
M. Marin, L. Leuştean (Eds.):
8th Symposium on Working Formal Methods (FROM 2024)
EPTCS 410, 2024, pp. 69–83, doi:10.4204/EPTCS.410.5

© Capra, Gribaudo
This work is licensed under the
Creative Commons Attribution License.

Efficient Performance Analysis of Modular
Rewritable Petri Nets

Lorenzo Capra
Dipartimento di Informatica

Università degli Studi di Milano, Italy

Marco Gribaudo
Dipartimento di Elettronica, Informatica e Bioingeneria

Politecnico di Milano, Italy

Petri Nets (PN) are extensively used as a robust formalism to model concurrent and distributed sys-
tems; however, they encounter difficulties in accurately modeling adaptive systems. To address this
issue, we defined rewritable PT nets (RwPT) using Maude, a declarative language that ensures con-
sistent rewriting logic semantics. Recently, we proposed a modular approach that employs algebraic
operators to build extensive RwPT models. This methodology uses composite node labeling to main-
tain hierarchical organization through net rewrites and has been shown to be effective. Once stochas-
tic parameters are integrated into the formalism, we introduce an automated procedure to derive a
lumped CTMC from the quotient graph generated by a modular RwPT model. To demonstrate the
effectiveness of our method, we present a fault-tolerant manufacturing system as a case study.

1 Introduction

Despite their potential, traditional formalisms such as Petri Nets, Automata, and Process Algebra do not
easily allow designers to define dynamic changes in systems or assess their performance impact. As a
result, many extensions to these classical models have been proposed, such as the π-calculus and the
Nets-within-Nets paradigm, although they often lack adequate analysis techniques.

Rewritable PT nets (RwPT) were introduced in [7] as a versatile formalism for the modeling and
analysis of adaptive distributed systems. The RwPT procedures were defined using the declarative lan-
guage Maude, which leverages Rewriting Logic to offer both operational and mathematical semantics,
thereby enabling a scalable framework for self-adapting PT nets. Unlike comparable methods ([2, 12]),
which convert a simpler type of PNs into Maude, the RwPT formalism simplifies data abstraction, is
concise and effective, and circumvents the limitations imposed by the pushout mechanism common in
Graph Transformation Systems. RwPT extends GTS. It is vital to consider graph isomorphism (GI) in
recognizing equivalent states within the model dynamics. This consideration is particularly advantageous
for scaling up the model’s size or degree of parallelism, especially when integrating a Stochastic Process
into the model’s state space. Recent research has demonstrated that GI has a quasi-polynomial complex-
ity [1]. Graph canonization (GC), which is at least as complex as GI, involves determining a canonical
form for any graph such that for any two graphs G and G′, G ≃ G′ ⇔ can(G) = can(G′). We have
developed a general canonization method [6] for use with RwPT, integrated into Maude. This method
is effective for irregular models, but it is less efficient for more realistic models that contain numerous
similar components organized in a nested structure.

In [8], we introduced a method for developing extensive RwPT models using algebraic operators.
Our approach is simple: Exploiting the modular features of the models during analysis. Using composite
node labeling, we identify symmetries and maintain hierarchical organization through net rewrites. A
case study (used as benchmark) demonstrates the success of our method, showing performance benefits
over somewhat related approaches. In this paper, we present an automated technique to derive a Lumped

http://dx.doi.org/10.4204/EPTCS.410.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

70 Performance analysis of RwPT

Continuous-Time Markov Chain (CTMC) from the quotient graph generated by an RwPT model after
embedding stochastic parameters into the framework.

Background information is provided in Section 2, and our example is described in Section 3. The
modular RwPT formalism, now with stochastic parameters, is explained in Section 4. In Section 5, we
detail the method for deriving a lumped CTMC from an RwPT model and present experimental evidence
of its effectiveness. We conclude by discussing ongoing work.

2 Background: (Stochastic) PT Nets and Maude

This section provides a concise overview of the (stochastic) PT formalism and emphasizes the key aspects
of the Maude framework. For exhaustive information, we direct readers to the reference papers.

A multiset (bag) b in a nonempty set D is a map b : D → N, where b(d) is the multiplicity of d in b.
A multiset is empty if all of its multiplicities are zero. We denote by Bag[D] the set of multisets in D.
Standard relational and arithmetic operations can be applied to multisets on a component-by-component
basis. In particular, let b,b′ ∈ Bag[D]:

b+b′ ∈ Bag[D] is b+b′(d) = b(d)+b′(d), ∀d ∈ D.
b < b′ = true ⇔ ∀d ∈ D b(d)< b′(d).
b−b′ ∈ Bag[D] is defined if b′ ≤ b: b−b′(d) = b(d)−b′(d), ∀d ∈ D.

A stochastic PT (or SPN) net [13, 10] is a 6-tuple (P,T, I,O,H,λ), where: P, T are finite, non-empty,
disjoint sets holding the net’s nodes (places and transitions, respectively); I,O,H : T → Bag[P] represent
the transitions’ input, output, and inhibitor incidence matrices, respectively; λ : T → R+ assigns each
transition a negative exponential firing rate. A PT net marking is a multiset m ∈ Bag[P].

The PT net dynamics is defined by the firing rule: t ∈ T is enabled in marking m if and only if:

I(t)≤ m∧∀p ∈ P : H(t)(p)> 0 ⇒ m(p)< H(t)(p)

If t is enabled m it may fire, leading to marking

m′ = m− I(t)+O(t)

The notation m[t⟩m′ means that t is enabled in m and its firing leads to m′.
A PT-system is a pair (N,m0), where N is a PT net and m0 is a marking of N. The interleaving

semantics of (N,m0) is specified by the reachability graph (RG): the RG is an edge-labelled, directed
graph (V,E) whose nodes are markings. It is defined inductively: m0 ∈ V ; if m ∈ V and m[t⟩m′ then
m′ ∈V , m t−→ m′ ∈ E.

