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We consider the Galerkin and Collocation Isogeometric approximations of the acoustic 
wave equation with absorbing boundary conditions, while the time discretization is 
based on second-order Newmark schemes. A numerical study investigates the properties 
of the two IGA methods as concerns stability thresholds, convergence errors, accuracy, 
computational time, and sparsity of the stiffness matrices varying the polynomial degree p, 
mesh size h, regularity k, and time step �t. In order to compare the two IGA methods, we 
focus on two meaningful examples in the framework of wave propagation simulations: 
a test problem with an oscillatory exact solution having increasing wave number, and 
the propagation of two interfering Ricker wavelets. Numerical results show that the IGA 
Collocation method retains the convergence and stability properties of IGA Galerkin. In all 
examples considered, IGA Collocation is in general less accurate when we adopt the same 
choices of parameters p, k, h, and �t. On the other hand, regarding the computational cost 
and the amount of memory required to achieve a given accuracy, we observe that the IGA 
Collocation method often outperforms the IGA Galerkin method, especially in the case of 
maximal regularity k = p − 1 with increasing NURBS degree p.
© 2023 The Authors. Published by Elsevier B.V. on behalf of IMACS. This is an open access 

article under the CC BY-NC-ND license (http://
creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

In the last decades, an increasing number of works have focused on high-order simulations of propagation problems in 
geophysics, using spectral, spectral elements, and isogeometric discretizations; see, e.g., [3,10,11,21], and references therein. 
In this paper, we compare Galerkin and Collocation Isogeometric approximations in space for the acoustic wave equation 
with absorbing boundary conditions, whereas the time approximation is based on Newmark schemes. Absorbing boundary 
conditions provide a good mathematical representation to simulate wave propagation in infinite domains, by truncating 
the infinite domain into a finite one; see, e.g., [8,15,18,27]. Other choices of time advancing schemes would could also be 
considered. In this regard, a new family of high-order explicit generalized-α methods for hyperbolic problems has been 
recently proposed in [5], with the feature of dissipation control.
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The main idea underlying the numerical approximation of partial differential equations (PDEs) with Isogeometric Analysis 
(IGA) is the representation of the domain starting from a Computer Aided Design (CAD) characterization, typically associated 
with B-Splines and Non-Uniform Rational B-Splines (NURBS); see e.g. [2,4,6,9]. Following the IGA approach, we formulate 
the Galerkin approximation of PDEs using the B-spline and NURBS basis functions firstly introduced to represent the CAD 
geometry. When comparing IGA discretization to more classical finite difference and finite element methods, besides the 
exact geometric description of a wide set of domains and high order of accuracy, IGA enables a k-refinement in addition to 
the standard p- and hp-refinement of hp-finite and spectral elements, where we have denoted by p the polynomial degree 
of the piecewise polynomial basis functions, by h the mesh size, and by k the global regularity of the IGA basis function, 
that may increase proportionally to the degree p, up to the maximal regularity k = p − 1 [20]. Several studies of structural, 
acoustic, and wave propagation problems show that the IGA k-refinement is superior to finite element p-refinement; see 
e.g. [21,10,16]. Furthermore, in [17], they present a detailed comparison of spectral elements and Galerkin IGA, focusing on 
the order of convergence of the methods and the spectral properties of their stiffness and mass matrices.

In the framework of NURBS-based IGA, we have initially considered the Galerkin approach [36] based on the weak 
formulation of the acoustic wave equation. Then we have extended our study to the collocation IGA variant [37], consisting 
in imposing the model problem written in its strong form at a certain set of collocation nodes, with the aim to enhance 
the storage of stiffness and mass matrices and computational cost, still taking advantage of IGA geometrical flexibility and 
accuracy. We have considered for simplicity the well-known Greville abscissae as collocation points providing an O (hp−1)

convergence order for odd p and O (hp) for even p. Other choices of isogeometric collocation points have been proposed in 
order to improve the convergence order, see e.g. the recent review [30]. Among these choices there are the Demko abscissae 
[14], superconvergent (SC) points [1], Cauchy–Galerkin (CG) points [19], and alternating/clustered superconvergent (ASC/CSC) 
points [26].

In our previous works, we have investigated experimentally the convergence and stability properties of the two IGA-
Newmark methods, together with their computational efficiency and matrix sparsity with respect to all the parameters of 
the numerical problem. In both cases, we have also provided the stability thresholds, showing the linear dependence of the 
maximum step size �t on h and on 1/p.

