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De novo design methods hold the promise of reducing the time and cost of antibody 
discovery, while enabling the facile and precise targeting of specific epitopes. Here we 
describe a fragment-based method for the combinatorial design of antibody binding loops 
and their grafting onto antibody scaffolds. We designed and tested six single-domain 
antibodies targeting different epitopes on three antigens, including the receptor-binding 
domain of the SARS-CoV-2 spike protein. Biophysical characterisation showed that all 
designs are highly stable, and bind their intended targets with affinities in the nanomolar 
range without any in vitro affinity maturation. We further show that a high-resolution 
input antigen structure is not required, as our method yields similar predictions when the 
input is a crystal structure or a computer-generated model. This computational 
procedure, which readily runs on a laptop, provides the starting point for the rapid 
generation of lead antibodies binding to pre-selected epitopes. 
 
Antibodies are key tools in biomedical research, and are increasingly employed to diagnose 
and treat a wide range of human diseases. Currently, there are over 110 approved antibody 
drugs and about 90 in late-stage clinical trials (1). Existing antibody discovery methods have 
been widely successful, but still have important limitations (2). Extensive laboratory screenings 
are required to isolate those antibodies binding to the intended target, which can be time 
consuming and costly. Some classes of hard targets remain, including some receptors and 
channels, proteins within highly homologous families, aggregation-prone peptides, and 
disease-related short-lived protein aggregates (3, 4). Most notably, it is often highly 
challenging to obtain antibodies targeting pre-selected epitopes. Screening procedures 
typically select for the tightest binders, which usually occur for immunodominant epitopes, 
thus disfavouring the discovery of antibodies with lower affinities but binding to functionally 
relevant sites (5). Finally, screening campaigns often yield antibodies with good binding 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2021.03.02.433360doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.02.433360


affinity, but otherwise poor biophysical properties, such as stability, solubility, and production 
yield, which may hinder their development into effective reagents. 
 
Computational antibody design has the potential to overcome these limitations by drastically 
reducing time and costs of antibody discovery, and in principle allowing for a highly controlled 
parallel screening of multiple biophysical properties. Moreover, rational design inherently 
enables the targeting of specific epitopes. Most available methods for the design of binding 
proteins rely at least in part on the minimisation of a calculated interaction free energy, through 
the sampling of the mutational and conformational space (2, 6, 7). The nature of these 
calculations, which are based on molecular modelling, and the challenges of achieving 
exhaustive sampling, make design simulations rather imprecise and highly resource intensive. 
For these reasons, the de novo design of antibody binding has generally met low success rates, 
and required recursive experimental screenings and large libraries (5, 8–10), which hamper its 
competitiveness with established laboratory-based technologies. Computational design of 
binding has been most successful in synergy with in vitro affinity maturation, and in particular 
when applied to mini-proteins (11, 12). The small size of these mini-proteins is amenable to 
the high-throughput gene synthesis required to experimentally screen designed candidates on 
a massive scale, and their rigidity reduces the need for accurate conformational sampling. 
However, antibody domains are considerably larger, and bind their target using 
complementarity determining regions (CDRs) located within hypervariable loops on the 
antibody surface, which are often extended and highly flexible. 
 
Here, we describe a novel method to design antibody CDR loops targeting epitopes of known 
structures, or for which a structural model is available. Designed CDRs are then grafted onto 
antibody scaffolds, and further optimised computationally for solubility and conformational 
stability. Novel antibody-antigen interactions are designed by combining together protein 
fragments identified as interacting with each other within known protein structures.  
 