The timed semantics of a stochastic PT system is a CTMC isomorphic to the RG. For any two
mi,m j ∈ V , the transition rate from mi to m j is ri, j := ∑t:mi[t⟩m j λ (t). The CTMC infinitesimal generator
is a |V |× |V | matrix Q such that Q[i, j] = ri, j if i ̸= j, Q[i, i] = 1−∑ j, j ̸=i ri, j.

In Generalized Stochastic Petri Nets (GSPN) [10] transitions can be assigned a priority (the firing rule
is extended accordingly): transitions with a priority greater than zero occur instantly, and the associated
stochastic parameters (denoted by the function λ) are used to resolve potential conflicts probabilisti-
cally. Consequently, their timed semantics leads to a Continuous-Time Markov Chain (CTMC) that is
isomorphic to the "reduced" RG, obtained by eliminating nonobservable markings. This paper focuses
on Stochastic Petri Nets (SPN) even though our specification encompasses GSPN.

Capra, Gribaudo 71

The Maude system Maude [11] is a highly expressive, purely declarative language characterized by a
rewriting logic semantics [4]. Statements consist of (conditional) equations and rules. Each side of a
rule or equation represents terms of a specific kind that might include variables. The semantics of rules
and equations involve straightforward rewriting, where instances of the left-hand side are substituted by
corresponding instances of the right-hand side. The expressivity of Maude is realized through the use
of matching modulo operator equational attributes, sub-typing, partiality, generic types, and reflection.
A Maude functional module comprises only equations and functions as a functional program defining
one or more operations through equations, utilized as simplification rules. A functional module details
an equational theory within membership equational logic [3]. Formally, such a theory is a tuple (Σ,E ∪
A), with Σ representing the signature, which includes the declaration of all sorts, subsorts, kinds1, and
operators; E being the set of equations and membership axioms; and A as the set of operator equational
attributes (e.g., assoc). The model of (Σ,E ∪A) is the initial algebra TΣ/E∪A, which mathematically
corresponds to the quotient of the ground-term algebra TΣ. Provided that E and A satisfy nonrestrictive
conditions, the final (or canonical) values of ground terms form an algebra isomorphic to the initial
algebra, ensuring that the mathematical and rewriting semantics are identical.

A Maude system module includes rewrite rules and, potentially, equations. These rules illustrate local
transitions in a concurrent system. In formal language, a system module outlines a generalized rewrite
theory [4], symbolized as a four-tuple R = (Σ,E ∪A,φ ,R), where (Σ,E ∪A) constitutes a membership
equational theory; φ identifies the frozen arguments for each operator in Σ; and R contains a set of rewrite
rules 2. This rewrite theory models a concurrent system. (Σ,E ∪A) establishes the algebraic structure of
the states, while R and φ define the concurrent transitions of the system. The initial model of R assigns to
each kind k a labeled transition system (TS) where the states are the elements of TΣ/E∪A,k, and transitions

occur as [t]
[α]→ [t ′], with [α] representing equivalent rewrites. The property of coherence guarantees that

a strategy that reduces terms to their canonical forms before applying the rules is sound and complete. A
Maude system module is also an executable specification of distributed systems. Given finite reachability,
it enables the verification of invariant properties and the discovery of counterexamples. Moreover, it
supports the verification of LTL formulas. When the TS generated by a ground term becomes excessively
large or infinite, bounded searches or abstractions might be employed.

3 Gracefully Degrading Production System

The illustrative example in this paper depicts a distributed production system that degrades gracefully,
whose base configuration is shown by the two PT systems in Figure 1. The upper net represents a
Production Line (denoted PL) which is divided into K branches (robots) that handle raw materials (a
multiple of K). These branches ({wi, lni,ai}, i : 0 . . .K − 1) are fully interchangeable. An assembly
component (transition as) converts the processed materials K into an artifact. A loader (ld) collects K
items from a storage facility (place s) on the K lines of the PL. In this study, K = 2. The initial count
of pieces (tokens) in s is K ·M, where M ∈ N+ is another parameter of the model. For each artifact
produced, fresh items K are introduced. A branch might fail (transitions f ti). When that occurs, the PL
restructures to continue functioning, but with reduced capacity. Simple static analysis can show that the
PL system reaches a deadlock after a failure.

1Kinds are implicit equivalence classes defined by connected components of sorts (as per subsort partial order). Terms in a
kind without a specific sort are error terms.

2Rewrite rules do not apply to frozen arguments.

72 Performance analysis of RwPT

The net at the bottom of Figure 1 shows the transformation of the PL after a fault happens (consid-
ering scenario K = 2). This process involves moving items from the faulted branch to the remaining
branch(es) to maintain the production cycle. Traditional PN frameworks (including High-Level PN vari-
ants) are unable to model this operation. Items left on the faulty line (represented as place w1 here) are
transferred to the remaining functional line (w0): The marking of the PT net at the bottom demonstrates
the state after adaptation. We assume that a PL that fails twice is beyond repair.

⇓

Figure 1: Production Line (PL) and adaptation following a fault.

