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Abstract
Transmission losses through optical fibers are one of the main obstacles preventing both
long-distance quantum communications and continuous-variable quantum key distribution.
Optical amplification provides a tool to obtain, at least partially, signal restoration. In this work, we
address a key distribution protocol over a multi-span link employing either phase-insensitive (PIA)
or phase-sensitive (PSA) amplifiers, considering Gaussian modulation of coherent states followed
by homodyne detection at the receiver’s side. We perform the security analysis under both
unconditional and conditional security frameworks by assuming in the latter case only a single
span of the whole communication link to be untrusted. We compare the resulting key generation
rate (KGR) for both kinds of amplified links with the no-amplifier protocol, identifying the
enhancement introduced by optical amplification. We prove an increase in the KGR for the PSA
link in the unconditional scenario and for both PSA and PIA in the conditional security setting
depending on position of the attack and the measured quadrature.

1. Introduction

Thanks to the quantum key distribution (QKD) [1–3] it is possible to distill a random secure key between a
sender (Alice) and a receiver (Bob), communicating via an untrusted quantum channel under the control of
an eavesdropper (Eve). Generally speaking, QKD protocols may be divided into two branches:
discrete-variable QKD, in which qubit states are exchanged [4–7], and continuous-variable QKD (CV-QKD),
exploiting the quadratures of a quantum optical field [8, 9]. In particular, CV-QKD provides a powerful
resource as it exploits coherent states of radiation and quadrature measurements [10], thus being compatible
with both the modulation and detection systems already employed in standard fiber-optical communications
[11].

The milestone of CV-QKD is represented by the GG02 protocol, originally proposed by Grosshans and
Grangier [8, 9, 12–14], in which Alice generates coherent states by sampling a Gaussian distribution and Bob
randomly implements a homodyne detection of one of the two orthogonal quadratures of the field. Later, a
no-switching scheme where the single quadrature measurement is replaced by double homodyne detection
has also been proposed [15]. The GG02 protocol has been widely analyzed in the unconditional security
framework [9], exploiting the optimality of Gaussian attacks [16–18]. In this approach one considers the
most general attack allowed by the laws of quantum mechanics, which requires the eavesdropper to possess a
quantum computer-like machinery and perform any collective unitary and detection operations on many
time slots. In practice, however, one can often restrict the attacks to a reasonable smaller class, either
assuming a limited power by the eavesdropper or some level of trust in the infrastructure. For example, in
satellite QKD a typical attack consists of detecting some part of the signal that is not captured by Bob’s
telescope [19]. Similarly, for the fiber based protocols it is reasonable to assume that an attack is performed
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on just a single section of the fiber and that attacker cannot easily gain access to the whole cable. For these
reasons, more recently, the interest has been directed to the conditional security approach, in which every
setup component is associated with a different trust level [20]. Moreover, towards a practical description,
within the framework of conditional security there have also been included realistic assumptions on the
feasible experimental setups, such as wiretap channels [21–23] and restricted eavesdropping [21].

Above all, in CV-QKD a crucial factor restricting security of long-distance secure communication is
provided by channel losses. Indeed, a canonical model for optical fibers is provided by the thermal-loss
channel, in which the channel transmissivity is exponentially decaying with the transmission distance
[24–26]. To compensate transmission losses and restore the signal, one can employ optical amplifiers
[27–29] and consider a multi-span link, that is, a periodic array of amplifiers connected by many
independent thermal-loss channels. So far, multi-span links have been investigated with the intent of
increasing channel capacity [30–33], showing that both phase-insensitive amplifiers (PIAs) [32] and
phase-sensitive amplifiers (PSAs) [33] induce an exponential enhancement of the ultimate capacity being
more appreciable for short-distance communication. In the context of CV-QKD heralded noiseless linear
amplification [34–37] and quantum repeaters [38–40] have been widely considered. These provide
innovative solutions, but are technologically challenging and far from a direct large-scale implementation. In
contrast, the role of optical amplifiers has been investigated to compensate for detection imperfections [41],
raising the question on their possible application to the channel losses mitigation task.

In this paper, we address the problem of performing CV-QKD over a multi-span link. We maintain the
same modulation and detection schemes of GG02, that is, a Gaussian modulation of coherent states and
homodyne detection, but replace the single thermal-loss channel of the original proposals with a multi-span
link ofM spans connected via either PIAs or PSAs. In particular we compare three different cases: a PIA link
with random homodyne detection of one of the two orthogonal field quadratures and a PSA link with
homodyne detection of either the amplified or de-amplified quadrature. We compute the key generation rate
(KGR), i.e. the length of the secret key per unit time slot, in both the unconditional and the conditional
security approaches. In the former scenario, we prove that unconditional security is improved in particular
regimes only by PSA links followed by homodyne measurement of the de-amplified quadrature. On the other
hand, we also address conditional security under restricted eavesdropping: we assume trusted amplifiers and
only a single untrusted span among the wholeM ones composing the link. This assumption provides a
simplified picture to identify the more vulnerable points of the fiber link. We compare the three discussed
cases and show that amplification is helpful if the untrusted node is placed either at the beginning or the end
of the link, according to the particular employed amplifier and measured quadrature. In the unconditional
security framework, we prove an increase in the KGR only for a PSA link where Bob homodynes the
de-amplified quadrature and a lack of thereof for the measurement of the amplified quadrature. On the
contrary, under conditional security assumption, we distinguish two different cases. For PIA or PSA link
with homodyne measurement of the amplified quadrature, we obtain an enhancement of the KGR when Eve
attacks one of the first spans, whereas for PSA links and measurement of the de-amplified quadrature, the
enhancement appears when the attacked span is in the latter part of the link. Finally, we briefly discuss the
case in which Alice and Bob achieve the ultimate capacity limits discussed in [30–33]. This provides us with
the ultimate enhancement in the KGR brought by the links under investigation. We focus on the PIA link case
and show that, even in this case, the advantages of PIA disappear as the location of attack nodes increases.

The structure of the paper is the following. In section 2 we present the structure of the multi-span links
under investigation. Then, in sections 3 and 4 we perform the security analysis under unconditional and
conditional security paradigms, respectively, assuming a single untrusted span. Thereafter, in section 5 we
consider the ultimate limits obtained when Alice and Bob achieve the quantum channel capacity while in
section 6 we speculate about the impact of PSAs at the modulation stage of the protocol to further enhance
CVQKD. Finally, in section 7 we draw the final conclusions and summarize the obtained results.

2. Multi-span amplified links

In this work, we address the application of multi-span links employing optical amplifiers for CV-QKD. In
particular, we employ the quantum amplifiers depicted in figure 1. We consider an incoming optical mode a,
satisfying [a,a†] = 1, and its associated quadrature operators

q= σ0
(
a+ a†

)
and p= iσ0

(
a† − a

)
, (1)

with [q,p] = 2iσ2
0 and σ2

0 being the shot-noise variance [10]. Throughout the work we will always consider
shot-noise units, namely σ2

0 = 1. The goal is to amplify the mode a by a gain factor G. The PIA, see
figure 1(a), is implemented by coupling mode a together with an ancillary mode b prepared in the vacuum
state |0⟩ and performing a two-mode squeezing operation, namely

2
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Figure 1. Schemes of the phase-insensitive amplifier (PIA) (a) and phase-sensitive amplifier (PSA) (b) employed throughout the
paper. In both the cases the amplification gain G is related to the squeezing parameter r. The PIA applies the same amplification to
both quadratures and introduces additional noise while PSA amplifies one of the quadratures and deamplifies the second
rescaling the variances accordingly as seen on the example for a coherent state with amplitude α= αq + iαp.

