
MNRAS 473, 1603–1632 (2018) doi:10.1093/mnras/stx2405
Advance Access publication 2017 September 18

GANDALF – Graphical Astrophysics code for N-body Dynamics
And Lagrangian Fluids

D. A. Hubber,1,2‹ G. P. Rosotti3 and R. A. Booth3

1Universitats-Sternwarte München, Scheinerstraße 1, D-81679 München, Germany
2Excellence Cluster Universe, Boltzmannstr. 2, D-85748 Garching, Germany
3Institute of Astronomy, Madingley Rd, Cambridge CB3 0HA, UK

Accepted 2017 September 14. Received 2017 September 14; in original form 2017 June 29

ABSTRACT
GANDALF is a new hydrodynamics and N-body dynamics code designed for investigating planet
formation, star formation and star cluster problems. GANDALF is written in C++, parallelized with
both OPENMP and MPI and contains a PYTHON library for analysis and visualization. The code has
been written with a fully object-oriented approach to easily allow user-defined implementations
of physics modules or other algorithms. The code currently contains implementations of
smoothed particle hydrodynamics, meshless finite-volume and collisional N-body schemes,
but can easily be adapted to include additional particle schemes. We present in this paper the
details of its implementation, results from the test suite, serial and parallel performance results
and discuss the planned future development. The code is freely available as an open source
project on the code-hosting website github at https://github.com/gandalfcode/gandalf and is
available under the GPLv2 license.

Key words: hydrodynamics – methods: numerical.

1 IN T RO D U C T I O N

Numerical simulations are becoming increasingly more important
in modern astrophysics research. They allow us to study systems
where analytical solutions do not exist and explore the complex
(non-linear) interplay due to the multiple physical processes that
are normally present in astrophysical problems. In recent years,
more attention has been given to exploring which algorithms give
the most accurate and reliable results and comparing different al-
gorithms to one another, as well as the development of brand new
or hybrid algorithms. While many specialist codes exist with sin-
gle hard-wired implementations of particular physical processes
(e.g. hydrodynamics), the current desire for flexibility in algorithm
choice is not always fulfilled with a single code and may often
require using multiple codes for a single project.

In this paper, we present GANDALF (Graphical Astrophysics code
for N-body Dynamics And Lagrangian Fluids; Hubber & Rosotti
2016), a new multipurpose hydrodynamics, N-body and analysis
code. GANDALF has been designed with Star and Planet Formation
problems in mind, but with the flexibility to be extended with dif-
ferent physics algorithms to simulate other kinds of astrophysical
problems.

GANDALF was developed with a heavy object-oriented design phi-
losophy in order to improve code maintainability and simplify the
process of implementing new features in the future. C++ was chosen

� E-mail: dhubber@usm.lmu.de

as the main development language as a low-level, high-performance
computing (HPC) object-oriented language that is easy to bind with
other (often C-based) external libraries and can easily be parallelized
with both OPENMP and MPI (either individually or combined with a
hybrid OPENMP–MPI approach). GANDALF also contains an optional
PYTHON library, which can be used for analysis and visualization of
whole simulations or single snapshots. It is also possible to generate
initial conditions and set-up and run the simulation from a PYTHON

script making it easier for users not accustomed with C++.
GANDALF contains implementations of two particle-based hydro-

dynamics schemes, smoothed particle hydrodynamics (SPH; e.g.
Monaghan 1992) and the meshless finite-volume scheme (MFV;
Lanson & Vila 2008; Gaburov & Nitadori 2011; Hopkins 2015).
Many algorithms (e.g. gravity, the tree used for neighbour find-
ing) are shared between the two implementations, minimizing the
amount of code duplication. GANDALF also includes algorithms for
collisional N-body dynamics.

This paper is structured as follows. In Section 2, we discuss the
Hydrodynamical algorithms that we have implemented into GAN-
DALF, including any differences from traditional implementations.
In Section 3, we discuss our implementations of the collisional
N-body and sink particle algorithms. In Section 4, we discuss other
miscellaneous algorithms such as implementing boundary condi-
tions and trees. In Section 5, we discuss the class structure of the
code, how to add new classes on top of the existing framework, the
PYTHON library and how it can be easily used to perform analysis
and run the code. In Section 6, we present results from our test
suite comparing all methods against each other and against other

C© 2017 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

https://github.com/gandalfcode/gandalf
mailto:dhubber@usm.lmu.de

1604 D. A. Hubber, G. P. Rosotti and R. A. Booth

published codes. We also show the serial and parallel performance
of the code. In Section 7, we discuss the performance and paral-
lel scaling of the code, both with OPENMP and hybrid OPENMP/MPI.
In Section 8, we briefly discuss ongoing work with the code and
planned features for the future.

2 H Y D RO DY NA M I C A L M E T H O D S IN GANDALF

GANDALF solves the traditional Euler equations of hydrodynamics
with additional physics terms such as gravitational accelerations.
In Lagrangian form, these are

dρ

dt
= −ρ ∇ · v (1)

dv

dt
= −∇P

ρ
− ∇� (2)

du

dt
= −P

ρ
∇ · v (3)

∇2� = 4 π G ρ, (4)

where ρ is the fluid density, v is the fluid velocity, u is the specific
internal, P the thermal pressure and � is the gravitational potential
and G is Newton’s constant.

GANDALF contains implementations of two particle-based hydro-
dynamical schemes that use the smoothing kernel as a fundamental
quantity in solving the numerical form of these equations. The fluid
properties of all particles are smoothed over a length-scale h, called
the smoothing length, with a weighting function W (r, h) called
the kernel function. Each particle occupies/influences a spherical
volume called the smoothing kernel of total radius Rh. The fluid
particles interact with neighbouring particles, i.e. particles whose
smoothing kernels overlap, where the interaction is weighted some-
what by the kernel function. The exact details of how the smoothing
kernel influences the hydrodynamical equations are explained in
each scheme’s implementation.

GANDALF contains two principal kernel functions which have a
finite extent of Rh; (i) the M4 cubic spline kernel (Monaghan
& Lattanzio 1985) with R = 2 and (ii) the quintic spline kernel
(Morris 1996) with R = 3. The complete mathematical description
of all these kernels, plus related derivative and integrated quantities,
are given in appendix A of Hubber et al. (2011).

2.1 Smoothed particle hydrodynamics

SPH (Lucy 1977; Gingold & Monaghan 1977) is a popu-
lar Lagrangian hydrodynamics scheme that has been imple-
mented in many astrophysical hydrodynamics codes, such as
GADGET-2 (Springel 2005), VINE (Wetzstein et al. 2009), SEREN (Hub-
ber et al. 2011) and PHANTOM (Price et al. 2017). The main advantages
of SPH are (i) it is simple conceptually and to code, and (ii) its La-
grangian nature which provides various advantages over Eulerian
methods, such as having an in-built adaptivity to the wide range
of densities found in gravitational collapse problems, (iii) it can be
derived from the Euler–Lagrange equations so is naturally conser-
vative, (iv) it can be integrated with symplectic equations such as
the Leapfrog resulting in good orbital conservation properties (e.g.
angular momentum conservation) and (v) it can be easily coupled
to the N-body equations of motion when including point gravita-
tional sources (e.g. stars and planets). SPH has been derived in many

mathematical forms, each with different assumptions, different in-
tegration variables or different methods of computing hydrodynam-
ical quantities. GANDALF currently uses the standard conservative
conservative ‘grad-h’ SPH following Springel & Hernquist (2002)
and Price (2012), with the pressure–entropy scheme of Saitoh &
Makino (2013) planned for the future.

2.1.1 Conservative ‘grad-h’ SPH

Conservative ‘grad-h’ SPH (Springel & Hernquist 2002) is one of
the standard derivations of the SPH equations that is used in astro-
physical codes, such as GADGET-2. The fluid equations are derived
from Lagrangian mechanics and hence guarantee conservation of
mass, momentum, angular momentum and energy to at least inte-
gration error. However, it should be noted that the use of the tree
in calculating gravitational accelerations and block time-stepping
algorithms introduces additional sources of error meaning ‘perfect’
conservation is not achieved in practice.

The algorithm described here is similar to that implemented in
SEREN (Hubber et al. 2011). We first compute the density, ρ, and
smoothing length, h of each SPH particle. The smoothed density
for particle i is given by

ρi =
N∑

j=1

mjW (r ij , hi), (5)

where r ij = r i − rj , W (r ij , hi) is the smoothing kernel and mj is
the mass of particle j. The density and smoothing length are related
by the simple relation

hi = ηSPH

(
mi

ρi

) 1
D

, (6)

where D is the dimensionality of the simulation and ηSPH is a di-
mensionless parameter that relates the smoothing length to the local
interparticle spacing (default value ηSPH = 1.2). Since h and ρ de-
pend on each other, we must iterate their values until equations
(5) and (6) converge to some tolerance, usually to within about
∼1 per cent.

The SPH momentum equation is given by

dvi

dt
= −

N∑
j=1

mj

{
Pi

�iρ
2
i

∇iW (r ij , hi) + Pj

�jρ
2
j

∇iW (r ij , hj)

}
,

(7)

where Pi = (γ − 1) ρ i ui is the thermal pressure, ui is the specific
internal energy, γ is the ratio of specific heats for an ideal gas, ∇ iW
is the kernel gradient and

�i = 1 − ∂hi

∂ρi

N∑
j=1

mj

∂W

∂h
(r ij , hi) (8)

is a dimensionless correction term that accounts for the spatial
variability of h amongst its neighbouring particles.

If the temperature is not prescribed (e.g. by an isothermal equation
of state; hereafter OS), we integrate an energy equation of the form

dui

dt
= Pi

�iρ
2
i

N∑
j=1

mjvij · ∇Wij (r ij , hi), (9)

where vij = vi − vj .
The SPH equations presented so far describe a fluid without dis-

sipation, where the fluid quantities are always continuous. However,

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

GANDALF 1605

many astrophysical problems contain shocks, which lead to dissipa-
tion and need to be handled properly. We use the Monaghan (1997)
formulation of artificial viscosity for shock-capturing,

dvi

dt
=

N∑
j=1

mj

ρij

{
αAV vSIGμij

} ∇iW ij , (10)

dui

dt
= −

N∑
j=1

mj

ρij

αAV vSIGμ2
ij

2
r̂ ij · ∇iW ij

+
N∑

j=1

mj

ρij

αAC v′
SIG

(ui − uj) r̂ ij · ∇iW ij , (11)

where αAV and αAC are constants of order unity that control the dis-
sipation strength, vSIG and v′

SIG
are the signal speeds for artificial vis-

cosity and conductivity respectively, r̂ ij = r ij /|r ij | and ∇iW ij =
1
2

(∇iW (r ij , hi) + ∇iW (r ij , hj)
)

and μij = MIN(0, vij · r ij). For
artificial viscosity, we use vSIG = ci + cj − βAV vij · r̂ ij , where ci

and cj are the sound speeds of particles i and j, respectively, and
βAV = 2 αAV . The signal speed for artificial conductivity is prob-
lem and physics dependent. By default, we chose the Wadsley,
Veeravalli & Couchman (2008) prescription, where v′

SIG
= |vij · r̂ ij |

although the Price (2008) conductivity, v′
SIG

=√|Pi − Pj |/ρij , is
also available in the code.

Since excessive dissipation is undesirable in hydrodynamical
codes, we have implemented two artificial viscosity switches,
Morris & Monaghan (1997) and Cullen & Dehnen (2010), in order
to reduce the artificial viscosity as much as possible in regions away
from shocks.

2.1.2 Self-gravity

Computing self-gravity in SPH can be done consistently by con-
sidering the continuous density field given by equation (5) in the
Poisson equation (equation 4), instead of solving the N-body prob-
lem with each particle representing a discrete point mass (Price &
Monaghan 2007). Deriving the equations of motion via Lagrangian
mechanics leads to a conservative set of equations with self-gravity.
The SPH gravitational acceleration is given by

gi = − G

N∑
j=1

mj

φ′(r ij , hi) + φ′(r ij , hj)

2
r̂ ij

− G

2

N∑
j=1

mj

{
ζi

�i
∇Wi(r ij , hi) + ζj

�j
∇Wi(r ij , hj)

}
, (12)

where

φ′(r, h) = 4 π

r2

r∫
0

W (r ′, h) r ′2 dr ′, (13)

ζi = ∂hi

∂ρi

N∑
j=1

mj
∂φ

∂h
(r ij , hi), (14)

and �i is given by equation (8). φ′(r, h) is often called the gravi-
tational force or gravitational acceleration kernel and in effect cal-
culates the gravitational force between SPH particles accounting
for the smoothed density distribution. Similarly φ(r, h) is the grav-
itational potential kernel which gives the smoothed gravitational
potential. The ζ term is an additional term to � in accounting for
the spatial variation of h for self-gravity.

2.1.3 Time integration

The SPH particles can be integrated with two related integration
schemes, the Leapfrog kick-drift-kick (KDK) and the Leapfrog
drift-kick-drift (DKD) schemes. Leapfrog schemes are symplectic
schemes that exhibit accurate but stable integration of gravitational
orbits. The KDK and DKD schemes are mathematically equivalent
in case of global, constant time-steps with similar integration er-
rors. However, in case of non-constant, individual time-steps (see
Section 2.1.4), they can behave differently with different rates of
error growth.

The position and velocity of a particle integrated with the KDK
scheme is described by:

rn+1
i = rn

i + vn
i �t + 1

2
an

i �t2, (15)

vn+1
i = vn

i + 1

2

(
an

i + an+1
i

)
�t. (16)

where �t is the time-step. Although the acceleration appears twice
in equation (16), we only compute it once per step, since the second
acceleration term, an+1

i , then becomes the first acceleration term for
the next step.

In the DKD scheme, the updates to the positions and velocities
are shifted by half a step:

rn+1/2
i = rn

i + 1

2
vn

i �t, (17)

v
n+1/2
i = vn

i + 1

2
an−1/2

i �t, (18)

vn+1
i = vn

i + an+1/2
i �t, (19)

rn+1
i = rn

i + 1

2

(
vn

i + vn+1
i

)
�t. (20)

The acceleration is computed only once, at the mid-point of the
step. This requires in practice the DKD scheme to be computed as
a two-step scheme, where particles are ‘drifted’ to the mid-point,
the acceleration is computed and then the second half of the step is
computed with the updated acceleration.

2.1.4 Time-stepping

All SPH schemes use a Courant–Friedrichs–Lewy (CFL)-like con-
dition to compute the time-steps, � ti, of the form:

� ti = CCFL

hi

|vsig,i| , (21)

where CCFL is a dimensionless time-step multiplier (typically ∼0.2)
analogous to the Courant number in grid codes and the signal speed
is

vsig,i = MAXj

[
ci + cj − βAV MIN

(
0, vij · r̂ ij

)]
. (22)

The signal velocity, vsig, i, is the speed of propagation of informa-
tion either through sound waves or translational velocity. In ef-
fect, equation (21) prevents information from crossing the smooth-
ing kernel in a single time-step. The βAV term exists to ensure
strong shocks are captured adequately. If additional physics (e.g.

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

1606 D. A. Hubber, G. P. Rosotti and R. A. Booth

self-gravity) are employed, then we use a second criterion called
the acceleration condition, i.e.

� ti = CGRAV

hi√|ai |
(23)

where CGRAV is the dimensionless gravitational acceleration time-
step multiplier (typically ∼0.5).

GANDALF uses a hierarchical block time-stepping scheme, similar
to many other SPH and N-body codes like GADGET (Springel 2005)
and NBODY6 (Aarseth 2003). The basic principle is that all time-
steps are integer power-of-two multiples of some base time-step.
In GANDALF, we fix the maximum time-step, � tMAX , based on the
time-steps available whenever the block time-steps are recomputed.
By default, particles on the maximum time-step occupy level l = 0.
Particles on higher levels l therefore occupy shorter time-steps, i.e.

� tl = � tMAX

2l
where l = 0, 1, 2, . . . , lMAX . (24)

The time-step level for a given particle can to increase to an ar-
bitrarily high number based on the given time-step criterion when
required. However, the time-step level can only be reduced (i) by
one level at a time, and (ii) when the new time-step level is cor-
rectly synchronized within the time-step hierarchy. When we have
completed exactly one full time-step (on the lowest level) then all
particles are synchronized and we can recompute the full time-step
hierarchy again.

2.1.5 Time-step limiter

Block time-steps can introduce numerical artefacts in the results of
a simulation if particles on very different time-steps are enabled to
interact with each other. As an extreme example, particles in a cold,
low-density region may have too long time-steps to react to the pas-
sage of a shock front. In GANDALF, we solve this problem similarly
to Saitoh & Makino (2009), using a dual approach including both
predictive and reactive components. In the predictive component,
for each particle we keep track of the minimum time-step of its
neighbours during the hydrodynamic force calculation. When as-
signing new time-steps to the particle, we ensure that the particle
does not have a time-step more than a fixed factor longer than the
minimum of its neighbours.

Additionally, we apply a reactive limiter for two reasons: (1)
in the predictive component, we employ the old time-step of the
neighbours. This does not guarantee that the current time-step obeys
the level constraint, once the new time-step has been computed;
(2) the time-step of the neighbours may reduce rapidly, e.g. due
to an approaching shock. The reactive limiter works by checking
whether the minimum time-step of its neighbours has reduced below
the acceptable level. This is achieved by using a scatter gather
operation, i.e. active particles inform their inactive neighbours of
their time-step during the hydrodynamic force calculation. If the
neighbour time-step criterion is found to be violated, the inactive
particle’s time-step is reduced and it becomes active as soon as its
new time-step is synchronized with the time-step hierarchy.