The main novelty of this paper is a direct numerical comparison of the two Galerkin and Collocation IGA methods 
with respect to convergence error, computational cost, and sparsity of the stiffness matrices. In the first tests, we study 
the errors with respect to the degree p and mesh size h. Numerical solutions are compared with known analytical ones 
for test problems with oscillatory solutions having increasing wave number, while in our previous papers we tested the 
two methods separately on wave problems with smoother solutions. Then we consider the propagation of a Ricker wavelet 
originating at points positioned at different locations of the domain. While in our previous papers we consider only the 
case of one Ricker wavelet, here we consider a more demanding test with two interfering wavelets and compare the time 
evolution of the discrete energy (L2-norm) of the acoustic pressure for the same sets of parameters.

All the tests indicate that the IGA Collocation method retains the convergence and stability properties of IGA Galerkin 
discretizations of acoustic problems. Detailed comparisons of convergence properties, computational cost CPUTIME, and 
stiffness matrix sparsity show that IGA Collocation is in general less accurate when we adopt the same choices of parameters 
p, k, h and �t , either for the test with oscillatory solution or with the Ricker wavelet. Nevertheless, if we consider the 
global computational cost of matrix assembly and time advancing procedure, and the matrix sparsity, we observe that the 
IGA Collocation method often outperforms the IGA Galerkin method, especially when we consider the case of maximal 
regularity k = p − 1 with increasing NURBS degree p, since it requires a lower global computational cost and a smaller 
amount of memory in order to achieve a given accuracy.

The outline of this paper is as follows: In Section 2, we recall the acoustic wave model problem with absorbing boundary 
conditions. In Section 3, we recall the Newmark time-marching scheme and basic notions of B-spline and NURBS, and their 
application to IGA Galerkin and Collocation discretization of the wave model problem. Finally, Section 4 reports the results 
of several numerical experiments in the plane investigating the stability and convergence properties, computational costs, 
and efficiency of the IGA Galerkin and IGA Collocation methods with respect to space and time discretization parameters.

2. The model problem and mathematical analysis

Let � = [0, 1] × [0, 1] be the reference domain in the plane with boundary � ≡ ∂�. We denote by x = (x1, x2) any point 
of �. The temporal interval is (0, T ), with T > 0 and t is the time variable. We consider the acoustic wave problem (see 
e.g., Junger and Feit [23] and Ihlenburg [22]):

∂2u

∂t2
(x, t) − c0�u(x, t) = f (x, t) in � × (0, T ), (1)

with initial conditions

u(x,0) = u0(x),
∂u

∂t
(x,0) = u1(x) in �, (2)

and absorbing boundary conditions on the whole boundary �
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1√
c0

∂u

∂t
(x, t) + ∂u

∂n
(x, t) = g(x, t) on � × (0, T ). (3)

In the above equations u is the unknown acoustic pressure, c0 is the acoustic wave propagation velocity, f is the source 
term, u0 and u1 are the initial pressure and velocity, respectively.

Absorbing Boundary Conditions (3) (ABCs for brevity) are frequently used for the numerical simulation of acoustic or 
elastic wave problems in infinite domains, see [8,15,27,18,29]. The given unbounded domain is truncated into a finite do-
main, then ABCs are imposed on the artificial boundaries of the truncated domain in order to keep spurious wave reflections 
as low as possible, making the boundary transparent to outgoing and opaque to incoming waves. Even if it would be possi-
ble to enforce exact transmitting boundary conditions, these would be non-local in both space and time, therefore difficult 
to use in numerical computations. Natural first-order ABCs involve first spatial and temporal partial derivatives only, with 
g = 0 on �. In (3) ABCs have been properly modified by assigning a suitable function g ∈ L2(� × (0, T )) in order to investi-
gate the convergence error of the numerical solutions with respect to the exact ones (see Section 4). The source term g and 
the partial derivative ∂ · /∂t are thus dealt with as a boundary load associated with a standard Neumann condition.

For possible extensions with higher-order ABCs involving also derivatives of order greater than one, as well as derivatives 
in the tangential direction, we refer e.g. to [18].

The corresponding variational formulation of (1)-(3) reads as follows:
Find u : (0, T ) → H1(�), such that for a.e. t ∈ (0, T ):(

∂2u

∂t2
, v

)
+ a(u, v) + √

c0 <
∂u

∂t
, v >�= ( f , v)+ < g, v >� ∀v ∈ H1(�), (4)

where

a(u, v) = c0

∫
�

∇u · ∇v dx1dx2, ( f , v) =
∫
�

f v dx1dx2, <
∂u

∂t
, v >�=

∫
�

∂u

∂t
v ds.

