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1  |  INTRODUC TION

DNA metabarcoding studies are typically based on a succession of 
experimental steps governed by important methodological choices 
(Zinger et al., 2019). These include (i) the definition of sampling 
design and the selection of sampling sites (Dickie et al., 2018), (ii) 
the approach used for the preservation of the starting material 

(Guerrieri et al., 2021; Tatangelo et al., 2014), (iii) the protocol used 
for DNA extraction (Capo et al., 2021; Eichmiller et al., 2016; Lear 
et al., 2018; Taberlet et al., 2012; Zinger et al., 2016), (iv) the selec-
tion of appropriate primers to amplify a taxonomically informative 
genomic region (Elbrecht et al., 2016; Fahner et al., 2016; Ficetola 
et al., 2021), (v) the strategy adopted for DNA amplification and high- 
throughput sequencing of amplicons (Bohmann et al., 2022; Nichols 
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Abstract
Clustering approaches are pivotal to handle the many sequence variants obtained in 
DNA metabarcoding data sets, and therefore they have become a key step of meta-
barcoding analysis pipelines. Clustering often relies on a sequence similarity threshold 
to gather sequences into molecular operational taxonomic units (MOTUs), each of 
which ideally represents a homogeneous taxonomic entity (e.g., a species or a genus). 
However, the choice of the clustering threshold is rarely justified, and its impact on 
MOTU over- splitting or over- merging even less tested. Here, we evaluated clustering 
threshold values for several metabarcoding markers under different criteria: limitation 
of MOTU over- merging, limitation of MOTU over- splitting, and trade- off between 
over- merging and over- splitting. We extracted sequences from a public database 
for nine markers, ranging from generalist markers targeting Bacteria or Eukaryota, 
to more specific markers targeting a class or a subclass (e.g., Insecta, Oligochaeta). 
Based on the distributions of pairwise sequence similarities within species and within 
genera, and on the rates of over- splitting and over- merging across different clustering 
thresholds, we were able to propose threshold values minimizing the risk of over- 
splitting, that of over- merging, or offering a trade- off between the two risks. For gen-
eralist markers, high similarity thresholds (0.96– 0.99) are generally appropriate, while 
more specific markers require lower values (0.85– 0.96). These results do not support 
the use of a fixed clustering threshold. Instead, we advocate careful examination of 
the most appropriate threshold based on the research objectives, the potential costs 
of over- splitting and over- merging, and the features of the studied markers.
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et al., 2018; Taberlet et al., 2018), (vi) the pipeline selected for bioin-
formatics analyses (Boyer et al., 2016; Calderón- Sanou et al., 2020; 
Capo et al., 2021; Couton et al., 2021; Macher et al., 2021; Mächler 
et al., 2021) and (vii) the statistical approach used to translate me-
tabarcoding data into ecological information (Chen & Ficetola, 2020; 
Paliy & Shankar, 2016). Each of these methodological choices can 
heavily influence the reliability and interpretation of results (Alberdi 
et al., 2018; Zinger et al., 2019), and there is thus a critical need for 
development, proper assessment and optimization of methods spe-
cially dedicated to DNA metabarcoding.

When analysing metabarcoding data, bioinformatic pipelines 
generally produce a list of detected sequences that can be assigned 
to a given taxon with a more or less precise taxonomic resolution. 
However, the number of unique sequences obtained after bioinfor-
matic treatment is generally much higher than the number of taxa 
actually present in the sample (Calderón- Sanou et al., 2020; Mächler 
et al., 2021). This stems from multiple reasons including genuine intra-
specific diversity of the selected markers and errors occurring during 
the amplification or sequencing steps. Consequently, sequence clus-
tering approaches are often used to collapse very similar sequences 
into one single molecular operational taxonomic unit (MOTU), which 
does not necessarily correspond to a species in the traditional sense 
(Antich et al., 2021; Bhat et al., 2019; Froslev et al., 2017; Kopylova 
et al., 2016). Sequence clustering can be performed using similar-
ity thresholds, using Bayesian approaches or through single- linkage 
(Antich et al., 2021). Approaches based on similarity thresholds can 
have excellent performance and they display several advantages 
such as flexibility and easy implementation (Kopylova et al., 2016; 
Wei et al., 2021). However, when performing clustering based on 
sequence similarity, two key parameters have to be determined a 
priori. The first is the sequence to be selected as representative of 
the cluster. In the case of metabarcoding studies, keeping the most 
abundant sequence of the cluster as the cluster representative is a 
convenient way of merging sequence variants generated during the 
PCR or sequencing steps with the original sequence they derive from 
(Mercier et al., 2013). The second parameter is the similarity thresh-
old (clustering threshold) used to build MOTUs (Calderón- Sanou 
et al., 2020; Clare et al., 2016; Wei et al., 2021). The choice of this 
threshold is delicate without prior knowledge of the marker and its 
intrinsic level of diversity. A too low threshold can collapse different 
taxa into the same MOTU (over- merging), while a too high threshold 
can create too many MOTUs (over- splitting) compared to the actual 
level of diversity (Clare et al., 2016; Roy et al., 2019; Schloss, 2021).

