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Abstract

In this paper, we consider the problem of estimating the reliability parameter of
a mixed-type stress-strength model, i.e., the probability R = P (X < Y') where
X and Y are a discrete and a continuous random variable, respectively. We
focus on the specific case of Poisson stress and exponential strength, deriving the
expression of R and its maximum likelihood estimator (MLE) and its uniformly
minimum-variance unbiased estimator (UMVUE), based on simple random sam-
ples independently drawn from X and Y. For the MLE, we are able to provide an
expression for the cumulative distribution function, which allows us to compute
its expected value, bias, and variance. We derive asymptotic properties of the
MLE, which we exploit for constructing approximate confidence intervals based
on different approaches. A simulation study empirically compares such estima-
tors and provides advice for their correct use, which is also illustrated through
an application to real data.
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1 Introduction

In its simplest form, the so-called stress-strength model considers a unit or a system
with an intrinsic strength Y that is subjected to an external stress X. The unit/system
works if and only if ¥ > X. If X and Y are modeled as random variables (rvs),
then the probability that the unit/system works is given by R = P (X < Y'), which
is called the reliability parameter of the stress-strength model. This stochastic model



can encompass many other applications with a broader meaning of the reliability
parameter. In a clinical study, X may model the response of a control group and Y the
response of a treatment group; then, R measures the effectiveness of the treatment. If
X and Y are the remission times of two chemicals when they are administered to two
kinds of mechanical systems, then R presents a comparison of the effectiveness of the
two chemicals. If X and Y are future observations on the stability of an engineering
design, then R is the predictive probability that X is less than Y. Similarly, if X and
Y represent the lifetimes of two electronic devices, then R is the probability that the
former fails before the latter.

The stress-strength problem was first considered by Birnbaum (1956), and since
then, a huge number of contributions have been produced on the computation of R and
its sample estimation, under many parametric assumptions about the distributions of
X and Y (Kotz et al., 2003). Most of them model stress and strength as (independent)
continuous rvs. This is because the stress-strength model generally has applications in
the engineering field, in which variables are usually measured on a quantitative contin-
uous scale (Gnedenko and Ushakov, 1995). Among continuous models, an exponential
distribution is often used to describe the lifetime of complex electronic equipments.
For example, Tong (1974) and Tong (1975) considered the point estimation of R when
X and Y are independent (one-parameter) exponential rvs; under the same assump-
tions, Enis and Geisser (1971) derived an exact confidence interval (CI) for R. Varde
(1969) and Krishnamoorthy et al. (2007) studied the case of two-parameter exponen-
tial stress and strength; Raqab et al. (2008) focused on stress and strength following
the three-parameter generalized exponential distribution.Cortese and Ventura (2013);
Jian and Wong (2008) suggested improvements in inferential methods for the estima-
tion of R based on higher-order methods, with a focus on small samples and also using
an exponential distribution.

However, even in the engineering field, it sometimes happens that measurements
can be done on a discrete scale, e.g., when the lifetime of a device is measured in terms
of the number of days of functioning, or when the number of cycles or runs it can
sustain before failing is considered. Furthermore, continuous data may be discretized
or grouped into classes so that they can be regarded as discrete. Therefore, stress-
strength models in which at least one component is categorical/discrete are worth
exploring. They can be of interest when comparisons are made of two times (lifetimes,
times to failure, remission times, etc) that are measured on different scales (discrete
and continuous). They are proved to be “useful for the reliability situation in which
the time of failure of one component is recorded continuously while that of the other
discretely” (Tong, 1977). An example is provided in Hu et al. (2021): if X is the unit
of time that it takes to reach out to a patient and Y is the survival time of the patient,
then R is the probability of successfully reaching out to a patient who is still alive.