 
De novo CDR-design strategy 
In order to overcome some of the limitations of molecular modelling, in particular those 
associated with the approximations in accounting for interatomic interactions, we exploited the 
availability of large structural databases to implement a fragment-based procedure to design 
CDRs (paratope) complementary to a target epitope. To implement this idea, we compiled from 
the non-redundant Protein Data Bank (PDB) a database of CDR-like fragments and 
corresponding antigen-like regions. CDR-like fragments are defined as linear motifs 
structurally compatible with an antibody CDR loop, which may be found in any protein 
structure in the PDB, and antigen-like regions are those found interacting with any CDR-like 
fragment in the structures analysed (see Methods). The structure of the input epitope is 
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fragmented using two different strategies: (i) a linear fragmentation, which generates fragments 
of at least four consecutive residues, and (ii) a surface-patch fragmentation, which takes each 
residue and yields the closest n≥4 solvent-exposed residues in the three-dimensional structure 
of the epitope. Next, each epitope fragment is compared to the antigen-like regions to identify 
those with compatible backbone structure and similar sequence (see Methods). This procedure 
yields those CDR-like fragments from the database that interact with the identified antigen-
like regions. These CDR-like structures are then rotated to match the orientation of the epitope, 
by superimposing each antigen-like region, together with its interacting CDR-like fragment(s), 
to the matching part of the epitope (Figs. 1A, S1 and S2). When possible, different CDR-like 
fragments whose backbones are compatible with a single longer CDR loop are joined together 
to yield longer interacting motifs (Fig. 1B, see Methods) 
 
Some of the original interactions of each CDR-like fragment may be affected when this 
fragment is transferred onto the epitope, for instance if the sequence of the antigen-like region 
is not identical to the corresponding epitope sequence, or if the epitope side-chains are found 
in different conformations. Similarly, new interactions may arise when a CDR-like fragment 
forms contacts with parts of the epitope that were not matched onto its antigen-like region. 
Therefore, an optimisation procedure is carried out to replace all CDR side-chains affected 
with side-chains that make more favourable interactions with the epitope, by defining a local 
structural motif and searching for compatible hits in the PDB90 database (Figs. 1C and S2, see 
Methods). Next, all generated CDR-like candidates are ranked according to the number of 
favourable interactions, the number of interactions that could not be optimised, and a solubility 
score calculated with the CamSol method (13). Finally, top-ranking candidates are combined 
together to generate longer CDR loops, or multiple candidates are grafted in different CDRs of 
the same Fv region, and new interactions that may emerge between scaffold and antigen or 
between designed CDR and scaffold are optimised to yield the final designs (Figs. 1D and S1, 
see Methods).  
 
To demonstrate this approach, we tested it on single-domain antibodies, because of their 
monomeric nature, ease of production in prokaryotic systems, and small size. Nonetheless, the 
computational design pipeline described here can readily be applied to other antibody 
fragments, including whole Fv regions, on which designed CDRs can be structurally matched 
and grafted in the same way (see Methods). 
 
 
Description of designs and biophysical characterization  
We designed six single-domain antibodies for three different antigens by exploring two 
grafting strategies. Two designed single-domain antibodies target the SARS-CoV-2 spike 
protein receptor-binding domain (RBD), three human serum albumin (HSA), and one 
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pancreatic bovine trypsin (Table 1). HSA and trypsin were selected for the initial validation. 
Both are available off the shelf, and binding of therapeutic proteins to HSA is a key determinant 
of pharmacokinetics. Therefore, single-domain antibodies targeting HSA may provide a 
modular tool for enhancing the half-life of biologics(14). Conversely, trypsin offers the 
opportunity of testing the design strategy on poorly accessible convex epitopes harbouring an 
active site. The RBD of SARS-CoV-2 exemplifies the power of targeting specific epitopes, as 
binding to regions overlapping with, or close to the ACE2 receptor binding site, whilst avoiding 
glycosylation sites, is expected to yield neutralising antibody candidates, which would 
sterically hinder virus binding to the human cell receptor. In this case, we used as starting point 
for the design the first-released cryo-EM model of the SARS-CoV-2 spike protein in the 
prefusion conformation(15) (PDB ID 6VSB). The reason for this choice was to assess how the 
design strategy performs with a lower resolution structure used as input. Specifically, we ran 
the design on the surface of the up RBD around the ACE2-binding region, which has some 
regions of very low resolution (~6-8 Å)(15), and several missing residues in the model (Figs. 
1A and 3A). 
 
All designed single-domain antibodies expressed well in E. coli, were obtained to high purity, 
and showed circular dichroism (CD) spectra fully compatible with a well-folded VH domain 
(Fig. S3, see Methods). All designs were highly stable, with a melting temperature at par or 
better than that of immune-system-derived nanobodies (Table 1, Fig. S3C). The crystal 
structure of DesAb-HSA-P1 further confirms the correct folding of the domain and the 
dynamic nature of its CDR3 loop, as expected for this particular single-domain antibody 
scaffold(16) (Fig. S4). 
 