The stability of the continuous acoustic problem can be proved following the analysis that has been carried out in Quar-
teroni, Tagliani and Zampieri [29] for elastodynamics linear problems.

3. Discretization of the acoustic wave problem

We briefly describe the numerical approximation of the acoustic wave problem, in the weak (4) and strong (1)-(3) forms, 
respectively. The temporal discretization is based on Newmark’s time advancing schemes, whereas the spatial approximation 
is based on IGA Galerkin and Collocation.

3.1. Newmark time advancing schemes

For the approximation of time derivatives we consider the finite difference Newmark schemes. We subdivide the tem-
poral interval [0, T ] into N subintervals [tn−1, tn], with t0 = 0, tN = T , �t = T /N , tn = n�t , n = 1, ..., N − 1. The Newmark 
method [28] in its general form reads:

un+1 = un + �t vn + (1 − 2β)�t2an/2 + β�t2an+1, vn+1 = vn + (1 − γ )�t an + γ �tan+1, (5)

where un , vn , an are the vectors of approximated displacement, velocity and acceleration values at nodal points, respectively, 
and at time tn , with β ≥ 0 and γ ≥ 0 real parameters. It can be shown that the Newmark scheme can be expressed as a 
two-step algorithm in the displacement only, by eliminating the velocity and acceleration terms (see, e.g., [34], [35]). In 
Sections 3.3 and 3.4 it is applied to IGA Galerkin and Collocation approximation of the wave equation, respectively. We 
remark that other choices of time advancing schemes would be possible. For instance, a new family of high-order explicit 
k-step generalized-α methods for hyperbolic problems has been recently proposed in [5], providing 2k order of accuracy in 
time and improved dissipation properties.

3.2. B-splines and NURBS-based Isogeometric Analysis

Given a knot vector on the reference interval of non-decreasing real numbers

{ξ1 = 0, ..., ξν+p+1 = 1}, (6)

where p is the polynomial degree and ν is the number of basis functions and control points of the B-spline, respectively, 
the univariate B-spline basis functions are built recursively and denoted by N p

i , with support (ξi, ξi+p+1), i = 1, 2, ..., ν (see, 
e.g. [31]). We recall that B-spline basis functions are C p−1-continuous if internal nodes are not repeated, whereas they are 
Ck-continuous, with k = p −α, if the associated knot has multiplicity equal to α. In particular, when a knot has multiplicity 
α = p, the basis is C0-continuous, interpolating the control point at that location where the knot has multiplicity α. From 
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now on, we will assume that the maximum knot multiplicity is p ensuring that all considered functions are at least globally 
continuous. For the simplicity of exposition, here we examine the case of B-spline of same degree p in each directions. 
Then, we introduce the two-dimensional parametric space �̂ := (0, 1) × (0, 1) with a knot vector (6) in each direction, and 
Ci, j is a net of ν2 control points, i, j = 1, ..., ν . The case of higher-dimensional case and different degrees can be dealt with 
analogously.

Given the one-dimensional spline space:

span{N p
i (ξ), i = 1, . . . , ν},

we build the multi-dimensional B-spline basis functions on �̂ by tensor product as B p
i, j(ξ, η) = N p

i (ξ)N p
j (η). Similarly, the 

mesh of rectangular elements in the parametric space is generated in a natural way by the Cartesian product of two knot 
vectors {ξ1 = 0, ..., ξν+p+1 = 1}, and

Ŝh = span{B p
i, j(ξ,η), i, j = 1, . . . , ν} (7)

is the bi-variate spline space. We recall that a rational B-spline in Rd is obtained by projecting onto d-dimensional physical 
space a polynomial B-spline assigned in (d + 1)-dimensional homogeneous coordinate space. We indicate a NURBS basis 
function of degree p as

R p
i (ξ) = N p

i (ξ)ωi∑ν

î=1
N p

î
(ξ)ωî

= N p
i (ξ)ωi

w(ξ)
, (8)

where w(ξ) = ∑ν

î=1
N p

î
(ξ)ωî ∈ Ŝh is a weight function. Analogously to the construction of B-splines, NURBS basis functions 

on the two-dimensional parametric space �̂ are constructed from the bi-variate spline basis as

R p
i, j(ξ,η) = B p

i, j(ξ,η)ωi, j∑ν

î, ĵ=1
B p

î, ĵ
(ξ,η)ωî, ĵ

= B p
i, j(ξ,η)ωi, j

w(ξ,η)
, (9)

where ωi, j ∈ R, and the denominator is the two-dimensional weight function. NURBS basis functions have the same con-
tinuity and support of B-splines, and the span of the basis functions (9) provides NURBS spaces in a similar way. Let 
us consider a single-patch domain � as a NURBS region associated with the net Ci, j . We introduce the geometrical map 
F : �̂ → � defined by

