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Abstract: AI techniques have recently been put under the spotlight for analyzing electrocardiograms
(ECGs). However, the performance of AI-based models relies on the accumulation of large-scale
labeled datasets, which is challenging. To increase the performance of AI-based models, data augmen-
tation (DA) strategies have been developed recently. The study presented a comprehensive systematic
literature review of DA for ECG signals. We conducted a systematic search and categorized the
selected documents by AI application, number of leads involved, DA method, classifier, performance
improvements after DA, and datasets employed. With such information, this study provided a better
understanding of the potential of ECG augmentation in enhancing the performance of AI-based
ECG applications. This study adhered to the rigorous PRISMA guidelines for systematic reviews. To
ensure comprehensive coverage, publications between 2013 and 2023 were searched across multiple
databases, including IEEE Explore, PubMed, and Web of Science. The records were meticulously
reviewed to determine their relevance to the study’s objective, and those that met the inclusion
criteria were selected for further analysis. Consequently, 119 papers were deemed relevant for further
review. Overall, this study shed light on the potential of DA to advance the field of ECG diagnosis
and monitoring.

Keywords: ECG augmentation; artificial intelligence; electrocardiogram; AI in cardiology; data
augmentation

1. Introduction

Cardiovascular diseases (CVDs) are significant contributors to worldwide fatalities,
accounting for approximately 33% of all deaths across the world [1]. Because of its low
cost, simplicity, and non-invasive nature, the electrocardiogram (ECG) is the most used
technique for diagnosing and monitoring CVDs in both clinical and telemedicine set-
tings [2]. The ECG provides specific information about the structure and electrical activity
of the heart by detecting alterations in the shape and timing of the captured waveforms.
In clinical applications, prompt and precise ECG interpretation is essential. For instance,
in patients suffering from myocardial infarction (MI), the quicker the abnormal condition is
detected, the higher the chance of avoiding threats to life and recovery. However, due to
the complexity of the ECG signal and the overlapping noise, diagnosing certain conditions
may take a long time (for instance, for rare events where 24 h or longer Holter recordings
are necessary) and require significant human review [3]. Moreover, due to the unique
individual characteristics of the ECG, features may vary significantly in different patients
under different physiological conditions, posing considerable difficulties for the recogni-
tion of ECG patterns. Signal interpretation can thus be a time-consuming and complex
process which leads to subjective ambiguity and human mistakes in their analysis, even
for highly-trained specialists. To tackle these problems, automatic systems for interpreting
ECG signals have been developed since the 1960s [4].
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The accurate and automatic detection of CVDs from ECG signals is a topic of rele-
vant clinical interest, particularly with the increasing spread of new wearable technology,
the modern implementation of artificial intelligence (AI), and the growth of digital health
solutions. Computer-assisted analysis of ECG signals allows achieving objective results
with less room for inter-operator and operator-specific errors. The three main components
of an automated system for ECG interpretation are signal preprocessing, feature extraction,
and classification. In the preprocessing phase, signals are denoised, segmented, and nor-
malized. In the feature extraction phase, time domain and frequency domain features are
extracted. Lastly, the extracted features are used to classify the signals into distinct diseases.

In recent times, AI, but especially deep learning (DL), has shown remarkable results
in the classification of ECG signals [5,6]. This is likely due to the robust capability of DL
for feature extraction. Deep neural networks consist of a composition of layers (i.e., math-
ematical functions), which makes DL highly adept at processing complex biomedical
signals, including ECG signals. The composition, indeed, resembles the mathematical
steps typically employed in traditional ECG signal processing algorithms. For example,
the famous Pan–Tompkins algorithm [7], which detects the timing of each heartbeat within
an ECG signal, involves the use of a first filter, a rectification operation, and a second filter:
these steps are exactly what is commonly employed in DL architectures as a sequence of
convolutional layers and non-linear activation functions. Moreover, with each layer, more
abstract and high-level features can be extracted which can be leveraged to identify CVDs.
As a result, compared with conventional machine learning (ML), and provided sufficient
expression capability, DL potentially reaches a better ability to represent the most relevant
features of complex data.