Two out of the three anti-HSA single-domain antibodies, DesAb-HSA-P1 and DesAb-HSA-
P2 (Table 1), consisted in designed CDR-like peptides grafted in place of the CDR3 of a 
previously characterised single-domain antibody scaffold highly amenable to CDR3 
substitutions(16, 17) (Table S1). The third design, DesAb-HSA-D3, was made by structurally 
matching two separate CDR-like candidates onto two CDR-loops of a nanobody scaffold 
identified as highly compatible with these two binding motifs (Fig. 2A, see Methods). The first 
strategy provides the opportunity to test the de novo CDR design procedure by minimising 
possible complications arising from the grafting, while the second is a more complex approach 
that allows to design multiple CDR loops onto a scaffold structurally matched to the epitope. 
Binding to HSA was measured in solution with micro-scale thermophoresis (MST), which 
yielded KD values ranging from 140 to 800 nM (Fig. 2B-D,F), while a control single-domain 
antibody showed extremely weak signal in this assay (Fig. S5A). As a comparison, a nanobody 
isolated with yeast-display from a state-of-the-art naïve library was recently reported to bind 
HSA with a KD of 430 nM(18), which is in the same range as those of our de novo designs. To 
confirm the binding, we also carried out bio-layer interferometry (BLI) with immobilised HSA, 
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obtaining KD values compatible with those measured in solution, while the trypsin-targeting 
DesAb-Tryp employed as a negative control gave no binding signal for HSA (Fig. 2E and 
S5B). However, DesAb-Tryp was able to bind its intended target trypsin, while DesAb-HSA-
P1 and P2 showed no binding signal and were likely partly digested by the protease during the 
binding assay (Fig. S6).  
 
BLI competition experiments show that DesAb-HSA-D3 and DesAb-HSA-P1 compete with 
each other for binding to HSA, as the binding of one is hindered by the presence of the other 
antigen-bound DesAb. Conversely, DesAb-HSA-P2 does not compete with the other two, as 
its binding is not affected by the presence or absence of other antigen-bound DesAbs (Fig. 2G). 
This competition behaviour is fully compatible with the rational design, as DesAb-HSA-D3 
and DesAb-HSA-P1 were designed to target partly overlapping epitopes, while DesAb-HSA-
P2 targets a different epitope on the opposite side of the antigen (Fig. 2A). 
 
Similar to the anti-HSA DesAbs, the two designs made to target the RBD of the spike protein 
showed binding in the nanomolar range. More specifically, a BLI assay with immobilised 
glycosylated RBD yielded KD values of 210 and 130 nM for DesAb-RBD-C1 and DesAb-
RBD-C2, respectively (Fig. 3). Conversely, these two anti-RBD antibodies showed no binding 
signal for immobilised HSA employed as a negative control and as a blocker in the assay (Fig. 
S5C, see Methods). Finally, both anti-RBD DesAbs were able to compete with the binding of 
the human ACE2 receptor to the viral RBD, which suggests that affinity-matured versions of 
these DesAbs may have neutralizing potential (Fig. 3D). 
 
 
Applicability of the design strategy 
Having established that our computational method can yield stable single-domain antibodies 
that bind their intended targets with good KD values, we asked how readily and generally 
applicable the design strategy is. The most apparent bottleneck of the pipeline is the need for a 
structure of the target epitope to be used as input. As structural determination can be 
challenging for some targets, this aspect could limit the applicability of the method, in 
particular in the cases of emerging diseases or of poorly investigated areas, where novel 
antibodies are often most needed.  
 