We note that the predictive tree-based limiter based on Springel
(2010) included in the meshless scheme Section 2.2.8 is not cur-
rently included in SPH. This is for pragmatic reasons: the primary
advantage of the tree-based limiter is in maintaining exact conserva-
tion, which is already not maintained in SPH when block time-steps
are used. Given that it is more expensive than the Saitoh & Makino
(2009) type limiter (which already performs well) and can introduce
unnecessarily small time-steps when gravity is included, we see no

clear reason to use it in SPH. However, there is no fundamental
reason it could not be easily added.

2.2 Meshless finite-volume scheme

The MFV scheme is a hydrodynamical scheme developed originally
by Lanson & Vila (2008) and further developed for astrophysical
applications by Gaburov & Nitadori (2011) and Hopkins (2015).
The MFV scheme combines elements of both SPH and traditional
finite-volume schemes (see Toro 1997) where freely moving par-
ticles interact and exchange mass, momentum and energy using a
second-order Godunov approach but weighted with a smoothing
kernel. We provide here a summary derivation presenting the main
assumptions and equations as implemented in GANDALF.

2.2.1 Volume discretization

Similar to SPH, the MFV scheme uses the smoothing kernel to com-
pute various smoothed quantities. We first compute the smoothing
length of all the particles using the number density, n, instead of the
mass density, ρ, i.e.

ni =
N∑

j=1

W (r ij , hi), (25)

where the ni and hi are related by

hi = ηMFVni
− 1

D , (26)

and ηMFV is a dimensionless parameter analogous to ηSPH control-
ling the number of neighbours. For comparison with our results in
Section 6, Hopkins (2015) presents results consistent with ηMFV = 1
in 1D and 3D, but with a larger value ηMFV ≈ 1.13 in 2D.

In order to discretize the fluid on to a set of N particles, we
must chose a method of partitioning the surrounding fluid vol-
ume between the different particles. Springel (2010) uses a Voronoi
tessellation, which assigns a volume element to its nearest parti-
cle. Lanson & Vila (2008) instead use the SPH kernel to calculate
the fraction of a volume element dμ r that is assigned to particle
i, ψi(r) = W (r − r i , h(r)) n(r)−1. In effect, the particles ‘share’
the surrounding volume in a similar way to SPH, resulting in an
ensemble of overlapping ‘fuzzy’ volume elements (see fig. 1 of
Hopkins 2015, for a useful visual aid). The partition function should
be normalized such that

∑
1 ψi(r) = 1 everywhere. The numerical

volume of a particle becomes the integral of all the partial vol-
ume elements, i.e. Vi = ∫ ψi(r) dμr . Since this integral cannot be
computed analytically for arbitrary particle distributions, we follow
Hopkins (2015) in using the second-order accurate approximation,
Vi ∼ n−1

i = (ηMFV/hi

)D
.

2.2.2 Gradient operators

Instead of using an SPH-type gradient operator, Lanson & Vila
(2008) use a least-squares matrix operator which is accurate to
second order and is relatively inexpensive to calculate. In this form,
the gradient of a general function fi for particle i is given by:

(∇α f)i =
∑

j

(
fj − fi

)
ψ̃α

j (r i), (27)

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

GANDALF 1607

where j is the summation over all (overlapping) neighbouring par-
ticles,

ψ̃α
j (r i) =

β=μ∑
β=1

Bα β
i

(
r j − r i

)β
ψj(r i), (28)

where B ≡ E−1 and

Eα β
i =

∑
j

(
r j − r i

)α (
r j − r i

)β
ψj (r i). (29)

In rare cases with pathological particle distributions, the gradient
matrix can become close to singular resulting in poor gradient esti-
mation. We follow Hopkins (2015) in using the condition number
of the matrix E to detect the occurrence of bad gradients. When the
condition number exceeds 100, we switch to a direct SPH estimate
of the gradient. We use a constant exact linear gradient estimate
(equation 72, Price 2012), which is equivalent to making the sub-
stitution

ψ̃α
j (r) → Vi∇α

i Wij . (30)

This substitution is made in both the gradient computation and the
face area (Aij below).

2.2.3 The Euler equations in conserved form

In traditional finite-volume schemes, each fluid cell is a discrete
volume where mass, momentum and energy is exchanged at well-
defined boundaries between adjacent cells. Traditional grid codes
often use the vector U = (ρi, ρivi , ρiei), which are the conserved
quantities (mass, momentum and energy) per unit volume. Since
the particle volume can change in MFV, the vector Q ≡ V U =
(mi, mivi , Ei) is more appropriate. We also use the vector, W =
(ρi, vi , Pi), which is the vector of primitive quantities given to the
Riemann solver.

The general conservation laws for hydrodynamics in a moving
frame vframe are

∂U
∂t

+ ∇ · F(U) = S, (31)

where U is the vector of conserved variables, F =
(ρ v, ρ v ⊗ v + P I, (ρ e + P)) is the flux matrix, I is the iden-
tity matrix and S is the source vector. Following Lanson & Vila
(2008), who discretize these equations using Galerkin methods
with the least-squares gradient operators (see Lanson & Vila 2008;
Gaburov & Nitadori 2011; Hopkins 2015, for a complete deriva-
tion), we obtain the discrete Euler equations,

d Qi

dt
+
∑

j

[
Vi Fα

i ψ̃α
j (r i) − Vj Fα

j ψ̃α
i (r j)

]
= Si Vi. (32)

By replacing the two individual fluxes, Fi and Fj , with a single
flux across the interface between the two particles, Fij , we obtain
an exactly conservative scheme,

d Qi

dt
+
∑

j

Fij · Aij = Si Vi, (33)

where the quantity Aα
ij ≡ Viψ̃

α
j (r i) − Vj ψ̃

α
i (rj) is the effective area

of the face between the particles.
The flux, Fij , can be found by solving 1D Riemann problems

between pairs of particles, where we assume that the interface
is aligned with the face vector, Aij . We have implemented two
Riemann solvers in GANDALF; (i) the Exact Riemann solver for adia-
batic gases (e.g. Toro 1997), and (ii) the HLLC approximate solver

(Toro, Spruce & Speares 1994; Toro 1997), using the wave-speed
estimate of Batten et al. (1996). For isothermal equations of state,
the HLLC solver has been modified to ensure that the density is
constant across the contact discontinuity as well as the pressure,
while still resolving shear waves (e.g. Mignone 2007).

2.2.4 Face reconstruction

Equation (32) alone can be used to construct a first-order Godunov
method without specifying any further information about the loca-
tion of the face (although its velocity is still needed in a Lagrangian
scheme, see below); however, such a scheme is quite diffusive.
Second-order accuracy in space can be achieved following the stan-
dard Monotonic Upwind Scheme for Conservation Laws (MUSCL)
approach (Lanson & Vila 2008; Gaburov & Nitadori 2011; Hop-
kins 2013), in which the primitive variables evaluated at the cell
faces are passed to the Riemann solver (instead of using the particle
values). We do this using a slope-limited linear reconstruction to
avoid oscillations near discontinuities,

W i(r face) = W i(r i) + (r face − r i

) · (χ∇W), (34)

where χ∇W is the slope-limited gradient and ∇W is computed us-
ing equation (27). The limiters are applied to each primitive variable
independently. Both first- and second-order (linear) reconstructions
are available, including a wide range of slope limiters such as those
suggested by Springel (2010), Gaburov & Nitadori (2011), Heß &
Springel (2010) and Hopkins (2015). The Total Variation Diminish-
ing (TVD) limiter of Heß & Springel (2010) is the most diffusive,
while the non-TVD limiters of Springel (2010) and Gaburov &
Nitadori (2011) are the least diffusive. The limiter suggested by
Hopkins (2015) falls in between.

In the second-order scheme, it is necessary to specify the loca-
tion of the face. Following Lanson & Vila (2008) and Gaburov &
Nitadori (2011), we take

r face = 1

2

(
r i + rj

)
. (35)

We are free to choose how the particle positions, r i , are updated. By
default, we choose to move the particles at the local fluid velocity,
vi . Finally, the Riemann problem must be solved in a frame that
is consistent with the motion of the effective faces,1 which moves
along with the particles. An obvious choice for this is

vface = dr face

dt
= 1

2

(
ṙi + ṙj

)
, (36)

where ṙi are the velocities with which the particles are moved.
This results in the MFV scheme as described by Hopkins (2015).
Since this choice of face velocity may differ from the fluid velocity
that comes from solving the Riemann problem, this results in a
small amount of mass transferred between neighbouring particles.
To construct a fully Lagrangian scheme, Hopkins (2015) suggests
using the speed of the contact discontinuity in place of vface . This
approach is similar to that employed by Inutsuka (2002) and ensures
that no mass is advected between neighbouring particles. Following
Hopkins (2015), we refer to this modified scheme as the meshless
finite-mass (MFM) scheme, which is used by default in GANDALF.

2.2.5 Time integration: second-order MUSCL–Hancock

To achieve second-order accurate integration in time, we employ an
unsplit second-order MUSCL–Hancock scheme (van Leer 1979;

1 This is done as described in appendix A of Hopkins (2015).

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

1608 D. A. Hubber, G. P. Rosotti and R. A. Booth

Toro 1997). The conserved quantities are updated according to
Qn+1

i = Qn
i +∑

j

d Qij , where

d Qij = −�t Fn+1/2
ij · Aij, (37)

and Fn+1/2
ij is the time-centred estimate of the flux. This is calculated

by predicting the primitive quantities passed to the Riemann solver
to the mid-point of the time-step along with reconstructing them to
the faces. This is done via the Taylor-series expansion,

Wn+1/2
i = Wn

i + (r face − r i

) · ∇W + �t

2

∂W i

∂t
, (38)

and the primitive form of the Euler equations,

∂W
∂t

+ A(W) · ∇W = 0. (39)

Equation (39) is used with the slope-limited gradients to replace the
time derivative, giving

Wn+1/2
i = Wn

i +
[

(r face − r i) − �t

2
A(Wn

i)

]
· (χ∇W). (40)

See e.g. appendix A of Hopkins (2015) for the form of A(W).
In the Lagrangian mode, the particle positions are then updated

via

rn+1
i = rn

i + �t

2

(
vn

i + v∗
i

)
, (41)

where v∗
i = (mn

i v
n
i + � pi + mn

i gn
i �t)/mn+1

i and � pi is the change
in momentum due the fluxes and gn is the gravitational acceleration
(see below).

2.2.6 Self-gravity

We adopt the approach of Hopkins (2015) in treating self-gravity,
which is itself an adaption of those used by Springel (2010) and
Price & Monaghan (2007) applied to the MFV schemes. We have
only implemented self-gravity for the MFM scheme and present this
implementation here. Similar to SPH, the gravitational softening can
be calculated self-consistently following Price & Monaghan (2007)
but using the MFV definition for the density. The gravitational force,
mi gi , on a particle is then

mi gi = −G

N∑
j=1

mi mj

φ′(r ij , hi) + φ′(r ij , hj)

2
r̂ ij

− G

2

N∑
j=1

{
ζ ′

i

�′
i

∇Wi(r ij , hi) + ζ ′
j

�′
j

∇Wi(r ij , hj)

}
, (42)

where the definitions of �′
i and ζ ′

i for the MFV schemes are

�′
i = 1 − ∂hi

∂ni

N∑
j=1

∂W

∂h
(r ij , hi), (43)

ζ ′
i = mi

∂hi

∂ni

N∑
j=1

mj

∂φ

∂h
(r ij , hi). (44)

We apply the gravitational force in a similar way to Hopkins (2015),
updating the new momentum, pi , and energy, Ei, according to

pn+1
i = pn

i + � pi + � t

2

(
mn

i gn
i + mn+1

i gn+1
i

)
, (45)

En+1
i = En

i + � Ei

+ � t

2

(
mn

i v
n
i · gn

i + mn+1
i vn+1 · gn+1

i

)
(46)

For the MFM scheme, since there is no mass flux (i.e. mn ≡ mn + 1),
the gravitational update [along with the update of particle posi-
tions, equation (41)] reduces exactly to a Leapfrog scheme when
the pressure forces are negligible. In the original MFV derivation
(Hopkins 2015), there are extra terms relating to the mass flux be-
tween neighbouring particles, dmij/dt, but these also reduce to zero
for the MFM scheme.

2.2.7 Physical viscosity

Since it is possible to achieve numerical viscosities that are smaller
than the physical viscosity in real systems such as accretion discs,
we have implemented a physical viscosity in the MFV schemes.
The source term in equation (31) due to viscosity can be written
as,

S = ∇ · (0,�, � · v), (47)

� = η
{[∇v + (∇v)T

]− 2
3I(∇ · v)

} + ζI(∇ · v), (48)

where η and ζ are the shear and bulk viscosity coefficients. Since
equation (47) takes the form of the divergence of a flux (with
Fvisc = −(0, �, � · v)), we follow Muñoz et al. (2013) in dis-
cretizing this term using a finite-volume approach, which simply
amounts to including the diffusive flux in equation (33). To com-
pute the viscous flux, one needs to specify a ‘viscous Riemann
solver’ along with the edge states to pass to the Riemann solver.
Muñoz et al. (2013) suggest using a slope-limited reconstruction of
both the primitive variables and the velocity gradients, which are
also needed to compute the viscous flux. However, Hopkins (2017)
found that reconstructing the velocity gradients makes only a very
small difference to the solution (typically less than 1 per cent). Thus,
we take a pragmatic approach in using the primitive variables re-
constructed at the edges and the particle-centred velocity gradients,
which are already available (equations 27 and 40). For the Riemann
solver, we simply compute the arithmetic average of the face states
and use those to compute the flux.

2.2.8 Time-stepping

The MFV scheme uses a similar CFL time-stepping condition as
used in SPH (ignoring any artificial viscosity terms), i.e.

� ti = CCFL
hi

MAXj |vsig,ij| (49)

where

vsig,j = ci + cj − MIN
(
0, vij · r̂ ij

)
. (50)

Similarly, when viscosity is included the time-step is limited ac-
cording to

� ti = CVISC

h2
i

2νi

(51)

where CVISC is the dimensionless viscosity time-step factor and
ν i = (ηi + ζ i)/ρ i is the total kinematic viscosity for the particles.

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

GANDALF 1609

Finally, when gravity is included the time-step is limited according
to the acceleration condition,

� ti = CGRAV
hi√
gi

. (52)

Similarly to SPH, block time-stepping can also be used with MFV.
In order to ensure exact conservation, the changes to conserved
quantities, d Qij , are computed on the smallest time-step of the
particle pair and built-up over the full time-step, following Springel
(2010). Since particles may be interacting with neighbours both on
larger and smaller time-steps, the contribution to the fluxes from
some particles will be computed once while others may contribute
multiple substeps. This means that the conserved quantities only
take meaningful values at the beginning and end of the time-steps.
Since the primitive quantities may be needed at any point during
the particle’s time-step to compute the fluxes with a neighbour on a
shorter time-step, we also record

d Qi

dt
= −

∑
j

Fij · Aij , (53)

at the start of the time-step and use it to predict the primitive quan-
tities throughout the time-step. Once the particle reaches the end
of its time-step, these are then replaced by the conserved fluxes
built-up throughout the time-step.

The block time-stepping scheme can suffer from the same prob-
lems with the Meshless scheme as in SPH when particles can in-
teract with neighbours on much longer time-steps. We provide two
time-step limiters to solve this problem. First, we have implemented
a simple limiter similar to the one used by SPH. When a particle
detects that a neighbour is on a time-step lower than the accepted
ratio, the particle is ‘woken up’. At this time, the fluxes built-up
during the block time-stepping scheme are likely to be too large as
some neighbours may be on the same time-step level as the parti-
cle, or longer. For this reason, we use �t

d Qi
dt

to estimate the new
conserved quantities when the particle is woken up. We note that
while this breaks the exact conservation, we find that it works well
in practice.

Secondly, for cases when exact conservation is required, we have
also included the more expensive predictive time-step limiter of
Springel (2010), in which the CFL condition is evaluated for dis-
tant particles using a tree walk. By limiting the time-step based
upon |r ij |/|vsig,ij |, this ensures that particles ‘wake up’ from long
time-steps before shocks reach them. In simulations dominated by
gravity, pathological configurations can occur where the predictive
limiter forces the particles to have much lower time-steps than nec-
essary. In this case, the simple limiter will likely work well since the
energy conservation errors are likely dominated by the gravitational
forces.

3 N- B O DY M E T H O D S IN GANDALF

N-body dynamics has been implemented into GANDALF as an inde-
pendent class separate from the Hydrodynamical algorithms. GAN-
DALF can therefore be run for pure N-body problems, albeit not
as efficiently compared as dedicated and optimized N-body codes
such as NBODY6 (Aarseth 2003) or STARLAB/KIRA (Portegies Zwart
et al. 2001). In most simulations, the N-body module will be used
in tandem with the hydrodynamics to represent stars in the guise of
sink particles (see Section 3.3). Nevertheless, there are situations
where one is interested in the outcome of a simulation if there was
no gas present, or as a pure N-body simulation after the gas has
been removed.

In order to make the N-body algorithms compatible with the
Hydrodynamical algorithms and to prevent unphysical two- or
three-body ejections and/or large energy errors, we give each N-
body particle a (constant) smoothing length. The acceleration of an
N-body particle due to all other N-body particles is simply:

as = −G

N∑
t=1

mt φ′(rst , hs) r̂st , (54)

where hst ≡ 1
2 (hs + ht).