Some works suggest that the ecological interpretation of me-
tabarcoding data can be relatively robust to the threshold selected 
for sequence clustering. For instance, Botnen et al. (2018) used 
thresholds of sequence similarity ranging from 0.87 to 0.99 to 
analyse multiple microbial communities, and obtained community 
structures highly coherent across thresholds. Nevertheless, levels 
of alpha diversity can be heavily impacted by the threshold selec-
tion. Ideally, the threshold used for clustering would depend on a 
trade- off between MOTU over- splitting and MOTU over- merging. 
A growing number of markers are currently being used in metabar-
coding studies (Taberlet et al., 2018), with some allowing broad- scale 

biodiversity assessment but having limited taxonomic resolution (e.g., 
18S rDNA primers amplifying all eukaryotes; Guardiola et al., 2015) 
and others being highly specific to one single class or even family 
(e.g., Baamrane et al., 2012; Ficetola et al., 2021). Biodiversity sur-
veys generally aim to generate a set of MOTUs that are each as-
sociated with a unique taxon, all taxa being ideally situated at the 
same level in the taxonomic tree, in order to facilitate comparisons. 
In these conditions, optimal clustering thresholds probably differ 
strongly across markers. One can, for example, expect high values 
for highly conserved markers, and lower values for markers show-
ing high variability (Brown et al., 2015; Kunin et al., 2010). However, 
there is limited quantitative assessment of how optimal clustering 
thresholds vary across markers (but see Alberdi et al., 2018).

In this study, we analysed sequences from a public database 
(EMBL— European Molecular Biology Laboratory) to identify cluster-
ing thresholds for different markers and under different criteria. We 
considered nine metabarcoding markers (Table 1), ranging from gen-
eralist markers (i.e., targeting Bacteria or Eukaryota) to more specific 
markers (e.g., targeting Oligochaeta [earthworms], Insecta [insects] or 
Collembola [springtails]), and amplifying fragments situated either in 
protein- coding (e.g., cytochrome c oxidase subunit 1 [COI] mitochon-
drial gene) or nonprotein- coding (e.g., rDNA genes) genomic regions. 
We evaluated how clustering thresholds can change for each marker 
and taxonomic group, depending on the criterion adopted to set the 
threshold. We used two alternative strategies to identify thresh-
olds, each time with different objectives in mind. First, following a 
procedure similar to the one adopted in barcoding studies (Machida 
et al., 2009; Meyer & Paulay, 2005), we compared the distribution 
probabilities of sequence similarities among different individuals of 
the same species and among different species of the same genus to 
identify values: (i) minimizing the risk that different sequences of the 
same species are split in different MOTUs (i.e., risk of over- splitting); 
(ii) minimizing the risk that distinct but related species are clustered in 
the same MOTU (i.e., risk of over- merging); and (iii) balancing the risk 
of over- splitting and over- merging (Figure 1a). Second, we calculated 
the over- splitting and over- merging rates of the studied markers for a 
range of clustering thresholds, to identify values that minimize the two 
error rates (Figure 1b). We expect that, if researchers want to minimize 
over- splitting, they should select lower clustering thresholds than if 
they want to minimize over- merging. Furthermore, we expect higher 
clustering thresholds for generalist markers compared to markers tar-
geting one class or more restricted taxonomic groups, because of the 
lower taxonomic resolution and slower evolutionary rate of the former.

2  |  METHODS

2.1  |  Markers examined and construction of 
sequence data sets

We focused on a set of nine DNA metabarcoding markers (Bact02, 
Euka02, Fung02, Sper01, Arth02, COI- BF1/BR2, Coll01, Inse01, 
Olig01) targeting different taxonomic groups and different genomic 
regions (Table 1). Four of these markers can be considered as 
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generalist (i.e., targeting entire superkingdoms or kingdoms): Bact02 
targeting Bacteria, Euka02 targeting Eukaryota, Fung02 targeting 
Fungi and Sper01 targeting Spermatophyta (vascular plants). Two 
markers were intermediate (Arth02 and COI- BF1/BR2, both target-
ing arthropods, i.e., the most species- rich phylum on Earth). Finally, 
three markers were more specific (i.e., targeting groups from classes 
to subclasses): Coll01 targeting Collembola (springtails), Inse01 tar-
geting Insecta and Olig01 targeting Oligochaeta (earthworms). Eight 
of these markers are situated in nonprotein- coding genes (Bact02, 
Arth02, Coll01, Inse01 and Olig01: 16 rDNA gene; Euka02: 18S 
rDNA gene; Fung02: ITS1 nuclear rDNA gene; Sper01: P6 loop of 
the intron of the chloroplastic trnL gene). The last marker, COI- BF1/
BR2, is situated in the COI mitochondrial gene (Table 1).