To test the dependence of the design method on the quality of the input structure, we ran our 
CDR design procedure on all available experimental structures from the latest Critical 
Assessment of Techniques for Protein Structure Prediction competition (CASP14), as well as 
all corresponding models generated with AlphaFold2, which was the best-performing 
algorithm assessed (19, 20). By using all available models for each structure, we make sure to 
include in our analysis also lower quality models that were not top-ranking in CASP (see 
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Methods). Our results reveal that a large fraction of the designed CDR fragments obtained by 
using each model as input are identical to those obtained using the corresponding 
experimentally determined structure (Fig. 4A). More specifically, the median number of 
designed CDRs in common between each model and its corresponding experimental structure, 
expressed as a percent of the total number of designed CDRs obtained for each model, is 77%, 
and only 20 (10%) of the 200 models analysed have less than 50% CDRs in common with their 
target structures (Fig. 4A, S7 and Table S3). These results suggest that if one were to use an 
AlphaFold2 model as input for our antibody design pipeline, most typically about 75% of the 
generated CDRs would be identical to those that would be obtained from the corresponding 
crystal structure, and at least 50% would be identical in 90% of the cases. Besides, we only 
observe a very weak correlation (R2 = 0.06) between the percent of CDRs in common among 
model and structure, and the quality of the model itself as quantified by the global distance test 
total score (GDT, Fig. 4B). This result indicates that the aforementioned median number of 
designed CDRs in common among model and structure is not excessively determined by those 
very high-quality models (GDT ≥ 90) that are almost identical to their target structure. Taken 
together, these results imply that the CDR-design procedure is expected to yield similar results 
when running on computer-predicted models or on experimental structures, and that these 
results do not strongly depend on the quality of the model used as input, at least within the 
range we explored (GDT ≥ 40). 
 
The target structures of the CASP assessments are selected ensuring that they represent a 
diverse sample of native folds, characterized by different secondary structures and overall 
shape (20). Therefore, these structures also constitute a particularly suitable test-set to explore 
the applicability of our design strategy, by enabling to address the question of how often our 
fragment-based combinatorial procedure can yield CDRs targeting a given input epitope. To 
this end we computed the solvent accessible surface area of each experimental structure in the 
presence and absence of bound designed CDRs. Our results reveal that the vast majority of the 
surface of each antigen is typically targetable with our strategy, with a median surface coverage 
of 78% (Fig. 4C). Furthermore, for each epitope there are typically many candidate binding 
loops to choose from, with a median density of 19 CDRs per nm2 of antigen surface (Fig. 4D). 
 
Conclusions 
We have described a fragment-based strategy for the rational design of antibodies targeting 
structured epitopes. We use protein fragments of at least four residues and typically longer in 
order to assemble designed CDRs in a combinatorial way. The idea behind this choice is that 
such fragments should be large enough to contain nontrivial sequence determinants of structure 
and interactions (6, 16, 21). 
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Our experimental results demonstrate that the design pipeline that we presented can 
successfully yield stable single-domain antibodies binding their intended targets, with KD 
values down to the nanomolar range (Table 1). Importantly, we have been able to achieve this 
outcome without the need of experimentally screening a large number of designs, but rather by 
pre-selecting in silico those designed CDRs that appeared most promising according to the 
metrics implemented, which include proxies for the predicted binding and sidechain 
complementarity, as well as predictions of solubility (13) (see Methods).   
 
This combinatorial approach does not involve approximations to calculate interaction free 
energies, and is also substantially faster than approaches based on the sampling of 
conformational and mutational space (2). An intrinsic limitation of this strategy, however, is 
that its applicability to epitopes of interest depends on the availability of suitable CDR-like 
fragments in the databases used. Nonetheless, the growing number of available protein 
structures in public databases makes the procedure generally applicable, as for most epitopes 
one obtains a number of candidate CDRs to choose from (Figs. 4C,D and S1). 
 
Our results, which are obtained with a computer code that can run on standard laptops, 
demonstrate that it is becoming increasingly possible to design de novo antibodies binding to 
pre-selected epitopes of interest. We have exploited recent advances in protein-folding 
predictions and ab initio structural modelling to show that our design pipeline yields similar 
results when running on experimental structures or on computer-generated models, even when 
these do not reach atomistic accuracy. We envisage that, taken together, these advances in 
computational biotechnology will enable in the near future to obtain lead antibodies in a matter 
of days from the release of a pathogen genome, or from the identification of a novel disease-
relevant target. 
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Table 1. Designed single-domain antibodies (DesAbs) employed in this study. 