We will examine a more complex scenario in which N PL replicas function simultaneously and
degrade in a regulated fashion. Figure 2 demonstrates one potential evolution of a system starting with
two PLs: This scenario can be extended to a system that incorporates N PLs, each operating K parallel
robots, that handles K ·M raw items, denoted by the term NPLsys(N, K, M). The graceful degradation
of the system proceeds in two phases:

s1 When a fault impacts a robot (line) of a PL, the PL autonomously adjusts to continue functioning
in a diminished capacity (for simplicity, we here consider a two-lines scenario)

s2 When a second fault occurs in a degraded PL, the PL is disconnected from the entire system (see
the final step in Figure 2): The leftover items are then relocated to the warehouse.

Capra, Gribaudo 73

⇒ ⇒

⇒ ⇒

Figure 2: One of the possible paths of the Gracefully Degrading Production System.

74 Performance analysis of RwPT

4 Modular Rewritable Stochastic PN

This section introduces the concept of rewritable stochastic PT nets (RwSPT). These expand on the
modular rewritable PT nets described in [8] by incorporating transitions with priorities and stochastic
parameters. An RwSPT serves as an algebraic model of a Generalized Stochastic PN [10], combining
rewrite rules with the PT firing mechanism. In this study, we concentrate on stochastic PN consisting of
zero-priority transitions accompanied by an exponential firing rate.

The definition of RwSPT includes a hierarchy of Maude modules (e.g., BAG, PT-NET, PT-SYSTEM)
most of which described in [8]. The Maude sources can be found in https://github.com/lgcapra/rewpt/
tree/main/modSPT.

The RwSPT definition uses structured annotations to underline the model’s symmetry. It features a
concise place-based encoding to aid in state canonization and is based on the functional module BAG{X},
which introduces multisets as a complex data type. Specifically, the commutative and associative _+_ op-
erator provides an intuitive way to describe a multiset as a weighted sum, for instance, 3 . a + 1 . b.
The sort Pbag contains multisets of places.

Each place label (a term of sort Plab) is a non-empty list of pairs built of String and a Nat. Places
are uniquely identified by their labels. These pairs represent a symmetric component within a nested
hierarchy. Compositional operators annotate places incrementally from right to left: The label suffix
represents the root of a hierarchy. For example, the ’assembly’ place of line 1 in Production Line 2
would be encoded as:

p(< "a"; 0 > < "L"; 1 >).

We implicitly describe net transitions (Tran terms) through their incidence matrix (a 3-tuple of Pbag
terms) and associated tags. A tag includes a String, a Nat (indicating a priority) and a Float (inter-
preted as a firing rate or a probabilistic weight, depending on whether the priority is zero or greater)..

[I,O,H] |-> « S, P, R »

When using the associative composition operator _;_ and the subsort relation Tran < Net, it be-
comes easy to construct nets in a modular way. For example, we can depict the subnet containing
transitions ld and ln0 in Figure 1 (top) as the Net term in the listing 1 (the zero-arity operator nilP
represents an empty multi-set).

Listing 1: A (sub)net

[2 . p(< "s" ; 0 >), 1 . p(< "w" ; 0 >) + 1 . p(< "w" ; 1 >), nilP] |−> << "ld", 0, 0.5 >> ;
[1 . p(< "w" ; 0 >), 1 . p(< "a" ; 0 >), 1 . p(< "f" ; 0 >] |−> << "ln", 0, 0.1 >>

A System term is the empty juxtaposition (__) of a Net and a Pbag (representing the net’s marking).
The conditional rewrite rule firing specifies the PT firing rule 3, as shown in the listing 2.

Listing 2: PT Firing Rule

vars N N’ : Net .
vars T : Tran .
var M : Pbag .
crl [firing] : N M => N fire(T, M) if T ; N’ := N /\ enabled(T, N M) .

3Notice the use of a matching equation: The free variables T, N’, are matched (:=) against the canonical ground term bound
to the variable N.

https://github.com/lgcapra/rewpt/tree/main/modSPT
https://github.com/lgcapra/rewpt/tree/main/modSPT

Capra, Gribaudo 75

The predicate enabled takes priority into account and relies on hasConcession, which determines
the ’topological’ aspect of the enabling condition:

Listing 3: PT Firing operators

vars I O H M : Pbag . var L : Tlab .
op hasConcession : Tran Pbag −> Bool .
eq hasConcession([I,O,H] |−> L, M) = I <= M and−then H > B .
op fire : Tran Pbag −> Pbag .
eq fire([I,O,H] |−> L, M) = M − I + O .

A RwSPT is defined by a system module that contains two constant operators, used as aliases:
op net : -> Net
op m0 : -> Pbag.

Two equations define their bindings to concrete terms. This module includes System rewrite rules R
incorporating firing. In this paper, we adopt full non-determinism (interleaving semantics): Rewrites
take the same priority and have an exponential rate (specified in the rule label but for firing rule), so
that for the state transition system it holds (⊆ means subgraph):

T S(net m0, {firing})⊆ T S(net m0, R).

Transitioning between the Maude encoding of PT systems and the PNML format adopted by many
PN tools is straightforward and reversible.

4.1 Modularity, symmetries, and lumpability

We have provided net-algebra and net-rewriting operators [8] with a twofold intent: to ease the modeler’s
task and to enable the construction and modification of large-scale models with nested components by
implicitly highlighting their symmetry. A compact quotient TS is built using simple manipulation of
node labels. This approach outperforms similar ones, including ours integrated into Maude [6] and based
on traditional graph canonization.