F(ξ,η) =
ν∑

i, j=1

R p
i, j(ξ,η)Ci, j . (10)

According to the isoparametric IGA approach the span of the push-forward of the basis functions (9) yields the space of 
NURBS scalar fields on the domain � is defined by the isoparametric approach as

Nh := span{R p
i, j ◦ F−1, with i, j = 1, . . . , ν}. (11)

3.3. IGA Galerkin discretization of the acoustic problem

We consider the variational form of the acoustic wave problem (4) and replace the L2-inner products and the bilinear 
form with their IGA quadrature-based approximations. The semidiscrete continuous-in-time problem reads: For each t ∈
(0, T ), find uh ∈Nh such that:(

∂2uh

∂t2
, v

)
h
+ ah(uh, v) + √

c0 <
∂uh

∂t
, v >h,�= ( f , v)h+ < g, v >h,� ∀v ∈ Nh, (12)

where (·, ·)h, ah(·, ·), < ·, · >h,� are the IGA L2-quadrature, stiffness and boundary bilinear forms, respectively. The alge-
braic form of problem (12) is obtained by expanding both the solution and the test functions using the IGA basis functions, 
thus providing a system of second-order ordinary differential equations [36]

Mü(t) + Cu̇(t) +Ku(t) = F(t) + G(t), (13)

with initial conditions u(0) = u0, u̇(0) = u1. In system (13) K and M are the assembled stiffness and mass IGA matrices, 
respectively, whereas C accounts for first-order time derivatives at nodes of �. We recall that M, C and K are symmetric, 
M is positive definite, whereas K is symmetric and positive semi-definite. The matrix C is positive semi-definite with 
most elements equal to zero. Finally, ∀t ∈ (0, T ), u(t) is the vector of coefficients of uh in the IGA basis, F(t) and G(t) are 
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known vectors accounting for the contribution of f and g , respectively. If we denote by ϒ(t) the right-hand side of (13), 
the application of the Newmark scheme (5) to (13) gives the recurrence relations:

M
un+1 − 2un + un−1

�t2
+ C

γ un+1 + (1 − 2γ )un + (γ − 1)un−1

�t
+

K
[
βun+1 +

(1

2
− 2β + γ

)
un +

(1

2
+ β − γ

)
un−1

]
=

[
βϒn+1 +

(1

2
− 2β + γ

)
ϒn +

(1

2
+ β − γ

)
ϒn−1

]
. (14)

3.4. IGA Collocation discretization of the acoustic problem

In this section we briefly review the IGA collocation method, see [2,3,32], and apply it to our acoustic wave problem, 
having chosen the Greville abscissae associated to the knot vectors as collocation points, see [13]. We remark that in addition 
to the well-known Greville points, other choices of isogeometric collocation points have been proposed, see e.g. the recent 
review [30]. Among these choices there are the Demko abscissae [14], superconvergent (SC) points [1], Cauchy–Galerkin (CG) 
points [19], and alternating/clustered superconvergent (ASC/CSC) points [26]. Demko and Greville points share an O (hp−1)

convergence order for odd p and O (hp) for even p. SC and ASC/CSC points improve the convergence order to O (hp+1) for 
odd p, but retain an O (hp) order for even p. CG points have O (hp) convergence order for both odd and even degrees p. In 
this work, we will consider for simplicity the Greville points.

Let ξ i , i = 1, ..., ν , be the Greville nodes associated to the given knot vector (6):

ξ i
.= (ξi+1 + ξi+2 + ... + ξi+p)/p , (15)

where ξ1 = 0, ξn = 1, and the remaining points are in (0, 1). The grid of collocation points τi j ∈ � is defined by the tensor 
product

τi j = F(τ̂i j) , τ̂i j = (ξ i, ξ j) ∈ (
�̂

)
, i, j = 1, ..., ν.

The theory of the IGA collocation method for elliptic problems in two and three dimensions still has many open issues; 
despite the lack of proven results, several numerical tests in the literature exhibit the stability and convergence of the 
method in a large number of practical cases.