For each of these markers, a sequence database was built from 
EMBL release 140 (final sequence databases available at https://
doi.org/10.5061/dryad.crjdf n353) as follows. An in silico PCR was 
first carried out by running the program ecopcr (Ficetola et al., 2010) 
using the corresponding primers (Table S1). Three mismatches per 
primer were allowed (−e option), and amplicon length (without prim-
ers) was restricted (−l and - L options) to the expected length interval 
(Table S1). The amplified sequences were further filtered by keeping 
only those belonging to the target taxonomic group, showing a tax-
onomic assignment (i.e., taxid) at the species and genus levels and 
having no ambiguous nucleotides. This allowed assembling a work-
ing data set, from which we extracted two subdata sets. The “within- 
species” data set was built by keeping only species for which at least 
two sequences (identical or not) were available; if more than two 
sequences were available for a given species, we randomly selected 
two sequences for that species using the obiselect command of the 
obitools. The “within- genus” data set was built by keeping only gen-
era for which at least two sequences were available; if more than 
two sequences were available for a given genus, we randomly se-
lected two sequences for that genus using the obiselect command. 
For some markers (Bact02, Euka02, Fung02, Inse01, Sper01), the 
within- species data set and sometimes the within- genus data set 
still contained a very large number of sequences (>10,000). To limit 
computation time for these markers, we randomly selected a subset 
of 5000 different taxa, to reach a final number of sequences equal to 
10,000. An example of data set preparation is provided in Script1_
Arth02_DatasetsPreparation.sh (Appendix S1), and Table S2 sum-
marizes the number of sequences in the different data sets.

2.2  |  Calculation of sequence similarities and 
probability distributions

As a measure of sequence similarity, we computed the pair-
wise LCS (longest common subsequence) scores between pairs 
of sequences in the within- species and within- genus data sets 
using the sumatra program (Mercier et al., 2013; see Script2A_
Arth02_PairwiseSimilarities_Sumatra.sh from the Appendix S1). 
Methodological comparisons showed that this algorithm provides an 
excellent balance between performance and computation efficiency TA

B
LE

 1
 

C
ha

ra
ct

er
is

tic
s 

of
 th

e 
ni

ne
 s

tu
di

ed
 m

ar
ke

rs

M
ar

ke
r

Ta
rg

et
 g

en
e

Ta
rg

et
 g

ro
up

Ta
xo

no
m

ic
 le

ve
l

Ta
xo

no
m

ic
 re

so
lu

tio
n 

(%
)a

Re
fe

re
nc

e(
s)

Sp
ec

ie
s 

le
ve

l
G

en
us

 le
ve

l
Fa

m
ily

 le
ve

l
O

rd
er

 le
ve

l

Ba
ct

02
V4

 re
gi

on
 o

f t
he

 1
6S

 rD
N

A
 g

en
e

Ba
ct

er
ia

Su
pe

rk
in

gd
om

19
.6

55
.7

55
.1

60
.2

Ta
be

rle
t e

t a
l. 

(2
01

8)

Eu
ka

02
V

7 
re

gi
on

 o
f t

he
 1

8S
 rD

N
A

 g
en

e
Eu

ka
ry

ot
a

Su
pe

rk
in

gd
om

47
.0

59
.5

68
.3

67
.1

G
ua

rd
io

la
 e

t a
l. 

(2
01

5)

Fu
ng

02
IT

S1
 n

uc
le

ar
 rD

N
A

 g
en

e
Fu

ng
i

K
in

gd
om

72
.5

90
.2

87
.7

85
.5

Ep
p 

et
 a

l. 
(2

01
2)

; T
ab

er
le

t e
t a

l. 
(2

01
8)

Sp
er

01
P6

 lo
op

 o
f t

he
 in

tr
on

 o
f t

he
 

ch
lo

ro
pl

as
tic

 tr
nL

 g
en

e
Sp

er
m

at
op

hy
ta

C
la

de
 <

 k
in

gd
om

21
.5

36
.9

77
.4

89
.6

Ta
be

rle
t e

t a
l. 

(2
00

7)

A
rt

h0
2

16
S 

m
ito

ch
on

dr
ia

l r
D

N
A

 g
en

e
A

rt
hr

op
od

a
Ph

yl
um

68
.6

89
.6

97
.5

10
0.