3.1 Integration schemes

GANDALF can use several integration schemes for simulating N-body
dynamics independent of the choice of hydrodynamics scheme.
For simple problems or when using accreting sink particles (see
Section 3.3), we can use the Leapfrog KDK and DKD schemes
outlined in Section 2.1.3 using the same sets of equations (15)–(20)
together with the acceleration time-step condition (equation 23). For
pure N-body simulations, or hybrid simulations that require higher
accuracy, we can use other higher order schemes.

3.1.1 Fourth-order Hermite scheme

In the fourth-order Hermite scheme (Makino & Aarseth 1992), we
explicitly calculate the first time derivative of the acceleration (often
called the jerk), ȧ, in order to achieve higher integration accuracy.
At the beginning of the step, we calculate both the acceleration and
the jerk, where the jerk is given by:

ȧn
s = −G

N∑
t=1

mt φ′(rst , hst)

|rst | vst

+ 3 G

N∑
t=1

mt (rst · vst) φ′(rst , hst)

|rst |3 rst

− 4 π G

N∑
t=1

mt (rst · vst) W (rst , hst)

|rst |2 rst . (55)

Once calculated for all stars, we predict the star positions and ve-
locities to the end of the step with a Taylor expansion,

rn+1
s = rn

s + vn
s �t + 1

2
an

s �t2 + 1

6
ȧn

s �t3, (56)

vn+1
s = vn

s + an
s �t + 1

2
ȧn

s �t2. (57)

We then calculate the acceleration jerk again using equation (55)
using the predicted positions and velocities at the end of the step,
i.e. an+1

s and ȧn+1
s . This allows us to construct the higher order time

derivatives for the step,

än
s = 2

(−3(an
s − an+1

s) − (2ȧn
s + ȧn+1

s)�t
)

�t2
, (58)

...
a

n

s = 6
(
2(an

s − an+1
s) + (ȧn

s + ȧn+1
s)�t

)
�t3

. (59)

where än and
...
a

n
are the second and third time derivatives of the ac-

celeration, respectively. Finally, we apply these higher order deriva-
tives as a correction step to calculate the position and velocity to
high order,

rn+1
s = rn+1

s + 1

24
än

s �t4 + 1

120
...
a

n

s �t5, (60)

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

1610 D. A. Hubber, G. P. Rosotti and R. A. Booth

vn+1
s = vn+1

s + 1

6
än

s �t3 + 1

24
...
a

n

s �t4. (61)

To compute the time-step for each star, we use the Aarseth criterion
as used in the NBODY codes (e.g. Aarseth 2003),

�ts = γs

√
|as ||äs | + |ȧs |2
|ȧs || ...

as | + |äs |2
. (62)

3.1.2 Fourth-order time-symmetric integration scheme

For simulations which require higher stability or more accuracy,
particularly with long-term orbital integration (e.g. binary or mul-
tiple systems), we can use the Hut, Makino & McMillan (1995)
time-symmetric fourth-order Hermite scheme. In this variant, we
compute the acceleration and jerk at the beginning of the time-step
similar to the standard Hermite scheme. We then predict the position
and velocities at the end of the time-step. The corrected position
and jerk are recomputed using

rn+1
s = rn

s + 1

2

(
vn+1

s + vn
s

)
�t − 1

12

(
an+1

s − an
s

)
�t2, (63)

vn+1
s = vn

s + 1

2

(
an+1

s + an
s

)
�t − 1

12

(
ȧn+1

s − ȧn
s

)
�t2. (64)

A more accurate solution is obtained by iterating the evaluate-
correction step until the particle’s position and velocity are con-
verged. Such schemes are often called P(EC)n where n is the
number of correction iterations. In practice, even using n = 2
gives improved results. We note that despite its name, a truly
time-symmetric integration is only possible for constant time-steps
whereas most N-body codes use adaptive time-steps.

3.2 Hybrid SPH and N-body dynamics

GANDALF contains an implementation of the Hubber et al. (2013a)
hybrid SPH/N-body algorithm. This is designed to simulate small
to intermediate size clusters which also have a live gaseous back-
ground. One noticeable difference between this and the original
Hubber et al. (2013a) implementation is the mode of symmetrizing
the particle–particle interactions. In Hubber et al. (2013a), the grav-
itational interactions between all particle pairs (gas–gas, gas–star
and star–star) were smoothed using the average smoothing length,
i.e. W (r, 1

2 (hi + hj)). In GANDALF, this has been modified so gas–
gas interactions use the standard (Price & Monaghan 2007) form in
grad-h SPH with the average of the kernels (equation 12), whereas
only the gas–star and star–star interactions use the average smooth-
ing length approach. Smoothing the gas–star interactions with the
average smoothing length is designed to prevent the situation where
the smoothing lengths of gas and star particles are hugely different
leading to the unphysical two-body scattering which softening is
designed to prevent. The full equation of motion for gas particles
becomes

ai = −
Ng∑
j=1

mj

[
Pi

ρ2
i �i

∂Wij

∂r i

(hi) + Pj

ρ2
j �j

∂Wij

∂r i

(hj)

]

− G

Ng∑
j=1

mj

φ′(r ij , hi) + φ′(r ij , hj)

2
r̂ ij

− G

2

Ng∑
j=1

mj

[
ζ ′
i + χ̄i

�i

∂Wij

∂r i

(hi) + ζ ′
j + χ̄j

�j

∂Wij

∂r i

(hj)

]

− G

Ns∑
s=1

ms φ′
is(his) r̂ is , (65)

where

χ̄i = ∂hi

∂ρi

N∑
j=1

mi

∂φij

∂hij

(hij). (66)

These equations are then numerically integrated using the second-
order Leapfrog KDK scheme (Section 2.1.3). The total equation of
motion for stars becomes

as = −G

Ns∑
t=1

mt φ′
st (hst) r̂st − G

Ng∑
i=1

mi φ′
si(hsi) r̂si . (67)

This modification removes the need for an additional loop over SPH
neighbours to calculate the values for ζ i using averaged smoothing
lengths.

We note that this conservative scheme is not formally imple-
mented to work with the MFV/MFM schemes although the basic
fourth-order Hermite scheme can still be utilized together in tandem
with the MFV/MFM hydrodynamics integration scheme.

3.3 Sink particles

Sink particles (Bate, Bonnell & Price 1995) are used in self-
gravitating hydrodynamics codes to relieve the problem of high-
density condensations (e.g. protostars) leading to very short time-
steps and prohibitively long CPU run times. In their most basic
form, sink particles replace the forming protostar (or other accret-
ing object) with a single particle with an accretion radius Rs that
accretes any gas particles that enter the accretion radius by adding
their mass and momentum to the sink. Hubber, Walch & Whitworth
(2013b) introduced an improved sink particle algorithm in SPH
which computed the accretion rate based on an internal subgrid
model leading to better convergence of results. GANDALF implements
both the simpler ‘vacuum-cleaner’ sink particles and the improved
sinks of (Hubber et al. 2013b), both for SPH and for the MFV/MFM
schemes.

3.3.1 Sink formation criteria

A new sink particle is created from an existing gas particle that
satisfies a number of criteria. These criteria are designed to ensure
that sinks are only formed in genuinely self-gravitating entities, such
as in collapsing prestellar cores and protostars. When a sink particle
is formed, it is given an accretion radius that is some multiple of the
original particle’s smoothing length,

Rs = XSINK hi (68)

where XSINK is a user-defined factor of order unity and hi is the
smoothing length of the original gas particle. For consistency, XSINK

is normally chosen so that the sink accretion volume is the same as
the smoothing kernel volume (e.g. for the M4-kernel, XSINK = 2).

The formation criteria are:

(i) The density of a gas particle should exceed the user-defined
sink creation density, ρSINK , i.e.

ρi > ρSINK . (69)

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

GANDALF 1611

(ii) A new sink particle formed from a hydrodynamical particle
does not overlap any existing sinks upon creation, i.e.

|r i − rs | > XSINK hi + Rs. (70)

(iii) The gravitational potential of a hydrodynamical particle is
the minimum (as in most negative) of all of its hydrodynamical
neighbours, i.e.

φi < MIN
{
φj

}
. (71)

(iv) The density is sufficiently large so local condensations do
not lie within the Hill sphere (or equivalently the Roche limit) of all
existing sinks, i.e.

ρi >
3 XHILL �r is · �ais

4πG|�r is |2 . (72)

(v) A condensation can undergo free fall collapse before ap-
proaching any existing sinks, i.e.

tFF <
|�r is |2

�vis · �r is

. (73)

3.3.2 Sink accretion

In the simplest case, accretion of gas particles on to sink particles
can be achieved simply by adding the mass, momentum and energy
of every gas particle entering the sink radius. Additional criteria may
be employed, such as checking if the gas particles are gravitationally
bound to the sink particle. Hubber et al. (2013b) introduced a simple
two-mode subgrid model of accretion which we have implemented
into GANDALF. The first mode treats the case of purely spherical
collapse, i.e. inward radial velocities. The (smoothed average) radial
infall time-scale in terms of the particle properties is

〈
tRAD

〉
s
=

∑
j

{
mj

} W
4π
∑
j

{|�rjs |�rjs ·�vjsmjW (|�rjs |, Hs)
} , (74)

where

W =
∑

j

{
mjW (|�rjs |, Hs)/ρj

}
. (75)

The second mode treats the case of purely rotational collapse, i.e.
where all velocities are tangential with speeds for circular motion.
For low-mass discs in approximate Keplerian rotation, the accretion
time-scale at a radius R is given by the Shakura–Sunyaev prescrip-
tion, tSS ∼ α−1

SS
(GM�R)1/2a−2, where αSS is the Shakura–Sunyaev

viscosity and a is the local sound speed. A kernel-weighted average
of this time-scale over all particles in the sink gives

〈
tDISC

〉 = (GMs)1/2

αSSW
∑

j

{
|�rjs |1/2mjW (|�rjs |,Hs)

ρja
2
j

}
. (76)

Since accreting particles will in general fall between these two
limits, we use a simple interpolation using a weighted geometric
mean to give an overall accretion time-scale of

tACC = 〈tRAD

〉(1−f)

s

〈
tDISC

〉f

s
, (77)

where

f = MIN
{

2EROT/|EGRAV |, 1
}

(78)

is a simple measure of the centrifugal support using the rotational
and gravitational energies of particles inside the sink, where f = 1
is expected for circular rotation.

The total mass of gas particles to be accreted in the current time-
step is then

δMACC = MINT

[
1 − exp

(
− δts

tACC

)]
. (79)

4 MISC

4.1 Dust

The dynamics of dust-gas mixtures have been implemented in GAN-
DALF using the ‘two-fluid’ formalism. An additional set of dust
particles can be included, which are coupled to the gas motions
via drag forces. The main scheme closely follows Lorén-Aguilar
& Bate (2015), who provide expressions for a semi-implicit update
for the drag force that avoids the need for small time-steps when the
drag forces are very strong. We refer the reader to Lorén-Aguilar
& Bate (2015) for details and only briefly outline the scheme. The
equations of motion for gas and dust particles are

dvg

dt
= −ρd

ρg

(vg − vd)

ts
+ ag − ∇P

ρg
, (80)

dvd

dt
= − (vd − vg)

ts
+ ad, (81)

where ts is the one-particle stopping time, and the backreaction of the
dust on the gas has been included to conserve the total momentum.

To solve these equations over a single time-step �t, the hydro-
dynamic and gravitational forces are first calculated as normal. The
semi-implicit update is computed by making the ansatz that these
forces, along with the densities and ts, are constant throughout the
time-step. The above equations can then be solved to give the new
velocities,

vd(t + �t) = ṽd(t + �t) − ρg

ρd + ρg
Sdg (82)

vg(t + �t) = ṽg(t + �t) + ρd

ρd + ρg
vdg (83)

where ṽd,g(t + �t) = vd,g(t) + ad,g(t)�t . Writing �ṽ = ṽd − ṽg

and �a = ad − ag + ∇P/ρg, then Sdg is given by

Sdg = (
1 − e�t/ts

)
�ṽ(t + �t)

− [
(�t + ts)

(
1 − e�t/ts

) − �t
]
�a(t). (84)

To convert this update into SPH form, we project the velocity
along the line of sight and sum over the neighbours using a double-
hump kernel (which we denote by W̃), in order to ensure angular
momentum conservation while computing the drag force accurately
(Laibe & Price 2012; Lorén-Aguilar & Bate 2015). The resulting
equations are:

vi
d(t + �t, r i) = ṽi

d(t + �t, r i)

− D

Gas∑
a

ma

ρi + ρa
(Sia · r̂ ia) r̂ iaW̃ (r ia, ha) (85)

va
g(t + �t, ra) = ṽa

g(t + �t, ra)

+ D

Dust∑
i

mi

ρi + ρa
(Sia · r̂ ia) r̂ iaW̃ (r ia, ha). (86)

The drag force dissipates kinetic energy, which may go into heat-
ing the gas, dust or be lost from the system depending on the details

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

1612 D. A. Hubber, G. P. Rosotti and R. A. Booth

of the problem. When using a barotropic EOS, which is common
in astrophysical applications with dust-gas mixtures (e.g. discs, star
formation or molecular clouds), we do not explicitly track the ki-
netic energy dissipated. However, when using an adiabatic EOS, we
assume that the dissipated kinetic energy heats the gas directly.

To ensure exact conservation, we compute the change in kinetic
energy due to drag forces directly from the above equations,

�KEi = mi|vi(t + �t) − ṽi(t + �t)|2. (87)

The change in kinetic energy of a gas particle is added directly to
the change in its internal energy. For dust particles, we spread its
change in kinetic energy amongst its neighbouring gas particles,
using the same kernel as for the drag force calculation. The total
change in a gas particle’s internal energy is thus

ma�ua = �KEa + ma

ρa

Dust∑
i

1

Ni
�KEiW̃ (r ia, ha), (88)

where Ni is a normalization factor,

Ni =
Gas∑
a

ma

ρa
W̃ (r ia, ha). (89)

Summing equation (88) over all gas particles gives
∑Gas

a ma�ua =∑Gas
a �KEa +∑Dust

i �KEi, i.e. manifest energy conservation. Fi-
nally, we note that this energy update can be implemented simply.
We compute Ni during the drag force calculation for the dust. Once
the drag force for the single dust particle has been computed, the
change in kinetic energy is then ‘given back’ to its neighbours.
In practice, we use equations (85), (86) and (88) to define time-
averaged rates of change in the physical quantities which are in-
cluded in the standard SPH time integration scheme.

The dust scheme has been described above in terms of SPH, but
can naturally be extended to the MFM integration algorithm. To do
this, we proceed exactly as in SPH, except that change in velocity is
multiplied by the particle mass and added to the change in momen-
tum, � p. Also, since the MFM method integrates the total rather
than the internal energy, only the change in kinetic energy from
the dust particles needs to be included. This allows conservation of
energy and momentum to machine precision. However, there is one
subtlety, in that MFV and MFM use a single hydrodynamical update
per time-step, but the gravitational acceleration is treated using the
KDK Leapfrog, i.e. two kicks per time-step. Rather than use two
drag kicks per time-step (one with the initial and one with the final
gravitational acceleration), we instead take the pragmatic approach
of using the time average, m1 ā = (m0a0 + m1a1)/2, where m0, 1

and a0,1 are the accelerations and masses computed at the begin-
ning and end of the step. This works well in practice because the
drag forces only depend on the difference between the dust and gas
accelerations (see Lorén-Aguilar & Bate 2015), which for gravita-
tional forces is typically close to zero (except perhaps in very poorly
resolved regions close to sink particles). Finally, in the meshless,
the ∇P/ρg term is taken from the change in momentum computed
using the Riemann solver (equation 53).

In addition to full two-fluid scheme above, GANDALF also includes
a test-particle scheme. The main advantage of this scheme is that,
unlike the full two-fluid scheme, it can naturally handle block time-
steps, whereas the full two-fluid scheme becomes inaccurate if not
used with global time-steps. While it would be straightforward to
create a test-particle scheme by setting ρ i = 0 in equation (85)
and neglecting equations (86) and (88), in cases where the particle
distribution is non-uniform the force accuracy can be improved by
using a normalized interpolations scheme, as in Booth, Sijacki &

Clarke (2015). In this scheme, equation (85) is replaced by equation
(82) and Sdg is computed by interpolating the gas properties to the
location of the dust particle and using them directly in equation
(84). In formula, any given quantity Ai, defined on the gas particles,
it is interpolated using

Ad =
Gas∑
i

Ai

n̂d
W (r id, ĥd) (90)

where

n̂d =
Gas∑
i

W (r id, ĥd) (91)

and ĥd = ηSPH(1/n̂d)1/D , which is evaluated using the standard
Newton–Raphson iteration with the same tolerance as the mass
density.

As with pure hydrodynamics problems with the MFM method,
we find that using the quintic kernel can significantly improve the
accuracy of the results due to more accurate density estimates and
smaller interpolation errors (see e.g. Price 2012; Laibe & Price 2012;
Price & Laibe 2015). We thus recommend use of the quintic kernel
in problems involving dust, and use it in the tests presented here.