In order to describe the collocation problem, we enumerate the grid points {τi j} using only one index. Each collocation 
point τi j ∈ �, i, j = 1, ..., ν , is thus associated to the point Pk of the tensor product grid, with k = 1, ..., ν2. Then we define 
two disjoint sets of indexes I� := {k|Pk ∈ �} and I� := {k|Pk ∈ �}, associated to internal and boundary points, respectively. 
We denote by I := I� ∪ I� the set of ν2 indexes of the whole grid of mesh points. The IGA collocation semi-discrete 
continuous-in-time formulation of the acoustic problem (1)-(3) is obtained by collocating the continuous problem at the 
Greville collocation points:

∂2u

∂t2
(Pk, t) − c0�u(Pk, t) = f (Pk, t), k ∈ I�, t ∈ (0, T ), (16)

with initial conditions

u(Pk,0) = u0(Pk),
∂u

∂t
(Pk,0) = u1(Pk), k ∈ I, (17)

and ABCs

1√
c0

∂u

∂t
(Pk, t) + ∂u

∂n
(Pk, t) = g(Pk, t), k ∈ I�, t ∈ (0, T ). (18)

The semi-discrete collocation problem is equivalent to the problem of finding a vector u of elements {uk, k ∈ I}, in corre-
spondence with elements {uij, i, j = 1, ..., ν2} providing the IGA numerical solution

u(x, t) =
ν∑

i=1

m∑
j=1

uij R p,q
i j ◦ F−1(x, t), (19)

according to (10) and (11). We introduce now the IGA collocation matrices [Dr ], with r = 0, 1, 2, accounting for r-th 
derivatives at collocation points, where D0, D1 and D2 are associated to the identity, ∂

∂n and � operators, respectively. The 
precise MATLAB construction is based on the structure sp_eval of the GeoPDEs library [12]. Equations (16)-(18) can be 
then rewritten in matrix form as a system of second-order ordinary differential equations [37]:

∂2

∂t2
[D0u(t)]k − c0[D2u(t)]k = [f(t)]k, k ∈ I�,

1√
c0

∂u

∂t
[D0u(t)]k + [D1u(t)]k = [g(t)]k, k ∈ I�, (20)

[D0u(0)]k = [u0]k,
∂ [D0u(0)]k = [u1]k, k ∈ I, (21)

∂t
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where u(t) := [u(Pk, t)], k ∈ I , f(t) := [ f (Pk, t)], k ∈ I , g(t) := [g(Pk, t)], k ∈ I� , u0 := [u0(Pk)], k ∈ I , u1 := [u1(Pk)], k ∈
I , and all vectors are assigned equal to zero elsewhere.

When the Newmark scheme (5) is applied to the numerical solution of the acoustic wave IGA collocation problem 
(20)-(21), if we denote by [Dr]k the k-th row of the collocation matrix Dr , r = 0, 1, 2, and by [w]k the k-th element of a 
general vector w, we obtain the set of recurrence relations at collocation points:

[D0]k
un+1 − 2un + un−1

�t2
− c0[D2]k

[
βun+1 +

(1

2
− 2β + γ

)
un +

(1

2
+ β − γ

)
un−1

]
= (22)[

βfn+1 +
(1

2
− 2β + γ

)
fn +

(1

2
+ β − γ

)
fn−1

]
k
, k ∈ I�,

1√
c0

[D0]k
γ un+1 + (1 − 2γ )un + (γ − 1)un−1

�t
+ [D1]kun+1 = [gn+1]k, k ∈ I�. (23)

At any corner point involving ABCs we enforce the average of normal derivatives.

Remark 1. By using Taylor expansions it can be proven that the Newmark method is first-order accurate with respect to 
�t if γ �= 1

2 , and it is second-order if γ = 1
2 . The schemes (14) and (22)-(23) are explicit if β = 0 and coincide with the 

Leap-Frog method when γ = 1
2 , which in particular is explicit and second-order accurate with respect to �t . Nevertheless, 

the IGA matrices associated to Galerkin (14) and Collocation (16)-(18) approximations are full both for explicit (β = 0) and 
implicit (β �= 0) case, since the corresponding IGA mass matrices are not diagonal. Therefore, each step of either the explicit 
or the implicit method involves the resolution of a linear system, possibly involving effective preconditioning techniques 
(e.g., [24]). See [36] and [37] for details.

Remark 2. The required second initial vector u1 can be computed from the first one u0 associated to initial condition (2)-
left applying a second-order explicit one-step method, e.g., an explicit two-stage Runge-Kutta method, thus preserving the 
global accuracy of the numerical scheme with respect to the time step �t , and using (2)-right.