0
Ta

be
rle

t e
t a

l. 
(2

01
8)

CO
I-

 BF
1/

BR
2

Cy
to

ch
ro

m
e 

c 
ox

id
as

e 
su

bu
ni

t 1
 

m
ito

ch
on

dr
ia

l g
en

e
A

rt
hr

op
od

a
Ph

yl
um

85
.6

97
.0

95
.1

93
.5

El
br

ec
ht

 a
nd

 L
ee

se
 (2

01
7)

C
ol

l0
1

16
S 

m
ito

ch
on

dr
ia

l r
D

N
A

 g
en

e
C

ol
le

m
bo

la
C

la
ss

80
.5

87
.2

75
.0

N
A

Ja
ns

se
n 

et
 a

l. 
(2

01
8)

In
se

01
16

S 
m

ito
ch

on
dr

ia
l r

D
N

A
 g

en
e

In
se

ct
a

C
la

ss
87

.8
96

.8
95

.4
79

.3
Ta

be
rle

t e
t a

l. 
(2

01
8)

O
lig

01
16

S 
m

ito
ch

on
dr

ia
l r

D
N

A
 g

en
e

O
lig

oc
ha

et
a

Su
bc

la
ss

89
.3

95
.7

10
0.

0
10

0.
0

Bi
en

er
t e

t a
l. 

(2
01

2)
; T

ab
er

le
t e

t a
l. 

(2
01

8)

a Pe
rc

en
ta

ge
 o

f d
is

cr
im

in
at

ed
 ta

xa
 a

m
on

g 
ta

xa
 a

m
pl

ifi
ed

 in
 s

ili
co

, a
s 

ca
lc

ul
at

ed
 b

y 
th

e 
ec

ot
ax

sp
ec

ifi
ci

ty
 p

ro
gr

am
 fr

om
 th

e 
o

bi
to

o
ls

. R
ep

or
te

d 
fr

om
 T

ab
er

le
t e

t a
l. 

(2
01

8)
 fo

r a
ll 

m
ar

ke
rs

, e
xc

ep
t f

or
 C

O
I-

 BF
1/

BR
2 

fo
r w

hi
ch

 th
es

e 
va

lu
es

 w
er

e 
de

te
rm

in
ed

 u
si

ng
 th

e 
se

qu
en

ce
s 

am
pl

ifi
ed

 in
 s

ili
co

 fr
om

 E
M

BL
 r1

40
.

https://doi.org/10.5061/dryad.crjdfn353
https://doi.org/10.5061/dryad.crjdfn353


4  |    BONIN et al.
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(Bhat et al., 2019; Jackson et al., 2016; Kopylova et al., 2016). As 
sumatra provides pairwise scores for all possible pairs of sequences, 
the similarity scores resulting from the within- species data set were 
filtered in R (R Core Team, 2020) to keep only those representing 
similarities between sequences of the same species. Similarly, the 
scores resulting from the within- genus data set were filtered to keep 
only those representing similarities between different species of the 
same genus (see first part of Script2B_Arth02_DensityPlots.Rmd 
from the Appendix S1).

2.3  |  Approach to identify clustering thresholds 
on the basis of within- species and within- genus 
sequence similarities

We first examined within- species and within- genus sequence simi-
larities to evaluate four different strategies (Figure 1a) and deter-
mine the similarity value that: (i) avoids over- splitting; (ii) avoids 
over- merging; or (iii) finds a balance between over- splitting and over- 
merging, with two distinct procedures based on the intersection 
(iii- a) or on modes (iii- b) of the density probability distributions (see 
Script2B_Arth02_DensityPlots.Rmd from the Appendix S1). These 
strategies are analogous to those adopted in traditional barcoding 
studies to set the limit between intra-  and interspecific diversity 
(Meyer & Paulay, 2005).

2.3.1  |  Avoid over- splitting

In this case, the aim is to avoid distributing different sequences 
belonging to the same species in different clusters (i.e., to limit the 
probability of generating additional spurious MOTUs). For this pur-
pose, we selected as clustering threshold the 10% quantile of the 
distribution of similarities between sequences from the same spe-
cies (within- species data set). With this approach, the sequences be-
longing to the same species according to EMBL are gathered in the 
same cluster in 90% of the cases.

2.3.2  |  Avoid over- merging

In this case, the aim is to avoid gathering sequences attributed to 
different species of the same genus in the same cluster (i.e., to limit 
the probability of merging related species in the same MOTU). For 

this purpose, we selected as clustering threshold the 90% quantile of 
the distribution of similarities between different species belonging 
to the same genus. With this approach, the sequences attributed to 
different species belonging to the same genus are assigned to differ-
ent clusters in 90% of the cases.

2.3.3  |  Find a balance between over- splitting and 
over- merging

In this case, the aim was to minimize both over- splitting and over- 
merging. We considered two distinct approaches. First, we obtained 
the probability distribution of within- species and within- genus se-
quence pairwise similarities using the density function from R, with 
biased cross- validation (bw = “bcv”) as smoothing bandwidth selec-
tor and a Gaussian smoothing kernel (kernel = “gaussian”; Venables 
& Ripley, 2002). We tested other possible smoothing bandwidth 
selectors, but biased cross- validation was the approach best fitting 
the score histograms for all markers and all data sets (Figures S1– 
S9). The balance threshold iii- a was then identified as the intersec-
tion between the probability distributions of the within- species 
and within- genus similarities. As an alternative approach to balance 
over- merging and over- splitting (iii- b), we calculated the midpoint 
between the modes of the within- species and within- genus prob-
ability distributions.