In a context where nets have a mutable structure, identifying behavioral equivalences reduces to a
graph morphism. PT system morphism must maintain the edges and the marking: In our encoding, a
morphism between PT systems (N m) and (N’ m’) is a bijection φ : places(N) → places(N’) such
that, considering the homomorphic extension of φ on multisets, φ(N) = N’ and φ(m) = m’. Moreover,
φ must retain the textual annotations of the place labels and the transition tags. If N’ = N we speak of
automorphism, in which case φ is a permutation in the set of places.

We refer to a normal form that principally involves identifying sets of automorphic (permutable)
places: Two markings m, m’ of a net N are said automorphic if there is an automorphism φ in N that maps
m into m’. We denote this m ∼= m’. The equivalence relation ∼= is a congruence, that is, it preserves the
transition firings and rates. The next definition helps us simplify the process.

Definition 4.1 (Symmetric Labeling). A Net term is symmetrically labeled if any two maximal sets of
places whose labels have the same suffix (possibly empty), which is preceded by pairs with the same tag,
are permutable. A System term is symmetrically labeled if its Net subterm is.

In other words, if a Net term N meets definition 4.1, then for any two maximal subsets of places matching:
P := {p(L’ < w ; i > L)}, P′ := {p(L’’ < w ; j > L)},
where L, L’, L’’ : Plab, w: String, i, j : Nat

76 Performance analysis of RwPT

there exists an automorphism (permutation) φ such that φ(P) = P′, φ(P′) = P, which is extended as an
identity to the rest of places4.

If a System term adheres to the previous definition, it can be transformed into a ’normal’ form by
merely swapping indices on the place labels (e.g., i ↔ j), while still complying with definition 4.1. This
normal form is the most minimal according to a lexicographic order within the automorphism class (∼=)
implicitly defined by 4.1. However, in contrast to general graph canonization, there is no need for any
pruning strategy or backtracking. In simple terms, a monotone procedure is used where the sequence of
index swaps does not matter (see [8] for full details). Efficiency is achieved as the normalized form of
the subterm of type Net is derived through basic “name abstraction“, where at each hierarchical level the
indices in the structured place labels continuously span from 0 to k, k ∈ N.

The strategy involves providing a concise set of operators that preserve nets’ symmetric labelling.
This set includes compositional operators (influenced by process algebra) and operators for manipulating
nets, such as adding/removing components. Rewrite rules require these operators to manipulate System
terms defined in a modular manner. Additionally, rules must adhere to parametricity conditions (here
omitted) that limit the use of non-variable terms in them. We denote this kind of rules as symmetric [8].

Lumpability Under these assumptions, we get a quotient TS from a System term that retains reacha-
bility and meets strong bisimulation.

Let t, t ′,u,u′ be (final) ground terms of sort System, and let r be a System type rule r : s =⇒ s′. The

notation t
r(σ)
=⇒ t ′ means that t is rewritten into t ′ by r, that is, there exists a ground substitution σ of r’s

variables such that σ(s) = t and σ(s′) = t ′.

Property 4.1. Let t meet Definition 4.1 and r be a symmetric rule.

If t
r(σ)
=⇒ t ′ then ∀u,φ , t ∼=φ u: u

r(φ(σ))
=⇒ u′, t ′ ∼= u′ (u′, t ′ meet the definition 4.1)

The TS quotient produced by a term t̂ (pre-normalized) is achieved by applying the overloaded op-
erator normalize to the right-hand side of the rewriting rules:

op normalize : System -> System .
op normalize : Pbag -> Pbag .
When a System is rewritten using the rule firing, only the marking subterm is needed. This implies

applying the overloaded operator normalize to the subterm fire(T, M) in Listing 1.2.
According to property 4.1, because the morphism (index exchange) φ preserves the transition rates

and we assume that the rules are parameterized, it is feasible to map the TS quotient of t̂ onto an isomor-
phic "lumped" CTMC: In a Markov process’s state space, an equivalence relation is considered "strong
lumpability" if the cumulative transition rates between any two states within a class to any other class
remain consistent. Despite the possibility of establishing a more stringent condition matching strong-
bisimulation, that is "exact lumpabability" [5], our attention is focused on the aggregated probability.

Example To demonstrate the aforementioned concepts, we will outline the compositional RwPT model
of a distributed production system with graceful degradation (Section 3). Initially, this system is com-
posed of N Production Lines (PL) that share raw materials, with each PL split into K interchangeable
branches (listing 4). We start by defining the net transitions. Then we build a Production Line using the
repl&share operator: The term PL(K) represents a Production Line (PL) with K symmetric branches,
similar to the one shown in Figure 1 (top). The structure of the submodel is expressed by adding a pair

4According to the definition of PT morphism, the prefixes L’ and L” are consistent in the textual component.

Capra, Gribaudo 77

with the tag "L" to the place labels. For example, p(< "w" ; 0 > < "L" ; 1 >) describes the "work-
ing" place of robot (line) 1 of the PL. We can also choose to exclude places to share among replicas: In
this case, we exclude those representing the "warehouse" (tag "s") and faults (tag "o"). Additionally, we
can indicate transitions to share: For instance, "load" and "assembly" are shared.