DL models are data-hungry by nature, i.e., the performance of a DL model relies
heavily on the availability of high-quality labeled datasets and a large number of training
samples. Training a DL model with insufficient data or an unbalanced dataset may result
in poor performance, a non-converging training phase, and biased classification outcomes.
To circumvent these issues, the DL model needs a large and balanced dataset. However,
obtaining a large number of training samples and a balanced dataset is difficult due to,
for example, the low incidence rate of abnormal cardiac events and the availability of expert
cardiologists to accurately label (annotate) the waveforms. In addition, the number of ECG
recordings annotated by cardiologists is limited because only expert physicians are capable
of accurately annotating the recordings. To guarantee performance, the building of a DL
model is frequently accompanied by a data augmentation (DA) technique, which provides
additional and presumably non-redundant training data by deforming the training set. DA
aims to improve the generalization ability of trained models by reducing overfitting and
broadening the decision boundary of the model.

In image recognition, DA has already reached a stable state. To improve the perfor-
mance, most state-of-the-art convolutional neural network (CNN) architectures use some
form of DA technique. For example, residual networks (ResNet) use color augmentation,
scaling, and cropping [8], DenseNet uses mirroring and translation [9], and inception net-
works use mirroring and cropping [10]. Unfortunately, in the case of ECG data, such kinds
of random transformations are not effective because the relative amplitudes of different
cardiac beat segments (P waves, QRS complex, T waves, ST segments etc.) carry relevant
information for the diagnosis. For example, time inversion assumes that it is normal that
the sequence of ECG waves is reversed. Although these can be effective for augmenting
the data (e.g., spectral), these techniques are likely not effective for ECGs. Another example
could be randomly cropping and merging the ECG data which may easily transform the
normal (sinus) rhythm into an arrhythmic pattern.

To the best of our knowledge, no comprehensive review of DA techniques of AI appli-
cations on ECG signals has been carried out yet. Since its practical significance and potential
for the development of ECG classification models, we considered the DA techniques of
the AI methods applied in ECG classification worth a review. In this study, papers were
systematically reviewed and their characteristics were highlighted. By reviewing all meth-
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ods, a taxonomy of the ECG DA methods is proposed for the first time and illustrated in
Figure 1. The taxonomy mainly breaks down into two categories: basic DA techniques and
advanced DA techniques. The basic DA techniques include all methods based on random
and non-random transformations of the ECG signal in the magnitude domain, time domain,
and time–magnitude domain. Conversely, advanced DA techniques include alternative
methods to model the data such as, for example, statistical models and learning-based
models. Advanced DA techniques follow the distributions of features present in the dataset
to produce novel pattern combinations. Many statistical models, such as the Gaussian
mixture model (GMM) and Markov chain (MC) models have been proposed for generating
new samples [11–13]. Learning-based models such as variational autoencoder (VAE) [14]
and generative adversarial networks (GANs) [15], are relatively new models developed
recently for the generation of ECGs. The paper is structured as follows:

• A comprehensive review of the latest techniques for analyzing ECG signals using DA
methods.

• A detailed taxonomy and categorization of ECG DA techniques, along with their
various applications, datasets, and AI techniques.

• A comprehensive discussion of research gaps and open issues in the field that need
further investigation.

Magnitude
Domain

Time
Domain

Hybrid
Domain

Statistical
Model

Learning
Model

Basic DA Techniques Advanced DA Techniques

ECG DA Techniques

Figure 1. Taxonomy of ECG DA techniques.

2. Method
2.1. Literature Search Strategy

A comprehensive search of the published research was conducted through three
databases: IEEE Xplore, PubMed, and Web of Science. The search criteria covered a broad
spectrum of aspects, including signal types (i.e., ECG), various AI techniques, and diverse
DA techniques. To ensure the relevance and accuracy of the findings, only articles published
in the last ten years (between 1 January 2013 and 31 January 2023) in peer-reviewed English
language journals, conference proceedings, chapters, and magazine articles were included.
The comprehensive search query, including the specific search terms used, is detailed in
Table 1.

Table 1. List of search queries and the final query.