2.4  |  Rates of over- merging and over- splitting

For each marker, over- merging and over- splitting rates were evalu-
ated at different clustering thresholds using the within- species data 
set described in the section “Markers examined and construction 
of sequences data sets.” This data set contains two sequences at 
random, identical or not, for a number of species belonging to the 
taxonomic group of interest.

For each within- species data set, clustering was performed using 
the sumaclust program (Mercier et al., 2013; see Script3A_Arth02_
Clustering.sh from the Appendix S1) with the - n option (normalization 
by alignment length) based on the sequence similarities first calcu-
lated using the sumatra program (see above; Mercier et al., 2013). 
Threshold values (−t option) ranging from 0.90 to 1 at steps of 0.01 
were tested for all markers except Coll01 and Olig01 for which wider 
ranges ([0.70– 1] and [0.80– 1], respectively) were selected based on 
the within- genus and within- species sequence similarity probability 

F I G U R E  1  Different approaches to identify the most appropriate clustering thresholds. (a) Approach based on similarities between 
sequences belonging to different individuals from the same species (blue curve), and similarities between sequences belonging to different 
species from the same genus (red curve). One can choose to minimize the risk that different sequences from the same species are split 
into different MOTUs (over- splitting risk; e.g., 10% quantile of the distribution of within- species similarities), the risk that sequences from 
different species belonging to the same genus are clustered in the same MOTU (over- merging risk; e.g., 90% quantile of within- genus 
similarities), or one can try to find a balance between the risks of over- splitting and over- merging (e.g., with the intersection between 
probability distributions, or the midpoint between the modes of both distributions). (b) Approach based on rates of over- splitting and over- 
merging. One can compare the over- splitting (blue) and the over- merging (red) rates, and/or one can identify the thresholds minimizing the 
sum of these rates (violet).
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distributions determined previously (see Figure 2). Clustered data 
sets were then explored to calculate five different variables at 
each clustering threshold (see Script3B_Arth02_Oversplitting_
Overmerging.Rmd from the Appendix S1): (1) the number of clusters; 
(2) the percentage of MOTUs containing one single species; (3) the 
percentage of MOTUs containing one single genus; (4) the percent-
age of species gathered in one single MOTU; and (5) the percentage 
of genera gathered in one single MOTU among genera represented 
by several sequences. Variables 2 and 3 are indicative of appropri-
ate MOTU merging of sequences at the species and genus levels, 
respectively, while variables 4 and 5 are indicative of appropriate 
MOTU splitting at the species and genus levels, respectively.

These values were also used to calculate three measures of 
error. We defined the over- merging rate as (100 − the percent-
age of MOTUs containing one single species)/100; and the over- 
splitting rate as (100 − the percentage of species gathered in one 
single MOTU)/100. These two values belong to a [0,1] interval. 
The summed error rate was then calculated as the sum of the over- 
merging and over- splitting rates. For this estimate, we assigned the 
same weight to over- splitting and over- merging.

3  |  RESULTS

Our in- silico PCRs amplified between 101,955 (Arth02) and 
3,202,507 (Bact02) sequences per marker (Table S2). After data 
filtering, we retained between 510 (Coll01) and 707,874 (Bact02) 
sequences per marker. The within- species data set comprised be-
tween 118 (Coll01) and 10,000 (Bact02, Euka02, Fung02, Sper01, 
COI- BF1/BR2, Inse01) sequences, while the within- genus data set 
comprised between 74 (Coll01) and 10,000 (Euka02 and Sper01) se-
quences per marker.

3.1  |  Clustering thresholds determined from 
probability distributions of within- species and within- 
genus sequence similarities

The probability distributions of within- species and within- genus se-
quence similarities showed very contrasting patterns between the 
generalist and the specific markers (Figure 2). For Arth02 and most 
of the markers targeting broad taxonomic groups (Bact02, Euka02 
and Sper01), the distributions of within- species and within- genus 
similarities were rather similar, both showing a mode at very high 
similarity values (Figure 2). Fung02 showed a slightly different pat-
tern, as the within- genus similarities had a very broad distribution. 
Conversely, for COI- BF1/BR2 and the more specific markers (Coll01, 

Inse01 and Olig01), the distributions of sequence similarities were 
very different, with two clearly distinct peaks. Within- species simi-
larities remained very high (mostly above 0.95), while within- genus 
similarities generally showed lower values (mode around 0.88– 0.90 
for COI- BF1/BR2 and Inse01, and below 0.80 for Olig01 and Coll01).

For all markers, criterion i (avoid over- splitting) yielded the low-
est thresholds (Table 2), with very low values for Coll01 and Olig01. 
Conversely, criterion ii (avoid over- merging) yielded extremely high 
values, except for Coll01. For all generalist markers and Arth02, 
limiting over- merging would require setting clustering thresholds 
at 0.99 or higher. The same objective would entail a slightly lower 
threshold for COI- BF1/BR2 and Inse01 (0.98) and down to 0.94 for 
Olig01. For Coll01, criterion ii resulted in a very low threshold (0.77), 
because many within- genus comparisons showed very low similarity 
values.