Figure 2. Scheme of the CV-QKD protocol discussed in the present paper. A two mode squeezed vacuum state (TMSV) is
distributed between Alice and Bob. Alice performs a heterodyne measurement on her mode, whereas the mode sent to Bob travels
through a loss-thermal channel modeled by a series ofM beam splitters with transmissivities Tj and added mean thermal number
of photons n̄j. In order to counteract losses the signal after each span Bj is amplified by either PIA or PSA with gain Gj. Finally,
Bob performs a measurement which we assume to be either case I: a random homodyne detection of quadratures q/p, or
homodyne detection of either q, IIa, or p, IIb.

S2 (r) = exp
[
r
(
a†b† − ab

)]
, (2)

r⩾ 0 being the squeezing parameter [28, 42]. The original input mode is then transformed into
a→

√
Ga+

√
G− 1b, with G= cosh2 r. Thereafter, we trace over mode b, ending up with an amplified

signal but at the expense of introducing an ineludible added noise equal to G− 1 on both quadratures
variances. PIAs well describe also amplification by a laser medium without optical feedback from a cavity
[28, 43], being of particular interest for systems working at high powers, whereas their application at the
quantum level is more limited due to the introduced excess noise [27].

The issue of noise may be circumvented by employing PSAs, see figure 1(b), implemented via a unitary
single-mode squeezing operation

S(r) = exp
{ r

2

[(
a†
)2 − a2

]}
, (3)

r⩾ 0 [28, 42]. PSA amplifies the quadrature q by a factor
√
G= exp(r)⩾ 1 at the expense of squeezing, i.e.

de-amplifying, quadrature p by 1/
√
G⩽ 1. Consequently, the quadrature variances are also amplified and

de-amplified by G and 1/G, respectively. Crucially, the input commutation relations between the
quadratures are preserved without introducing any further noise. Note also the important difference between
PIA and PSA: the former is a noisy operation requiring the introduction of an additional light mode lost to
the environment which, in principle, can be intercepted by a malicious party, whereas the latter amplification
scenario assumes unitary evolution which does not leak any information, thus being always trusted.

Given the previous considerations, in figure 2 we present the protocol discussed in the paper. We start
from the GG02 scheme in its entanglement-based version [8, 9, 12–14]. That is, Alice has a two-mode
squeezed vacuum state (TMSV) with variance V > 1, namely

|TMSV⟩=
√
1−λ2

∞∑
n=0

λn|n⟩|n⟩ , (4)

3
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where λ=
√
(V− 1)/(V+ 1) and |n⟩ being the Fock state with n photons [10]. She injects the second

branch into the quantum channel while performing heterodyne detection, equivalent to double homodyne,
on the remaining mode, such that the conditional state sent to Bob is a coherent state. Ultimately, Bob
performs a homodyne measurement on the received pulses, which in the former version of GG02 consists of
a random homodyne detection of either q or p quadratures [8, 14].

Unlike in the standard GG02 protocol, the quantum channel discussed in this work consists of a
multi-span link withM spans alternated by optical amplifiers. Each span j = 1, . . . ,M is modeled as an
independent thermal-loss channel with transmissivity Tj ⩽ 1 and excess noise ϵj ⩾ 0. More precisely, the
optical mode entering the jth link is mixed at a beam splitter with transmissivity Tj with a thermal state
having n̄j = Tjϵj/[2(1−Tj)]mean number of photons [10]. Thereafter, the radiation undergoes optical
amplification, either phase-insensitive or phase-sensitive, before being injected into the ( j+ 1)-th span. For
simplicity, here we assume both identical and equally spaced amplifiers, such that all spans have the same
transmissivity Tj = T, added thermal noise n̄j = n̄T and amplification gain Gj = G. Note, however, that this
choice may not be the optimal arrangement [32]. Then, if the total transmission distance is L, two
neighboring amplifiers are spaced by L/M and we have

T= 10−κL/(10M) , (5)

κ= 0.2 dB/km being the typical loss rate of standard optical fibers [24–26]. Moreover, we assume the added
thermal photons in each span to be equal to

n̄T =
TMϵ

2(1−TM)
. (6)

With these choices, in the absence of optical amplification, that is G= 1, we retrieve the standard GG02
scenario, that is a single-span thermal-loss channel with total transmissivity Tn = TM and added noise
Nn = (1−Tn)/Tn + ϵ, ϵ⩾ 0 being the total excess noise [9, 14].

Starting from the scheme in figure 2, we address three different cases, differing from one another by both
the employed amplifier and the measurement implemented by Bob:

• Case I: PIA link and random homodyne detection of quadratures q/p,
• Case IIa: PSA link and homodyne detection of quadrature q, namely the anti-squeezed quadrature,
• Case IIb: PSA link and homodyne detection of quadrature p, namely the squeezed quadrature.

Note that the presence of a PSA link makes the channel phase-sensitive, thus differentiating the behavior of
quadratures q and p. Therefore, in the presence of PSAs Bob may perform homodyne detection of a single
quadrature for those experimental runs dedicated to key extraction, while homodyning both q and p for the
channel evaluation stage, in order to fully characterize the quantum channel [9].

In the following, we compute the KGR for all three cases under both unconditional and conditional
security scenarios. To perform the analysis, we adopt the notation introduced in figure 2. At first Alice has
two optical modes A and B0 excited in the TMSV state (4). Then, the mode B0 is injected into the sequence of
M spans. We denote by Bj the optical mode coming out from the jth span and subsequently amplified by the
jth amplifier. Finally, we refer to the last output mode as B= BM. We start by computing the mutual
information shared between Alice and Bob, addressing the cases I and IIp, p= a,b, separately. The whole
analysis is carried out following the Gaussian formalism, briefly reminded in appendix A.

2.1. Case I : PIA link
The initial state before injection into the channel is a TMSV in modes A and B0, completely characterized by
its covariance matrix (CM)

σAB0 =

(
V12 Zσz

Zσz V12

)
, (7)

where Z=
√
V2 − 1, 12 is a 2× 2 identity matrix and σz is the Pauli z-matrix.

The mode B0 is injected into the noisy channel, which may be modeled via a sequence of Gaussian
completely-positive (CP) maps as derived in appendix B. More specifically, each node is described by a
Gaussian CP map associated with the matrices X(I) =

√
GT12 and Y(I) = [G(1−T)(1+ 2n̄)+ (G− 1)]12,

such that the bipartite state on modes ABj after the j-th span is a Gaussian state with associated CM

σ
(I)
ABj

= (12 ⊕X(I))σ
(I)
ABj−1

(12 ⊕X(I))T +(0⊕Y(I)), 0 being the null 2× 2 matrix. Accordingly, afterM nodes
applying PIA the state shared between Alice and Bob is still Gaussian with CM

4
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σ
(I)
AB =

(
σ

(I)
A σ

(I)
Z

σ
(I)T
Z σ

(I)
B

)
=

(
a(M)12 z(M)σz

z(M)σz b(M)12

)
, (8)

where

a(M) = V , (9a)

b(M) = T(M)
[
V+N(M)

]
, (9b)

z(M) =
√

T(M)Z , (9c)

and

T(M) = (GT)M , (10a)

N(M) =
1

(GT)M−1

1− (GT)M

1−GT
[N+NG] , (10b)

N= (1−T)(1+ 2n̄T)/T being the added noise introduced after the passage though a single span due to
the channel thermal noise, while NG = (G− 1)/(GT) is the added noise due to the PIA. Consequently,
compared to the scenario in the absence of amplifiers, the PIA link is equivalent to a thermal-loss channel
with increased transmissivity T(M) ⩾ Tn, but also increased added noise N(M) ⩾ Nn.

