horse —> Zebra Zebra —> Horse

Imbalance (%)  Tree levels FID ( t )  LPIPS (t) FID (.L) LPIPS (T) FID (t) LPIPS (T) FID ( t )  LPIPS (T)
— 2.44 0.65 3.55 0.67 4.14 0.63 2.29 0.60

90 2 2.19 0.65 2.15 0.65 10.03 0.61 3.13 0.62
3 1.72 0.64 1.95 0.65 3.66 0.61 3.54 0.62
— 3.66 0.65 3.86 0.66 5.11 0.64 3.40 0.59

95 2 3.88 0.65 2.26 0.65 7.21 0.60 3.54 0.63
3 3.25 0.64 5.07 0.66 7.12 0.63 3.38 0.61
- 3.06 0.65 6.67 0.65 3.76 0.60 4.05 0.61

99 2 2.19 0.65 3.46 0.63 4.88 0.61 6.20 0.61
3 11.55 0.64 3.92 0.63 5.70 0.60 9.47 0.64

TABLE III: FID and LPIPS metrics. The first row of each subset refers to the Cycle-GAN architecture without applying our
fine-tuning strategies. Images involving apples and oranges result more simple to be translated compared to images showing
horses or zebras. S1  strategy i s  employed for both generators and discriminators.

Apple —> Orange Orange —> Apple Horse —> Zebra Zebra —> Horse

Imbalance (%)  Tree levels FID ( t )  LPIPS (T) FID (3)  LPIPS (T) FID (4,) LPIPS (T) FID (i) LPIPS (T)
— 3.66 0.65 3.86 0.66 5.11 0.64 3.40 0.59

95 2 2.15 0.64 2.40 0.66 6.23 0.65 3.92 0.61
3 2.66 0.65 2.31 0.67 7.15 0.62 7.37 0.64

TABLE IV: FID and LPIPS metrics when only discriminators are retained from the previous layer and combined, while
generators are trained from scratch at each level. SZ-A strategy is employed.

Apple —> Orange

Imbalance (%) Tree levels Lama”  FID ( i )  LPIPS (T)

— X 3.66 0.65
- I 3.50 0.66

95 2 X 3.88 0.65
2 / 3.24 0.66

3 X 3.25 0.64
3 / 2.51 0.64

TABLE V:  FID and LPIPS metrics for a single translation
using a symmetric tree and an imbalance-aware loss. S1
strategy is employed for both generators and discriminators.

Apple —> Orange

Imbalance (%)  Tree levels FID (,L) LPIPS (T)

— 3.66 0.65
95 3 3.50 0.66

TABLE VI: FID and LPIPS metrics for a single translation
using an asymmetric tree with 3 models: very slow, fast and a
model trained on the Horse —> Zebra transformation. The last
one i s  copied to the next level. 81  strategy is  employed for
both generators and discriminators.

Apple —> Orange

Imbalance (%)  QAT Epochs FID (i) LPIPS (T)
x - 3.66 0.65

95 ./ 2 4.47 0.66
./ 5 4.45 0.66

TABLE VH: FID and LPIPS metrics obtained training Cycle-
GAN for 50  epochs and then applying our quantization pro-
cedure (i .e. ,  transformation to 8 bits and fine-tuning for 2 and
5 epochs, respectively).

As baseline architecture, we use  Cycle-GAN [12] ,  a
residual-based IZI translation model involving two couples
of generator-discriminator, one for each mapping. It employs
a direct and an inverse mapping, and introduces a cycle-
consistency loss to constrain the learned transformation. An
identity loss is used to avoid unnecessary modifications to
the input images, and an adversarial loss is  used to generate
realistic outputs. Its final objective function can be  represented
as follows:

E : AEGAN ‘l‘ ) ‘ cyc l eccyc l e  + ) ‘ i dfi i d '  (4)

We refer the reader to Zhu e t  al .  [5] for a more detailed
description of this architecture. We set ,6 to 0.5 in Eq. 2, and
use A = 1,  Acycle = 5 and Aid 2 10 for our fine-tuning steps.
The optimizer is  Adam and the learning rate 77 is  set to 0.0002.
At each level, we consider 50  epochs.

For our experiments, we adopt two datasets: Apple —>
Orange and Horse —> Zebra. Statistics of both datasets are
reported in Table II. To quantitative evaluate our approaches,
we use two metrics: FID (Fréchet Inception Distance) [31] and
LPIPS (Learned Perceptual Image Patch Similarity) [32] met-
ric. We compute the former on features with dimensionality
64 (i.e., first max pooling features).

In Table HI, we evaluate our approach with a symmetric
binary tree with 2 and 3 levels and different imbalances. The
models are trained using the parameters reported in Table I. We
note that increasing the number of levels has a beneficial im-
pact on the learned features, in most cases. Images containing
more complex characteristics (e.g., zebras or horses), instead,
do not appear much affected by our procedure, demonstrating
that over-fitting cannot be easily solved. Furthermore, we show
our qualitative results in Fig. 2. We observe a more consistent
color structure for our synthesized images after several fine-



tuning steps. Similarly to M0 e t  al .  [23], we  report in Table IV
an experiment without inheriting generators from previous
layers. Fig. 3 also confirms the positive impact of our strategy.
In Table V and Table VI we report the effect of our imbalance-
aware loss and an asymmetric binary tree using a pre-trained
model on a different dataset. Finally, to test the impact of
quantization on our models, we first transform the original
pre-trained FP32 model to INT8, and then, u se  fine-tuning
for a number of epochs varying from 2 to 5.  Table VII and
Fig. 4 show that fine-tuning for deployment is  a crucial step
for limiting inevitable drops in  performance.

V. LIMITATIONS

A major limitation of our approach is represented by the
number of fine-tuning steps, which increases exponentially.
Our techniques are, in fact, tested with a limited number o f
epochs and simulating an 8-bit training device. An imbalance-
aware loss with fixed weights may also not properly focus on
simple or hard samples to be  learned. Finally, to obtain more
robust results, multiple runs may be  considered.

VI .  CONCLUSION

To overcome overfitting and increase diversity for unpaired
image-to-image translation models, we propose multiple fine-
tuning strategies able to increase image quality for imbalanced
domains. We demonstrate that a binary-tree structure can be
employed when multiple generators and discriminators are
involved. Our future work will be  towards a more light-
weighted procedure to reduce a drop in performance high-
lighted by specific datasets and images containing complex
patterns, and a further detailed analysis comprising more
learning parameters.
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Imbalance

90%

Cycle-GAN

95% 99%

2 levels 3 levels

Fig. 2: Qualitative results for different imbalance values, for Apple —> Orange, Orange —> Apple and Horse —> Zebra datasets.
Several input images present a more powerful representation of the background compared to the Cycle-GAN baseline. Images
from Horse —> Zebra appear more challenging increasing the overfitting impact. When I = 99% a noticeable degradation is
clearly Visible.
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