Listing 4: Modular Specification of a Fault Tolerant Production System
fmod FTPL is
pr NET−OP{SPTlab} .
ops PL PLA nomPL faultyPL NfaultyPL : NzNat −> Net .
op faultySys : NzNat −> System .
op NPL : NzNat NzNat −> Net [memo].
op NPLsys : NzNat NzNat NzNat −> System .
ops loadLab asLab failLab workLab : −> Tlab [memo] .
eq loadLab = << "ld",0, 0.5 >> .
eq asLab = << "as",0, 2.0 >> .
eq workLab = << "ln",0, 0.1 >> .
eq failLab = << "ft",0, 0.001 >> .
var I : Nat .
vars N K M : NzNat .
eq line = [1 . p(< "w" ; 0 >),1 . p(< "a" ; 0 >),1 . p(< "f" ; 0 >)] |−> workLab .
eq fault = [1 . p(< "o" ; 0 >) , 1 . p(< "f" ; 0 >), nilP] |−> failLab .
eq load = [1 . p(< "s" ; 0 >) , 1 . p(< "w" ; 0 >) , nilP] |−> loadLab .
eq ass = [1 . p(< "a" ; 0 >) , 1 . p(< "s" ; 0 >) , nilP] |−> asLab .
eq cycle = load ; line ; ass ; fault .
eq PL(K) = repl&share(cycle, K, "L", p (< "o" ; 0 >) U p(< "s" ; 0 >), asLab U loadLab) .
eq NPL(N, K) = repl&share(PL(K), N, "PL", p(< "s" ; 0 >), emptyStlab) .
eq NPLsys(N, K, M) = setMark(setMark(NPL(N, K), "o" "PL", 1), "s", K * M) .
...

endfm

The term NPL(N, K) of type Net consists of N PLs, each of which contains K branches. This net
was generated using the repl&share operator, which adds the "PL" tag to place labels to indicate an
additional nesting level. The sharing mechanism ensures each PL gathers K raw pieces. The PT net
represented by NPL(2,2) can be seen in Figure 2, top-right. Furthermore, the term NPLsys (N, K, M)
of type System is a PT system that holds K*M tokens in the "warehouse" place, with a single token in
each place tagged with "o" to trigger fault occurrences within a PL. We can build an identical model
using the "symmetric" version of the process algebra ALT operator.

The System term generated using the above operators possesses symmetrical labeling (refer to def-
inition 4.1), and its Net subterm has already been normalized. Consider, e.g., NPLsys(2, 2, 1). By
triggering the conflicting transitions "load", which are initially enabled, the following two markings (es-
sentially, subterms of the System terms) can be obtained:

m1 : p(< "o"; 0 > < "PL"; 0 >) + p(< "o"; 0 > < "PL"; 1 >) +
p(< "w"; 0 > < "L"; 0 > < "PL"; 1 >) + p(< "w"; 0 > < "L"; 1 > < "PL"; 1 >)

m2 : p(< "o"; 0 > < "PL"; 0 >) + p(< "o"; 0 > < "PL"; 1 >) +
p(< "w"; 0 > < "L"; 0 > < "PL"; 0 >) + p(< "w"; 0 > < "L"; 1 > < "PL"; 0 >).

78 Performance analysis of RwPT

These are automorphic (one can be converted into the other by interchanging < "PL"; 1 > ↔
< "PL"; 0 >), but the second marking is the smallest in lexicographic order and hence corresponds
to the normalized form.

The following rewrite rule (see the listing 5) encapsulates the self-adjustment of a PL with K = 2 in
response to a fault, enabling it to function in a diminished capacity (refer to figure 2). This rule deviates
slightly from [8], as it is locally activated by a breakdown, leading to a significantly larger TS. Skipping
technical details, we point out that the rule meets the parameterity and only employs operators that uphold
the definition 4.1, such as join , detach , setMark . Therefore, it retains the symmetrical PT
labeling (definition 4.1). The label of the rule contains the exponential rewrite rate as meta-information.
There is another rule, not discussed here, that eliminates a faulty and degraded PL from the system.

Listing 5: Rewrite rule of a PL (the label contains the rule’s exponential rate)

vars S S’ S’’ : Pbag . vars I J : Nat .
var Sys Sys’ : System . var L : Lab .
crl [r1−0.005] : N S => normalize(join(Sys, setMark(setMark(Sys’, "w" "fPL", | match(S’, "w") |),

"a" "fPL", | match(S’, "a") |)))
if S’’ + 1 . p(< "f" ; J > L < "PL" ; I >) := S /\ N’ := nomPL(I) /\ dead (N’ S) /\ S’ := subag(S’’, < "PL" ;

I >) /\ Sys := detache(N, N’) S’’ − S’ /\ Sys’ := faultySys(notIn(N, "fPL")) .

With the model-checking facilities of Maude (in this case, the search command), it is possible to
formally demonstrate that for any given N, the quotient transition system has two absorbing states: Every
state comprises a deteriorated PL that contains all 2 ·M materials (unprocessed, except possibly one).
This is equivalent to the command below, which yields the same results as its unconditioned counterpart.

search NPLsys(N,2,M) =>! F:System such that
net(F:System) == faultyPL /\ B:Pbag := marking(F:System) /\
| match(B:Pbag, "w") | + | match(B:Pbag, "a") | == 2 * M .

5 Obtaining the Lumped CTMC generator from an RwSPT

The CTMC generator entry Q[i, j] is defined as: ∑r∈R λr · |Sr
i, j|, where λr ∈ ℜ+ is a given rate, and

Sr
i, j = {σ | t̂i

r(σ)
=⇒ t j, t j ∼= t̂ j} represents the matches of r resulting in equivalent states. Therefore, to obtain

the CTMC infinitesimal generator, it is necessary to quantify instances that correspond to a specific state
transition. Our solution uses two operators: the first identifies potential matches for each rule based on
the subset of independent variables involved, and the second simulates the rewriting process. These two
operators can be "mechanically" defined from the syntax of a rule.