 Target 
antigen Designed CDR Target 

epitope† 
Scaffold 
(pdb)* 

Tm 
(ºC)‡ 

KD 
(nM)§ 

Buried 
SASA (Å2) 

DesAb-HSA-P1 HSA IQKSLQTAESIL 575-582 6Z3X 82.5 120 247 
DesAb-HSA-P2 HSA AQAGNAEEAE 71-80 6Z3X 80 380 141 

DesAb-HSA-D3 HSA ELYALI (CDR1) 
KFASPDGS (CDR3) 

542-
546,574-

580 
4DKA 67.5 180 230 

DesAb-Tryp Trypsin QSGYHF 698-702 6Z3X 78.5 1800 195 

DesAb-RBD-C1 Spike RBD GSSATEVY 
449,453,4

92-
497,500 

6Z3X 77.5 210 356 

DesAb-RBD-C2 Spike RBD VVADLSV 353-359 6Z3X 80 130 366 
† Residue numbering as in PDB entries 1AO6 chain B (HSA), 1S0Q chain (trypsin) and 6VSB chain A (spike 
RBD). 
* PDB ID of scaffold in whose loop the designed CDRs are grafted, see Methods. 6Z3X is from this study. 
‡ Melting temperature rounded to the closest 0.5 ºC to reflect the accuracy of the thermal-shift assay employed 
(see Methods and Fig. S3C). 
§As measured with bio-layer interferometry (BLI), rounded to the closest 10 nM with exception of DesAb-Tryp, 
which was rounded to 100 nM (Fig. S6) 
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Figure 1. Schematic illustration of the combinatorial structure-based CDR design 
strategy introduced in this work. (A) The antigen is shown in purple with the glycan groups 
in red, and the chosen target epitope is shown in gold at the centre (the ACE2 binding site in 
the RBD of SARS-CoV-2, PDB ID 6VSB). The bubbles on the left show two matching 
antigen-like fragments (salmon) in the context of their native structure structurally 
superimposed to the query epitope fragments (gold) used to identify them. The CDR-like 
fragments (blue and green) interacting with these antigen-like fragments, and therefore 
predicted to bind the epitope, are also shown above it in the centre. The antigen-like fragments 
in the bubbles are non-contiguous as they were identified with the surface-patch fragmentation 
mode (see Methods) by employing as query those epitope fragments corresponding to solvent-
exposed sidechains. The sequence identity between the query epitope fragment (gold) and 
matching antigen-like fragment (salmon) is shown as an alignment next to the bubbles. (B) As 
the two CDR-like fragments have an overlapping part with compatible backbone conformation 
and similar sidechain orientation they are merged together to form a single designed CDR 
candidate. (C) The sequence of the CDR candidate is further optimised (see Methods) by 
substituting those residues in contact with amino acids that differ between the target epitope 
and the matching antigen-like fragments. (D) The optimised CDR sequence is then grafted onto 
a single-domain antibody scaffold. The example presented in this figure is the CDR3 of DesAb-
RBD-C1 (Table 1). The model in this panel was generated with the ABodyBuilder web server 
(22). 
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Figure 2. The anti-HSA DesAbs bind their target and compete for binding to overlapping 
epitopes. (A) The structure of HSA is shown in grey, and the designed CDR fragments 
targeting different epitopes are in different colours. The bubbles show structural models of the 
DesAbs with the designed CDRs grafted onto the indicated loops. DesAb-HSA-D3 contains 
two different designed CDRs, which are grafted onto a structurally-matched scaffold. (B-D) 
Micro-scale thermophoresis (MST) of fluorescently-labelled DesAbs (70 nM) in the presence 
of increasing concentrations of HSA (x-axis). The colours are the same of panel A, with 
DesAb-HSA-P1 in yellow (B), P2 in purple (C) and D3 in blue (D). Data points are mean and 
standard deviations of three replicates, data were fitted with a single-site binding model. (E) 
BLI binding traces (association and dissociation) obtained with APS-sensors loaded with HSA. 
Association was monitored in wells containing 2 µM DesAbs, and colours are like in panels 
A-D. 2 µM DesAb-Tryp is shown in grey and was employed as control for non-specific binding 
to the sensor. (F) Table with the dissociation constants (KD) obtained for the three DesAbs by 
fitting the BLI and MST data. (G) Binding competition experiment at the BLI. APS-sensors 
were loaded with HSA, and then dipped in wells containing 5 µM of a first DesAb X1 (see 
Methods), then moved in buffer wells for one minute, and then into wells containing 5 µM of 
a second DesAb X2, and finally back to buffer wells. Curves are labelled with “X1 vs X2” to 
identify the anti-HSA DesAbs employed. The plot shows the last three steps, and reference 
sensors monitoring the background dissociation of X1 during these steps were subtracted from 
the traces shown here. The traces P1 vs P1 and D3 vs D3 were taken as positive controls for 
the competition, and the small signal observed is due to the facts that not all epitopes are 
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occupied by the first DesAb (X1), and that this is dissociating in the background. The trace 
Buffer vs P2 was taken as a negative control for the competition. 
 