Parameter Search Query

Signal type (Q1) “ECG” OR “electrocardiography” OR “electrocardiogram” OR
“EKG”

AI technique (Q2)
“DNN” OR “deep learning” OR “neural network” OR “AI" OR

“artificial intelligence” OR “machine learning”
DA technique (Q3) “augmentation” OR “synthesis” OR “generation”

Specific technique (Q4)
“GAN" OR “generative adversarial network” OR “normalizing

flow” OR “stable diffusion”

Final query Q1 AND Q2 AND (Q3 OR Q4)
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2.2. Study Selection

In order to ensure a rigorous and systematic approach to select articles, we followed
the guidelines set forth by the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) [16]. First, we utilized reference manager software to eliminate
the duplicates. We then thoroughly screened the remaining works by evaluating titles
and abstracts, and subsequently conducted a full reading of the selected papers to apply
inclusion/exclusion criteria. To provide transparency and clarity of the selection process,
a flowchart summarizing our research is reported in Figure 2. This method enabled us to
effectively narrow down our options and identify studies that were directly relevant to our
research objectives.

2.3. Results of the Research

Implementing the search query and inclusion/exclusion criteria, we initially obtained
a list with 625 articles; we then excluded 193 duplicates using reference manager software or
manual review. After screening the remaining 432 papers based on their titles and abstracts,
350 papers were selected for full-text evaluation according to our inclusion/exclusion
criteria. The inclusion and exclusion criteria are presented in Table 2. Ultimately, 119 papers
met the criteria and were kept for further analysis.

Table 2. Inclusion and exclusion criteria for selecting papers.

Inclusion Criteria Exclusion Criteria

Works published in the period between 1
January 2013 and 31 January 2023

Review papers and non-English
written papers

Applying DA only to the ECG
Not applying DA and not providing a clear

description of DA and datasets

With a clear description of DA Not considering the ECG signal

Inclusion of AI technique Not reporting performance metrics

In the following sections, we present the major outputs of the literature review.
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Records identified by database
search: Web of Science, IEEE
Explore and PubMed, N=625

Records removed before screening:
Duplicate records removed, n=193

Title screened, n=432

Abstract screened, n=392

Full article access for eligibility, n=350
Records excluded by

exclusion criteria, n=231

Records excluded: abstract not
relevant, n=42

Records excluded: title not relevant,
n=40

Studies that meet the inclusion
criteria, n=119

Figure 2. The search method for identifying relevant studies.
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3. ECG Applications and Datasets
3.1. Typical ECG Applications

The most common implementation of AI in ECG analysis is automatic ECG inter-
pretation [14,15,17,18]. Other important applications include localizing and annotating
specific rhythms and beats, which can aid in the detection of conditions such as MI [13]
and fetal heart rate series classification [19]. Moreover, recent advancements in biometric-
based human identification show great promise for accurate recognition based on ECG
data [20,21]. In addition, ECG analysis can also be utilized for detecting emotions and
stress [22], pain [23], sleep-apnea [24,25], identification of COVID-19 infections [26–29],
assessment of signal quality [30,31], and many other potential applications. In this study,
we considered all applications as long as they investigated on DA of ECG via AI techniques.

3.2. Datasets

Most of the reviewed studies used a few ECG databases. The MIT-BIH AD database
was used in 46% of the studies, followed by Physionet-2017 at 13%, PTB at 7%, Physionet-
2020 at 5%, and Physionet-2021 at 3%. INCART, CPSC-2018, and PTB-XL were used in 2%
of the studies each. The specific characteristics of these databases are hereafter described
in detail.

• MIT-BIH AD: The MIT-BIH Arrhythmia Database contains a collection of 48 ECG
ambulatory records of two leads, each spanning 30 minutes, gathered during the
period from 1975 to 1979 [32]. These recordings, sampled at 360 Hz with 11-bit
resolution over a 10 mV range, were collected from 47 individuals who were subjected
to testing in the BIH Arrhythmia Laboratory. Within this dataset, we find several
different types of cardiac abnormalities (CA), including but not limited to atrial
fibrillation (AF), atrial bigeminy, atrial flutter, ventricular premature beat, right bundle
branch block (RBBB), and left bundle branch block (LBBB).