4.2 Tree

In GANDALF, we have implemented a KD tree to efficiently determine
neighbour list for computing all local quantities (e.g. smoothing
lengths) and for computing gravitational forces. Our implementa-
tion is loosely based on the one described in Gafton & Rosswog
(2011); we refer the interested reader to that paper and highlight
the differences from our implementation in the following text. The
tree is built in a top-down approach; starting from a root cell that
contains all the particles, each cell is divided in two subcells along
a chosen direction until one is left only with leaf cells, i.e. cells con-
taining a number of particles equal or smaller than a set maximum,
NLEAF . The slice direction is always chosen to be the one along the
cell’s most elongated axis, in order to avoid having cells with large
aspect ratios. In contrast to Gafton & Rosswog (2011), we follow
a more traditional KD-tree construction and split cells using the
median value of the particle’s positions (what they describe as MPS
method). This guarantees that the tree is balanced; i.e. if there are
2l particles, the tree will contain l levels (for NLEAF = 1), which
simplifies the memory management.

Once the tree has been constructed, a number of properties can
be computed for each cell and propagated upwards to the parent
cells, such as the position of the centre-of-mass, the gravitational
moments (needed for computing the gravitational acceleration) and
the extent of the smallest box containing all the smoothing spheres
of the particles. This box will be used during the tree walk to decide
if a given cell potentially contains hydrodynamical neighbours of a
given particle.

When including self-gravity, the tree is also used to reduce the
expensive O(N2) calculation to O(Nlog N) by grouping the contribu-
tion from distant particles together. The tree is walked from the root
cell and each cell is tested to see whether the contribution from the
cell is sufficiently accurate; if not the cell is opened and its children
are tested. This can be done using the classic geometric opening
criterion (e.g. Barnes & Hut 1986),

|r i − rc|2 ≥ l2
c

θ2
MAX

(92)

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

GANDALF 1613

where rc is the cell position, lc is the cell ‘size’ (i.e. the centre-
to-corner distance of the cell) and θMAX is the maximum allowed
opening angle of the cell (typically ∼0.3). The cell approximation
can be used if the inequality is satisfied. Otherwise, we must open the
cell and test each of its children cells. Optionally, a second criterion
can be included whereby cells are opened if the contribution to the
force from their quadrupole moment is too large. Either the Springel
(2005) Multipole-acceptance criterion (MAC),

|r i − rc|2 ≥
(

G Mcl
2
c

αc

)1/2

|aGRAV |−1/2 (93)

where Mc is the cell mass, aGRAV is the gravitational acceleration
from the previous step and αc is the maximum fractional contribu-
tion to the total acceleration from the cell quadrupole term (typi-
cally αc ∼ 10−4). or the eigenvalue-based criterion of (see Hubber
et al. 2011, for details) can be used in GANDALF.

Even with the optimizations provided by using a tree, walking
the tree to find neighbours is still an expensive operation that can
dominate the total CPU cost of a simulation. We optimize the walk
by retrieving the list of neighbours for each leaf cell rather than
for each individual particle (Wadsley, Stadel & Quinn 2004). GAN-
DALF caches the list of particles and cells found during the tree
walk. When self-gravity is included, the gravitational force contri-
bution from the particles is computed directly for all of the par-
ticles in the leaf cell. For the contribution from the distant cells,
the gravitational force calculation can be computed in one of two
ways: either directly for each particle in the leaf cell or using a
Taylor-series expansion about the centre of the leaf cell similar to
Gafton & Rosswog (2011). Both the monopole and quadrupole
moments can be included in the force contribution for the cells;
when using the Taylor-series method, we expand the monopole
term to second order (as in Gafton & Rosswog 2011), but only
include the first-order term in the expansion of the quadrupole. In
practice, because the actual force computation takes only a small
fraction of the time spent walking the tree, we find that computing
the force directly for each particle and including the quadrupole
moments is typically the most efficient (see Section 6.5). The serial
performance and parallel scaling of the tree is found to be sensi-
tive to the choice of value for NLEAF . This is discussed in detail in
Section 7.

Finally, rather than rebuilding the complete tree at every step,
we can update the properties of the tree cells bottom-up. This is
particularly relevant for time-steps where only a small fraction of
all particles are active, in which case the cost of rebuilding the
tree can become comparable to the cost of the hydro step itself.
In practice, we rebuild the tree after a fixed number of time-steps
(specified by the user). In contrast to Gafton & Rosswog (2011), we
do not perform an integrity check on the tree since the tree-walking
algorithm will always retrieve the correct neighbours even if the
particles have moved outside of the initial cell (provided that the
extent of the cells is updated accordingly).

4.3 Boundary conditions

Both the SPH and MFV schemes can naturally handle isolated
systems with no need for explicit boundary conditions. However,
boundaries need to be explicitly handled in cases such as the join
between computational domains, when modelling systems with re-
flection symmetry, or in periodic domains. Periodic and reflecting
boundaries in GANDALF are handled using ‘ghost particles’, which
are copies of real particles that fall near the edges of the simula-
tion domain. Depending on the type of boundary, these particles

may be direct copies on a different processor (MPI domain bound-
aries), copies of particles that have been translated to a new position
(periodic ghosts) or reflected across a boundary.

The ghost particles are constructed in one of two different ways;
they can be computed in advance of time or generated on-the-fly
as needed. In GANDALF, both approaches are used. For the density
and dust force calculations, both the physical and MPI ghosts are
computed ahead of time. This is done because these loops may
require the smoothing lengths to be iterated to achieve convergence,
resulting in the need to export the particles every time the smoothing
lengths are changed. As long as enough ghosts are constructed
initially there is no need to iterate the density. However, in the
hydrodynamical and gravitational force calculations, which do not
require iteration, ghosts at physical boundaries are constructed on-
the-fly. This is done to simplify the gravitational force calculation
in periodic simulations. Similar to GADGET-2, the contribution to
the forces from interactions with particles on external processors
is handled by exporting the particles to the other processor before
computing the forces and sending back the result.

When employing periodic boundaries with self-gravity, we use
the Ewald method (e.g. Hernquist, Bouchet & Suto 1991) for com-
puting periodic gravity forces. This method assumes that the sim-
ulation box is infinitely replicated in all Cartesian directions. A
table of periodic gravitational correction terms is generated and
used when computing forces between all gravitating particles or
tree cells. Wünsch et al. (2017) have recently adapted the original
Ewald method to allow periodic gravitational forces for either 1D
or 2D periodicity, which has been implemented in GANDALF. This
could be used for example to model an infinitely wide sheet or an
infinitely long filament. Although GANDALF is a multidimensional
code, the periodic gravity can only be employed in 3D, whether
using 1D, 2D or 3D periodicity.

4.4 Generating initial conditions

Constructing initial conditions for arbitrary density fields is in gen-
eral more complicated for particle methods than grid methods,
which can simply set the density field for each grid cell directly. The
simplest approach is to use Monte Carlo rejection sampling of the
density field, which gives approximately the correct density field but
with a considerable amount of noise. In Fig. 1(a) (1st column), we
use Monte Carlo rejection sampling to select particles representing
a simple sinusoidal density field, ρ(x) = 1.0 + 1

2 sin {2πx} in 2D.
As can be seen, the particle distribution is extremely non-regular
(bottom row) leading to considerable scatter in the density field (top
row), even when smoothed using equation (5).

Gaburov & Nitadori (2011) mitigate this problem somewhat by
regularizing the particle distribution at start-up (i.e. after initial
conditions generation) to reduce this noise by making the local par-
ticle distribution more glass-like (Fig. 1b). Although successful, too
many iterations leads to a completely uniform distribution of par-
ticles, effectively washing out the original density structure. After
100 iterations, while generating a more regular distribution with less
noise, the amplitude of the sine-wave has been reduced by approx-
imately a half (Fig. 1b, top row) and will continue to ‘decay’ with
successively more iterations. Alternatively, Whitworth et al. (1995)
used a similar method to iterate particle positions towards a given
density field (Fig. 1c). While giving a good fit to the density field
and an improved particle distribution over the original Monte Carlo
sampling, this leads to a imperfect (i.e. not glass-like) distribution
of particles with noticeable particle–particle ‘clumping’ at various
points in the distribution.

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

1614 D. A. Hubber, G. P. Rosotti and R. A. Booth

Figure 1. The density profile (top row) and particle distribution (bottom row) resulting from generating a simple sine-wave density field using Monte Carlo
rejection sampling (first column), the Gaburov & Nitadori (2011) regularization method (second column), the Whitworth et al. (1995) density method (third
column) and the combined approach used in GANDALF (fourth column).

GANDALF contains a general initial conditions (IC) algorithm that
effectively combines the two approaches of Whitworth et al. (1995)
and Gaburov & Nitadori (2011) by simultaneously iterating towards
a given density profile while moving the particles to a more regular
distribution. The full procedure for generating ICs is:

(i) Calculate the total mass contained in the computational do-
main, MTOT , either by analytically or by numerical integration of the
density field. All particles are assigned an equal mass m = MTOT/N .

(ii) Use Monte Carlo rejection sampling to assign the initial po-
sitions of all particles. Although our algorithm works in principle
from any initial distribution, it converges much faster if the particles
are already close to their final positions.

(iii) Iterate the particle positions using

r ′
i = r i + hi

N∑
j=1

{
αIC − βIC

(
ρ(rj) − ρj

ρ(rj)

)}
W (r ij , hi)r̂ ij .

(94)

where ρ(rj) is the analytical (or tabulated) density at the position
of particle j, ρ j is the smoothed density of particle j, αIC is the
weighting of the particle regularization term and βIC is the weighting
of the density field term. In practice, we find values of αIC = 0.1
and βIC = 0.9 give a good balance between giving a regular particle
distribution and an accurate density field. We note that higher values
of αIC gives a more regular distribution but can under-resolve density
peaks.

(iv) Once the positions have converged, assign the remaining
particle and hydrodynamical properties (e.g. velocity and specific
internal energy).

One issue not addressed by this algorithm is creating equilib-
rium ICs, with the exception of trivial uniform density configu-
rations (such as a uniform glass). Hydrodynamical forces (due to
second-order smoothing errors) are not truly represented by any

given density gradient, even if the density field is accurate. Gravi-
tational forces also have a similar (although smaller in magnitude)
smoothing error. Therefore, exact hydrostatic equilibrium cannot
be obtained with this method.

5 IM P L E M E N TAT I O N D E TA I L S

5.1 General design and structure of the code

We have followed many object-oriented principles when designing
GANDALF. In this section, we show some examples to demonstrate
why an object-oriented approach is useful for a Astrophysics hy-
drodynamical code; we refer the interested reader to the userguide
and the code base for more details on the class structure of GANDALF.
The use of object-oriented design has allowed GANDALF to follow a
philosophy of ‘compile once for all’; all parameters can be selected
at run time from the user, without any need for recompiling the
code.

GANDALF contains multiple implementations of many important
algorithmic features, such as hydrodynamics, the SPH smoothing
kernel, N-body integration schemes, the spatial decomposition tree
and more. If the codes were to inquire about the choice of an algo-
rithm (e.g. how to compute the pressure of a particle) every time it
is called, this would require an excessive use of if–else statements.
Moreover, such a code would be inflexible when adding additional
algorithms (e.g. a new EOS); every time a new algorithm is added,
every relevant if statement called in the code base would need to be
modified. To solve this problem, we use the so-called strategy’ pat-
tern proposed in the seminal book of Gamma et al. (1995). Different
algorithms for performing the same task (e.g. an isothermal or adi-
abatic EOS; Fig. 2) are coded as different classes inheriting from a
common ‘parent’ class (the EOS class). The parent class declares
in its interface a virtual pure function (e.g. ComputePressure) that
the different strategies implement. ‘Users’ of the algorithm (e.g. the

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

GANDALF 1615

Figure 2. An (idealized) example showing how we use the strategy pattern
in GANDALF. In multiple places, the code needs to compute the pressure of
a particle; this is accomplished by calling a function defined in an abstract
class ‘EOS’. At code startup (typically depending on the parameters passed
in by the user), it has been decided what the concrete implementation is (e.g.
an adiabatic or isothermal EOS); the code that needs the pressure does not
need to be aware of how this is computed.

SPH force calculation) only work through a pointer to the parent
class, and do not need to behave differently depending on the exact
strategy adopted. Using this approach, we can separate the code
where we choose the algorithm (typically done at code start-up)
from the location where we invoke it, avoiding a long list of ifs, for
the benefit of code clarity and extensibility.

Another example of object orientedness is the use of a well-
known feature of C++ called templates. This is a way of expressing
polymorphism at compile time rather than at run time, and as such
incurs less overheads. Therefore, we use this feature in performance
critical sections of the code. For example, in a particle-based algo-
rithm the smoothing kernel is a critical part of the code. GANDALF

supports several kernels, and we achieve this by templating the
functions that use the kernel with the template class. This has the
advantage that the kernel can be inlined (early testing has shown
that this can lead to a performance improvement up to 30 per cent)
and we can retain this performance while still being able to select
the kernel at run time (i.e. there is no need to recompile the code if
one wishes to change the kernel).

Finally, the last example of best object-oriented practices is the
use of composition over inheritance. The top level class present in
the code is the simulation class, which governs for example the
flow of the main loop (see the flow chart in Fig. 3). While we do
use inheritance to distinguish the meshless algorithms from SPH
(e.g. we have a SPHSimulation class and a MeshlessSimulation
class), there are many other individual algorithms available for use
in the code, most of which have different options. This could lead
to hundreds of different simulation types. We solve this problem by
having multiple classes, each one responsible for one of the main
subtasks of the main loop.

Fig. 3 shows some of these subclasses; the main simulation class
stores a pointer to each one of them. The main loop starts with
integrating the particles in time (a task handled by a dedicated in-
tegrator class). We then build/update the structure used to retrieve
neighbours (the tree) and proceed to the core of the algorithm:
computing smoothing length and hydro forces. These tasks are also
handled by the tree; the actual calculations of smoothing lengths and
forces are subsequently delegated to an Sph class once the neigh-
bours of a particle have been retrieved. At this point, we compute
the acceleration on to the stars and accrete gas on to the sinks. Then,
we compute the time-step (this is handled by the simulation class
itself), compute the dust forces and finally correct the time inte-
gration of the particles with the newly computed accelerations (if
necessary, depending on the time integration scheme). The meshless
loop closely follows the SPH one, with two important differences.

Figure 3. A flow chart showing of the flow of the main integration loop
of GANDALF for the SPH case. The circles indicate the class responsible for
each action (shown in the rectangle).

The first one is that the force calculation is replaced by two sepa-
rate loops, one to update the gradient matrices and one to compute
the fluxes. The second one is that, while for SPH we compute the
gravitational acceleration together with the hydro forces (if both are
present), for the meshless we must do it in two independent loops
to preserve the second-order accuracy in time of the integration.

5.2 Parallelization

Our approach to parallelization in GANDALF follows recent trends in
HPC. We have parallelized the code using both OPENMP and MPI. This
hybrid parallelization allows the code to be used flexibly on differ-
ent architectures. Modern hardware tends to be composed of few
machines (‘nodes’) containing each several cores, interconnected
by high-performance, low latency links (such as InfiniBand). An
OPENMP only approach has the disadvantage that it is not possible to
use more cores than what is available on a single node. Conversely,
a pure MPI approach, while capable of running on any arbitrarily
large number of nodes, does not take advantage of the fact that the
different threads inside the same node are able to share the same
memory, and no communication is needed between them. The use of
hybrid parallelization allows us to have the best of both approaches.

5.2.1 OPENMP parallelization

The OPENMP parallelization strategy in GANDALF is straightforward
in that the majority of the CPU time is spent in simple loops
over the active particles, such as the calculation of the smooth-
ing length (common to both SPH and the MFV schemes) and the
calculation of the forces (for SPH) or the calculation of gradient
matrices and fluxes (for the MFV schemes). In these loops, the
computation for each particle is independent, which makes adding
OPENMP parallelization trivial. Only in very few places, we need
locks or atomics, which can limit the scaling. As we mentioned in
Section 4.2, we walk the tree for the particles in a cell rather than

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

1616 D. A. Hubber, G. P. Rosotti and R. A. Booth

for single particles; a single unity of work for OPENMP is thus an
active cell rather than each active particle.

The parallelization of the KD tree construction is less straight-
forward. The tree construction proceeds by bisecting repeatedly the
particles on each tree level. The construction of the first level can
be performed only by one thread. On the second tree level, there are
two sets of particles, each one of which can be processed indepen-
dently. This allows us to extract parallelism by assigning a thread
to each one. We apply this strategy recursively to the each level; we
note that, if Nthreads are available, we need 2l > = Nthreads, where l is
the tree level in order to keep all threads busy and obtain reasonable
work-sharing. Typically Nparticles
 Nthreads, so that eventually all
the threads are busy building the tree. However, the bisection is typ-
ically an operation O(N) (GANDALF uses the algorithm included in
the C++ standard library, which is usually introselect), which means
that the construction of each level takes roughly the same CPU time.
Because the constructions of the first levels is done essentially in
serial, it will limit the optimal scaling that can be reached during
tree build. Further improvements to our strategy are only possible
by parallelizing the select algorithm that performs the bisection.

Finally, for completeness we have also parallelized most of the
other operations in the code of order O(Nparticles), such as time
integration, the calculation of the time-step and the calculation of
the thermal properties, although they do not dominate the wall clock
time.

5.2.2 Hybrid OPENMP/MPI parallelization

Typically shared-memory HPC machines contain 16 cores which
limits the problem sizes that can be investigated with GANDALF. In
order to extend this to more processors (a few 10 s, if not ∼100
cores), we have implemented a hybrid OPENMP/MPI parallelization.
The typical usage in GANDALF is to use OPENMP inside each shared-
memory node and use MPI to communicate between nodes.