To the best of our knowledge, little work has been done on this topic. Maiti (1995)
studied the inference of P(X < Y') when X and Y are independent geometric rvs; Bar-
biero (2013) considered the same problem when X and Y are independent Poisson
rvs; and Obradovic et al. (2014) focused on P(X <Y') with X a geometric and ¥ a
Poisson rv. Jovanovié (2016) considered P(X < Y) when X and Y follow a geometric



and an exponential distribution, respectively. The author derived the maximum likeli-
hood estimator (MLE) of R, its asymptotic distribution, and the confidence intervals
based on it, as well as the uniformly minimum-variance unbiased estimator (UMVUE)
of R and of its variance; the Bayes estimator of R was investigated, and its Lindley’s
approximation was obtained. For the same model, Hu et al. (2021), taking into con-
sideration parametric and nonparametric methods, developed two-stage and modified
two-stage sampling procedures, respectively, to determine the necessary sample sizes
for constructing a CI with the required accuracy. Singh et al. (2023) discussed a stress-
strength model with geometric stress and strength following a continuous Lindley
distribution.

In this paper, a stress-strength model with stress and strength distributed as a
Poisson and an exponential rv, respectively, is considered. These two random distri-
butions represent popular choices for modeling discrete and continuous lifetimes; in
addition, they are strictly connected since they are the basis of the genesis of the Pois-
son process. The paper is structured as follows. In the next section the expression of
the reliability R for the Poisson-exponential model is derived. The problem of sample
estimation under the frequentist paradigm is then examined in Section 3, where the
expressions of the MLE and the UMVUE are provided as well as the exact and approx-
imate distributions of the former. In Section 4, asymptotic confidence intervals for R
relying on the asymptotic normality of its MLE or on the asymptotic behavior of the
profile log-likelihood ratio are proposed, the latter incorporating a numerical search
procedure. Section 5 illustrates a Monte Carlo simulation plan, aimed at investigat-
ing and comparing the performance of point and interval estimators under different
settings.

Section 6 applies the estimation techniques previously discussed to two real data
sets taken from the literature.

Some final remarks conclude the paper.

2 Reliability parameter

Let us consider a stress-strength model in which the stress X follows a Poisson
distribution with parameter A; > 0, with probability mass function (pmf)
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and the strength Y follows an exponential distribution, independently of X, with rate

parameter Ao > 0, with probability density function (pdf):

_ ) Aeexp(—Ay) y>0
Ty(y) = {O y < 0.



The reliability parameter R = P (X < Y') of this model is then given by:
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Note that R > e~ 1.

3 Point estimation

Suppose an i.i.d. sample of size n, £ = (z1,...,x,), is available from X and an i.i.d.
sample of size m, y = (y1,...,Ym), is available from Y. We can calculate the MLE as
well as the UMVUE of R.

3.1 Maximum likelihood estimator

The MLE of R is obtained by exploiting its invariance property and then by simply
plugging the MLEs of A; and Ay into (1). Since for a Poisson rv with parameter Ay
and an exponential rv of parameter Ao these MLEs are \; = %Z?:l r; = T and
Ao =m/ Z;n:l y; = 1/y, respectively, the MLE of R is given by

R= 675‘1(17642) — e~a1=e™Y), (2)

If we define U = 377" | 2y = nZ and V = 37", y; = my, we know that U ~ Pois(n;)
and V ~ Gamma(m, Az). We can then consider the rv
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and compute the distribution of 7= 1 —e~™/V. Since V = —L, the cdf of
log(1—1T)
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with Fy being the cdf of V. Then, the cdf of L = — 1ogf% can be computed as
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and then the cdf of R is given by

Fg(r) :P(logf{ <logr)=1 —P(—IOgR < —logr)
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with 0 <r <1 and

a(r) _ —m 1+%10g7" >0
0 1+ 2logr <0.

Since the cdf of a Gamma rv like Fy is implemented under any statistical software,
such as R (R Core Team, 2023), the cdf in (3) can be easily evaluated numerically for
any 0 < r < 1. Note that at » = 1, R has a probability mass equal to exp(—nA1),
which corresponds to the probability that all the z values are zero (because § > 0
almost surely, the MLE of R = P(X < Y) is 1). Thus, if the values of the parameters
A1 and Ay and the sample sizes n and m are known, one can compute numerically
the entire cdf of the MLE of R, and by inverting it, any a-quantile, 0 < a < 1. The
moments of R can be calculated, recalling that for a non-negative rvs X with cdf F,
the following expressions hold:

E(X) = /000 1 — Fx(z)dz (4a)

var(X) = /000 22(1 — Fx(z))dx. (4b)