• PhysioNet-2017: This dataset is a comprehensive collection of 8528 single-lead ECG
data records obtained from 3658 individuals [33]. The ECG data are uniformly sampled
at a rate of 300 Hz and span a duration of 9 to 61 seconds. The dataset encompasses
four distinct rhythm categories, namely normal, AF, noise, and other.

• INCART: The St. Petersburg INCART dataset consists of 75 records extracted from 32
24-h Holter recordings where patients were diagnosed with various heart complica-
tions such as coronary artery disease, ischemia, conduction abnormalities, and arrhyth-
mia. The records are sampled at a frequency of 257 Hz, ensuring that subtle changes
in heart function are captured. Each record spans 30 min and contains 12 standard
leads.

• CPSC-2018: The China Physiological Signal Challenge-2018 dataset is a comprehen-
sive collection of 6, 877 recordings of 12-lead ECG data, encompassing a diverse
range of patients across genders and medical conditions [34]. The recordings were
gathered from 11 hospitals, contributing to data’s diversity. Each ECG recording is
sampled at 500 Hz, providing high-resolution physiological signal data for analysis.
The recordings range in length from 6 to 60 s. This dataset comprises of nine different
types of CAs, including AF, LBBB, RBBB, normal, premature atrial contraction, prema-
ture ventricular contraction, intrinsic paroxysmal atrioventricular block, ST-segment
depression, and ST-segment elevation.

• PTB: The PTB dataset comprises 549 ECG records consisting of 15 leads (12 standard
leads and 3 Frank leads) obtained from 290 individuals [35]. The records were sampled
at a rate of 1000 Hz with 16-bit resolution. Each individual has up to five records,
which allows for a longitudinal view of their health status. Among the subjects, 216
have been diagnosed with one of 8 different types of heart diseases, which include
MI, cardiomyopathy/heart failure, bundle branch block, dysrhythmia, myocardial
hypertrophy, valvular heart disease, and myocarditis. The remaining 52 individuals
represent a healthy control group, which serves as a point of reference for comparison.
However, the health status of 22 individuals remains unknown.
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• PTB-XL: The PTB-XL dataset, a comprehensive collection of clinical ECGs, comprises
21,837 records taken from 18,885 patients [36]. These ECGs are 10 s in length and were
captured at two different sampling rates, 100 Hz and 500 Hz, with 16-bit resolution,
ensuring that the data were of high accuracy. Within this dataset, there are several dis-
tinct ECG rhythms and abnormalities, including normal, MI, conduction disturbance,
and hypertrophy.

• PhysioNet-2021: The Physionet-2021 includes 12-lead ECG recordings from a large
cohort of 6877 patients suffering from various CAs [37]. These recordings have been
collected from six different hospital systems, located in four different countries spread
across three continents. The dataset is available publicly as training data, with over
88,000 ECGs shared for this purpose. Some of the previously described databases were
later included and are now part of Physionet-2021 (e.g., INCART, PTB, and PTB-XL).

4. Basic Data Augmentation Methods

The concept of basic DA techniques of ECGs originally comes from the random
transformation of image and time series, such as scaling, flipping, noise addition, etc. There
are three basic DA techniques for ECGs: time domain, magnitude domain, and hybrid
domain. Time domain transformations change the ECG along the time axis, i.e., the data
points on the ECG are moved to different time steps than the original sequence. Magnitude
domain transformation is different from time domain transformation because the time steps
stay the same while only the values of the elements (mV) change. For example, scaling,
adding noise, dropping, etc., are all ways to change the values of the elements. Hybrid
methods use both time and magnitude domains. Namely, basic DA generates pattern x

′

using some random transformation functions.

x
′ ← f (x) (1)

where x is defined as x = [x1, x2, · · · , xN]ᵀ with N the number of time steps from the
original dataset. Each xn represents the ECG amplitude at time n for each of the L mea-
surements collected by multiple electrodes concurrently. For example, the standard clinical
ECG is typically stored in a N × 12 matrix (or its transpose). Based on the search query, we
obtained several papers that are related to the basic DA method. The summary of basic DA
is tabulated in Table 3. In the following, we provide details about the most commonly used
basic DA operations in the paper we analyzed.