We use domain decomposition via a KD tree to assign the parti-
cles to each MPI process. This imposes the limitation that the number
of MPI processes must be a power of 2. Each MPI node constructs
‘pruned’ versions of their trees to send to the other processors.
These are simplified trees, with a smaller number of levels than
the full trees. The pruned trees allow each node to have an large-
scale approximation of the mass distribution in the other domains,
which is useful for many purposes. We note that the pruned trees in
our implementation are not locally essential trees; i.e. they are not
necessarily deep enough to allow other processor to compute the
gravitational force resulting from the domain.

Some steps of the algorithms in GANDALF (e.g. the density calcu-
lation, the gradient estimation in the meshless and the dust forces
calculation) need information about the neighbours from other do-
mains. This is accomplished by creating ‘ghost’ particles on each
local domain. Each node uses the pruned tree to establish which of
its particles might be ghost particles on other nodes. When using
periodic boundaries, we also create MPI ghosts of periodic ghosts.
Our algorithm is generic and does not need to treat differently this
case.

In other steps, where the ghosts would be modified by the inter-
action with the local particles (e.g. in the SPH force calculations or
the MFV/MFM flux calculations), we have decided to use particle
exchange rather than ghosts. This has the advantage that it allows
us to treat hydrodynamics and gravity in the same way, and avoids
the need to send information about all the ghosts even if only few
of them are active. Operationally, when we find that a particle is too

close to the boundary or the pruned trees of the other domains are
not deep enough for gravity calculations, the particle is sent to the
neighbouring domain. The other domains compute the contribution
to the force from its local particles and then returns back to the
original domain this partial force, which can be added to the total
force.

Another significant part of the MPI code deals with transferring
particles when they move between domains. The boundaries of the
domains need to be updated regularly to maintain load balancing.
To estimate the new location of the boundary, we assign each parti-
cle a fraction of the total CPU work, which depends on its time-step
level; the work on each processor is weighted by the CPU wall-
clock time used by the MPI node to ensure a correct interprocessor
normalization. We use a bisection iteration method to find the best
location of the new boundary, using the pruned trees to compute the
new work in the domain. Once the domain boundaries have been
updated, particles that are now in different domains are transferred
via MPI communication.

5.3 Automated tests

GANDALF contains many different algorithms and types of physics;
it is thus important to make sure that any change to the code does
not invalidate pre-existing code. To achieve this goal and ensure
that no bugs are introduced in GANDALF, we have found invaluable
to have a test suite that stresses the different options supported by
GANDALF. The experience has shown us that such a test suite needs
to be automated: it is impossible to inspect manually every time the
results of many simulations. We use the PYTHON library to inspect
the results of the simulations run by the test suite, compare them to
analytical (or numerical) solutions and check that the overall error
is within a given tolerance. Finally, the last requirement is that the
test suite must be invoked automatically, or the execution will be
procrastinated. We found that the online service TRAVIS-CI,2 which
can be automatically linked to a github repository, perfectly matches
this requirement by running the test suite every time a commit is
pushed. In this way, during development we receive immediate
feedback informing us if a newly added feature has broken any of
the existing code.

5.4 PYTHON library

While most of the effort in developing GANDALF has been invested in
being able to run numerical simulations, this is certainly not enough
for making science; being able to visualize and analyse the outputs
is equally important. GANDALF contains a library written in PYTHON

dedicated to this task. An excellent software package, called SPLASH

(Price 2007) for the visualization of particle-based simulations3 al-
ready exists and it is not the purpose of the library to supersede
it. We note that GANDALF snapshot files are fully compatible with
SPLASH. While we do provide a very essential subset of the SPLASH

functionality in GANDALF (particle and rendered plots), the design
principle of the PYTHON library aims to fill a different gap. The goal
of the library is to give the user programmatic access (e.g. save in a
variable) to the data in the outputs. The library allows us to access
the raw data from the simulations (e.g. construct an array containing
the smoothing lengths of the particles) and the basic visualizations

2 https://travis-ci.org/
3 Although SPLASH is designed for SPH, it can also easily handle outputs
from the MFV schemes.

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

https://travis-ci.org/

GANDALF 1617

described before (e.g. construct a 2D array containing a rendered
plot). Additional functions permit to compare the simulation with
analytical solutions (when known) and to repeatedly apply an anal-
ysis function to each snapshot in a simulation, making easy to plot a
quantity as a function of time. The goal is to simplify writing anal-
ysis scripts. As a bonus, having some plotting capabilities built-in
the code allows us to inspect the simulation while it is running.
We found this feature very convenient, while developing the code.
In the same way, we hope that future users wanting to add some
physics to GANDALF will find it useful as well. Finally, having inter-
faced GANDALF with PYTHON makes it possible to set-up the initial
conditions directly in PYTHON, in the case the user is not familiar
with C++.

As already mentioned, following the general trend in scientific
computing, the language of choice for this library is PYTHON. This
choice is motivated by the extreme flexibility of the language, its
easiness to use, and the existence of libraries devoted to numerical
analysis and publication-ready plotting (namely MATPLOTLIB). As
GANDALF itself is written in C++, we need a ‘bridge’ to make the two
languages speak. For this purpose, we make use of the SWIG library.
With SWIG GANDALF can be compiled as a shared library object and
therefore loaded into PYTHON as any standard PYTHON module.

6 TESTS

In order to demonstrate the fidelity and limitations of the vari-
ous components of GANDALF, we have a performed a wide range
of tests of the code. Many of these test cases deliberately overlap
with those performed both with AREPO (Springel 2010) and GIZMO

(Hopkins 2015) in order to more easily compare them to GANDALF.
Since GANDALF is aimed more towards Star and Planet Formation
problems (as opposed to Galaxy and Cosmological problems), we
have substituted some Cosmology-oriented tests for others that are
important for Star and Planet Formation scenarios. In most hydro-
dynamical test cases, we perform with three different options; (i)
grad-h SPH, (ii) MFV and (iii) MFM.

6.1 Soundwave test

The goal of this test is to demonstrate that GANDALF correctly imple-
ments the hydrodynamical and time integration algorithms, preserv-
ing second-order convergence when dealing with smooth flows. We
apply a low-amplitude sinusoidal density and velocity perturbation
of the form

ρ(x) = ρ0 (1 + A sin {kx}) , (95)

v(x) = Acs sin {kx}, (96)

where A is the density perturbation amplitude, cs is the sound speed
of the unperturbed gas and k = 2π/λ is the wavenumber. To in-
vestigate the scaling of the error with resolution, we calculate the
L1-error norms of the density field, i.e.

|L1| = 1

N

N∑
i=1

|ρi − ρ(x)|, (97)

where ρ i is the particle density and ρ(x) is given by equation (95),
as a function of particle number, N. The L1-error norm is expected
to scale as ∝N−2/D, where D is the dimensionality.

The initial conditions are created following Stone et al. (2008).
A set of N particles are placed in 1D at equidistant intervals along

Figure 4. The L1-error norm versus the simulation particle number for the
soundwave test using the grad-h SPH (black crosses), MFV (blue crosses)
and MFM (red triangles) methods in 1D. For smooth fluid flows, we would
expect the errors to be dominated by the spatial and temporal integration
errors of the numerical scheme, which in all cases should be second order.
Therefore, the L1-error norm should scale as ∝N−2 in 1D (red dotted line).

the x-axis between x = 0 and 1. The sinusoidal density perturbation
is created by slightly perturbing the positions of the particles along
the x-axis to match the correct density profile (see for example
Hubber, Goodwin & Whitworth 2006, for a description of creating
a sinusoidal density field). We use values ρ0 = 1, A = 10−6, cs = 1
and λ = 1 for our perturbation.

Fig. 4 shows the L1-error norm as a function of particle number
for all simulation modes presented here. The MFV (blue crosses)
and MFM (red triangles) schemes all scale with the expected L1 ∝
N−2 error norm (red dotted line) for both low and high resolutions,
similar to the results found by Hopkins (2015). For the SPH simula-
tions, one important caveat is that the SPH density sum (equation 5)
results in a consistent fractional offset/error from the true uniform
density of less than one per cent (for the kernels employed in GAN-
DALF). Normally, this is unimportant in simulations but can affect
this test where there is a density perturbation of smaller amplitude.
Hopkins (2015) attempts to fix this problem by iterating the particle
positions; however at high resolutions this error eventually domi-
nates, breaking the second-order convergence. Since here we are
interested in showing second-order convergence in order to test our
implementation, we perform our analysis of the SPH simulations by
normalizing the average density to ρ0 (as measured from the simu-
lation itself); this removes the zeroth-order error from the L1 norm.
With this normalization applied, we can see that also the SPH re-
sults scale with the expected L1 ∝ N−2 trend, since the spatial error
is dominated by the smoothing kernel errors.

6.2 Shocktube tests

Shocktube tests are typically used to test the shock capturing ability
of a hydrodynamical code. We use two different equations of state
(isothermal and adiabatic) in what follows to test our implementa-
tion in both cases (notice that the energy equation is evolved only in
the latter case). The initial conditions are set-up in 1D by creating
a uniform line of particles in contact to represent the left and right

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

1618 D. A. Hubber, G. P. Rosotti and R. A. Booth

Figure 5. Simulations of the adiabatic Sod test using the grad-h SPH (first column), MFV (second column) and MFM (third column) using initial conditions
with equal-mass particles (black plus symbols) and equally spaced particles (blue open circles) at t = 5.0. Plotted are the particle density (first row), velocity
(second row) and internal energy (third row) for each case including the analytical solution from the Exact Riemann solver (red line).

states. The set-up is similar (albeit with slightly higher resolution)
to the same test performed by both Springel (2010) and Hopkins
(2015) to allow easy comparison with those two papers. We use the
standard Monaghan (1997) prescription for artificial viscosity with-
out limiters for SPH simulations and the Hopkins (2015) limiter for
MFV/MFM simulations. The LHS (i.e. x < 0) gas state is PL = 1,
ρL = 1 and vL = 0 and the RHS (x > 0) is PR = 0.1795, ρR = 0.25
and vR = 0 in a computational domain of size −20 < x < 20. For
the adiabatic case, the gas obeys an ideal-gas EOS, P = (γ − 1) ρ u,
where γ = 1.4. For the isothermal case, the gas obeys an isothermal
equation of state where cs = 1 so PL = 1 and PR = 0.25. We con-
sider two different sets of initial conditions; (i) the LHS contains
240 particles and the RHS contains 60 particles (i.e. equal-mass
particles); (ii) both the LHS and RHS contain 60 particles each (i.e.
equally spaced particles).

6.2.1 Adiabatic shocktube

Fig. 5 shows the results for the adiabatic shocktube for all cases at the
final simulation time t = 5. For all simulation types, the general form
of the density, velocity and pressure profiles are captured correctly,
in line with the results of Hopkins (2015), proving the correctness
of our implementation of the meshless schemes. We also recover
two features noted by Hopkins (2015); SPH in general has larger
overshoots and undershoots at the discontinuities for equal-mass

initial conditions (blue open circles) and a slightly higher diffusivity
(the jumps are not as sharp).

For the equally spaced (non-equal mass) initial conditions (black
crosses), we find a more significant dip in the density at the contact
discontinuity for SPH and MFV in line with Hopkins (2015); how-
ever, they did not show results for MFM. We find that this method
has a much stronger ‘blip’ in both the density and energy plots at the
discontinuity. We interpret this feature as a wall-heating effect; the
lack of mass advection in MFM prevents any (artificial) numerical
mixing which can smooth out this blip. SPH and MFV are instead
more diffusive due to, respectively, artificial viscosity and mass ad-
vection. A slightly more diffusive Riemann solver might allow this
blip to be diffused away.

We plot the L1-error norms versus the particle number in Fig. 6.
In a shocktube problem, errors near the shock front will dominate
the total error in quantities such as the density. In the vicinity of
the shock, the numerical schemes should reduce from second (or
higher) to first order, since the effect of artificial viscosity, or slope
limiters in Godunov codes, is to reduce the scheme to first order
to satisfy Godunov’s theorem (e.g. Toro 1997). All the methods
broadly follow the expected L1 ∝ N−1 scaling.

6.2.2 Isothermal Sod shock

We perform the same test using an isothermal EOS. The purpose
of this test is to test our implementation of the isothermal Riemann

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

GANDALF 1619

Figure 6. Plots of the L1-error norm versus the simulation particle number
for the adiabatic Sod test using the grad-h SPH and MFV methods in 1D.
For problems involving shocks, the shock error dominates the total error
reducing what are nominally second-order schemes to first order. A line
scaling as L1 ∝ N−1 is shown for comparison.

solver. In Fig. 7, all methods give acceptable results using the equal-
mass (blue open circles) initial conditions with similar features to the
adiabatic case (but with slightly larger overshoots near the tail of the
rarefaction wave). All the methods recover correctly a flat density
profile at the original contact discontinuity (although with a small
oscillation for the MFV case). For the equally spaced (non-equal
mass) case, the methods show instead more prominent numerical
artefacts near the contact discontinuity.

6.3 Sedov blast-wave test

The Sedov–Taylor blast wave is a demanding test of the accuracy of
energy conservation and of the individual time-stepping algorithm
of a particle code; Saitoh & Makino (2009) showed that without a
time-step limiter one gets catastrophic results. This is important in
many astrophysical applications where a sudden energy input may
be triggered by supernovae explosions or high-energy feedback
from accreting massive stars. In GANDALF, we provide two different

time-step limiters, following Saitoh & Makino (2009) and Springel
(2010), and we perform this test to benchmark them.

We set-up a 2D Sedov–Taylor blast-wave simulation by creating
a cubic lattice containing 642 particles in the region −1 < x < 1
and −1 < y < 1. The particles are given an equal mass to give
a uniform density of ρ = 1. We assign the total energy of the
explosion (E = 1) to the particles within a single smoothing kernel
of the origin, where each particle’s contribution is weighted by
its smoothing kernel value. For both the grad-h SPH and MFV
schemes, we perform simulations with (i) global time-steps and
(ii) 10 time-step levels using the time-step limiter. For SPH, the only
option is the Saitoh & Makino (2009) limiter, while for the meshless
we test also the Springel (2010) limiter. We also perform additional
simulations with multiple time-step levels with no limiter to check
that, confirming the results of Saitoh & Makino (2009) and Hubber
et al. (2011), in this case we fail to reproduce the analytical result,
getting a noisy density field and wrongly predicting the location
of the shock. In this case, we note that the MFV method is less
robust than SPH and it is prone to crash when using multiple time-
step levels; we cannot run the test to completion without using a
time-step limiter.

Fig. 8 plots the density profile at t = 0.06 for all cases along
with the semi-analytical solution (red line). Both the SPH and MFV
schemes follow a similar pattern with the various time-step op-
tions. For global time-steps (first column), they both reproduce the
semi-analytical solution reasonably well, including most impor-
tantly the shock position. All the methods under-resolve the peak
shock density due to the finite resolution and the use of smoothing
kernels. The MFV scheme resolves the peak slightly better than
SPH, with a peak density of just over 3 (compared to just under 3
for the SPH), although the difference is smaller than that found by
Hopkins (2015). We note that the kernel weighting at the base of
SPH and the meshless methods will always lead to some smoothing
of sharp features. Using either of the two implemented time-step
limiters, the Saitoh & Makino (2009) limiter (second column) or
the Springel (2010) limiter (3rd column), improve the simulation
results considerably and are nearly indistinguishable from the single
time-step level results, proving the correctness of our implementa-
tion. As explained in Section 2.1.5, the Saitoh & Makino (2009)
do not enforce energy conservation; for example at the end of the
simulation the fractional energy error has gone up to ∼10−4. The
Springel (2010) time-step limiter instead is conservative and en-
sures energy conservation at a level of ∼10−13, which is similar to
the result we get with global time-steps. This does not come for free
though; the test with the conservative time-step limiter is roughly

Figure 7. Density profile at t = 5.0 resulting from simulations of the isothermal Sod test using the grad-h SPH (first column), MFV (second column) and
MFM (third column) using initial conditions with equal-mass particles (black plus symbols) and equally spaced particles (blue open circles). The exact solution
is also plotted (red lines).

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

1620 D. A. Hubber, G. P. Rosotti and R. A. Booth

Figure 8. Simulations of the 2D Sedov–Taylor blast-wave test at t = 0.06 using grad-h SPH (first row) and the MFV scheme (second row). The first column
shows the results with global time-steps. For SPH, we show in the second column the case with 10 time-step levels and no limiter. We do not show this case for
the MFV, since it crashes before the end. For MFV, the second column shows instead the results with the Springel (2010) limiter. The third column shows the
results with the Saitoh & Makino (2009) time-step limiter. The semi-analytical solution is plotted for comparison (red line). Both time-step limiters perform
very well and the results are indistinguishable from the global time-step run, while using individual time-steps without limiter clearly leads to wrong results.

20 per cent more expensive in terms of computational time. Even
in this case, the time-step limiter still allows a saving of almost a
factor of 3 compared with global time-steps (∼11.4 s compared to
∼4.2 s).

6.4 Gresho–Chan vortex

The Gresho & Chan (1990) vortex test involves a steady rotating
vortex profile in which the rotation is supported by pressure. We
study this problem in 2D, 64 × 64 particles on a cubic lattice on a
periodic domain with −0.5 < x and y < 0.5. The initial pressure
profile is

P (R) =

⎧⎪⎨
⎪⎩

5 + 25
2 R2 0 ≤ R < 0.2

9 + 25
2 R2 − 20R + 4 ln 5R 0.2 ≤ R < 0.4

3 + 4 ln 2 R ≥ 0.4,

(98)

and the initial (azimuthal) velocity profile is

vφ(R) =
⎧⎨
⎩

5R 0 ≤ R < 0.2
2 − 5R 0.2 ≤ R < 0.4
0 R ≥ 0.4.