The expected value of R can therefore be numerically recovered, and this allows us to
assess the bias of the MLE of R for any choice of the stress and strength distributions’
parameters and sample sizes. In the panels of Figure 1, the expected value of the
MLE of R is reported for several choices of (A1, A2) and for equal sample sizes n =
m =1,...,100. Note that once the stress and strength distributions are fixed, for the
parameter combinations examined here, E(R) is a monotone (increasing or decreasing)
function of the common sample size, and it tends asymptotically to the value R (as
expected, the MLE is asymptotically unbiased). However, for other combinations of
A1 and Az, the monotonicity feature can be lost: for example, when A\ = 3 and Ay =
0.5, E(]:?) is first decreasing and then increasing. As a general rule, one can observe
that keeping A; fixed, by decreasing Ao (and then increasing the reliability parameter
R), ER changes from decreasing to increasing, possibly passing through the non-
monotone trend described previously. Similarly to the expectation, the variance and
the mean squared error rmse(R) = E[(R — R)?] can be evaluated for any combination
(n,m, A1, A2).



T
3
2 Te S [e
@
oS
4 . .
°
g g .
o . =]
.
-~ 4 ° = .
& . € A
piv o 9
© . 2 .
8 | Y & .
i1 % Sl
1 .\ ©
<
B
o oS
84 R R
o
T T T T T T T T T T T T T T T T T
5 10 20 30 40 50 60 70 5 10 20 30 40 50 60 70 80 90 100
n=m n=m
(a)AIZI,)\gzl (b))\1:2,)\2:1
8
NS R 2 R
S =)
=)
Y
N
5 4
S 3
<
o S
~ 5 o —~
< Q7 (] <
o ° N o s
o * - D
Sl . o .
5] . o .
.
.
§ i .
s | * o | ®
g
. = .
o
T T T T T T T T T T T T T T T T T
510 20 30 40 50 60 70 510 20 30 40 50 60 70 80 90 100
n=m n=m
(C) )\1 = 1, )\2 =0.5 (d) )\1 = 2, /\2 =0.5
=)
g4 R 2 R
s S
I
2 g
e
3 S ° ¢
—~ J ~ o J
< ° < @ .
T o . o2 )
g4 ¢ .
S . 0 .
&
. S .
28| e
- o .
s g
=
. .

n=m

(e) )\1 = 1,)\2 = 1/4

n=m

) A1 =22 =1/4

Fig. 1: Expected value of the MLE of R for several parameter configurations as a
function of common sample size n = m (N.B.: the scale of the ordinate is not the same
across the six graphs).



3.2 Uniformly minimum-variance unbiased estimator

The exact expression of the UMVUE of R can be derived as well, and it is given by

RO e

j=

with u = 37" | 2; and v = 377" | y; (see Appendix A for details).

4 Interval estimation

4.1 Asymptotic distribution of R

In the next two theorems, we will establish the asymptotic distribution of (A1, Az)
and IA%, when two independent samples of size n and m are available from X and Y,
respectively.

The likelihood function of A\; and Ay can be written as

n
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and the log-likelihood function, omitting # and y from the notation, as

(A, o) = in log Ay — nAy — Zlogxi! + mlog Ao — Ao Zyj, (6)
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from the asymptotic normality of the MLE, it follows that

Vi = A1) -5 N(0,\)

n—0o0

and . .
Vm(da — X2) 1 N(0,A3)
and then . .,
V(A2 — A2) = N(, sA3).
From the independence of 5\1 and 5\2, we obtain the statement of the theorem. O

Theorem 2. Under the same hypothesis as that of the Theorem 1,
V(R = R) -5 N(0,e 2=\ 1+ (14 sA A2)e 22 — 2¢2)).
Proof. In order to prove this theorem, let us consider
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Then, we have

Vn(R - R) % N(0,BJB').
Plugging in the values of B and J, we obtain the statement of the theorem. O

One can compare the exact value of the variance of R7 whose calculation was
described in Section 3, with the approximate value provided by the second theorem
for large n and m, for any possible configurations.