 

  
Figure 3. The anti-RBD DesAbs bind their target and compete with human ACE2. (A) 
the RBD is shown in purple, and the rest of the SARS-CoV-2 spike protein in grey with glycans 
in red. The designed CDRs targeting the RBD are in blue and green respectively for DesAb-
RBD-C1 and C2, and corresponding structural models of the single-domain antibodies are 
represented in the bubbles. (B, C) BLI binding traces (association and dissociation) obtained 
with APS-sensors loaded with RBD and blocked with HSA. Grey traces are obtained with 4 
µM of DesAb-Tryp used as a negative control to probe non-specific binding to the sensors. (B) 
4 µM, 2 µM and 1 µM of DesAb-RBD-C1 (from darker to lighter blue, KD= 214 ± 4 nM). (C) 
4 µM, 2.5 µM and 1 µM of DesAb-RBD-C2 (from darker to lighter green, KD= 135 ± 2 nM). 
Data were fitted globally to estimate the reported KD values. (D) Binding competition 
experiment at the BLI. Sensors were loaded like in (B, C) and dipped in wells with 5 µM 
DesAb-RBD-C1 (blues) or DesAb-RBD-C2 (greens) or buffer (grey), then in wells containing 
ACE2 or buffer controls (see legend), and finally back to buffer. The plot reports the last two 
steps, showing that the binding of ACE2 is substantially reduced by the presence of either 
DesAb-RBD-C1 or DesAb-RBD-C2 bound to the RBD.  
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Figure 4. Performance of the CDR-design procedure on computationally predicted 
antigen structures. De novo modelled structures generated by the AlphaFold2 algorithm 
within the CASP14 competition, as well as the corresponding experimentally determined 
structures, were used as input for the CDR design procedure. (A) Histogram of the distribution 
of the percent of designed CDRs obtained from each model that were identical to those obtained 
from the corresponding structure. The horizontal dashed line is the median of the distribution 
at 76.6%. (B) Scatter plot of the same CDR percent (y-axis) as a function of the global distance 
test total score (GDT TS, x-axis), as reported by the CASP14 competition, which is an indicator 
of the model accuracy. GDT works with the percentage of ⍺-carbons that are found within 
certain cut-off distances of each other. A GDT of 100 means the modelled and experimental 
structure have all ⍺-carbons within 1 Å of each other, and one above 90 (vertical dotted line) 
is typically regarded as a good solution of the folding prediction. The dashed trendline 
corresponds to a weak correlation (R2 = 0.06). Data point are coloured according to the target 
experimental structure of each model (see Table S3 and Fig. S7). Four example structures are 
drawn in the same colour as their model data points, which are pointed by the arrows. Their 
models are overlaid to the structures and shown in grey. (C) Histogram of the distribution of 
the percent of targetable surface area for each antigen (experimental structure from CASP14). 
Targetable surface is defined as the solvent-accessible surface area of the antigen made 
inaccessible by at least one designed CDR. The dashed line is the median at 78%. (D) 
Histogram of the distribution of the CDR density for each antigen, expressed as the mean 
number of different designed CDRs per nm2 of antigen surface. The dashed line is the median 
at 19.2 CDRs per nm2. 
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