After transmission, Alice performs heterodyne detection on her mode, associated with the CM σhet = 12,
while Bob implements a homodyne detection of either quadrature q or p, referred to as sub-cases a and b,
and described by the CMs

σa = lim
z→0

(
z 0
0 z−1

)
and σb = lim

z→∞

(
z 0
0 z−1

)
, (11)

respectively. Due to the symmetry of (8), the resulting statistics for both quadrtures are identical, therefore,
we can safely assume that Bob always measures the quadrature q. In turn, the mutual information between
Alice and Bob may be obtained directly from (8) as [37]:

I(I)AB (V,G) =
1

2
log2

det
[
σ

(I)
A +σhet

]
det
[
σ

(I)
B +σa

]
det
[
σ

(I)
AB +(σhet ⊕σa)

]
 , (12)

where we highlighted the dependence on the free parameters V and G.

2.2. Case II : PSA link
For cases IIp, p= a,b, we follow analogous procedure as in the previous subsection. Now, each node is
modeled by a Gaussian CP map with matrices X(II) and Y(II), see appendix B. The shared state on modes ABj

has CM σ
(II)
ABj

= (12 ⊕X(II))σ
(II)
ABj−1

(12 ⊕X(II))T +(0⊕Y(II)), thus ultimately we obtain the CM of the state
shared between Alice and Bob as:

σ
(II)
AB =

(
σ

(II)
A σ

(II)
Z

σ
(II)T
Z σ

(II)
B

)
=


a(M) 0 z(M)

1 0

0 a(M) 0 −z(M)
2

z(M)
1 0 b(M)

1 0

0 −z(M)
2 0 b(M)

2

 , (13)

where

b(M)
1(2) = T(M)

1(2)

[
V+N(M)

1(2)

]
, (14a)

z(M)
1(2) =

√
T(M)
1(2)Z , (14b)

and

T(M)
1 = (GT)M , T(M)

2 =
(
G−1T

)M
, (15a)

5
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N(M)
1 =

1

(GT)M−1

1− (GT)M

1−GT
N , (15b)

N(M)
2 =

1

(G−1T)M−1

1−
(
G−1T

)M
1−G−1T

N , (15c)

with N= (1−T)(1+ 2n̄T)/T.
Unlike case I, the PSA link is a phase-sensitive channel. Indeed, in the presence of PSA, quadrature q

exhibits an increased transmissivity T(M)
1 ⩾ Tn and reduced added noise N

(M)
1 ⩽ Nn, whereas quadrature p

shows a reduced transmissivity T(M)
2 ⩽ Tn with increased added noise N

(M)
2 ⩾ Nn. As we discuss in the

following, under appropriate conditions this allows Bob to hide behind the increased noise to reduce the
amount of information intercepted by an eventual eavesdropper. The mutual information for the two
sub-cases p= a,b then reads:

I(IIp)AB (V,G) =
1

2
log2

det
[
σ

(II)
A +σhet

]
det
[
σ

(II)
B +σp

]
det
[
σ

(II)
AB +

(
σhet ⊕σp

)]
 . (16)

In the next sections, we will perform a security analysis of the above protocols by considering both the
cases of unconditional security, where the entire channel is untrusted, and conditional security, assuming
that only a single span is untrusted and may be intercepted by Eve. In both scenarios, we take as a benchmark
the security of the associated protocol in the absence of optical amplifiers, referred to as the ‘no-amplifier
protocol’, in which we assume Bob to perform a random homodyne measurement of either quadrature q or p
as in GG02. The results of the standard no-amplifier protocol can be retrieved from both cases I and II by
fixing G= 1.

3. Unconditional security

At first, we analyze the performance of the discussed protocol under the unconditional security approach,
where the whole transmission line is supposed to be attacked by Eve. In this framework, all elements of the
multi-span link are assumed to be untrusted and the most powerful attack is the so-called purification attack
[9, 14]. That is, Eve intercepts all the lost photons, and collects modes associated with the channel noise and
purifies the final state shared between Alice and Bob, such that the tripartite system ABE is pure [9]. Under
these conditions employing PIAs is useless because Eve would have access also to their purification, denoted
by mode b in figure 1(a), and extract more information with respect to the no-amplifier protocol. In
contrast, case II is still worth of interest due to the unitarity of phase-sensitive amplification.

Considering reverse reconciliation [9, 14], for the cases IIp, p= a,b, the KGR is given by

K(IIp)
u (V,G) = βI(IIp)AB (V,G)−χ

(IIp)
BE (V,G) , (17)

where β ⩽ 1 is the reconciliation efficiency and χ
(IIp)
BE (V,G) = SE − S(p)E|B is the Holevo information between

Bob and Eve [44], SE and S(p)E|B being the Von Neumann entropies of Eve’s overall state and Eve’s conditional
state after Bob’s measurement, respectively. Due to the purification attack and the fact that Bob’s

measurement is represented by a 1-rank operator, we have SE = SAB and S(p)E|B = S(p)A|B, where SAB and S(p)A|B are
the Von Neumann entropies of Alice and Bob’s bipartite state and Alice’s conditional state, respectively. These
two latter quantities can be retrieved from the CM (13), leading to:

χ
(IIp)
BE (V,G) = h(d1)+ h(d2)− h

(
d(p)
3

)
, (18)

where

h(x) =
x+ 1

2
log2

(
x+ 1

2

)
− x− 1

2
log2

(
x− 1

2

)
, (19)

d1 and d2 are the symplectic eigenvalues of (13) and d(p)
3 =

√
det
[
σ

(IIp)
A|B
]
, with

σ
(IIp)
A|B = σ

(II)
A −σ

(II)
Z

[
σ

(II)
B +σp

]−1
σ

(II)T
Z . (20)

In particular, we have:

6
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Figure 3. (a) Optimized KGR as a function of the transmission link length L for different level of external noise and number of
amplifiersM, with fixed reconciliation efficiency β= 0.95. (b) Optimized KGR as a function of L for different values of
reconciliation efficiency and number of amplifiersM, with fixed channel excess noise ϵ= 0.05. The enhancement introduced by
PSAs is accentuated for lower β. The caseM= 0 refers to the no-amplifier protocol. The gray shaded area represents KGR greater
than the PLOB bound.

d(a(b))
3 = V

√√√√1− Z2

V
[
V+N(M)

1(2)

] . (21)

Finally, we perform optimization over the free parameters—modulation variance V and gain
G—obtaining

K(IIp)
u =max

V,G
K(IIp)
u (V,G) , (p= a,b) , (22)

subject to the set of constraints b( j)1 ⩽ V, see equation (14a), i.e.