4.2 Interval estimators

Using the previous theorem, we can construct the asymptotic confidence intervals for
R. Define X . . A R
62 = e MU= XN 1 4 (1 4+ M AD)e 22 — 2e7 2],

Then, the estimator of the variance of R is

var(R) = sy (7)

n

A symmetric Wald-type CI with level 1 — « is therefore provided as

. [var(R) [var(R
R—2zi_a/2 75 )7R+2’17a/2 75 ) ) (8)

with 2z, being the v quantile of the standard normal distribution. This CI, however,

may have a poor performance for small sample sizes or point estimates R close to 0



or 1, and it may contain invalid values for R, if the lower bound falls below 0 or the
upper bound exceeds 1.

Thus, an alternative CI based on the logit transformation is here suggested; it
has been used in the estimation of the reliability parameter of stress-strength models

in Mukherjee and Mahiti (1998). Letting 6 = log (%) and 6 = log (%), one can

first construct an approximate (1 — «)100% CI for 0, as

0000 — (3 \/var(R) ; var(R)
s = —Zl—a)2 >0tz |,
L,YU 1 /QR(I_R) 1 /QR(I_R)

and then the corresponding CI for R by inverting the logit function:

(o) el
(R, Ru) = (1 +exp(fr) 1+ eXPWU)) . Y

Such a CI, in contrast to the Wald-type CI in (8), is no longer symmetrical around
R, and it is expected on average to have a coverage rate closer to the nominal level
and/or a smaller width. However, Wald’s statistic and then the Wald-type CI in (8) are
not invariant with respect to reparametrizations. It is shown, for instance, in Mantel
(1987), that for exponential families, “with use of the Wald test, according to the
parameterization employed, the same data can be both consistent with all possible
null values for the parameter and inconsistent with all possible values” (see also Fears
et al. (1996)). In view of this, some caution must be used even when resorting to the
logit transformation.

A possibly better interval estimator of R can be obtained by relying on the asymp-
totic distribution of the profile log-likelihood ratio, which may provide satisfactory
results especially for small sample sizes (Cortese and Ventura, 2013; Diaz-Francés and
Montoya, 2011; Ventura and Racugno, 2011) or, in general, when there is not enough
data available to reach the asymptotic properties of the MLE. We know that the max-
imum value of the log-likelihood function, fyax (A1, A2; Z,y) = maxy, a, (A1, A2; T, Y),
is attained at the MLEs (A; = Z, A = 1/7). The log-likelihood function in (6) can

be re-parametrized in terms of R and Ay by solving (1) for A, Ay = —1?5_112, and
substituting its expression in (6), thus obtaining
n n m
log R nlog R
U(R,\g;,y) = Zwi -log (—1 — e/\2> t o Zlogmi! + mlog Az — )\22%*
i=1 i=1 j=1
(10)

The profile log-likelihood of R is by definition obtained from (10) by substituting for
Az its restricted MLE for a specified R, A2(R):

p(Rz,y) = max (R, ho; 2, y) = (R, Ao(R); 2, y).



In order to obtain S\Q(R), one can compute the first-order derivative of the profile
log-likelihood in (10) with respect to Ae, equate it to zero, and solve for its unique root:

OU(R, Na;x,y) nze M2 ne*2logR m B
= — — + ——-—my=0.
0o l—e 22 (1—e*)2 X\

However, this non-linear equation in Ay can be solved only numerically, so the value
¢y(R,z;y) can be calculated numerically as well. Now the statistic

Q[KP(vaJJ) - gp(Rvmay)] = 2[£max(zay) - gp(Rw'an)]a

which is the profile log-likelihood ratio, is asymptotically distributed as a chi-square
rv with 1 degree of freedom. Then, an (approximate) CI for R at level 1 — « is given
by (R(Lp ), jo)), with R(Lp) and jop ) being the ordered roots of the following equation:
206, (R;z,y) — £y(R; x,y)] = Xi_a,1 (see also Figure 2). Determining such lower and

Fig. 2: Computation of the lower and upper bounds of the confidence intervals
based on the profile log-likelihood. The solid curve is the graph of twice the profile
log-likelihood function, 24, (R;z,y) for assigned & and y; the function takes on its max-

imum value M = 26, (A1, A2; 2, y) at R. The two values R(Lp) and Rg)) are obtained
by equating twice the profile log-likelihood function to M — 3.84, with 3.84 being the
value of the 95% quantile of level of a chi-square rv with 1 degree of freedom.