(99)

The initial density is ρ = 1 everywhere and the gas obeys an adia-
batic EOS with γ = 5/3. The initial radial velocity profile is set to
zero.

The azimuthal velocity profile at t = 3 is shown in Fig. 9 for the
both MFM and SPH methods. We do not show the results for the
MFV method, which are essentially the same as those as the MFM
method. In the SPH simulations both the Cullen & Dehnen (2010)

viscosity limiter and the Price (2008) artificial conductivity were
used. For the meshless, we show the results for the range of slope
limiters included in GANDALF. Finally, we explore both the cubic and
quintic spline kernels.

The poor performance of SPH in this test is already well
known, with the high artificial dissipation leading to a fast damp-
ing of the vortex. The Cullen & Dehnen (2010) switch alleviates
this somewhat compared to the behaviour of standard SPH (see
Rosswog 2015), but the dissipation remains large. The performance
of the MFM method is very sensitive to choice of the slope limiter
(note that this was reported by Hopkins 2015, but they did not show
the differences in their figures), with the most diffusive limiters (i.e.
the first-order Godunov scheme, or Heß & Springel 2010) show-
ing the same poor performance as SPH. The least diffusive limiters
(i.e. Gaburov & Nitadori 2011 and Springel 2010) show essentially
no dissipation, although we do see some broadening of the vortex
peak. The Hopkins (2015) limiter falls between the two extremes,
showing a modest level of dissipation.

In addition to running the Gresho & Chan (1990) test with ‘stan-
dard’ cubic spline kernel, we have also run the test using the quintic
spline kernel for both the SPH and MFM schemes. This highlights
the importance of accurate volume and gradient estimates in the
presence of strong shear, which acts to disrupt the ordered particle
positions, as shown by Rosswog (2015). In the case of SPH, the
dissipation is reduced considerably, to a level that is only slightly
greater than the MFM with the Hopkins (2015) limiter.

This test demonstrates that using the quintic spline kernel also
significantly improves the performance of the MFM methods. The
main effect is a reduced level of noise, which consequently results

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

GANDALF 1621

Figure 9. The Gresho vortex test computed with SPH and the MFM schemes, using both the cubic and quintic spline kernels. For the MFM, we also show a
range of different slope limiters. For the SPH simulation, the Cullen & Dehnen (2010) switch was used with Price (2008) artificial conductivity. Points and
error bars show the mean and standard deviation of particles within each radial bin.

in the slope limiters being triggered less frequently. In practice, this
does not much affect the least diffusive methods, where the slope
limiters are already triggering very rarely. However, in the case of
the Hopkins (2015) limiter, the reduced noise does reduce the level
of dissipation. Finally, for the most diffusive cases, the reduced
noise does not reduce the triggering of the slope limiter, and thus
the predominant effect is one of lower effective resolution (due to
the large smoothing volume).

6.5 Gravity tree accuracy

In this test, we set-up a random distribution of particles in a uni-
form spherical volume of radius 1. We compute the gravitational
acceleration on each particle using both the tree and direct sum; the
comparison between the two informs us on the accuracy of tree and
how it varies with the parameters of the tree. We compute the total
net error done in the gravitational acceleration as

|δa| =
(

1

N

N∑
i=1

{ |aTREE
i − aDIR

i |2
|aDIR

i |2
})1/2

, (100)

where aTREE
i and aDIR

i are the accelerations computed via the tree
and direct sum, respectively. For this tests, we have employed a
resolution of 16 k particles; the number of particles in each leaf cell
has been held fixed to 6.

In Fig. 10, we show the mean gravitational acceleration error
using different tree opening criteria and different multipole approx-
imations. As expected the errors become smaller in all cases when
the tree is required to open more cells. In addition, using higher
multipole approximations also improves the accuracy of the tree
as expected; we see a clear trend when going from the monopole
methods to the cell quadrupole and then to the full quadrupole.

Fig. 11 shows the CPU time to compute the gravitational forces
as a function of the accuracy. In our implementation, the quadrupole
method calculates the force to a given accuracy with the least amount
of CPU time and is therefore the most optimal choice of multipole
expansion. The quadrupole method results in a given accuracy by
opening less cells during the tree walk, but performing more work
per cell in computing the extra quadrupole terms. Whether this is
more efficient than opening more cells only using the monopole de-
pends largely on the details of the implementation, and for GANDALF,

the tree is faster doing more iterations over distant cells, rather than
opening more cells overall. One reason for this behaviour might be
that we make local copies of the quadrupole moments of the distant
cells, and hence iterating over them is relatively fast since they are
already held in the CPU cache. In this problem, there is very little
difference between the different opening criteria, as they all reach
a given accuracy in roughly the same time. However, this might
change with different density fields.

6.6 Jeans instability test

The Jeans instability test (Hubber et al. 2006) is one of the few
problems with periodic gravity with known solutions and can be
used to validate the Ewald periodic gravity component of the code.
This test sets up a simple sinusoidal density perturbation in an
otherwise uniform medium and then monitors the evolution of the
density and the velocity field compared to that predicted by the
simple Jeans theory (e.g. Binney & Tremaine 2008).

The initial conditions are set-up following Hubber et al. (2006).
The density field is set-up in a similar fashion to the 1D sound-
wave test (equation 95), where the particles positions are adjusted
to create the required density field (as opposed to altering the par-
ticle’s masses). The initial velocity for all particles is zero. These
initial conditions lead to solutions which are standing waves rather
than travelling waves as in the classical Jeans solution. The time-
dependent solution is given in Hubber et al. (2006). For stable (λ
� λJ) wavelengths, the perturbations oscillate as sound waves. The
oscillation period is

TOSC =
(

π

G ρ0

)1/2
λ(

λ2
J
− λ2

)1/2 . (101)

For unstable (λ
 λJ) wavelengths, the perturbation growth time-
scale (defined as the time for the perturbation to grow from an
amplitude of A to A cosh {1} ∼ 1.56A is

TCOL =
(

1

4 π G ρ0

)1/2
λ(

λ2 − λ2
J

)1/2 . (102)

Rather than fixing the Jeans length and alter the perturbation
wavelength, we fix the perturbation wavelength (so the IC set-up is

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

1622 D. A. Hubber, G. P. Rosotti and R. A. Booth

Figure 10. The mean gravitational acceleration error (using equation 100), while computing the initial forces for particles in a uniform density sphere using
the KD tree using (a) the geometric opening-angle criterion as a function of the maximum opening angle, θMAX , and (b) the GADGET-2 (Springel 2005) and (c)
eigenvalue-MAC (Hubber et al. 2011) as a function of the error tolerance criterion, αMAC , while using the monopole (red solid line), cell-monopole (blue dotted
line), quadrupole (black long dashed line) and cell-quadrupole (green dot–dashed line) multipole approximations.

Figure 11. The CPU time (relative to the brute-force O(N2) computation) to compute the gravitational forces via the KD tree compared to the mean
gravitational acceleration error (using equation 100), while computing the initial forces for particles in a uniform density sphere using (a) the geometric
opening-angle criterion (b) the GADGET-2 (Springel 2005) MAC and (c) the eigenvalue-MAC (Hubber et al. 2011). Results are plotted for tree-cell expansions
using the monopole (red solid line), cell monopole (blue dotted line), quadrupole (black long dashed line) and cell quadrupole (green dot–dashed line).

always the same) and instead alter the Jeans length via changing the
sound speed of the gas. We perform the simulations only for MFM.

We find that this problem is a stringent test of the tree opening
criterion, since the contributions to the gravitational accelerations
largely cancel out and sum up to exactly zero for no perturbation. We
plot in Fig. 12(a), the gravitational acceleration computed with dif-
ferent opening criteria. While the GADGET MAC and the eigenvalue
MAC perform quite well in comparison with the analytical solution,
the geometric MAC criterion produces a very inaccurate and noisy
acceleration. This is not surprising since the criterion does not try
to enforce a given error on the acceleration as instead the other two
do, which leads to more cells being opened if the acceleration is
small. In Fig. 12(b), we plot the oscillation and collapse time-scales
for various ratios of the perturbation to Jeans wavelength, λ/λJ . We
can see that both evolutionary modes of the perturbation (oscillation
and collapse) are correctly realized, i.e. oscillation only for λ < λJ

and collapse only for λ > λJ , similar to the results of Hubber et al.
(2006) for so-called ‘Vanilla’ SPH. As in the previous case, we see
that the geometric MAC has a worse agreement with the analytic
solution. For the other two criteria, the oscillation period and the
collapse time-scale are extremely well matched by the simulations
to the theory although all simulations to some degree underestimate
the oscillation time-scale and overestimate the collapse time-scale
due to smoothing and resolution effects.

6.7 Time integration accuracy

In this section, we investigate how well the different N-body time
integration schemes available in GANDALF conserve energy, which
we take as a metric of global accuracy. These tests are in an indi-
rect way a test also of the hydrodynamics schemes, since they all
employ a variant of the Leapfrog integrator. We will highlight in

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

GANDALF 1623

Figure 12. (a) The x component of the gravitational acceleration computed
at t = 0 for the sinusoidal density perturbation used for the Jeans test using
periodic corrections with the KD tree using (i) the geometric MAC (blue
dots), (ii) the GADGET MAC (red open circles) and (iii) eigenvalue MAC
(black crosses). For reference, we plot also the analytical solution. (b) The
characteristic time-scales for the evolution of sinusoidal perturbations in
the Jeans instability test. For stable wavelengths (i.e. λ/λJEANS < 1), the
sinusoidal perturbation oscillates with a period given by equation (101).
For unstable wavelengths (i.e. λ/λJEANS > 1), the perturbations grow with a
time-scale given by equation (102). The analytical solutions (equations 101
and 102) are plotted in red with the blue-dashed line marking the asymptote
where λ = λJEANS (and where the oscillation/growth time-scales tend to
infinity). Oscillating simulations (open circles) and collapsing simulations
are plotted using the (i) geometric MAC (blue), (ii) GADGET MAC (red) and
(iii) eigenvalue MAC (black) criteria for walking the KD tree.

particular how in N-body dynamics integrators of order higher than
the Leapfrog are necessary to guarantee good energy conservation.

6.7.1 Binary orbits

A binary star with two masses in a bound orbit is the simplest known
N-body test problem with an analytical solution and is useful in
demonstrating the fidelity of N-body integration schemes. We have
simulated a mildly eccentric (e = 0.1) binary orbit for 40 orbits
to highlight the differences in the various schemes. In Fig. 13(a),
we plot the energy error as a function of time for three integration
schemes, the Leapfrog KDK (red dotted line), the standard fourth-

Figure 13. The total cumulative fractional energy error for N-body simu-
lations integrating (a) the orbit of an equal mass binary system with a low
eccentricity (e = 0.1), (b) the evolution of a Plummer sphere containing
N = 200 stars with global time-steps, and (c) the Plummer sphere using
block time-steps with five time-step levels. For all cases, we perform the
integrations using the Leapfrog KDK (red dotted line), the standard fourth-
order Hermite (solid black line) and time-symmetric fourth-order Hermite
(dashed blue line) schemes.

order Hermite (solid black line) and the time-symmetric fourth-
order Hermite (dashed blue line). There are two trends to highlight;
an oscillation in the energy error (with the same period as the binary
orbit) and a long-term error growth. The two symplectic schemes
are characterized by strong oscillations in the energy error which
span 3–4 orders of magnitude, however they do not show a long-
term growth in the error. This is expected since these schemes
are time reversible. In contrast, the standard fourth-order Hermite
scheme shows a much smaller error oscillation, but also a slow
long-term increase in the energy error. Initially, the energy error is
only slightly higher than the time-symmetric Hermite scheme, but
it slowly increases towards the regime occupied by the Leapfrog
scheme (cf. Binney & Tremaine 2008, fig. 3.21).

6.7.2 Plummer sphere

A Plummer sphere is a popular and simple stellar cluster profile used
often in basic N-body cluster simulations and has been modelled
extensively in the literature (e.g. Aarseth, Henon & Wielen 1974;
Aarseth 2003; Binney & Tremaine 2008). The mass density profile
for a Plummer sphere is

ρ(r) = 3 M

4 π a3

(
1 + r2

a2

)−5/2

, (103)

where M is the total mass and a is the Plummer radius. The 1D
velocity dispersion of the stars as a function of radius, σ (r), is

σ 2(r) = G M

6 a

(
1 + r2

a2

)−1/2

. (104)

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

1624 D. A. Hubber, G. P. Rosotti and R. A. Booth

A detailed explanation of how to generate initial conditions for
a Plummer model with stars is given by Aarseth et al. (1974).
When including gas, we set-up the Plummer spheres similar to that
outlined in Hubber et al. (2013a). The positions of the particles are
selected with the same Monte Carlo algorithm, but the gas is given
a sound speed equal to the local velocity dispersion. We perform
a simulation of a Plummer sphere containing 200 equal-mass stars
with total (dimensionless) mass M = 1 and Plummer radius R = 1.
We truncate the Plummer sphere at a radius of RMAX = 10 R. The
Plummer sphere is simulated for 40 crossing times.

The energy errors (Fig. 13b) shows markedly different traits to
the simple binary orbit. There is no clear oscillatory error although
there are some trends for long-term error growth. The Leapfrog
scheme (red dotted line) is the most stable scheme in terms of
energy growth, although it also has the largest average energy error:
about 2–3 orders of magnitude larger than the other schemes. The
Hermite scheme (black line) has a clear long-term growth over the
full course of the simulation. The time-symmetric Hermite also
has long-term error growth, although about an order of magnitude
less than the non-symplectic version. The large energy error with
the Leapfrog shows why it is important to use higher order, time
reversible integrators for the N-body dynamics, in contrast to what
is done by most contemporary SPH codes.

6.7.3 Plummer sphere with block time-steps

We simulate the same Plummer sphere as Section 6.7.2 using block
time-steps (five time-step levels). The total global errors for all
schemes (Fig. 13c) are much higher than for the global time-steps
simulation. This shows how multiple time-step levels break energy
conservation: force calculations are no longer symmetric leading to
momentum non-conservation and subsequent energy errors. Over-
all, the Leapfrog scheme has an energy error starting near 10−5

growing quickly to 10−4 and finally almost 10−2 by the end of the
simulation. The Hermite schemes both tend to have on average a
significantly smaller error, of order 10−4.

6.8 Hybrid SPH/N-body simulations

Following Hubber et al. (2013a), we perform hybrid simulations
containing both stars and gas with Plummer profiles. The gas is
initially set so the local sound speed matches the local velocity dis-
persion; the initial internal energy is thus u(r) = σ 2(r)/(γ − 1) and
subsequently evolves according to an adiabatic EOS. Differently
from Hubber et al. (2013a), as explained in Section 3.2 in GANDALF,
we take a different symmetrization of particle–particle interactions.
In this section, we want to show that we still recover the same
behaviour in the evolution of a system comprised of gas and stars.

Fig. 14 shows the evolution of the 10 per cent, 50 per cent and
90 per cent Lagrangian radii for both the stellar and gaseous com-
ponents separately as a function of time. We find the same qualitative
evolution as in Hubber et al. (2013a): the stellar components de-
couple from each other and evolve in separate (and opposite) ways.
The stellar Lagrangian radii all contract, most strongly close to the
centre. The gaseous Lagrangian radii on the other hand expands at
all radii, leading to a general expansion. The reason for this dif-
ference is whilst there is still energy exchange in interactions, the
energy gained by gas from encounters with stars is converted into
heat via shocks leading to a one-way expansion of the gas fed by
energy from the stars. After beginning with identical profiles, the
two components of several relaxation times eventually decouple.

Figure 14. Evolution of the 10 per cent, 50 per cent and 90 per cent
Lagrangian radii in a Plummer sphere containing (a) N = 500 equal mass
stars and (b) N = 500 equal mass stars and 5000 SPH gas particles.

Figure 15. Evolution specific kinetic energy in the DUSTYBOX test using
SPH (circles) and MFM (crosses), with feedback included. The evolution is
shown for stopping times, ts, of 0.01, 0.1, 1, 10 and 100.

6.9 Dust tests

The two-fluid dust methods included in GANDALF are essentially
identical to the methods presented in Booth et al. (2015) and Lorén-
Aguilar & Bate (2015). For this reason, we refer the reader to those
papers and references therein for details on the performance of the
method. Here, we include a few simple tests to verify the method.

6.9.1 DUSTYBOX

This test consists of two uniform gas and dust fluids which are set-up
to initially have a velocity difference. We solve this problem in a 3D
periodic box with size 1 × 0.5 × 0.5 using 32 × 16 × 16 particles
arranged on a cubic lattice. We set the dust density, gas density, and
sound speed to 1, using a fixed stopping time and taking the initial
gas velocity to be at rest, while the dust is given a velocity of 1. In
Fig. 15, we show the evolution of the kinetic energy for different
stopping times computed with the full-scheme including feedback.
Both methods produce accurate solutions for all stopping times. We
ran this test using an adiabatic EOS to track the conservation of total

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

GANDALF 1625

Figure 16. Results of the DUSTYWAVE test at t = 3.0. Lines show the analytical solution, while points show the particle values. Gas particles are shown by
circles and the dust particles are shown by crosses.

energy: in the MFM method, the energy is conserved to machine
precision, while SPH conserves energy up to time-integration errors
(∼10−9).