• Noise addition: The ECG signal x is modified by adding Gaussian random noise n.
The noise n is generated by a random generator with a mean of 0 and a standard
deviation of σ. Mathematically, the generated signal can be expressed as: x + n
[19,38–45].

• Scaling: Each lead of the ECG signal is scaled by a random factor that is drawn from
a normal distribution [21,25,38–40,42,46]. The operation is typically performed by
multiplying the ECG signal by a diagonal matrix.

• Time inversion: Given the ECG signal x, the temporally inverted version of the signal
is expressed as x

′
= [xN , xN−1, · · · , x1]ᵀ [38,40,41,47].

• Spatial inversion: The amplitude of the ECG x is multiplied by −1, causing a spatial
inversion of the ECG. The transformed signal can be mathematically expressed as
−x [38,40,41].

• Time-spatial inversion: Temporal–spatial inversion is a fusion of spatial and temporal
inversion. Temporal–spatial reversal performs a horizontal reverse on the segments
that have been vertically reversed [41,47,48].

• Permutation: The ECG signal is split into multiple segments and shuffled so as to
randomly alter the temporal position of each segment and then recombined [38,40].

• Dropping: Masking the input signal randomly with a certain probability [38,40,44,49].
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• Cutout: Randomly cut out (set to zero) a portion of the input signal with the width
of magnitude×signal length [19,38,40,50] (same as dropping, but with each portion
having the same given length).

• Sine: A sine wave is added to the ECG signal. The sine wave’s frequency and ampli-
tude are chosen randomly [38,40].

• Square pulse: The ECG signal is added with a square pulse whose frequency and
amplitude vary randomly [38,40].

• Time warping: Randomly chosen segments of the original ECG signals are stretched
or compressed along the time axis. Random signal segments along the time axis are
stretched and compressed by dynamic time warping [38,51].

• Baseline wandering : To create baseline wandering, different sinusoidal signals with
random low frequencies and phases are generated and added to x [51,52].

• Lead removal: Lead removal is the process of picking a single lead at random and set-
ting all of its time signal values to zero [52] (similar to dropping and cutout, but setting
to zero an entire lead at once).

• Lead order shuffling: Lead order shuffling involves changing the placement order of
all leads, or a subset, in a random fashion [39,52].

• High-pass filter : High-pass filtering employs a Butterworth filter with a fixed cutoff
frequency (e.g., 0.5 Hz) to filter signals and eliminate baseline wander noise across all
leads [52].

• Low-pass filter: A low-pass filter, specifically a Butterworth filter with a certain cutoff
frequency (e.g., 47 Hz), is used to eliminate high-frequency noise from the noise for
all leads [52]. Sometimes, this operation is referred to as Gaussian blur, as a one-
dimensional Gaussian kernel is employed to “blur” (low-pass filter) the signal for all
leads.

• Band-pass filter: A band-pass filter eliminates baseline drift and high-frequency signal
components for all leads by employing a Butterworth filter with a certain low cut-off
frequency, e.g., 0.5 Hz and a high cut-off frequency e.g., 47 Hz [39,45,52].

• Sigmoid compression: Sigmoid compression applies a sigmoidal activation function
to the ECG signal for all leads [52].

• Powerline noise: Powerline noise refers to the interference pickup from powerlines
at f = 50 Hz (or 60 Hz) and its higher harmonics. While powerline noise can be a
nuisance for ECG, it can be added to the original signal as a form of DA to increase
the variability of ECG signal [46,51,53].

• Electromyographic (EMG) noise: EMG noise indicates the high-frequency noise in-
duced by muscle contractions. Simulated EMG noise is added to the clean ECG signal
using an appropriate signal processing technique, such as adding the two signals
together or convolving the ECG signal with the EMG noise signal [51,53].

• Baseline shift: Baseline shift refers to changes in the baseline that occur as a result
of variations in electrode–skin impedance brought by electrode movements. In this
operation, a direct current offset can be added to the ECG signal to simulate baseline
shift noise. The direct current offset is randomly generated and varies within a certain
range to make it more realistic [46,51,53].

• Peak alteration: Peak alteration in ECG refers to any change or deviation from the
normal shape and duration of the QRS complex or T-wave peaks in an ECG [21,54].