_ M = 2l

2
Xi-a,1

2,(R)

[
Rl(Jp)

> —
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upper bounds for R requires a numerical search procedure, which can easily be imple-
mented (see also Jazi et al. (2010) for a similar procedure for finding the MLE).
Note that inference based on the profile log-likelihood ratio should be theoretically
preferred to that based on the Wald statistic, presented in the previous paragraph.
Although they are asymptotically equivalent, the Wald-type CI can be interpreted
as a CI based on a quadratic approximation of the log-likelihood, whereas the pro-
file likelihood confidence interval is constructed by exact computation of the profile

10



log-likelihood. Moreover, the profile log-likelihood ratio test is invariant to a change
in parametrization and the log-likelihood-based CI always contains valid values of the
parameter, in contrast to the Wald interval (8).

An approximate (1 — a)100% CI for R can also be built resorting to the results
of Section 3 related to the exact distribution of R. One can consider the interval
(Flgl(a/Z),F’gl(l — «a/2)), where F}%l denotes the MLE of the generalized inverse
function of Flp, i.e., the generalized inverse (or quantile function) of Fp, with the
MLEs of A\; and A2 plugged in.

5 A Monte Carlo simulation experiment

In this section, some Monte Carlo (MC) simulations are performed to compare the
two different point estimators and the four different interval estimators of R. We
study different sample sizes, (n,m) € {(10,10), (10, 20), (20, 10), (20, 20), (100, 100)}
(making the same choice as Jovanovi¢ (2016) for the geometric-exponential stress-
strength model), and different values of parameter A; and g, \y € {1,2,3}, Ay €
{1/8,1/4,1/2}. The values of the two parameters were chosen in order to produce
round expected values for the stress and strength rvs and several different values for
the corresponding reliability parameter R. For each combination of n, m, A1, and Ag,
we simulated one random sample from X ~ Pois(A;) and one random sample from
Y ~ Exp()Az) independently and calculated the MLE of R according to (2) and the
UMVUE of R using (5). We also calculated a 95% CI according to the four techniques
described in Section 4 (Wald-type CI, Eq.(8); logit-transformed Wald-type, Eq.(9);
profile-log-likelihood-based CI; estimated cdf-based CI). This procedure was repeated
T = 50,000 times, and the MC averages for MLE, avg(]:l), and UMVUE, avg(R),
were calculated. Over the T estimates of R and R, we also computed an MC estimate
of their rmse, as rmse(R) = \/% ZtT:l(fEt — R)? and rmse(R) = \/% ZtT:l(f%t — R)?;
these two quantities can be used to compare the precision of the two point estimators.
Note that the value of rmse(]%) could be calculated exactly, since we know the exact
distribution of R: rmse(R) = var(R) + (E(R) — R)?, with E(R) and var(R) calculated
through equations (4a) and (4b). However, since the distribution of R cannot be
recovered exactly, we preferred to compare the two estimators through their empirical
rmse. Over the T' MC runs, we calculated the actual coverage for each type of CI, i.e.,
the proportion of the T' confidence intervals containing the true value of R, along with
the average width.

Table 1 displays the results of the two point estimators; for the MLE, we also

computed the expected value E(R) and the standard deviation o5 = y/var(R). We
can notice that in almost all cases, the UMVUE has an MC average closer to R than
the MLE, as one may expect: R is unbiased by construction, and the very small biases
in the simulation results are the consequence of rounding off and the finite number
of iterations. The MLE, in contrast, is not theoretically unbiased, and by comparing
the values of R with those of E(R) or avg(R), we realize that its (MC) bias is always
negative except for one scenario. One can also note that the MC bias (in absolute
value), for a given combination (A1, A2), decreases as the two sample sizes increase,
becoming almost zero when n = m = 100. As for the rmse, one can note that the

11



UMVUE tends to present a lower rmse than the MLE for the scenarios leading to
larger values of R, so in these cases the UMVUE would be preferable to the MLE,
being theoretically unbiased and with a smaller rmse. In contrast, the UMVUE tends
to present a higher rmse for the scenarios leading to a smaller value of R. Increasing
the sample sizes makes the performances of the two estimators more alike under each
scenario here considered.