T( j)
1

[
V+N( j)

1

]
⩽ V , ( j = 1, . . . ,M) , (23)

assuring that throughout the channel the squeezing operation does not amplify the variances of the
quadratures, proportional to the total optical power, over their input values [32, 33]. This conditions arises
from a physical requirement that realistic optical fibers cannot support propagation of pulses with arbitrarily
high energy without damaging the optical infrastructure or the emergence of unwanted nonlinear effects.
Therefore, it is reasonable to impose a condition on the gain of the PSA, such that energy of the amplified
signal after each span is not larger than the input one. Furthermore, since we assume all amplifiers to be

characterized by the same gain , it suffices to verify condition (23) for j= 1, satisfied if b(1)1 ⩽ V, namely

G⩽ G(II)
max ≡

V

1+T(V+ ϵ− 1)
. (24)

In this security paradigm, the no-amplifier protocol is described by a single-span quantum channel with
transmissivity Tn and added noise Nn, which coincides with the GG02 protocol. The benchmark key rate

K(n)
u is obtained by optimizing the unamplified KGR over the modulation variance V :

K(n)
u =max

V
K(IIp)
u (V,G= 1) . (25)

The obtained numerical results suggest that the optimized gain for case IIa is equal to G(IIa)
u ≡ 1 for all L,

therefore K(IIa)
u ≡ K(n)

u and measuring the anti-squeezed quadrature q does not increase the key rate of the
discussed protocol. On the contrary, the case IIb improves the security for large values of excess noise ϵ, as
depicted in figure 3(a). In this case, PSA links offer a higher KGR and, remarkably, increase the achievable
maximum transmission distance, although the enhancement is relevant only for large excess noise, namely
ϵ≳ 0.05 [45, 46]. Furthermore, as shown in figure 3(b), at fixed excess noise ϵ, the KGR increase induced by
PSAs becomes larger for lower values of the reconciliation efficiency β. For the sake of completeness, in
figure 3 we also show the PLOB bound [55]:

KPLOB =− log2
[
(1−Tn)T

n̄T
n

]
− h(1+ 2n̄T) , (26)

7
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Figure 4. Optimal amplifier gain G
(IIb)
u as a function of link length L for different number of amplifiersM. The dashed lines

represent the maximum attainable gain G
(II)
max computed with the optimized modulation V

(IIb)
u , presented in the inset. We set

ϵ= 0.05 and β= 0.95.

Figure 5. Noise (a) and effective link transmission (b) as a function of link length for different number of amplifiersM for
ϵ= 0.05 and β= 0.95. The caseM= 0 refers to the no-amplifier protocol.

representing the secret-key capacity of the channel, namely the maximum KGR achievable with the
considered thermal-loss channel.

The optimized gain G(IIb)
u obtained from the maximization procedure is plotted in figure 4. For small link

lengths L, constraint (24) leads to G(IIb)
u = G(II)

max and the gain increases with link length, whereas for larger L

it becomes a decreasing function approaching 1 asymptotically. Moreover, G(IIb)
u decreases with the number

of spansM, as expected. Finally, the optimized modulation V(IIb)
u is a decreasing function of the link length

such that V(IIb)
u ⩾ V(n)

u , where V(n)
u is the optimized modulation of the no-amplifier protocol.

The physical explanation of the previous results is the following. When measuring the squeezed

quadrature p, Bob observes a higher added noise with respect to the standard protocol, that is, N(M)
2 ⩾ Nn,

and a reduced effective transmissivity T(M)
2 ⩽ Tn, as depicted in figure 5. In turn, the mutual information

between Alice and Bob is reduced, but at the same time also Eve’s Holevo information is reduced since the
conditional entropy S(b)E|B becomes larger, according to (21). The tradeoff between the two types of
information leads to the the existence of an optimized gain for which the Holevo information is reduced
more than the mutual information, eventually resulting in a higher KGR obtained by ‘hiding’ behind the
noise.

In light of this, the advantage introduced by PSAs shall increase with the number of spansM. In
particular, we may obtain the maximum increase in KGR in the continuous-amplification limit,M≫ 1. Since
TM = Tn is fixed, in this limit, up to a leading order inM, we have that T≈ 1, 1−T≈− lnT=−(lnTn)/M
and GM = G∞. Consequently, the effective transmissivities and added noises read

T(∞)
1 = G∞Tn , T(∞)

2 = G−1
∞ Tn , (27a)

N(∞)
1 =

1−G∞Tn

G∞Tn

lnTn

ln(G∞Tn)
(1+ 2n̄T) , (27b)

N(∞)
2 =

1−Tn/G∞

Tn/G∞

lnTn

ln(Tn/G∞)
(1+ 2n̄T) , (27c)

8
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Figure 6.Maximum tolerable noise as a function of the link length for different number of amplifiersM for β= 0.95. The case
M= 0 refers to the no-amplifier protocol.

and we obtain the KGR by (22). These channel parameters, calculated for the resulting optimized gain G∞,
are plotted in figure 5. Note also that even a few spans allow one to approach the continuous amplification
limit.

Finally, we calculate the maximum tolerable excess noise ϵ(IIb)max as a function of the transmission distance,
reported in figure 6. It represents the maximum acceptable amount of noise to maintain a positive KGR.
Consistently with the previous results, the exploitation of PSAs increases the maximum tolerable excess noise

with respect to the no-amplifier scheme in the metropolitan-distance regime, as ϵ(IIb)max ⩾ ϵ
(n)
max. As expected,

the advantage introduced increases with the number of nodes.

4. Conditional security under restricted eavesdropping: only one untrusted span

We now discuss the second instance under investigation, the restricted eavesdropping case. In this scenario
we assume Eve to attack only a single span of the link, whilst all the remaining ones as well as the employed
amplifiers are considered to be trusted, thus letting our analysis to belong to the conditional security
framework. In turn, only a fraction 1/M of the whole fiber link is untrusted. The scheme for the
eavesdropping strategy under investigation is depicted in figure 7. Across the whole channel, only the kth
link, k= 1, . . . ,M, is untrusted and may be attacked via entangling cloner attack by Eve [9, 21], performing
active eavesdropping. That is, Eve hides herself behind the thermal noise n̄k = n̄T, equal to (6), by generating
a TMSV state with variance Vϵ = 1+ 2n̄T on two modes E= (E1,E2) and injecting mode E1 into the second
input port of the beam splitter modeling the k-th span, retrieving the reflected output state. In this way she
gets undetected by Alice and Bob, as performing partial trace over modes E introduces an additive thermal
noise with exactly n̄T mean number of photons. In order to perform the security analysis under the above
paradigm we shall compute the quantum state in Eve’s possession after the entangling cloner attack. We
proceed as follows, starting with the case I.