To gain a clearer understanding of the concept, let us examine a simplified scenario that encompasses
the vast majority of cases and to which any case can be reduced. We suppose that for every rule r ∈ R:

1. r is "injective", that is, if t
r(σ)
=⇒ t ′∧ t

r(σ ′)
=⇒ t ′ then σ = σ ′,

2. if r is a conditional rule (r : s=⇒ s′ i f cond) the condition does not contain any rewrite expressions
(taking the concrete form u =⇒ u′).

Given these assumptions, it is possible to automatically expand a stochastic RwPT specification to pro-
duce a quotient TS. The states in this TS encompass all the information required to build the infinitesimal
generator of the lumped CTMC, which is isomorphic to the TS.

Capra, Gribaudo 79

Listing 6, which is related to the running example, describes a general pattern. To avoid overly
technical details of Maude syntax, we outline an operator, rule, which encodes any rewriting rules
except for firing (handled separately for efficiency). This operator defines a partial mapping where,
given a label (defined using a Tlab) and a System term, it determines the corresponding term-rewriting
if feasible: each rewrite rule is tied to an equation. The operator ruleApp builds upon rule: it computes
all potential outcomes of rewriting that term using the rule. It does not execute term normalization. As is
typical in Maude, the ruleApp definition is optimized via tail-recursion. Lastly, ruleExe, which extends
ruleApp, partitions the results of a rule application to a term into "equivalence classes" (sort Rset)
through normalization: each class is represented by a pair System <-| Float, that is the aggregate rate
towards a normalized state. The operator ruleApp serves as the bulk form of ruleExe.

Listing 6: rule encoding for the lumped CTMC

vars N N’ N’’ : Net . vars S S’ S’’ : Pbag . vars I Imin J : Nat .
vars Sys Sys’ : System . var L : Lab . var Sp : Pset . var TL : Tlab .

op rule : Tlab System −> [System] . *** one equation for rule
ceq rule(<< "r1",0, 0.005 >>, N S) = join(Sys, setMark(setMark(Sys’, "w" "fPL", | match(S’, "w")

|), "a" "fPL", | match(S’, "a") |))
if S’’ + 1 . p(< "f" ; J > L < "PL" ; I >) := S /\ N’ := nomPL(I) /\ dead (N’ S) /\
S’ := subag(S’’, < "PL" ; I >) /\ Sys := detache(N, N’) S’’ − S’ /\
Sys’ := faultySys(minNotIn(N, "fPL")) .

ceq rule(<< "r2",0, 0.01 >> , N S) = N’’ set(S’’ − S’, p(< "s" ; 0 >), S[p(< "s" ; 0 >)] + | S’ |)
if S’’ + 1 . p(< "f" ; J > L < "fPL" ; I >) := S /\ N’ := faultyPL(I) /\ dead(N’ S) /\
N’’ := detache(N, N’) /\ N’’ =/= emptyN /\ S’ := subag(S’’, < "fPL" ; I >) .

*** "rule application" (without normalization)
var SS : Set{System} . var TS : [System] . vars R F : Float .
ops ruleApp : Tlab System −> Set{System} .
eq ruleApp(TL, Sys) = $ruleApp(TL, Sys, emptySS) .
op $ruleApp : Tlab System Set{System} −> Set{System} .
ceq $ruleApp(TL, Sys, SS) = $ruleApp(TL, Sys, SS U TS) if TS := rule(TL, Sys) /\ TS :: System /\

not(TS in SS) .
eq $ruleApp(TL, Sys, SS) = SS [owise] .

*** "aggregate" rates calculation (with normalization)
op rulexe : Tlab System −> Rset .
eq rulexe(TL, Sys) = $rulexe(rate(TL), ruleApp(TL, Sys), emptyRset) .
op $rulexe : Float Set{System} Rset −> Rset .
eq $rulexe(F, emptySS, RS) = RS .
ceq $rulexe(F, Sys U SS, RS ; Sys’ <−| R) = $rulexe(F, SS, RS ; Sys’ <−| R + F) if Sys’ :=

normalize(Sys) .
eq $rulexe(F, Sys U SS, RS) = $rulexe(F, SS, RS ; normalize(Sys) <−| F)

[owise] .
op allRew : System −> Rset [memo] . *** bulk application
eq allRew(Sys) = rulexe(labr1, Sys) U rulexe(labr2, Sys) .

80 Performance analysis of RwPT

The excerpt in Listing 7 illustrates the augmented state representation which contains detailed in-
formation on the (normalized) state transition. The state structure defined by the mixfix constructor
StateTranSys comprises four fields. The initial pair describes the PT system, while the remaining
two fields detail the state transitions caused by the firing rule and other rewrites, in that order. As
explained, we collect state transitions (rule applications) that share the normalized target for calculating
the aggregated rates.

Now, let us examine the firing rule (Listing 2): we rephrase it using two related operators, specifi-
cally enabSet, which determines the set of transitions enabled in a specific marking (or more broadly, the
rule’s matches), and fire, which identifies the resulting markings (the rule’s outcomes for all matches),
each linked to its respective cumulative rate. The method applied for the firing rule can be generalized
to any rule, including those that are not injective.

The function toStateTran transforms the traditional state representation into a structured format
that emphasizes cumulative transition rates. The actual implementation of the firing rule and other trans-
formation rules is simple, as their effects are immediately apparent in the enhanced state information.