Figure 3 displays the scatter plot of the MC distribution of (R, R) and the his-
tograms of the MC marginal distributions of R and R when A\ = 1, Ay = 1/8 and
n = m = 10, corresponding to a value of the reliability parameter R = 0.8891. The
scatter plot indicates that for each pair of samples drawn from the stress and strength
rvs, the values of R and R are very close to each other, although we always have
R <R (all the points lie very close to each other but above the 45-degree bisector;
the maximum absolute difference between the two estimates is about 0.0164).

Table 2 displays the results concerning the interval estimation of R. Trying to
summarize them, we first remark that when both n and m are equal to the largest
value examined here, 100, then the four methods are almost equivalent: they all present
an actual coverage very close to the nominal one and a very similar average length.
Focusing on the smaller sample sizes, in particular, n = m = 10, it is evident that
the profile-log-likelihood-based estimator shows overall the best performance, in terms
of closeness of the actual coverage to the nominal coverage and in terms of average
width. The second best is the interval estimator based on the logit transformation,
which exhibits results very close to the profile-log-likelihood-based CI. The CI based
on the inversion of the estimated cdf usually shows, among the four estimators, the
largest average width, though performing quite well in terms of actual coverage (but
this performance has an unclear relationship with sample sizes). It turns out to be
the best estimator and is on par with the profile-log-likelihood-based estimator only
when A1 = 3 and Ay = 0.5, which corresponds to the lowest value of R considered.
The classical Wald-type CI often suffers from under-coverage (the actual coverage
rate falls down to 92 — 93% when n = m = 10), though performing well in terms of
average width. Since the additional computational effort required for the calculation
of the profile-log-likelihood based CI is minimal, the use of this interval estimator is
recommended especially for small samples.
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Fig. 3: Scatter plot and histograms for the bivariate distribution of (R, R) when
A1 =1, Ay = 0.125, and n = m = 10. The red line superimposed on the scatter plot
is the bisector of the first and third quadrants.
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6 A real-data application

We consider the data set 3 and the data set 4 reported in Table VII of Gupta et
al. (2023), containing the times to breakdown of an insulating fluid under different
experimental conditions (different voltages between electrodes). The authors of Gupta
et al. (2023) show that both data sets are fitted by the one-parameter exponential
distribution more than adequately. In order to apply the estimation techniques for
the Poisson-exponential stress-strength model presented and assessed in the previous
sections, we regard the values in data set 3 as a sample from an exponential strength
distribution, with estimated parameter Ao = 0.2171, whereas we truncate the (contin-
uous) values in data set 4 to their integer part, and then we regard them as a sample
from a Poisson stress distribution. The “transformed” integer data are

0,0,0,0,0,1,1, 2,
and have a mean of 0.5 (corresponding to 5\1) and a variance of 0.571. The Pois-

son distribution is a good fit for them, which can be checked by resorting to the
distance-based tests of Poissonity relying on the Cramér-von Mises distance and on
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Table 3: Point and interval estimates of the reliability parameter R = P(X <Y)
for the real-data application. Second row: estimates; third row (between brackets):
standard error of the point estimate and length of the confidence interval

R R Wald CI logit CI profile CI est.cdf CI
0.9070  0.9107 (0.8115,1.000)  (0.7585,0.9680)  (0.7754,0.9724)  (0.7859,0.9817)
(0.0514) - (0.1885) (0.2095) (0.1970) (0.1958)

the energy distance, proposed by Szekely and Rizzo (2004) and available in the pack-
age energy) (Szekely and Rizzo, 2022); for both tests, the p-value is far greater than
5% (89.94% and 77.36%, respectively). We further assume that the stress and strength
random variables underlying these two samples are independent. Then, we compute
the point estimates R and R of the reliability parameter R = P(X < Y), as well as
the four different CIs presented in Section 4, with a confidence level of 95%; the stan-
dard error of R was calculated as well. The results are displayed in Table 3, in which
the length for each CI is also reported. One can note that the two point estimates
provide slightly different results (0.9070 vs. 0.9107); this discrepancy among the dif-
ferent interval estimates is more accentuated, a fact that could have been expected
considering the small sample sizes. We underline that since the upper bound of the
symmetrical Wald-type CI exceeded the natural bound 1, we truncated it to 1 (this is
a typical problem with Wald-type CIs for a probability or a proportion, as we men-
tioned in Section 4). The Wald-type CI shows the narrowest length, but also has a
lower bound that is much larger than that of the others, whereas the logit CI is the
one with the largest width. The CIs based on the profile log-likelihood and on the
estimated cdf are quite similar and show almost the same widths.