6.9.2 DUSTYWAVE

This is the DUSTYWAVE test of Laibe & Price (2011), which involves
the evolution of two linear sound waves in a dusty fluid. We solve
this problem in 1D using 32 particles per phase and dust-to-gas ratio
of 0.1. The gas and dust are both given the same initial velocity,
a soundwave with initial velocity of 10−4. The gas is isothermal
with sound speed, cs = 1, and the simulations are evolved for three
sound crossing times. The results for models in which the feedback
is included are shown in Fig. 16 for both SPH and MFM, with
different values of the drag coefficient, K, as defined by Laibe &
Price (2011).

Both methods produce similar results even at this low resolu-
tion, but the MFM method reproduces the combined sound speed
more closely, which is partly due to the smaller smoothing length
(ηMFV = 1, ηSPH = 1.2). Both methods exhibit the well known over
dissipation of the waves when the stopping time is very small (csts

� h, Laibe & Price 2012; Lorén-Aguilar & Bate 2015). Here, the
MFM method shows marginally lower dissipation, which is again
mostly due to higher effective resolution. When run with feedback
turned off, both the SPH and MFM implementations show essen-
tially no dissipation, which is expected as the gas velocity is not
damped (see e.g. Booth et al. 2015).

6.9.3 Shocks in 2D

Here, we present the 2D shock problem including dust as set-up in
Booth et al. (2015), except a dust-to-gas ratio of 0.1 is used. We

show this test in both SPH and the MFM method using the test
particle dust implementation, and the full two-fluid scheme with
feedback in the MFM scheme.

This test is sensitive to level of noise in the gas velocity distri-
bution, which can hide the underlying gas vorticity field and intro-
duce noise into the density fields of both the gas and dust (Sijacki
et al. 2012; Booth et al. 2015). Given the much better performance
of the quintic spline kernel in the Gresho & Chan (1990) test, we
also employ it here. In SPH, the Cullen & Dehnen (2010) switch
and Price (2008) artificial conduction are used, while in the MFM,
the Hopkins (2015) limiter is employed with the HLLC Riemann
solver.

Fig. 17 shows the resulting density and vorticity distributions. The
overall features of both SPH and the MFM agree well here, largely
due to the improvement of the SPH results that comes from using
the quintic kernel. However, the SPH density and vorticity fields
are considerably more smoothed than the MFM results. SPH still
shows a small level of noise in the dust density. This density noise
is nearly absent in the MFM results, which show close agreement
with grid-based methods (e.g. Sijacki et al. 2012; Booth et al. 2015).

The MFM simulation with feedback included shows very similar
results, demonstrating that the dust particles are not introducing
noise into the gas dynamics in this problem. The only significant
difference between the test particle and full two-fluid results is that
with feedback switched on the peak vorticity is reduced, which is
likely due to the physical damping by the feedback.

6.10 Spreading ring

The spreading ring test is a standard test (Flebbe et al. 1994;
Artymowicz & Lubow 1994; Murray 1996; Kley 1999) in accretion
disc theory to measure the shearing viscosity (either numerical or

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

1626 D. A. Hubber, G. P. Rosotti and R. A. Booth

Figure 17. The 2D shock-tube test including dust for both the SPH and the MFM schemes. The top two rows show results computed with the test particle
dust implementation, whereas the bottom row shows the results with feedback included.

physical) of a numerical method. The MFM scheme should have a
much lower numerical viscosity than SPH and we wish to quantify
this effect. We follow Murray (1996) to initialize a ring of particles
with a Gaussian density profile � ∝ exp (−(r − rcentre)/w)), where
w is the width of the ring and rcentre its position; the two parameters
take the value of 0.033 and 1, respectively. We place the particles
in a number of rings (equally spaced by a distance �r), with a con-
stant interparticle separation in the azimuthal coordinate �φ; the
number of rings is set such that r�φ � �r. Therefore, to generate
the desired density profile, we employ particles with different mass.
To keep the test as clean as possible, we run it in two dimensions.

Previous works (e.g. Murray 1996) have switched off pressure
forces to test only the effect of the artificial viscosity term in SPH.
This is not possible to do with the meshless schemes, since they
do not employ artificial viscosity. Therefore, we run the test with
pressure forces. The downside is that pressure forces will contribute
to the spreading of the ring. To counteract this problem, we modify
the rotation curve of the particles so that the pressure forces are
in equilibrium with the gravitational and centrifugal acceleration,
preventing spreading due to pressure forces. In addition, we ex-

plore different temperatures of the disc (we use a isothermal EOS),
sampling both a cold disc (cs = 10−3), where the pressure is too
little to cause spreading and a hot one (cs = 0.05), where it is po-
tentially a significant contribution. Finally, differently from Murray
(1996), the particles initially have a vanishing radial velocity, since
we do not know a priori the magnitude of viscosity in the meshless
schemes.

Fig. 18 shows the evolution of the density. The calculations have
employed a resolution of 250 000 particles. To measure the value of
the kinematic viscosity ν, we perform a least-squares fit. To define
the squared residuals, we compare the average density in each ring
of particles after a dimensionless time of 10 to the analytical solution
(see e.g. equation 30 in Murray 1996). As common in differential
equation theory, the analytical solution is a convolution between
the kernel of the equation and the initial conditions; to the best
of our knowledge, the convolution cannot be expressed in closed
form and therefore we compute the integral numerically. Table 1
shows the results of the fit. The difference between SPH and the
meshless is already clear by eye. The fact that the meshless has
very little viscosity in the cold case is perhaps not surprising; since

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

GANDALF 1627

Figure 18. Evolution of the density of a spreading ring for the cases ex-
plained in the text at time t = 10. The initial conditions are plotted with the
red crosses and they are nearly indistinguishable from the MFM cold case.
We show the best fit with the numerical solution with a solid line and the
results from the simulation (averaged for each ring of particles) with dots.

Table 1. Values of the kinematical viscos-
ity ν derived from fitting the evolution of the
spreading ring after t = 10. Notice that the
values for the meshless should be considered
as upper limits rather than measurements.

Cold Hot

SPH 2 × 10− 6 1.5 × 10− 5

MFM 7.7 × 10− 9 8.4 × 10− 8

the pressure forces are weak, the code in this case is effectively
an N-body integrator. We can see that instead even in this case
the artificial viscosity in SPH (here used without any switch), due
to the shear, has a significant effect on the evolution of the ring,
leading to a relatively high value of ν. In this case, because of
the low sound speed, the quadratic β term dominates the artificial
viscosity; setting β = 0 yields a ν of 6 × 10−7, a factor of 3
smaller but still significantly higher than the meshless. Given that
β dominates, an artificial viscosity switch would not change the
resulting shear viscosity as the switches only operate on α. The
value obtained by our implementation is consistent with the shear
viscosity expected from SPH in an accretion disc. According to
Artymowicz & Lubow (1994), in 2D the shear viscosity expected
is ν = 1

8 αSPHcsh. Substituting the value of αSPH = 1, cs = 10−3 and
h = 2.7 × 10−3, we obtain a value of 3.3 × 10−7, which is within a
factor of 2 from what we measure.

Additionally, we have used this test to verify the physical viscos-
ity implementation in the meshless. Including a fixed shear viscosity,
ν = 2 × 10−6, we find that the spreading is consistent to within 5 per
cent. This confirms that physical viscosity implementation is work-
ing as intended, and that the spreading ring test is good measure of
the effective viscosity.

In the hot case, the meshless still performs very well; even in
this case the ring remains almost indistinguishable from the initial
one.4 Notice that the value we report for the meshless is effectively
an upper limit rather than a measurement; our numerical solution

4 We have checked in this case that removing the contribution of the pressure
forces to the rotation curve leads to a much bigger spread of the ring. Note

deteriorates for lower value of ν. For SPH in this case, we get a value
of 1.5 × 10−5. As in the previous case, this compares well to the
value expected from the equations in Artymowicz & Lubow (1994)
of 1.7 × 10−5. In this case, the dominant term in the SPH artificial
viscosity is the linear α term; setting β = 0 leads only to a 10 per cent
reduction of ν. For this reason, it is worth investigating whether a
modern viscosity switch can help reducing the numerical viscosity.
We have run this test with both the Morris & Monaghan (1997)
switch and the Cullen & Dehnen (2010) one. We find that for this
particular test, they perform very similarly, with a small advantage
for the latter; they yield a kinematic viscosity of 4 × 10−6 and of
3 × 10−6, respectively. This is an improvement of a factor of 4–5,
clearly visible in the figure (we plot only the Cullen & Dehnen 2010
case for simplicity). We note that this comes though at the cost of
increased noise in the particle distribution; when running with either
of the two switches, the particles very quickly lose the initial ring
structure and rearrange in a more continuous (but noisier) structure.
Even when using a viscosity switch in SPH, we conclude that the
meshless has a significantly lower numerical viscosity than SPH.

6.11 Disc–planet interaction

Having established in the previous section in an idealized test that
the meshless scheme has a lower numerical viscosity than SPH, we
now wish to assess how the scheme performs in a more realistic
simulation. For this goal, we have decided to run a simulation of a
proto-planetary disc with a planet embedded; the set-up is loosely
based on de Val-Borro et al. (2006). We have run the simulation
both with SPH and the meshless in 3D employing a resolution of
500k particles. Random placement of particles is used to create
the initial conditions. The initial surface density scales with radius
as � ∝ r−1, extending from a radius of 0.4 to a radius of 2.5,
while the sound speed scales as cs ∝ r−0.5 and the aspect ratio of
the disc at the inner boundary is 0.05. We insert a planet with a
mass ratio of 10−3 with respect to the star (i.e. a Jupiter mass for
a solar mass star) in a circular orbit with a semi-major axis of 1
and evolve the simulation for 40 orbits. While in SPH, we consider
only artificial viscosity, in the meshless we add a physical viscosity
with ν = 2 × 10−5. Without physical viscosity, a vortex develops
outside the orbit of the planet, due to the Rossby Wave Instability
arising at the edge of the planetary gap (e.g. Lovelace et al. 1999; de
Val-Borro et al. 2007). In SPH instead the much higher numerical
viscosity suppresses vortex formation.

Fig. 19 shows the surface density of the disc after 40 orbits. It
can be seen how in SPH the disc inside the orbit of the planet has a
significantly lower mass compared to the meshless case, since the
numerical viscosity caused a much higher accretion rate on to the
star. Quantitatively, the calculation run with SPH is left with 300 k
particles at this time, while the one with the MFV still has 380 k
particles. The depletion of gas close to the star partially masks the
opening of a gap by the planet in the SPH case, which is instead
clearly visible in the meshless. In addition, due to the slightly higher
effective resolution of the meshless (observed already in the shock
tubes, see Section 6.2), the spiral arms created by the planet are
much better defined in the meshless case.

In Fig. 20, we show the evolution of a disc containing a planet of a
lower mass (10−4), a set-up similar to Dipierro et al. (2016). We now
use a shallower surface density � ∝ r−0.1 and a sound-speed scaling

that in the hot case, the centre of the ring moves slightly further out, but we
ignore this effect in the analysis, since it affects both SPH and the meshless.

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

1628 D. A. Hubber, G. P. Rosotti and R. A. Booth

Figure 19. A proto-planetary disc with a Jupiter mass planet embedded after 40 orbits. Left-hand panel: SPH. Right-hand panel: MFM method.

Figure 20. A proto-planetary disc with a planet with a mass of 10−4 with respect to the star. We show results for the gas and the dust distributions. The planet
opens up a gap in the dust but not in the gas.

as cs ∝ r−0.35, with an aspect ratio at the inner boundary of 0.075.
To reduce the numerical viscosity, we set αSPH = 0.1. We run the
simulation both with gas and dust to test our dust implementation.
We use 300k particles for the dust, which evolves as test particles.
The Stokes number of the dust is 10. We confirm the results of
Dipierro et al. (2016) that such a planet open up a gap in the dust,
but not in the gas.

6.12 Boss–Bodenheimer test

The Boss–Bodenheimer test (Boss & Bodenheimer 1979) is a stan-
dard test of self-gravitating Astrophysical codes that simulates the
collapse and fragmentation of a rotating cloud. Originally this test
was performed with an isothermal EOS. However, it has also been
performed with a barotropic EOS to mimic the optically thick adi-
abatic collapse phase during Star Formation. It provides a simple
test case of combined hydrodynamics with self-gravity in Star For-
mation and subsequent sink particle formation and evolution.

The initial conditions are set-up similar to that described in Hub-
ber et al. (2011). A spherical cloud of total mass 1 M�, radius
0.01 pc is created with a density profile

ρ = ρ0 [1 + A sin (mφ)] (105)

where ρ0 = 1.44 × 10−17 g cm−3, A = 0.5 is the perturbation am-
plitude, m = 2 is the order of the azimuthal perturbation and φ

is the azimuthal angle about the z-axis. We generate a hexagonal
closed-packed array and then cut-out a uniform-density sphere con-
taining the desired number of particles. The total mass and radius
of the sphere is scaled to 1 M� and 0.01 pc, respectively. We fi-
nally alter the azimuthal positions of the particles to reproduce the
required density field. The barotropic EOS used in this test gives
the temperature as a function of density:

T (ρ) = T0

{
1 +

(
ρ

ρAD

)γ−1
}

, (106)

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

GANDALF 1629

Figure 21. Time evolution of the column density profile (low density: blue and high density: red) for the Boss–Bodenheimer test using (a) grad-h SPH (upper
row) and (b) MFM (bottom row). For both methods, the clouds collapse to for a bar-like structure with two denser condensations at either end which collapse
to form sink particles. The two sinks form an accreting binary system with an extended circumbinary disc where mass continually infalls on to the two stars
leaving a wake of gas behind each star.

where T0 = 10 K, ρAD = 10−14 g cm−3 and γ = 5/3. The gas
pressure is given by P (ρ) = kB T (ρ)ρ/(μmH) where kB is the
Boltzmann constant, mH is the mass of hydrogen and the mean-
gas-particle mass, μ = 2.35.

We simulate the evolution until a time of tend = 0.04 Myr, by
which time the cloud should fragments into two stars (or perhaps
more) and the binary should have performed several orbits. The
simulations were performed with both SPH and MFM using 32 000
particles.

6.12.1 Time evolution

In Fig. 21, we show the time evolution of the Boss–Bodenheimer
test for both the SPH (top row) and MFM (bottom row) schemes.
The large-scale evolution is the same for both cases as expected with
both simulations forming a bar with two density enhancements at
either end which gravitationally collapse to form two protostars
(i.e. sink particles). The density enhancements are surrounded by
disc-like envelope.

Three noticeable differences between the two simulations are ap-
parent. (i) The evolution of the SPH simulation is slightly slower
than the MFM scheme (i.e. it seems to lag slightly behind the MFM
scheme) and takes slightly longer for the bar to reach the higher
densities where it forms two objects at each end. (ii) Once inter-
mediate densities have been reached and the two ends of the bar
have reached some state of centrifugal support, the SPH simulations
evolves towards higher densities much more quickly than the MFM
simulation. In fact, the MFM scheme can never reach the sink den-
sity if it is too large compared to the adiabatic density. The main
driver of this difference is likely to be the artificial viscosity in the
SPH simulations. The artificial viscosity can efficiently (and artifi-
cially) transport angular momentum away from the disc-like object
allowing it to collapse to higher densities quicker and hence form
sinks rapidly. As demonstrated in Section 6.10, the MFM scheme
instead has a much lower effective numerical viscosity, leading to
less artificial angular momentum transport. In this simulation, we
lower the sink density enough to allow comparable sink formation
times and to allow a meaningful comparison with other features in
the simulation. However this difference highlights that, even though

SPH does not artificially cause fragmentation of already unstable
regions, other numerical issues can lead to large differences in
simulations between SPH and less dissipative methods. This is of
particular importance when modelling discs, due to the high shear
viscosity of SPH.

Recently Deng, Mayer & Meru (2017) made comparisons be-
tween the SPH and MFM by looking at the viscosity-driven an-
gular momentum transport in rotating cores such as the Boss–
Bodenheimer test. We confirm that we obtain similar results to
Deng et al. (2017) in that SPH tends to lead to more rapid angular
momentum transport than MFM, particularly near the edge of the
cloud.

7 PE R F O R M A N C E A N D S C A L I N G

7.1 Gravity tree scaling

Gravity trees used in particle codes typically scale as O(N log N),
i.e. N particles each requiring an average ofO(log N) computations.
This is mainly because each particle must walk the tree individu-
ally, and then compute all contributions to the force from near
(i.e. smoothed) neighbours, distant (i.e. non-smoothed) neighbours
and distant cells using the centre-of-mass approximation. Gafton &
Rosswog (2011) claimed that, if we walk the tree for groups of parti-
cles rather than one at a time, we can compute the contributions from
the far cells more efficiently using a multipole expansion around the
cell centre and instead approach O(N) scaling. As we showed in
Section 6.5, we do not find a speed benefit in our implementation
using the Taylor expansion around the cell centre, implying that our
implementation has a different balance of the time spent computing
the interaction with near or far particles. Therefore, it is likely that
our tree will scale in a different way with the number of particles
compared to Gafton & Rosswog (2011).