4. Numerical results

In this Section we present the numerical tests for the acoustic wave problem with absorbing boundary conditions (2)-(3), 
discretized in time with the Newmark scheme of Sec. 3.1, and in space with the IGA Galerkin (IGA-Gal) of Sec. 3.3 and 
the IGA collocation methods (IGA-Col) of Sec. 3.4. We will focus on the stability and convergence properties of the two 
methods, as functions of the parameters polynomial degree p, mesh size h, regularity k and time step �t . All tests refer to 
the reference square domain � = [0, 1] × [0, 1], Newmark parameters β = 0 and γ = 0.5 and are implemented in MATLAB 
R2020b by the GeoPDEs library [12,33], within a 64-bit Intel(R) Core(TM) i5-10210U CPU up to 2.10 GHz with 8 GB of RAM. 
For several tests considering also non Cartesian domains and different choices of the Newmark parameters see [36] and 
[37]. (For a complete interpretation of the color figures and comments reported in this Section, the reader is referred to the 
web version of this article.)

In the first tests the right-hand sides f , g and initial conditions u0 and u1 are assigned in such a way that the exact 
solution of the wave problem (2)-(3) is given by

u(x, t) = sin(mπx1) sin(mπx2) sin(t), m ∈N. (24)

For each time step tn we compare the exact solution (24) with the IGA-Newmark solutions using the sp_l2_error
function of the GeoPDEs library [12], according to which the errors e(p, h, �t) are obtained evaluating the discrete L2-norm 
of the difference between the exact and the IGA-Gal and IGA-Col solutions.

In the last examples we will consider instead a source f given by a Ricker wavelet placed at one or two given points of 
the square �, with g, u0 and u1 equal to zero.

Stability. In Fig. 1 we plot the �t stability thresholds as a function of h (left panel) for fixed p = 5, k = 4, and as a function 
of p (right panel) for fixed 1/h = 10, k = p − 1. The test function is given by (24), with m = 1. The stability thresholds 
seem to be linear in h for fixed p, and linear in 1/p for fixed h, and k = p − 1 in both panels. Moreover, the maximal �t
that guarantees stability in the case of IGA-Col are at least twice the IGA-Gal thresholds, showing less restrictive stability 
constraints than in the case of the IGA-Gal method.

Accuracy: oscillatory solution. Table 1 reports the errors e(p, h, �t), with time step �t = 0.001 at time tn = 1, as a function 
of p, for fixed mesh size 1/h = 4 and maximal regularity k = p − 1 for different values of m = 1, 2, 4, 6 in the test function 
(24), in order to compare the accuracy of IGA-Gal (left table) and IGA-Col (right table) in dealing with an exact solution 
presenting increasing wave numbers. Results show that the accuracy is similar for highly oscillatory solutions, whereas the 
IGA-Gal performs better than the IGA-Col for smaller values of m.
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Fig. 1. �t stability thresholds vs h (left) for fixed p = 5, k = 4 (left) and vs p for fixed 1/h = 10, k = p − 1 (right), for IGA-Gal (dashed lines) and IGA-Col 
(continuous lines).

Table 1
Error e(p, h, �t) vs p, for k = p − 1, 1/h = 4, �t = 0.001 and different values of m = 1, 2, 4, 6 in the test 
function (24), for IGA-Gal (left) and IGA-Col (right).

p m = 1 m = 2 m = 4 m = 6 m = 1 m = 2 m = 4 m = 6

Galerkin Collocation

3 2.575e-4 7.133e-3 2.303e-1 4.219e-1 3.599e-2 8.161e-2 8.389e-1 1.728e-0

4 3.285e-5 1.211e-3 2.689e-3 2.789e-1 5.632e-4 1.255e-2 3.920e-2 2.039e-0

5 4.256e-6 6.152e-4 6.212e-2 3.623e-1 1.341e-4 1.445e-3 1.544e-1 7.112e-1

6 5.613e-7 1.337e-5 2.526e-4 9.834e-2 3.306e-6 5.069e-4 8.454e-4 2.622e-1

7 4.217e-8 2.690e-5 9.777e-3 1.664e-1 1.020e-6 1.829e-4 4.580e-2 2.807e-1

8 6.070e-9 1.397e-6 2.693e-5 2.202e-2 1.064e-7 4.721e-5 2.657e-5 3.460e-2

Fig. 2. Error e(p, h, �t) vs odd values of p (triangles) and even values of p (squares), for k = p − 1, 1/h = 4, �t = 0.001 and m = 2 (left), m = 4 (center), 
m = 6 (right) in the test function (24), for IGA-Gal (blue continuous lines) and IGA-Col (red dashed lines).