Listing 7: TS encoding for the lumped CTMC
vars B B’ M M’ : Pbag . var N : Net . var TS : TagSet . var FS : Fset . var RS : Rset .
var R : Float .
*** description of a system pointing out (aggregate) state−transition rates
op NET:_ M:_ FIRING:_REW:_ : Net Pbag Fset Rset −> StateTranSys [ctor] .
op toStateTran : System −> StateTranSys .
eq toStateTran(N M) = NET: N M: M FIRING: fire(enabSet(N M), M) REW: allRew(N M) .
*** caculates the cumulative firing effect of a net (that is, a set of transitions)
op fire : Net Pbag −> Fset .
*** definition of fire

*** implementation of rewrite rules
rl [firing] : NET: N M: B FIRING: (B’ <−| R ; FS) REW: RS => toStateTranSPN(N B’) .
*** net rewrites
rl [rew] : NET: N M: B FIRING: FS REW: (Sys <−| R ; RS) => toStateTranSPN(Sys) .

When considering toStateTran(NPLsys(2,2,2)), which aligns with the PT net at the top of Fig-
ure 2, the resulting quotient TS comprises 295 states compared to the 779 states in the standard TS. The
quotient graph’s state transitions often correspond to multiple matches. For instance, the initial state (the
term above) includes two ’load’ instances and four ’fault’ instances that lead to markings with identical
normal forms. Consequently, the combined rates are 2 ·0.5 and 4 ·0.001. Equivalent rewrites of the net
structure are observed when N > 2.

5.1 Experimental Evidence

We conclude by showcasing the experimental validation of the method alongside a straightforward
demonstration for calculating standard performance metrics. The results of the final-state location com-
mand are shown in Table 1 (above). This was carried out using Linux WSL on an 11th-gen Intel Core
i5 with 40GB RAM. The state spaces align with those of the corresponding lumped CTMC. It is evident
that analysis of large models is achievable by leveraging the model’s symmetry. Note that the number
of absorbing states in the TS quotient remains unchanged with N. Even though a redundant state repre-
sentation was used to construct the lumped CTMC directly, the efficiency of the Maude rewriting engine
allowed us to estimate a time overhead of no more than 80%.

Capra, Gribaudo 81

Table 1: Ordinary vs Quotient TS of NPLsys(N,2,2) † search timed out after 10 h
Ordinary Quotient

N states(final) time (sec) states(final) time (sec)
1 60(2) 0 42(2) 0
2 779(4) 0.1 295(2) 0.1
3 6101(6) 4.8 1059(2) 0.9
4 37934(8) 69 2764(2) 3.6
5 204362(10) 818 5970(2) 10
6 1000187(12) 13930 11367(2) 27
7 - † 19775(2) 65
8 - † 32144(2) 186
9 - † 49554(2) 569
10 - † 73215(2) 2450

According to [8], the performance of modular RwPT was evaluated against symmetric nets (SN,
previously referred to as well-formed nets) [9], which are colored Petri nets that produce a symbolic
reachability graph (SRG) comparable (in its stochastic extension) to a lumped CTMC. As N and K
values rise, the state aggregation level in modular RwPT drastically surpasses that of SN. For example,
with N=10, K=3, and M=3, the state aggregation level is around 45 times greater than SN, and with
N=10, K=4, and M=3, it is approximately 200 times greater than SN. You can replicate the experiments
following the guidelines at https://github.com/lgcapra/rewpt/tree/main/modSPT/readme.

Figure 3 shows the system throughput, while 4 shows its reliability as a time function. As expected,
both metrics decrease with time; additionally, the scenario that involves more replicas demonstrates
increased throughput and enhanced reliability. To evaluate the system’s performance, Figure 5 shows
the throughput while the system is operational, which is the ratio between the graphs in Figures 3 and
4. It can be seen that the throughput is close to that of a single line, which, given the parameters, is
1/202.5 = 4.98E − 03. The inflection point at around time 800 in both curves represents the system’s
reconfiguration time. The increased execution time of the job is a result of a system failure.

The overall trend is also noticeable when we look at larger values of N. As N increases, both reliability
and throughput curves show significant improvements. However, we observe an asymptotic trend when
N is greater than 6. Our interpretation is that beyond a certain point, the benefit of using a higher number
of replicas is outweighed by the higher fault rate and the increased configuration overhead.

6 Conclusion and Future Work

We have created a Lumped Markov process for modular, rewritable stochastic Petri nets (RwPT), which
serves as a robust model for analyzing adaptive distributed systems encoded in Maude. RwPT models,
assembled and manipulated through a compact set of (algebraic) operators, display structural symmetries
leading to an efficient quotient state transition graph. By providing an example of a gracefully degrading
system, we have demonstrated a semi-automatic method for deriving the CTMC infinitesimal generator
from the RwPT quotient graph. Future work will, on one hand, delve into exploring orthogonal structured
solutions and, on the other, focus on fully implementing the process and integrating it with graphical tools
such as DrawNET (https://www.draw-net.com/). At the same time, we aim to expand the approach: firstly,
to derive a lumped Markov process from rewritable GSPN, and secondly, to extract the infinitesimal
CTMC generator from any Maude system module.

https://github.com/lgcapra/rewpt/tree/main/modSPT/readme
https://www.draw-net.com/

82 Performance analysis of RwPT

0,00E+00

2,00E-03

4,00E-03

6,00E-03

8,00E-03

1,00E-02

1,20E-02

1,40E-02

JO
B

 /
 S

EC
.

SEC.

System Throughput

(2, 2, 2)

(1, 2, 2)

Figure 3: System Throughput.

0

0,2

0,4

0,6

0,8

1

1,2

R
EL

IA
B

IL
IT

Y

SEC.

System Reliability

(2, 2, 2)

(1, 2, 2)

Figure 4: System Reliability.