Since all nodes j = 1, . . . ,k− 1 are trusted, the quantum state shared by Alice and Bob injected into the
k-th span is in the form (8), namely:

σ
(I)
ABk−1

=

(
a(k−1)12 z(k−1)σz

z(k−1)σz b(k−1)12

)
. (28)

Instead, the CM of Eve’s initial TMSV state reads:

σE =

(
Vϵ12 Zϵσz

Zϵσz Vϵ12

)
, (29)

with Zϵ =
√

V2
ϵ − 1. After the interference at the beam splitter, the joint quantum state of Alice, Bob and Eve

is described by the CM:

σ
(I)
ABkE

= S
(
σ

(I)
ABk−1

⊕σE

)
ST , (30)

where

S= 12 ⊕ SBS ⊕12 , (31)

9
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Figure 7. Scheme of the CV-QKD protocol under restricted eavesdropping. All the amplifiers are trusted and Eve is allowed to
attack only the k-th span, k= 1, . . . ,M, via active eavesdropping, that is by injecting one arm of a TMSV state into the span,
hiding herself behind the introduced excess noise.

and

SBS =

( √
T12

√
1−T12

−
√
1−T12

√
T12

)
(32)

is the symplectic matrix associated with the beam splitter operation [42, 47].
Thereafter, we let the transmitted signal pass through the remainingM− k spans, applying the techniques

described in appendix B. Ultimately, the tripartite joint state after the channel is associated with the CM:

σ
(I)
ABE =

(
σ

(I)
AB σ

(I)
C

σ
(I)T
C σ

(I)
E

)
, (33)

with the σ(I)
AB in equation (8) and

σ
(I)
E =

( [
(1−T)b(k−1) +TVϵ

]
12

√
TZϵσz√

TZϵσz Vϵ12

)
, (34)

being the CM of Eve’s overall state and the correlation matrix between Alice and Bob and Eve, respectively,
with

c(1) =−
√
1−Tz(k−1) , (36a)

c(2) =

√
(GT)M−k+1

(1−T)
[
Vϵ − b(k−1)

]
, (36b)

c(3) =

√
(GT)M−kG(1−T)Zϵ . (36c)

Subsequently, after Bob’s measurement Eve is left with the conditional state associated with:

σ
(I)
E|B = σ

(I)
E −σ

(I)T
BE

[
σ

(I)
B +σa

]−1
σ

(I)
BE . (37)

Similarly as in the unconditional security case, the KGR resulting from the present conditional security
analysis is given by the difference between the appropriately rescaled Alice and Bob’s mutual information

I(I)AB(V,G) and the Holevo information between Eve and Bob χ(I)
BE (V,G):

K(I)
c (V,G) = βI(I)AB (V,G)−χ

(I)
BE (V,G) , (38)

where β denotes the reconciliation efficiency. The Holevo information can be written as

χ
(I)
BE (V,G) = S(I)E − S(I)E|B = h

(
d(I)
1

)
+ h
(
d(I)
2

)
− h
(
d(I)3

)
− h
(
d(I)4

)
, (39)

where h(x) is the function in (19) and d(I)
1(2) and d(I)

3(4) are symplectic eigenvalues of the CMs (34) and (37),
respectively. The resulting optimized KGR is equal to:

K(I)
c =max

V,G
K(I)
c (V,G) , (40)

10
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subject to the constraints of maximum power in the link T( j)[V+N( j)]⩽ V for all j = 1, . . . ,M, or,
equivalently,

G⩽ G(I)
max ≡

1+V

2+T(V+ ϵ− 1)
. (41)

The same procedure may be followed to derive the key rate of case II, identifying the corresponding CMs

σ
(II)
E and σ

(IIp)
E|B , the latter depending on the particular quadrature measured by Bob. The resulting

expressions are cumbersome, and we only report them in C. The corresponding KGR can be written as:

K(IIp)
c (V,G) = βI(IIp)AB (V,G)−χ

(IIp)
BE (V,G) , (p= a,b) , (42)

with the mutual information I(IIp)AB (V,G) given in (16) and the Holevo information equal to

χ
(IIp)
BE (V,G) = S(II)E − S(IIp)E|B

= h
(
d(II)
1

)
+ h
(
d(II)
2

)
− h
(
d(IIp)
3

)
− h
(
d(IIp)
4

)
, (43)

d(II)
1(2) and d(IIp)

3(4) being the symplectic eigenvalues of σ(II)
E and σ

(IIp)
E|B , respectively. Finally, one obtains

K(IIp)
c =max

V,G
K(IIp)
c (V,G) , (44)

subject to the constraint (24).
Differently from section 3, in this scenario the no-amplifier protocol is equivalent to the case of a wiretap

channel under restricted eavesdropping, in which Eve has access only to a portion 1/M of the fiber link [21].
That is, we may model the channel as an asymmetric three-span channel composed of three beam splitters
with effective transmissivities Tl = Tk−1, Tk = T and Tr = TM−k, and thermal noise n̄l = n̄k = n̄r = n̄T,
respectively, in which only the central span is attacked by Eve via entangling-cloner attack. The benchmark

key rate K(n)
c is then equal to:

K(n)
c =max

V
K(I)
c (V,G= 1) . (45)

In the next subsections, we show the obtained results, by comparing directly cases I and IIa, in which the
amplified quadrature is probed by Bob and, thereafter, by discussing case IIb, where Bob detects the
de-amplified quadrature.

4.1. Cases I and IIa : measuring the amplified quadrature

For both the discussed cases I and II, plots of the KGR K(q)
c , q= I, IIa, are presented in figure 8 for links with

M= 5 (a) orM= 10 (b) amplifiers and different positions k= 1, . . . ,N of the untrusted span, and compared

to K(n)
c for no-amplifier protocol. We underline that the results forM= 5 andM= 10 can be only

qualitatively compared, as we keep the assumption that only one span is untrusted and, in turn, by increasing
M Eve becomes more and more restricted.

In general, one can observe that, when Bob measures the amplified quadrature, both PIAs and PSAs
improve the KGR with respect to the no-amplifier protocol only if Eve attacks one of the first spans of the
fiber-link. The case k= 1, where the first span is the untrusted one, represents the best-case scenario, where
the key rate is increased by several orders of magnitude. Indeed, in this scenario the signal intercepted by Eve

has not been amplified yet. Thus, Eve’s overall state, described by the CM σ
(q)
E , is independent of the gain G

and the only effect of amplification is the reduction of the conditional entropy S(q)E|B appearing in the Holevo
information equations (39) and (43). On the other hand, for k⩾ 2, amplifying Bob’s received signal also

increases Eve’s overall entropy S(q)E . In turn, the benefits of optical amplification are more and more reduced
with increasing k. To better quantify this effect, we compute the ratio:

R(q) =
K(q)
c

K(n)
c

, (q= I, IIa) , (46)

which is presented in figures 8(c) and (d). All ratios are initially equal to 1 up to a threshold distance, that is,

R(q) = 1 if L⩽ L(q)min, thereafter for k⩾ 2 they reach a maximum and then decrease towards an asymptotic
value. Moreover, the key ratioR(q) decreases with increasing k and there exists a threshold value kth such that

for k⩾ k(q)th we haveR(q) ≡ 1. Therefore, if Eve attacks a span located further, k⩾ k(q)th , employing signal

11
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Figure 8. Optimized KGR and key ratio for cases I and IIa as a function of the transmission link length L for different locations of
the eavesdropper forM= 5 (a) and (c) andM= 10 (b) and (d) respectively. We set ϵ= 0.05 and β= 0.95.

Figure 9. Optimal amplifier gain (a) and modulation (b) for cases I and IIa as a function of the link length L for different
locations of the untrusted span k forM= 10, ϵ= 0.05 and β= 0.95.

amplification is no longer beneficial. For link parameters values κ= 0.2dB/km, ϵ= 0.05 and β= 0.95 one

obtains k(I)th = 2 and k(IIa)th = 3 forM= 5, while forM= 10 one gets k(I)th = 5 and k(IIa)th = 8. Importantly, note

that the performance of PIA links is always lower than PSA ones, asR(I) ⩽R(IIa), d(I)min ⩽ d(IIa)min and

k(I)th ⩽ k(IIa)th . This is a direct consequence of the additional noise introduced by the phase-insensitive
amplification process.