In Fig. 2 we report the same data as in Table 1, for the cases m = 2 (left) m = 4 (center), m = 6 (right), by separating odd 
(triangle markers) and even (square markers) values of p, for IGA-Gal (blue continuous lines) and IGA-Col (red dashed lines). 
Again, if we fix the same set of discretization parameters, we observe the better accuracy of IGA-Gal with respect to IGA-Col 
method. We also observe that the convergence rates in p are similar but the errors are better for even values of polynomial 
degree p than for odd values, since the continuous lines are definitely below the dashed ones. With regard to this different 
behavior for even and odd degrees p, the problem of removing spurious outliers in the Laplacian’s eigenvalues corresponding 
to even or odd values of degree p has been recently dealt with in the framework of IGA Galerkin approximation in [25].

Convergence and CPU TIME. We compare now the computational costs CPUTIME - including initialization and assembly 
operations until the end of the time advancing procedures - and convergence errors e(p, h, �t) computed at time tn of 
IGA-Gal (continuous lines) and IGa-Col (dashed lines). Numerical results refer to exact solutions (24) with m = 1 and time 
step �t = 0.001. Fig. 3 shows from the top to the bottom: the errors versus the mesh size h (1), CPUTIME (2), degrees of 
freedom dofs (3), and CPUTIME versus dofs (4). We consider four different values of degree p and minimal regularity k = 1
(left) or three different values of degree p and maximal regularity k = p − 1 (right).

In Fig. 4 we report results analogous to those of Fig. 3, but now we vary the degree p and consider three different values 
of the mesh size h. The IGA-Gal simulations are definitely more accurate than IGA-Col ones when we adopt the same set of 
discretization parameters both for increasing 1/h with fixed p and for increasing p with fixed 1/h. As a matter of fact we 
observe that IGA-Gal errors are 3-4 orders of magnitude smaller than the analogous IGA-Col ones. In the case of maximal 
E. Zampieri and L.F. Pavarino Applied Numerical Mathematics 200 (2024) 453–465
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Fig. 3. Accuracy and CPUTIME of IGA-New-Gal (continuous lines) and IGA-New-Col (dashed lines) as a function of the mesh size h fixed p = 2, 3, 4, 5 on 
the left panel with regularity k = 1 and p = 3, 4, 5 on the right panel with regularity k = p − 1. From the top to the bottom: errors versus the mesh size h
(1), CPUTIME (2), degrees of freedom dofs (3), and CPUTIME versus dofs (4). Test function (24) with m = 1, �t = 0.001.
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Fig. 4. Accuracy and CPUTIME of IGA-New-Gal (continuous lines) and IGA-New-Col (dashed lines) as a function of the degree p fixed 1/h = 2, 5, 8 with 
regularity k = 1 (left panel) and with regularity k = p − 1 (right panel). From the top to the bottom: errors versus the degree p (1), CPUTIME (2), degrees 
of freedom dofs (3), and CPUTIME versus dofs (4), with regularity k = 1 (left) or k = p − 1 (right). Test function (24) with m = 1, �t = 0.001.
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Fig. 5. Time evolution on the interval [0, 3] of the energy (L2-norm) of the numerical solution: one Ricker wavelet located at the center of the square 
domain (left); one Ricker wavelet located near the corner of the square domain (center); two Ricker wavelets located near the corners of the square domain 
(right). B-splines with p = 5, k = 4, h = 1/8 and �t = 0.001 (red dotted lines) or with p = 6, k = 5, h = 1/10 and �t = 0.0005 (blue dashed lines), for the 
IGA-Gal (top panel) and the IGA-Col (bottom panel) variants.

regularity the errors are still smaller but with a reduced gap of 1-2 orders of magnitude. Alternative considerations can be 
made if we compare the CPUTIME of IGA-Gal and IGA-Col versus dofs, since the dashed collocation lines are definitely in the 
bottom part of the figures showing that using IGA-Col methods it can be reached a given error value in a smaller CPUTIME 
with respect to the IGA-Gal variant. This behavior is even clearer in the case of maximal regularity k = p − 1 (right panel).