Fig. 22 shows the performance of GANDALF using direct-sum grav-
ity and the tree. We set-up a uniform sphere of particles with differ-
ent numbers of particles and compute the time needed to compute
the gravitational acceleration. We plot this CPU time as a function
of the particle number. The O(N2) scaling of the direct-sum gravity
is evident. Instead, it can be seen that, as hypothesized, our imple-
mentation of the tree scales as O(N log N), and not as O(N). We

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

1630 D. A. Hubber, G. P. Rosotti and R. A. Booth

Figure 22. Performance and scaling for computing the gravitational accel-
eration of all particles using the KD tree in GANDALF as a function of particle
number. For comparison, we plot lines showing theO(N) claimed by Gafton
& Rosswog (2011) (red dot–dashed), O(N2) expected for direct sum (red
dotted) and O(N log N) expected for tree gravity (red dashed).

note though that the difference between the two scalings is very
small; over the almost 5 orders of magnitude spanned by the plot,
the difference in wall clock time is a linear factor of 2–3. It is in-
teresting to note also that Gafton & Rosswog (2011) comment that
their scaling is not perfectly O(N), with an extra factor very similar
in value to ours. This means that in practical terms the difference
in scaling between our implementation and the one presented by
Gafton & Rosswog (2011) is almost negligible.

7.2 OPENMP parallel scaling

GANDALF is parallelized using both OPENMP and MPI to allow the code
to be used on much larger problem sizes than are achievable on
single-core machines. Here, we investigate the strong scaling of the
OPENMP parallelization and experiment with the number of particles
at the leaf level of the tree to find the most optimal performance. As
discussed in detail by Gafton & Rosswog (2011), the performance
of the KD tree can be very sensitive to the chosen value of NLEAF , the
(maximum) number of particles contained in each leaf cell of the
tree. Small values of NLEAF result in more tree walks being required
(since there are fewer leaf cells in the tree), whereas large values of
NLEAF can result in much larger neighbour lists being generated for
each leaf cell. Gafton & Rosswog (2011) empirically determined
that the most optimal value of the average number of particles per
leaf cell for their tree implementation was N̄LEAF ∼ 12.

We use the Boss–Bodenheimer test as a benchmark to test the
parallel performance, since it is relatively simple to set-up, has
a well-known numerical solution and computes both hydrody-
namical and gravitational forces, the two most expensive com-
ponents of the code. We run this test with ∼106 particles using
NCORE = 1, 2, 4, 8, 16 and 32 parallel cores in a shared-memory
machine (parallelized with OPENMP) using various values of NLEAF

(1, 4, 8, 16 and 32) for 16 steps before terminating the simulation
and measuring the time spent in the Main Loop (i.e. ignoring any
set-up procedures). We also run with global time-steps, i.e. one
time-step level, in order to demonstrate the best-case scaling for the
various parameters. In Table 2, we show the total CPU wallclock
time, t(NCORE) for each combination of NCORE and NLEAF and the
scaling, S(NCORE) ≡ t(1)/t(NCORE).

We notice some important results from our scaling tests:

(i) For almost all values of NCORE , there is a broad minimum in
the total CPU wallclock time for the simulation, at NLEAF = 8. This
represents our most optimal value and default choice for NLEAF in
GANDALF.

(ii) The scaling of GANDALF formally increases with increasing
values of NLEAF for all values of NCORE (although we note some
fluctuations in the timing routines). Although this suggests using as
high a value of NLEAF as possible, the raw CPU times are a minimum
for NLEAF = 8 which should be the most important factor. Although
not shown in Table 2, for even larger values of NLEAF , achieving
good load balancing becomes problematic and the scaling once
again drops away.

7.3 Hybrid parallel scaling

As described in Section 5.2, GANDALF is parallelized both via OPENMP

and MPI. The left-hand panel of Fig. 23 shows the strong scaling of
GANDALF in pure OPENMP mode and in hybrid MPI–OPENMP mode.
We tested the code on the Darwin supercomputer, hosted at the
University of Cambridge, using version 12 of the Intel compiler.
All the tests have been run for the Boss–Bodenheimer test as in
Section 7.2. Compared to the previous section, we employ here a
resolution of ∼4 × 106 particles, since we test the code up to 128
processors. Up to 8 threads, the speed-up is almost ideal (7.3), and
still relatively good with 16 threads (12.7). We note that in both
cases most of the time is spent computing the forces (both hydro
forces and gravitational forces), with a very good scaling of 14.24
with 16 threads. The bottleneck to the scaling is mostly in the tree
building routine and in other serial parts of the code.

With hybrid MPI–OPENMP parallelization, we experiment using dif-
ferent numbers of OPENMP threads. In general, we find that the best
performance is achieved by using as many OPENMP threads as pos-
sible inside a given node (16 physical cores were available on the
supercomputer we used for testing), and using MPI to communicate
among the nodes. We interpret this result as a consequence of the
fact that the MPI version of the code needs to do more work: pruned
trees and ghost particles need to be created and sent to the other pro-
cessors. This extra work adds to the overhead and limits the parallel
scaling. In practice, we find that this particular test problem does
not scale well using more than 64 processors, with only minimal
improvements on 128 processors.

The real benefit of MPI however is to run simulation at higher
resolution than what would be possible otherwise. For this rea-
son, we also conduct tests of the weak scaling of GANDALF (right-
hand panel of Fig. 23). The test has been run with a resolution of
218 (∼250 k) particles per processor. When defining a parallel ef-
ficiency, we have taken into account the extra log N factor demon-
strated in Section 7.1. We use OPENMP only up to 16 cores, and
switch to hybrid MPI–OPENMP mode using more processors. Based
on the previous findings, we employ here 16 OPENMP threads, using
MPI only to communicate between the nodes. We can see that the
code exhibits very good weak scaling: even with 128 processors,
the parallel efficiency is around 70 per cent.

8 D I S C U S S I O N , FU T U R E D E V E L O P M E N T A N D
C O N C L U S I O N S

In this paper, we have presented the new hydrodynamical code
GANDALF with details and tests of all implemented algorithms. The
code contains the robust and well-tested SPH method, as well

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

GANDALF 1631

Table 2. CPU wallclock times in seconds and parallel scaling for 16 steps of the Boss–Bodenheimer test with ∼106

particles using different values of NLEAF (=1, 4, 8, 16 and 32) using 1, 2, 4, 8, 16 and 32 cores in parallel with OPENMP. For
almost all numbers of parallel cores, NLEAF = 8 gives the shortest CPU run times even though the formal parallel scaling
for higher values of NLEAF is better. We note the superlinear scaling of NLEAF = 32 with 2 cores is due to fluctuations in
CPU performance and in the timing routines.

NLEAF Serial 2 cores 4 cores 8 cores 16 cores 32 cores
time Time Scaling Time Scaling Time Scaling Time Scaling Time Scaling

1 1388.7 772.0 1.80 405.7 3.40 210.6 6.60 106 13.1 60.2 23.1
4 791.0 402.8 1.96 204.3 3.88 104.9 7.50 55.2 14.3 31.4 25.2
8 732.6 374.2 1.96 192.0 3.82 100.0 7.30 52.2 14.0 28.2 26.0
16 815.0 416.3 1.96 211.4 3.86 109.6 7.50 56.3 14.6 30.7 26.6
32 1066.1 523.4 2.04 271.2 3.93 137.6 7.75 71.2 15.0 37.7 28.2

Figure 23. Left-hand panel: strong scaling of GANDALF for 16 steps of the Boss–Bodenheimer test with 4 × 106 particles. The speed-up is relative to the serial
version of the code. When using hybrid parallelization, the different colours are for different number of OPENMP threads (as shown in the legend). In all cases,
we find that the optimal strategy is to use as many OPENMP threads as possible. Right-hand panel: weak scaling of GANDALF for the same test using 218 (∼250 k)
particles per processor. The efficiency has been normalized taking into account the log N scaling of the algorithms.

as the MFV numerical schemes presented by Gaburov & Nita-
dori (2011) and Hopkins (2015). In addition, GANDALF can handle
N-body dynamics with higher order collisional integrators than what
is commonly employed in SPH simulations and implements an en-
ergy conserving scheme for integrating the dynamics of stars and
gas. Both hydrodynamical schemes can also handle dust dynamics,
either in the test particle limit or keeping the back reaction of the
dust on to gas into account. The object-oriented design of GANDALF

makes the code flexible, easy to adapt with new physics modules
and it is relatively easy to add other particle-based schemes.

We have presented an extensive suite of tests to demonstrate the
correctness of our implementation, mostly recovering the results of
Hopkins (2015) in terms of the benefits of the MFV schemes com-
pared to SPH. In addition, we have conducted a more rigorous test
to quantify the numerical viscosity of the method. In the spreading
ring test, we have shown that the MFM scheme has a much lower
numerical viscosity than SPH and is therefore better suited for ac-
cretion disc applications, where the numerical viscosity of SPH is
typically too high to perform realistic simulations (unless a very
high resolution is used). The same conclusion is reached also look-
ing at the evolution of a proto-planetary disc containing a planet,
where the inner part of the disc in SPH is rapidly accreted on to the
star due to the high numerical viscosity.

The code is publicly available at this address under the GPLv2
license. The code is parallelized with OPENMP and MPI for running on
modern supercomputers. In addition, we provide a PYTHON library to

facilitate analysis of the results of the simulations and ease code use
and development, since the results of a simulation can be inspected
live while it is running.

We plan in the future to implement additional algorithms and
physics modules in GANDALF. Examples of developments which are
underway include algorithms for radiation transport and coupling
with existing chemistry codes (e.g. Grassi et al. 2014). We encour-
age users of the code to contact us if there are specific algorithms
they are interested in.

We hope that the numerical techniques implemented in GANDALF,
its ease of use and modularity of design will help future research
with this code.

AC K N OW L E D G E M E N T S

This research was supported by the DFG cluster of excellence ‘Ori-
gin and Structure of the Universe’ including the Munich Institute
for Astro- and Particle Physics (MIAPP), DFG Projects 841797-4,
841798-2 (DAH and GPR), the DISCSIM project, grant agree-
ment 341137 funded by the European Research Council under
ERC-2013-ADG (GPR and RAB). Some development of the code
and simulations have been carried out on the computing facil-
ities of the Computational centre for Particle and Astrophysics
(C2PAP) and on the DiRAC Data Analytic system at the Uni-
versity of Cambridge, operated by the University of Cambridge
High Performance Computing Service on behalf of the Science

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

1632 D. A. Hubber, G. P. Rosotti and R. A. Booth

and Technology Facilities Council (STFC) DiRAC HPC Facility
(www.dirac.ac.uk); the equipment was funded by BIS National
E-infrastructure capital grant (ST/K001590/1), STFC capital grants
ST/H008861/1 and ST/H00887X/1, and STFC DiRAC Operations
grant ST/K00333X/1. We would like to thank the following people
for helpful discussions or for contributing code to the public version,
including Alexander Arth (discussions on IC generation), Scott Bal-
four (ionizing radiation algorithms), Seamus Clarke (sink particle
algorithm refinements and various bug fixes), James Dale (ioniz-
ing radiation algorithms) Franta Dinnbier (periodic gravity), Stefan
Heigl (assisting implementing the MFV schemes), Oliver Lomax
(assisting implementing the KD tree), Judith Ngoumou (assisting
implementing the MFV schemes), Margarita Petkova (paralleliza-
tion and C2PAP support), Paul Rohde (stellar feedback routines),
Steffi Walch (supernova feedback routines) and Anthony Whitworth
(discussions on trees and radiation algorithms). We also thank the
anonymous referee for helpful and detailed comments which have
improved the clarity and readability of this paper.

R E F E R E N C E S

Aarseth S. J., 2003, Gravitational N-Body Simulations. Cambridge Univ.
Press, Cambridge

Aarseth S. J., Henon M., Wielen R., 1974, A&A, 37, 183
Artymowicz P., Lubow S. H., 1994, ApJ, 421, 651
Barnes J., Hut P., 1986, Nature, 324, 446
Bate M. R., Bonnell I. A., Price N. M., 1995, MNRAS, 277, 362
Batten P., Clarke N., Lambert C., Causon D. M., 1996, SIAM J. Sci. Comput.,

18, 1553
Binney J., Tremaine S., 2008, Galactic Dynamics: Second Edition. Princeton

University Press, Princeton, NJ
Booth R. A., Sijacki D., Clarke C. J., 2015, MNRAS, 452, 3932
Boss A. P., Bodenheimer P., 1979, ApJ, 234, 289
Cullen L., Dehnen W., 2010, MNRAS, 408, 669
de Val-Borro M. et al., 2006, MNRAS, 370, 529
de Val-Borro M., Artymowicz P., D’Angelo G., Peplinski A., 2007, A&A,

471, 1043
Deng H., Mayer L., Meru F., 2017, ApJ, 847, 43
Dipierro G., Laibe G., Price D. J., Lodato G., 2016, MNRAS, 459, L1
Flebbe O., Muenzel S., Herold H., Riffert H., Ruder H., 1994, ApJ, 431, 754
Gaburov E., Nitadori K., 2011, MNRAS, 414, 129
Gafton E., Rosswog S., 2011, MNRAS, 418, 770
Gamma E., Helm R., Johnson R., Vlissides J., 1995, Addison-Wesley Pro-

fessional Computing Series. Addison-Wesley, Reading, MA
Gingold R. A., Monaghan J. J., 1977, MNRAS, 181, 375
Grassi T., Bovino S., Schleicher D. R. G., Prieto J., Seifried D., Simoncini

E., Gianturco F. A., 2014, MNRAS, 439, 2386
Gresho P. M., Chan S. T., 1990, Int. J. Numer. Methods Fluids, 11, 621
Hernquist L., Bouchet F. R., Suto Y., 1991, ApJS, 75, 231
Heß S., Springel V., 2010, MNRAS, 406, 2289
Hopkins P. F., 2013, MNRAS, 428, 2840
Hopkins P. F., 2015, MNRAS, 450, 53
Hopkins P. F., 2017, MNRAS, 466, 3387
Hubber D. A., Goodwin S. P., Whitworth A. P., 2006, A&A, 450, 881
Hubber D. A., Batty C. P., McLeod A., Whitworth A. P., 2011, A&A, 529,

A27

Hubber D. A., Allison R. J., Smith R., Goodwin S. P., 2013a, MNRAS, 430,
1599

Hubber D., Rosotti G., 2016, Astrophysics Source Code Library, record
ascl:1602.015

Hubber D. A., Walch S., Whitworth A. P., 2013b, MNRAS, 430, 3261
Hut P., Makino J., McMillan S., 1995, ApJ, 443, L93
Inutsuka S.-I., 2002, J. Comput. Phys., 179, 238
Kley W., 1999, MNRAS, 303, 696
Laibe G., Price D. J., 2011, MNRAS, 418, 1491
Laibe G., Price D. J., 2012, MNRAS, 420, 2345
Lanson N., Vila J.-P., 2008, SIAM J. Numer. Anal., 46, 1912
Lorén-Aguilar P., Bate M. R., 2015, MNRAS, 454, 4114
Lovelace R. V. E., Li H., Colgate S. A., Nelson A. F., 1999, ApJ, 513, 805
Lucy L. B., 1977, AJ, 82, 1013
Makino J., Aarseth S. J., 1992, PASJ, 44, 141
Mignone A., 2007, J. Comput. Phys., 225, 1427
Monaghan J. J., 1992, ARA&A, 30, 543
Monaghan J. J., 1997, J. Comput. Phys., 136, 298
Monaghan J. J., Lattanzio J. C., 1985, A&A, 149, 135
Morris J. P., 1996, PhD thesis, Monash University
Morris J. P., Monaghan J. J., 1997, J. Comput. Phys., 136, 41
Muñoz D. J., Springel V., Marcus R., Vogelsberger M., Hernquist L., 2013,

MNRAS, 428, 254
Murray J. R., 1996, MNRAS, 279, 402
Portegies Zwart S. F., McMillan S. L. W., Hut P., Makino J., 2001, MNRAS,

321, 199
Price D. J., 2007, Publ. Astron. Soc. Aust., 24, 159
Price D. J., 2008, J. Comput. Phys., 227, 10040
Price D. J., 2012, J. Comput. Phys., 231, 759
Price D. J., Laibe G., 2015, MNRAS, 451, 813
Price D. J., Monaghan J. J., 2007, MNRAS, 374, 1347
Price D. J. et al., 2017, PASA, preprint (arXiv:1702.03930)
Rosswog S., 2015, MNRAS, 448, 3628
Saitoh T. R., Makino J., 2009, ApJ, 697, L99
Saitoh T. R., Makino J., 2013, ApJ, 768, 44
Sijacki D., Vogelsberger M., Kereš D., Springel V., Hernquist L., 2012,

MNRAS, 424, 2999
Springel V., 2005, MNRAS, 364, 1105
Springel V., 2010, MNRAS, 401, 791
Springel V., Hernquist L., 2002, MNRAS, 333, 649
Stone J. M., Gardiner T. A., Teuben P., Hawley J. F., Simon J. B., 2008,

ApJS, 178, 137
Toro E. F., 1997, Riemann Solvers and Numerical Methods for Fluid Dy-

namics: A Practical Introduction. Springer-Verlag, Berlin, New York
Toro E. F., Spruce M., Speares W., 1994, Shock Waves, 4, 25
van Leer B., 1979, J. Comput. Phys., 32, 101
Wadsley J. W., Stadel J., Quinn T., 2004, New Astron., 9, 137
Wadsley J. W., Veeravalli G., Couchman H. M. P., 2008, MNRAS, 387,

427
Wetzstein M., Nelson A. F., Naab T., Burkert A., 2009, ApJS, 184, 298
Whitworth A. P., Bhattal A. S., Turner J. A., Watkins S. J., 1995, A&A, 301,

929
Wünsch R., Walch S., Whitworth A. P., Dinnbier F., 2017, MNRAS, preprint

(arXiv:1708.06142)

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 473, 1603–1632 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/473/2/1603/4161631 by guest on 21 O
ctober 2022

http://www.dirac.ac.uk
http://arxiv.org/abs/1702.03930
http://arxiv.org/abs/1708.06142