The optimized gain G(q)
c and modulation V(q)

c , q= I, IIa, are depicted in figures 9(a) and (b),
respectively. Consistent with the results from the previous paragraph, it is optimal to not amplify the signal,

i.e. G(q)
c = 1, for short distances L⩽ L(q)min. For longer link lengths the optimal gain initially increases with L,

following constraints (24) and (41), and then ultimately decreases towards an asymptotic value. The optimal

gain G(q)
c also decreases with k, similarly to the key ratio. On the other hand, the behavior of optimal

modulation V(q)
c is quite peculiar. For k= 1 it is a monotonous decreasing function of the transmission

distance L, as obtained in section 3. The presence of optical amplifiers increases the modulation value with

respect to the no-amplifier protocol, as V(q)
c ⩾ V(n)

c . On the contrary, when k⩾ 2 the situation is completely
different and in the long-distance regime the optimized modulation turns out to be an increasing function of
L. In fact, if Eve attacks one of the last spans of the communication link she intercepts a weak pulse, therefore
it is possible to safely increase the input modulation variance without preventing secure communication
between Alice and Bob.

12
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When the amplified quadrature is measured, the effective transmissivity probed by Bob, namely T(M) and

T(M)
1 for cases I and IIa respectively, is larger with respect to the no-amplifier protocol, T(M), T(M)

1 ⩾ Tn. This
leads to an increase of both mutual information between Alice and Bob, and, at the same time, Holevo
information on Eve’s side. This is because for k⩾ 2 she also receives an amplified signal. In turn, when
performing optimization over the free parameters, there emerges a tradeoff between these two types of
information, resulting in the key rates shown in figure 8. In particular, for short-distance communication,

L⩽ L(q)min, one obtains that optical amplification is useless, G(q)
c = 1. The difference between cases I and IIa is

due to the different impact of the added noise. In fact, for case IIa the added noise is rescaled with respect to

the no-amplifier protocol, N(M)
1 ⩽ Nn, whilst for case I the noise is increased because of the additive

contribution NG due to phase-insensitive amplification, N(M) ⩾ Nn. In the latter case the (incoherent) added
contribution NG detriments the mutual information between Alice and Bob, being less than its counterpart
of case IIa. Ultimately, this leads to a reduced performance of PIA links with respect to PSA ones.

4.2. Case IIb : measuring the de-amplified quadrature

The KGR K(IIb)
c for the Bob’s measurement of the de-amplified quadrature, IIb, is depicted in figure 10 for

links withM= 5 (a) orM= 10 (b) amplifiers and different positions k= 1, . . . ,M of the untrusted span,
together with the key ratio

R(IIb) =
K(IIb)
c

K(n)
c

. (47)

The scenario is reversed with respect to the previous section. Indeed, when Bob probes the squeezed (i.e.
de-amplified) quadrature, PSA links improve the resulting KGR if Eve attacks one of the last spans of the
channel. The best-case scenario is provided by k=M, in which the KGR increases by more than an order of
magnitude. Consequently, and in contrast to the results from section 4.1, one observes enhancement in the
key ratioR(IIb) with increasing k. In this scenario the PSA becomes useless if Eve attacks the first span for all
M, namelyR(IIb) ≡ 1, since in this case she intercepts the pulse before all amplifiers and therefore,
de-amplifying the signal only reduces the mutual information between Alice and Bob, maintaining a higher
Holevo information at Eve’s side. On the other hand, for k⩾ 2, de-amplifying Bob’s signal also reduces Eve’s

extracted information, thus leading toR(IIb) ⩾ 1. In particular, there exists a threshold attack location k(IIb)th

such that for k⩽ k(IIb)th one hasR(IIb) ≡ 1, being equal to k(IIb)th = 1 forM= 5 and k(IIb)th = 2 forM= 10. For

eavesdropping performed on a span located further within the link k⩾ k(IIb)th all key ratios exhibit a
maximum and then decrease towards an asymptotic value, equal to 1 for locations closer to the threshold
value or greater than 1 for those placed further, implying an improvement of security in the long-distance
regime brought by the PSA link.

Note, that the absence of PSA advantage for k= 1 does not stand in contradiction with it existence in the
unconditional security framework discussed in section 3, where Eve is assumed to collect the reflected pulses
from all spans. This is because de-amplification reduces the accessible information contained in the signals
lost after the second span, eventually resulting in an enhancement of the KGR.

In figures 11(a) and (b), one can see the optimized gain G(IIb)
c and modulation V(IIb)

c , respectively. We see

that amplification is not beneficial, G(IIb)
c ≡ 1 , for eavesdropping performed on initial spans k⩽ k(IIb)th ,

whereas for attacks on latter spans the optimal gain increases with the link length following constraint (24),
until finally decreasing towards an asymptotic value. In accordance with the previous results, one needs to
employ the stronger optimal amplification the further the eavesdropped span is located. The optimized

modulation increases with respect to the no-amplifier protocol V(IIb)
c ⩾ V(n)

c . Similarly to the results
obtained in section 4.1, it is a decreasing function of the link length if the attack is performed on the first
span, whilst it becomes non-monotonous for k⩾ 2, increasing in the long-distance regime.

The physical meaning of these results is analogous to these obtained in section 3. Indeed, the case IIb is

associated with a reduced transmissivity with respect to the no-amplifier protocol, T(M)
2 ⩽ Tn, and amplified

added noise N(M)
2 ⩾ Nn. Therefore, for k⩾ 2 by employing PSAs Bob accepts to reduce the extracted mutual

information, in order to increase the conditional entropy S(IIb)E|B , resulting in a lower Holevo information

between Eve and himself. The tradeoff between these two quantities is such that for k⩾ k(IIb)th one has

G(IIb)
c ⩾ 1 and PSA links increase the obtained KGR.

4.3. On the relevance of multi-span links
The above analysis under the conditional security paradigm opens up an intriguing question about the
possible use cases of a multi-span configuration. In fact, since in the considered scenario most of the links are
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Figure 10. Optimized KGR and key ratio for case IIb as a function of the transmission link length L for different locations of the
eavesdropper forM= 5 (a) and (c) andM= 10 (b) and (d) respectively. We set ϵ= 0.05 and β= 0.95.

Figure 11. Optimal amplifier gain (a) and modulation (b) for case IIb as a function of the link length L for different locations of
the untrusted span k forM= 10, ϵ= 0.05 and β= 0.95.

trusted nodes, an alternative choice would be instead to insert classical-like repeaters after each span and
establish keys separately between neighboring nodes. At the quantum limit, a classical repeater would be
described as an intercept-resend system, performing double homodyne detection on the received signal and
preparing a coherent pulse with amplitude equal to the obtained outcome.

In principle, establishing keys between subsequent nodes would significantly reduce the impact of
channel losses at the cost of introducing additional excess noise due to probabilistic nature of the quadrature
measurement. However, from a practical point of view, this configuration would be unfeasible in real
networks, as classical-repeater nodes are expensive and, thus, cannot be placed at every few km. A further
solution may be the adoption of quantum repeaters [38–40], which represent an intriguing strategy from a
theoretical point of view, but rather an unpractical one with current state-of-the-art technology. In fact,
quantum repeaters for CV systems employ probabilistic noiseless linear amplifiers as a fundamental building
block, and, thus, require the presence of a quantum memory, not yet available with the current optical
communication technologies [48, 49].