Criteria iii- a and iii- b, searching a balance between over- merging 
and over- splitting, yielded somehow contrasting results across mark-
ers. For COI- BF1/BR2 and the three specific markers (Coll01, Inse01 
and Olig01), the within- genus and within- species similarities showed 
clearly distinct peaks (Figure 2). As a consequence, the intersec-
tion between the two curves could effectively represent the point 
minimizing both over- merging and over- splitting (see Discussion), 
and the midpoint between the modes also identified rather similar 
threshold values. By contrast, for the generalist markers and Arth02, 
the within- species and within- genus similarities showed very high 
overlap and similar modes, and the density distributions actually in-
tersected at values lower than both modes. The midpoint between 
the modes continued to identify threshold values intermediate be-
tween the peaks of within- species and within- genus similarities.

3.2  |  Rates of over- splitting and over- merging

For all markers, irrespective of the clustering threshold examined 
(values ≥0.70 for Coll01, ≥0.80 for Olig01 and ≥0.90 for the other 
markers), the percentage of MOTUs containing one single species 
was higher than 50%, and that of MOTUs containing one single 
genus was higher or close to 70% (Figure 3). Overall, for the gen-
eralist and intermediate markers, these two percentages showed 
a regular increase with the clustering threshold. For the specific 
markers as well as Fung02 and COI- BF1/BR2, they reached values 
close to 100% for high thresholds. Unsurprisingly, the two percent-
ages tended to be lower for the generalist markers than for the spe-
cific markers at a given threshold, indicating that the former are 
more sensitive to over- merging. Fung02 was a notable exception, 
since about 87% and 97% of MOTUs contained one single species 
and one single genus, respectively, at the 0.97 threshold, which is 

F I G U R E  2  Density probability distributions of sequence pairwise similarities within species (blue lines) and within genera (red lines) for 
the nine studied markers. For each marker, vertical dotted lines represent the 10% quantile of the within- species probability distribution 
(blue; threshold limiting over- splitting) and the 90% quantile of the within- genus probability distribution (red; threshold limiting over- 
merging). Vertical full lines represent the intersection of the within- species and within- genus probability distributions (yellow, balance- a) and 
the midpoint between modes (grey, balance- b).
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frequently adopted as the clustering threshold for fungal ITS se-
quences. These values were comparable to those observed for 
COI- BF1/BR2 and the specific markers, for which >85% and > 98% 
of MOTUs contained one single species or one single genus, respec-
tively, for thresholds ≥0.95.

The percentages of species and genera gathered in one sin-
gle MOTU decrease at a similar rate with the clustering threshold, 
with generally a sharp drop at high thresholds (≥0.98; Figure 3). 
However, the pattern of MOTU splitting was less characteristic of 
generalist vs. specific markers. For some markers (Euka02, Sper01, 
Arth02, Inse01), the percentage of species or genera gathered in a 
single MOTU remained higher or close to 50% up to high thresh-
olds (0.98). By contrast, for Bact02, Fung02, COI- BF1/BR2, Coll01 
and Olig01, these percentages dropped quickly when the clustering 
threshold increased, indicating that these markers are susceptible to 
over- splitting.

For all markers, the number of clusters generally increased reg-
ularly with the clustering threshold up to 0.97– 0.98 (Figure 3), fol-
lowed by a sharp rise up to 1 (but which was less obvious for Euka02 
and Olig01). For example, for Bact02, the number of clusters more 
than doubled between 0.97 (2862 clusters) and 1 (6461 clusters).

Our results showed clear patterns for over- merging and over- 
splitting rates, with over- splitting quickly increasing and over- 
merging quickly decreasing at high clustering thresholds (Figure 4). 
For several markers, the summed error showed a relatively clear 
minimum at specific clustering thresholds (Figure 4): 0.96– 0.99 for 
Bact02, 0.97– 0.99 for Euka02 and Arth02, 0.96– 0.98 for Sper01, 
0.93– 0.96 for COI- BF1/BR2 and 0.94– 0.97 for Inse01. The minimum 
was much less evident for Fung02, Coll01 and Oligo01, these mark-
ers showing relatively similar summed error rates over a broad range 
of clustering thresholds (Fung02: 0.91– 0.98; Coll01: 0.89– 0.97, with 
multiple minima; Oligo01: 0.84– 0.96, with multiple minima).