Ricker wavelet tests. As final tests we consider the propagation of one Ricker wavelet originating first at a point P located 
either at the center P1(0.5, 0.5) or at P2(2/9, 2/9) near the corner of the square domain �, and finally of two Ricker 
wavelets located at P2 and at its symmetric P ′

2(1 − 2/9, 1 − 2/9) with respect to the center of the domain, thus considering 
a more demanding test taking into account the effect of interference of two sources. In all cases we set homogeneous initial 
conditions in (2). We recall that according to the expression of the Ricker wavelet the source is given by

f (x, t) =
{ [

2 f̃ (t − t0)
2 − 1

]
e− f̃ (t−t0)2

x = P

0 elsewhere
(25)

where we have fixed f̃ = 100 and t0 = 0.5. Fig. 5 displays the time evolution of the Ricker wavelet L2-norm for the IGA-Gal 
(top panel) and for the IGA-Col (bottom panel) in the three tests with source term given by: one wavelet located at the 
center P1 of the square domain (left), one wavelet located at P2, near one corner of the square domain (center), and two 
wavelets located at P2 and at P ′

2 near two opposite corners of the domain (right). The numerical discretization consists of 
B-splines with p = 5, k = 4, mesh size h = 1/8 and time step �t = 0.001 (red dotted lines) or with p = 6, k = 5, mesh 
size h = 1/10 and time step �t = 0.0005 (blue dashed lines). We observe that the L2-norm curves are qualitative similar 
in each of the three cases for the two IGA variants, with a decrease of the pressure toward zero for t > 1. Nonetheless, 
the performance of the IGA-Gal simulation is more accurate yielding values of L2− energy that are one order of magnitude 
smaller than in the corresponding IGA-Col case.

Finally, the propagation of the wavelet is also displayed in Fig. 6 for the IGA-Gal with the Ricker wavelet source located 
at P ≡ P2, and in Fig. 7 for the IGA-Col with two Ricker wavelet sources located at P ≡ P2 and P ≡ P ′

2. We show nine 
representative snapshots of the pressure field u at times t = 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.750, 2.00, 3, fixed p = 6, k =
5, mesh size h = 1/10 and �t = 0.0005. In both cases the pulses dissipate across the absorbing domain boundaries with 
negligible spurious wave reflections.
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Fig. 6. Snapshots of one Ricker wavelet propagating from one corner of a square domain at nine time instants of the interval [0, 3]. IGA-Gal with p = 6, k =
5, 1/h = 10, �t = 0.0005.

5. Conclusions

In this paper, we have compared the Galerkin and Collocation Isogeometric approximations of the acoustic wave equation 
with absorbing boundary conditions, whereas the time discretization is based on second-order Newmark schemes. We have 
carried out an experimental investigation on the properties of the two IGA methods, focusing on their stability thresholds, 
convergence errors, accuracy, computational time, and sparsity of the stiffness matrices as functions of polynomial degree 
p, mesh size h, regularity k, and time step �t . Besides more standard tests on stability thresholds and error convergence, 
we have focused on the comparison of the two IGA methods on two significant test problems in the framework of wave 
propagation simulations: the first problem concerns the accuracy of the IGA solutions with respect to an oscillatory exact 
solution having increasing wave number, while in the second problem we have compared the dissipation of two interfering 
Ricker wavelets by computing the energy L2-norm of the numerical solution as a function of time. Despite the lack of 
theoretical results in the literature, numerical results show that the IGA Collocation method retains convergence and stability 
properties analogous to the IGA Galerkin method. In addition, we can conclude that in all tests IGA Collocation method is in 
general less accurate if we adopt the same choices of parameters p, k, h, and �t . Nevertheless, regarding the computational 
cost and the amount of memory required to achieve a given accuracy, we observe that the IGA Collocation method often 
outperforms the IGA Galerkin method, especially when we consider the case of maximal regularity k = p −1 with increasing 
NURBS degree p.

Limitations and future work. This study was limited to the acoustic wave equation in the reference square, but we conjecture 
that similar results hold for three dimensional domains. Given the tensor product structure of IGA domains and basis 
functions, we do not expect new technical issue.
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Fig. 7. Snapshots of two Ricker wavelets propagating from two corners of a square domain at nine time instants of the interval [0, 3]. IGA-Col with 
p = 6, k = 5, 1/h = 10, �t = 0.0005.

This study was also confined to single-patch domains. Therefore additional study should be necessary in order to inves-
tigate the effects of inter-patch continuity conditions on both IGA Newmark discretizations considered in this paper. In this 
regard, the extension of efficient IGA approximations to multi-patch geometries is still an active research area, see e.g. [7].

In future work, we plan to construct efficient preconditioners for the linear systems arising at each time step of IGA New-
mark schemes, as well as their extension to the three-dimensional case and to elastic wave problems. Additional extensions 
of our work include different time advancing schemes for the approximation of time derivatives and alternative choices 
of isogeometric collocation points, which hold the potential to enhance the accuracy and efficiency of our isogeometric 
simulations.
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