In turn, employing either classical or quantum repeaters can lead to a much higher key rate at the cost of
making infrastructure complicated and expensive. On the contrary, optical amplifiers like PIA and PSA are
much cheaper and manageable than repeaters and provide a feasible tool to enhance communication
between the nodes.
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Figure 12. Upper bound on KGR (a) and corresponding key ratio (b) for PIA as a function of link length forM= 10 nodes,
ϵ= 0.05 and β= 0.95.

5. Ultimate key rate limits

In the analysis above, we considered the entanglement-based CV-QKD protocol where Alice and Bob
perform heterodyne and homodyne detection, respectively, which in the prepare-and-measure picture is
equivalent to considering coherent-state encoding followed by quadrature detection [8, 9, 12]. In turn, the
resulting mutual information depends only on the signal-to-noise ratio, according to the Shannon-Hartley
theorem [56], as derived in (12) and (16). However, from the perspective of quantum communication, we
may also consider the fundamental quantum limit, namely the Holevo information between Alice and Bob
[44]. This ultimate capacity provides an upper bound on the achievable mutual information which has been
also investigated for multi-span links employing either PIAs or PSAs [32, 33].

We embed this approach within the CV-QKD framework by considering an equivalent protocol to that of
figures 2 and 7, in which Bob still performs the homodyne measurement of quadratures q and p, but Alice
replaces her heterodyne detection with the proper measurement achieving the Holevo bound. In this way, we
compute the Holevo information χAB by interpreting Bob’s measurement as a state-preparation process.
Ultimately, we obtain an upper bound on the KGR which allows to highlight the ultimate limits on KGR of
multi-span links. For the sake of simplicity, here we will discuss only the case of a PIA link under restricted
eavesdropping with the same assumptions as in section 4, namely a single untrusted span.

For case I, the ultimate KGR reads:

K̃(I)
c =max

V,G

[
βχ

(I)
AB (V,G)−χ

(I)
BE (V,G)

]
, (48)

with the χ(I)
BE in (39) and χ

(I)
AB being the Holevo capacity [32] retrievable from (8):

χ
(I)
AB (V,G) = S(I)A − S(I)A|B = h

(
d̃1
)
− h
(
d̃2
)
, (49)

where h(x) is the function in (19), d̃1 =
√
det
[
σ

(I)
A

]
= V and d̃2 =

√
det
[
σ

(I)
A|B
]
, where

σ
(I)
A|B = σ

(I)
A −σ

(I)
Z

[
σ

(I)
B +σa

]−1
σ

(I)T
Z . (50)

The maximization procedure is, once again, subject to constraint (41).

It is seen in figure 12(a) that there is a considerable gap between the upper bound K̃(I)
c and the

performance of heterodyne receiver K(I)
c for few attacks performed on few initial nodes. For further spans,

the difference disappears, as indicated by the key ratiosR with respect to the associated no-amplifier
protocol, depicted in figure 12(b). This means that, even in the best theoretical scenario, the advantage
originating from PIA vanishes for attacks on further parts of the link. A possible remedy may be to employ
PSA but obtaining the ultimate bound in such a scenario requires considerable effort since the resulting
quantum channel is phase sensitive [33, 57].

6. Comparison with squeezed-state protocols

Throughout the paper we proved that optical amplification provides a powerful tool to mitigate transmission
losses and enhance secure communications under different frameworks. In particular, in the unconditional
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Figure 13. Optimized KGR K
(IIb)
u as a function of the transmission link length L for different number of amplifiersM, compared

to the KGR KSSP achieved by the squeezed-state protocol and the PLOB bound (26). We set the values ϵ= 0.05 and β= 0.95. The
gray shaded area represents KGR higher than the ultimate PLOB bound. It is worth noticing that the amount of squeezing
required to attain the performance of the SSP is large, ranging from 20 to 10 dB depending on the link length, whereas in the
PSA-link scenario the optimized gain is close to 1, see figure 4.

case main advantages are found using PSAs, namely single-mode squeezers, to perform signal restoration
after each transmission link.

However, from a more general viewpoint one may ask whether squeezing would be beneficial to enhance
also other stages of CVQKD protocols. As an example, a squeezer can be employed directly at the modulation
stage before the injection into the lossy channel, by letting Alice generate a single-mode squeezed vacuum
state and, then, displace it by a random amplitude drawn from a Gaussian distribution. We refer to this
alternative scheme as the squeezed-state protocol (SSP), which has been widely studied in literature as a
possible alternative to coherent-state protocols like GG02 [50–54]. In turn, a natural question arises if the
employment of PSAs would be more powerful either to amplify the signal throughout the channel or at the
transmitter during the signal generation. Note, however, that these two schemes deal with different types of
resources meaning their comparison may not be completely fair. In particular, in SSP squeezing is a part of
input modulation whereas for the amplified link it is used during the propagation. Nevertheless, it is still
worth of investigation to provide a complete picture on the role of PSAs for CVQKD.

The theoretical entanglement-based description of the SSP is the following. As for the coherent-state
protocol, Alice generates the TMSV (4) with variance V > 1 and injects its second branch into a thermal-loss
channel with transmissivity T and background thermal noise n̄T equal to (6). However, now Alice performs a
homodyne measurement of q on the first branch, instead of heterodyne detection, which projects state (4)
onto a displaced squeezed state D(γ)S(−r)|0⟩, with γ =

√
V2 − 1x/V, x being the outcome of Alice’s

detection, and exp(2r) = V. This procedure corresponds to the Gaussian modulation of a vacuum state
squeezed in quadrature q. In turn, Bob performs homodyne measurement of the squeezed quadrature on the
received pulse. Given this scenario, we compute the resulting KGR KSSP, optimized over the input variance V,
that now contains the contributions of both initial squeezing and signal modulation. Plots of KSSP together

with K(IIb)
u are reported in figure 13.

It is seen that the SSP outperforms the coherent-state protocol employing a PSA link, being close to the
PLOB bound in the short-distance regime, as already discussed in [50]. One of the reasons behind this result
is that performing squeezing before modulation preserves the signal amplitude injected into the channel,
whereas squeezing after transmission reduces both the variance and the mean value of quadrature q, with the

overall effect of reducing the effective transmissivity, T(M)
2 ⩽ Tn. Thus, adopting squeezing at the modulation

stage provides an additional resource. However, the two compared strategies are not mutually exclusive,
therefore even in the presence of the SSP one can also utilize PSAs throughout the link to further improve the
final KGR. Note also that in order to approach the performance seen in figure 13 the SSP requires large
squeezing, of the order of 20− 10 dB, depending on the link length. In contrast, the optimal gain of PSA in
the amplified link scenario is close to 1, as evidenced in figure 4, which is much less demanding
experimentally.

7. Conclusions

In this paper we have addressed the exploitation of multi-span amplified links for CV-QKD. In particular, we
have discussed three cases: PIA link with random homodyne detection of q/p quadratures and PSA link with
measurement of either quadrature q or p. In the unconditional security approach we showed that the KGR is
improved with respect to the standard no-amplifier protocol only for the scenario in which Bob measures the
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de-amplified quadrature. This enhancement is noticeable especially in the presence of large excess noise,
ϵ≳ 0.05.