4  |  DISCUSSION

Sequence clustering approaches are routinely used for the identi-
fication of MOTUs in metabarcoding studies, and they often resort 
to methods based on similarity values. Still, selecting a clustering 
threshold for a given marker more than often relies on common 
practices and rules of thumb rather than on proper scientific argu-
ment. By analysing extensive sequence data deposited in public da-
tabases for a range of generalist and specialist markers, we showed 
that different thresholds can be selected depending on the marker 
and on the criterion favoured by researchers. All studied markers 
except one (COI- BF1/BR2) are situated in nonprotein- coding genes 
(Table 1), and this has an influence on levels of sequence diversity. 
More variability might be expected in protein- coding genes due to 
the redundancy of the genetic code. Yet, for all markers including 
COI- BF1- BR2, the 10% quantile of the within- species similarity 
probability distribution was almost always lower than the 0.97 clus-
tering threshold traditionally used in barcoding for markers target-
ing protein- coding genes such as COI (Hebert et al., 2003), or for TA
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microbial MOTU delimitation (Bálint et al., 2016). This indicates that 
some level of over- splitting can occur when using this threshold.

COI- BF1/BR2 is the only marker amplifying a fragment of 
a protein- coding gene, and it would have been logical to observe 

singular patterns for this marker. However, this was not the case, 
and COI- BF1/BR2, although designed to target arthropods (Elbrecht 
& Leese, 2017) like Arth02, actually showed a behaviour very sim-
ilar to the more specific Inse01 targeting insects. The similarity 

F I G U R E  3  Evolution of over- splitting and over- merging rates for a range of clustering thresholds, for the nine studied markers.



10  |    BONIN et al.

F I G U R E  4  Over- splitting (blue) and over- merging (red) rates, as well as the summed error rate (i.e., over- splitting rate + over- merging rate; 
violet), for the nine studied markers across a range of clustering thresholds. Horizontal grey arrows indicate the range for which the summed 
error rate is minimal.
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between COI- BF1/BR2 and the more specific markers might be re-
lated to their high resolution, which allows the successful distinction 
of closely related species even on the basis of relatively short se-
quences (Elbrecht & Leese, 2017; Ficetola et al., 2021). Furthermore, 
at 0.94, which is a suitable clustering threshold for COI- BF1/BR2, 
about 88% of the MOTUs contain a single species, and about 88% of 
the species are gathered in a single MOTU (Figure 3), indicating that 
MOTU richness at this threshold is a reasonably good proxy for the 
number of species detected with this marker. This is corroborated 
by the number of clusters observed at this threshold (5659), which 
is comparable to the expected number of species (5000; Table S2) 
in the within- species data set used to obtain Figure 3. Several COI 
markers are routinely used in metabarcoding, and COI- BF1/BR2 
shows a large overlap with many of them (Elbrecht & Leese, 2017). 
We can thus expect that optimal clustering thresholds for COI- BF1/
BR2 can also be rightfully applied to markers targeting a slightly dif-
ferent COI region.

Although the within- genus similarity values were generally lower 
than the within- species similarities for all the markers, the overlap 
between the two distributions was dependent on the generalist 
vs. specific nature of the marker. For some specific markers (e.g., 
Coll01 and Olig01), distinct peaks were visible for the two similarity 
metrics (Figure 2). Within- species similarities generally were >0.90, 
while within- genus values were <0.80. Such a pattern is expected 
for markers with an excellent taxonomic resolution and designed 
to identify taxa at the species level. Conversely, for the generalist 
markers, within- species and within- genus similarity probability dis-
tributions largely overlapped and the differences between the peaks 
were minimal. Nevertheless, even for these markers, the density of 
the within- species similarity distribution was consistently higher 
than that of the within- genus similarity distribution at high similar-
ity values. This suggests that the probability of observing the cor-
responding sequence similarity is higher within species than within 
genera. In other words, at high sequence similarities, an MOTU is 
more likely to represent a species than a genus. This result is con-
firmed by the fact that the percentage of MOTUs containing a single 
species is always higher than 50%, whatever the clustering threshold 
or the marker considered (Figure 3).

The sequences used as a primary source of information in this 
study were downloaded from the EMBL public database, and there-
fore our results are probably highly dependent on the quality of 
the data deposited. Even though broad- scale analyses suggest that 
sequence data from public databases are generally reliable (Leray 
et al., 2019), errors in the sequence itself (e.g., wrong nucleotide, 
or more complex errors such as insertions, deletions, inversions, 
duplications or pseudogene sequences) and taxonomic mislabelling 
can occur. Organisms that are difficult to identify based on mor-
phology are particular susceptible to wrong taxonomic information 
(Bidartondo, 2008; Bridge et al., 2003; Mioduchowska et al., 2018; 
Valkiūnas et al., 2008). While errors in the sequence will affect 
within- species sequence similarity negatively, the effect of taxo-
nomic mislabelling is more diffuse. For example, in a group such as 
springtails where species delimitation is tricky (Porco et al., 2012), 

the existence of cryptic species will decrease within- species se-
quence similarity while increasing over- splitting rates. In a group such 
as Bacteria, type strains are sometimes entered at the species level 
in the NCBI (EMBL) taxonomy (Federhen, 2015), leading to an infla-
tion of within- genus similarity and over- merging rates. Regardless, 
database errors will make within- species and within- genus similarity 
distributions more difficult to distinguish and clustering thresholds 
trickier to identify, and thus the over- splitting or over- merging rates 
reported here could be artificially higher than in reality.