0,00E+00

2,00E-03

4,00E-03

6,00E-03

8,00E-03

1,00E-02

1,20E-02

1,40E-02

JO
B

 /
 S

EC
.

SEC.

Conditioned System Throughput

(2, 2, 2)

(1, 2, 2)

Figure 5: System Throughput conditioned to its reliability.

Capra, Gribaudo 83

References
[1] László Babai (2016): Graph Isomorphism in Quasipolynomial Time [Extended Abstract]. In: Proceedings of

the Forty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’16, Association for Computing
Machinery, New York, NY, USA, p. 684–697, doi:10.1145/2897518.2897542.

[2] Paulo E. S. Barbosa, João Paulo Barros, Franklin Ramalho, Luís Gomes, Jorge Figueiredo, Filipe Moutinho,
Anikó Costa & André Aranha (2011): SysVeritas: A Framework for Verifying IOPT Nets and Execution
Semantics within Embedded Systems Design. In Luis M. Camarinha-Matos, editor: Technological Innovation
for Sustainability - Second IFIP WG 5.5/SOCOLNET Doctoral Conference on Computing, Electrical and
Industrial Systems, DoCEIS 2011, Costa de Caparica, Portugal, February 21-23, 2011. Proceedings, IFIP
Advances in Information and Communication Technology 349, Springer, pp. 256–265, doi:10.1007/978-3-
642-19170-1_28.

[3] Adel Bouhoula, Jean-Pierre Jouannaud & José Meseguer (2000): Specification and proof in membership
equational logic. Theoretical Computer Science 236(1), pp. 35–132, doi:10.1016/S0304-3975(99)00206-6.

[4] Roberto Bruni & José Meseguer (2003): Generalized Rewrite Theories. In Jos C. M. Baeten, Jan Karel
Lenstra, Joachim Parrow & Gerhard J. Woeginger, editors: Automata, Languages and Programming,
Springer-Verlag, Berlin, Heidelberg, pp. 252–266, doi:10.1007/3-540-45061-0_22.

[5] Peter Buchholz (1994): Exact and Ordinary Lumpability in Finite Markov Chains. Journal of Applied Prob-
ability 31(1), pp. 59–75, doi:10.2307/3215235.

[6] Lorenzo Capra (2022): Canonization of Reconfigurable PT Nets in Maude. In Anthony W. Lin, Georg
Zetzsche & Igor Potapov, editors: Reachability Problems, Springer International Publishing, Cham, pp. 160–
177, doi:10.1007/978-3-031-19135-0_11.

[7] Lorenzo Capra (2022): Rewriting Logic and Petri Nets: A Natural Model for Reconfigurable Distributed
Systems. In Raju Bapi, Sandeep Kulkarni, Swarup Mohalik & Sathya Peri, editors: Distributed Computing
and Intelligent Technology, Springer International Pub., Cham, pp. 140–156, doi:10.1007/978-3-030-94876-
4_9.

[8] Lorenzo Capra & Michael Köhler-Bußmeier (2024): Modular rewritable Petri nets: An efficient model for
dynamic distributed systems. Theoretical Computer Science 990, p. 114397, doi:10.1016/j.tcs.2024.114397.

[9] G. Chiola, C. Dutheillet, G. Franceschinis & S. Haddad (1997): A symbolic reachability graph for coloured
petri nets. Theoretical Computer Science 176(1), pp. 39 – 65, doi:10.1016/S0304-3975(96)00010-2.

[10] Giovanni Chiola, Marco Ajmone Marsan, Gianfranco Balbo & Gianni Conte (1993): Generalized Stochastic
Petri Nets: A Definition at the Net Level and Its Implications. IEEE Trans. Software Eng. 19, pp. 89–107,
doi:10.1109/32.214828.

[11] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso M. Oliet, Jos’e Meseguer & Carolyn
Talcott (2007): All About Maude - A High-Performance Logical Framework: How to Specify, Program, and
Verify Systems in Rewriting Logic. Lecture Notes in Computer Science, Springer, doi:10.1007/978-3-540-
71999-1.

[12] Julia Padberg & Alexander Schulz (2016): Model Checking Reconfigurable Petri Nets with Maude. In Rachid
Echahed & Mark Minas, editors: Graph Transformation, Springer International Publishing, Cham, pp. 54–70,
doi:10.1007/978-3-319-40530-8_4.

[13] W. Reisig (1985): Petri Nets: An Introduction. Springer-Verlag New York, Inc., New York, NY, USA,
doi:10.1007/978-3-642-69968-9.

https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1007/978-3-642-19170-1_28
https://doi.org/10.1007/978-3-642-19170-1_28
https://doi.org/10.1016/S0304-3975(99)00206-6
https://doi.org/10.1007/3-540-45061-0_22
https://doi.org/10.2307/3215235
https://doi.org/10.1007/978-3-031-19135-0_11
https://doi.org/10.1007/978-3-030-94876-4_9
https://doi.org/10.1007/978-3-030-94876-4_9
https://doi.org/10.1016/j.tcs.2024.114397
https://doi.org/10.1016/S0304-3975(96)00010-2
https://doi.org/10.1109/32.214828
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-319-40530-8_4
https://doi.org/10.1007/978-3-642-69968-9

	Introduction
	Background: (Stochastic) PT Nets and Maude
	Gracefully Degrading Production System
	Modular Rewritable Stochastic PN
	Modularity, symmetries, and lumpability

	Obtaining the Lumped CTMC generator from an RwSPT
	Experimental Evidence

	Conclusion and Future Work