We have also investigated the KGR in the conditional security framework, by assuming that all amplifiers
and spans except one are trusted. We showed that the position of the untrusted span greatly affects the
potential enhancement offered by amplification. In particular, for the cases with PIA and random homodyne
measurement and with PSA and measurement of the amplified quadrature one observes an enhancement in

the KGR only if one of the first spans is attacked, namely k⩽ k(q)th , whereas for case with PSA and detection of
the de-amplified quadrature the improvement is present if the attacked span is in the latter part of the link,

k⩾ k(IIb)th . Finally, we have addressed the case in which Alice and Bob achieve the Holevo capacity, thus
providing an upper bound for the security, highlighting the ultimate enhancement that may be brought by
PIA links.

The results of the paper present a detailed analysis of the improvement and the limits offered by optical
amplifiers for quantum secure communications under realistic assumptions and pave the way for future
developments in the framework of conditional security CV-QKD. In particular, the advantage given by PSA,
being a phase-sensitive operation, may be potentially further boosted by employing squeezed states
[50–54, 58].
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Appendix A. Brief review of the Gaussian formalism

As discussed in the main text, we exploit the Gaussian formalism to perform the security analysis [42, 47].
Here we present the main tools to retrieve the obtained results. We consider a n-mode bosonic system,
described by bosonic annihilation operators ak satisfying the canonical commutation relations [ak,al] = 0,
[ak,a

†
l ] = δkl, and by the quadrature operators

qk = σ0

(
ak + a†k

)
and pk = iσ0

(
a†k − ak

)
, (A.1)

such that [qk,pl] = 2iσ2
0δkl, where we adopt shot-noise units, σ

2
0 = 1. A more compact notation is obtained by

introducing the vectorial operator r̂= (q1,p1,q2,p2, . . .,qn,pn)T.
A Gaussian state ρG is a quantum state associated with a Gaussian Wigner function

W [ρG] (r) =
1

(2π)n
√
det(σ)

exp

[
−1

2
(r−R)T σ−1 (r−R)

]
, (A.2)

where rT = (x1,y1,x2,y2, . . .,xn,yn) ∈ R2n, and

R= Tr [ρG r̂] (A.3)

is the first moment vector and

σ =
1

2
Tr
[
ρG

{
(r̂−X) ,(r̂−X)T

}]
(A.4)

is the 2n× 2n CM, where {A,B}= AB+BA is the anti-commutator of A and B. Thus, a Gaussian state is
completely characterized by its prime moments and its CM.

Gaussian dynamics, i.e. unitary evolution generated by bilinear Hamiltonians, is associated with a
symplectic matrix S such that if the input state is Gaussian the evolved state is still Gaussian with [42, 47]:

R→ SR and σ → Sσ ST . (A.5)
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On the contrary, Gaussian CP maps are associated with a pair of matrices X and Y such that the evolved state
is characterized by:

R→ XR and σ → XσXT +Y , (A.6)

where Y+ iΩ⩾ iXΩXT, Ω being the 2n× 2n symplectic form [42, 47].
Finally, we discuss the case of conditional dynamics. In the paper, we consider a bipartite system AB,

where subsystems A and B are composed of nA an nB modes, respectively. We consider a Gaussian state ρAB
with prime moments R= (RA,RB) and CM (written in block form)

σ =

(
σA σC

σT
C σB

)
. (A.7)

We now perform a Gaussian measurement on subsystem B associated with the CM σm, obtaining outcome
rm ∈ R2nB . Then, the conditional state ρA|rm on mode A is still a Gaussian state with CM σA|rm and first
moment vector RA|rm given by:

σA|rm = σA −σC (σB +σm)
−1

σT
C , (A.8)

and

RA|rm = RA +σAB (σB +σm)
−1

(rm −RB) , (A.9)

respectively [42, 47].

Appendix B. Derivation of the Gaussian CPmap for the multi-span link

In the paper we discuss CV-QKD over multi-span links composed of either PIAs or PSAs connected via a
sequence of thermal-loss (TL) channels. In the following we report the structure of the quantum CP maps
associated with each of these components.

A thermal-loss channel with transmissivity T⩽ 1 and thermal noise n̄T is described via a Gaussian CP
map associated with the matrices [42]:

XTL =
√
T12 and YTL = (1−T)(1+ 2n̄T)12 , (B.1)

12 being the 2× 2 identity matrix.
As regards optical amplification, PIA are descripted by the Gaussian CP map [42]:

XPIA =
√
G12 and YPIA = (G− 1)12 . (B.2)

G⩾ 1 being the amplification gain, whilst PSA are unitary maps, thus completely described by the
symplectic matrix [47]:

SPSA =

(
G1/2 0
0 G−1/2

)
. (B.3)

Thus, for case I, namely in the presence of a PIA link, each span is given by the composition of the two
Gaussian CP maps described by equations (B.1) and (B.2), resulting in a overall Gaussian CP map defined by
the matrices:

X(I) = XPIAXTL =
√
GT12 ,

Y(I) = XPIAYTLX
T
PIA +YPIA

= [G(1−T)(1+ 2n̄T)+ (G− 1)] 12 . (B.4)

Otherwise, for case II, namely PSA link, each span is the composition of the CP map (B.1) and the symplectic
evolution (B.3), resulting in the overall Gaussian CP map associated with X(II) = SPSAXTL and
Y(II) = SPSAYTLSTPSA, namely:

X(II) =

( √
GT 0
0

√
G−1T

)
, (B.5)
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and

Y(II) =

(
G(1−T)(1+ 2n̄T) 0

0 G−1 (1−T)(1+ 2n̄T)

)
. (B.6)

We remark that in the main text we consider a two-mode state AB, where only branch B undergoes a
Gaussian evolution. Thus, according to the Gaussian formalism, the bipartite map will be associated with the
matrices XAB = 12 ⊕Xp and YAB = 0⊕Yp for p= I, II.

Appendix C. Conditional security analysis for case II

The key rate for cases IIp, p= a,b, may be computed by following the same procedure described in section 4,
leading to the joint state of the three parties:

σ
(II)
ABE =

 σ
(II)
AB σ

(II)
C

σ
(II)T
C σ

(II)
E

 , (C.1)

with the σ(II)
AB in equation (13) and

σ
(II)
E =


e1 0

√
TZϵ 0

0 e2 0 −
√
TZϵ√

TZϵ 0 Vϵ 0
0 −

√
TZϵ 0 Vϵ

 , (C.2)

with

e1(2) =
[
(1−T)b(k−1)

1(2) +TVϵ

]
, (C.4a)

c(1)1(2) =−
√
1−Tz(k−1)

1(2) , (C.4b)

c(2)1 =

√
(GT)M−k+1

(1−T)
[
Vϵ − b(k−1)

1

]
, (C.4c)

c(2)2 =

√
(G−1T)M−k+1

(1−T)
[
Vϵ − b(k−1)

2

]
, (C.4d)

c(3)1 =

√
(GT)M−kG(1−T)Zϵ , (C.4e)

c(3)2 =

√
(G−1T)M−kG−1 (1−T)Zϵ . (C.4f )

Finally, Eve’s conditional CM reads:

σ
(IIp)
E|B = σ

(II)
E −σ

(II)T
BE

[
σ

(II)
B +σp

]−1
σ

(II)
BE , (p= a,b) . (C.5)
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