In this work, we came up with a global measure of the error 
associated with a given clustering threshold, which we called the 
“summed error.” We calculated it by summing over- splitting and 
over- merging rates, assuming both have the same cost for bio-
diversity studies. However, it is possible to assign a differential 
weight to over- splitting and over- merging. For instance, if the aim 
is to reach conservative estimates of alpha diversity (i.e., avoid 
over- splitting), more weight can be assigned to over- splitting 
rate. Conversely, if the aim is to tease apart closely related spe-
cies, which differ in their sensitivity to environmental stressors 
or in threat levels, one may prefer to avoid over- merging, partic-
ularly when extensive reference databases are available (Lopes 
et al., 2021; Roy et al., 2019).

For most of the markers we examined, the summed error ap-
proach provided relatively clear results and identified a range of 
threshold values that minimized the summed error. For instance, for 
Euka02, the summed error was relatively low at thresholds between 
0.96 and 0.99 (Figure 4), indicating a good trade- off between over- 
merging and over- splitting. Interestingly, this range of values was 
also highlighted by the analysis of probability distributions (Table 2). 
Indeed, 0.96 is the threshold minimizing over- splitting for Euka02 
while 0.99 is the balance (midpoint) threshold. The consistency of 
values obtained with very different approaches supports the ro-
bustness of our conclusions.

However, for a few markers, the threshold values minimizing 
summed error yielded somewhat less clear patterns. For Fung02, 
the summed error rate was rather constant (36%– 37%) at all the 
thresholds between 0.91 and 0.98, while it quickly increased for 
higher clustering thresholds. For Coll01 and Oligo01, the summed 
error rate showed multiple minima, some of which were at very 
low clustering thresholds (Figure 4). In principle, increasing the 
threshold value should determine a monotone decrease of over- 
merging, and a monotone increase of over- splitting (Figure 1b). 
However, at low similarity values this was not always the case 
(Figure 4). This probably occurs because for these markers a large 
proportion of sequences have pairwise similarities of 0.80– 0.85 
(Figure 2), and this might affect the identification of clusters, with 
some sequences clustering together, for example, at 0.85 but not 
at 0.86 similarity values. We also note that these similarity val-
ues match those corresponding to the intersection between the 
within- genus and within- species similarities for these markers 
(Table 2). It is also possible that, at this level of sequence similarity, 
there is strong uncertainty between MOTUs representing differ-
ent hierarchical levels of taxonomy.
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Our results provide quantitative data that can help researchers 
set their optimal clustering thresholds and understand the conse-
quences of choosing low or high threshold values. If a clear minimum 
exists for the summed error rate, it probably represents an excellent 
trade- off between over- merging and over- splitting. In this sense, a 
threshold value ranging from 0.97 to 0.99 is probably appropriate 
for both Bact02 and Euka02, while Arth02 should accommodate a 
slightly higher range (0.98– 0.99) and a threshold of 0.97 seems to 
be more suitable for Sper01. For Inse01 and COI- BF1/BR2, lower 
threshold values (0.94– 0.97 and 0.93– 0.96, respectively) are more 
judicious. All these values match with those obtained on the basis of 
within- species and within- genus similarities (Table 2). However, for 
Coll01, Oligo01 and Fung02, the summed error rate does not pro-
vide clear indications, and within- species and within- genus similarity 
distributions (e.g., midpoint between modes) might be more informa-
tive to set the clustering threshold (Figure 2 and Table 2).

The selection of clustering thresholds can have a strong effect 
in the estimates of MOTU richness (Figure 3), yet it is important 
to remember that it often does not have a tremendous effect on 
the ecological message conveyed by metabarcoding data. For in-
stance, Clare et al. (2016) examined different clustering thresholds 
to analyse dietary overlap between skinks and shrews in Mauritius. 
Although high clustering thresholds yielded a larger number of 
MOTUs, ecological conclusions remained rather consistent overall. 
Therefore, provided that appropriate parameters are considered 
(e.g., alpha diversity measured using Hill's numbers with q > 0 in-
stead of richness, beta diversity estimates), the interpretation of 
data can be relatively robust (Calderón- Sanou et al., 2020; Clare 
et al., 2016; Mächler et al., 2021; Roy et al., 2019). Nevertheless, 
we discourage the blind application of one single clustering thresh-
old such as the classical 0.97, as it can have very different meaning 
across markers, and can inflate MOTU richness for fast- evolving 
markers. Instead, we advocate the ad- hoc definition of the most 
appropriate thresholds, depending on the research aims, the po-
tential costs of over- splitting and over- merging, and the features 
of the studied markers.
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