The statistical environment R (R Core Team, 2023) was used for carrying out the
computations. The relevant code developed for implementing all the required routines
and for running the Monte Carlo simulation study and the real-data application to
real data of this section is freely available from https://tinyurl.com/IJSA-D23-00390.

7 Conclusions

In this paper, the estimation of the reliability parameter R for a stress-strength model
was discussed, focusing on exponential strength and Poisson stress. The maximum
likelihood estimator (MLE) and the uniformly minimum-variance unbiased estima-
tor (UMVUE) of R, based on simple random samples drawn independently from the
stress and strength distributions, were derived and discussed. They both have a closed-
form expression, and for the former it is possible to derive its cumulative distribution
function numerically, which enables the exact evaluation of the expected value and
variance. The asymptotic distribution of the MLE is also presented, based on which
one can construct an asymptotic Wald-type confidence interval (CI); to improve its
performance, which is expected to be poor especially for small sample sizes, a logit
transformation is considered. Moreover, a CI based on the profile likelihood and the
asymptotic chi-square distribution of the profile log-likelihood ratio is also suggested.
A Monte Carlo simulation study, which explores several combinations of distribution
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parameters and sample sizes, was carried out in order to assess and compare the statis-
tical performance of the MLE and UMVUE and of CIs. It showed that in some settings
the UMVUE is better than the MLE, the former being by construction unbiased and
exhibiting a smaller root-mean-square error, but their behaviors are similar and tend
to converge as the sample sizes increase. The CI based on the profile log-likelihood
ratio performs overall the best in terms of coverage rate and average length, espe-
cially for small samples (closely followed by the logit-transformed interval estimates).
Future research will focus on inference based on non-complete (i.e., censored) samples
and on dependence between stress and strength for the Poisson-exponential model.
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Appendix A Derivation of the UMV UE

Because the sum U = Z?:l X, of n i.i.d. Poisson rvs X; of parameter \; is still a
Poisson rv with parameter nAy, then it follows that

P (Z?:l Xi= u) B P (Z?:l Xi= u)
(A1)

P<X1:x‘z&:u> _P(Xi=znyl Xi=u) PXi=2)P (L, Xi=u—z)
i=1

B )\fe—)\l [(n _ 1))\1]u—we—(n—1)/\1 /(n)\l)ue—nz\l
B u!

x! (u—x)!
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1 x _1 Uu—x
-()() () e=orw
T n n

which is a binomial distribution with parameters u and 1/n.

Analogously, we can deduce the following result regarding the conditional pdf of
rv Y; given V = v, where V = Z;ﬂ:l Y;,and Y}, j =1,...,m, are m i.i.d. exponential
rvs with parameter As:

m—1

/ (ylo) = Sy W) fviy=y(vly) A2 exp(—Aay) g (v — )™ 2 exp(—Aa(v — y))
Y=o I fv(v) B F’X{:)vm_l exp(—Aav)
(A2)
_ m—2
:(771—1)({0”7”#21 O<y<w.

Recalling formula (5) for the computation of the UMVUE of R in Tong (1977), which
holds when the distributions of X and Y both belong to the exponential family, and
adapting it for the specific context of exponential /Poisson rvs, we obtain

R= [ S rte) o) (x = ) ay (43

with

1 z<y’

r(a:,y>—{0 vy

Then, rewriting (A3) by taking into account (A1) and (A2), we have:

(:,vu <Z> <;>w(n;1)uw/;(m_1)%dy

|min
2

i
T

ETOEEYTE

R:

(=)

S

where || denotes the integer part function. Thus, the UMVUE is finally given by

=BG G () e

J
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