• Mix-up: New signals are generated by linearly interpolating two other real signals,
using different weights for each one [55].
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Table 3. Summary of basic DA methods for ECG classification using AI techniques.

Type Lead Input Classifier Improvem.
after DA Dataset Refs.

CA 12 ECG CNN 2.24% Physionet-2020 [56]
CA 12 ECG CNN-LSTM 3% Physionet-2020 [39]
CA 12 ECG ResNet −0.063–2.54% CPSC-2018 [52]
CA 12 ECG CNN – Physionet-2020 [50]
CA 12 ECG CNN – Physionet-2020 [57]

CA 12 ECG ResNet 1.4–3.5% ICBEB and
PTB-XL [46]

CA 1 ECG CNN – MIT-BIH AD [58]

CA 1 Spectral Residual
Attention 0.8% MIT-BIH AD [59]

CA 12 ECG CNN 7.73% Physionet-2021 [40]
CA 1 ECG CNN – MIT-BIH AD [60]
CA 12 ECG ResNet 40% INCART [54]
CA 2 ECG CNN 2.3% Physionet-2017 [61]
CA 1 Spectral CNN – MIT-BIH AD [62]
CA 1 ECG CNN 0.028% MIT-BIH AD [63]
CA 1 Spectral CNN – MIT-BIH AD [64]
CA 12 ECG CNN – Physionet-2020 [65]
CA 8 ECG CNN – Private [43]
CA 12 ECG CNN 1% Physionet-2020 [66]
CA 12 Spectral CNN 4.64% PTB [67]
CA 1 Spectral CNN – Physionet-2017 [68]
CA 1 ECG CNN 5% MIT-BIH AD [47]
CA 12 ECG CNN – Physionet-2021 [45]
CA 1 ECG BeatGAN 0.28% MIT-BIH AD [69]

CA 1 ECG ResNet-LSTM –
MIT-BIH AD,

AFDB and
Physionet-2017

[70]

CA 1 Spectral Residual-
Attention –

MIT-BIH AD
and Supraven-

tricular
Arrhythmia

[71]

CA 1 Spectral CNN – MIT-BIH AD [72]
CA 1 ECG LSTM 42% Physionet-2017 [73]
CA 2 ECG CNN-RNN – Private [74]
CA 1 ECG CNN-LSTM 3% MIT-BIH AD [75]
CA 1 ECG CNN-RNN 1.91% Physionet-2017 [55]

CA – Spectral CNN – MIT-BIH AD
and PTB [76]

CA 1 ECG CNN – Physionet-2017 [44]
CA 1 ECG CNN – Physionet-2017 [77]
CA 1 ECG CNN – Physionet-2017 [49]
CA 1 ECG ResNet-RNN – Physionet-2017 [78]
CA 12 ECG CNN – Physionet-2021 [79]
CA 1 ECG CNN 0.62–5.61% MIT-BIH AD [80]
CA 1 Spectral Transformer – MIT-BIH AD [81]

Biometric 1 ECG CNN – CYBHi and
UofTDB [82]

Biometric 1 ECG CNN 0.19% PTB and
LivDet2015 [83] [84]

Biometric 1 ECG CNN 12% Physionet-2018 [21]
Frailty

Identification 1 ECG LSTM 3.2% Private [42]

Sleep apnea 1 ECG CNN – Private [25]
Peak detection 2 ECG CNN 2.5% MIT-BIH-NST [85]

QA 1 ECG CNN 2% Physionet-2017 [86]
QA 12 Spectral CNN 2.91% PhysioNet-2011 [30]
QA 2 ECG U-Net – QT [87] [31]
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Table 3. Cont.

Type Lead Input Classifier Improvem.
after DA Dataset Refs.

Cardiac
auscultation 2 Spectral CNN 2–9% Private [88]

COVID-19 12 Image CNN – COVID-ECG
[89] [27]

COVID-19 12 Image CNN – COVID-ECG
[89] [29]

COVID-19 12 Image CNN −0.02% COVID-ECG
[89] [28]

Emotion 1 ECG CNN-SVM 20% MAHNOB-HCI
[90] [41]

Emotion 1 ECG CNN 59% Dreamer [91]
Fetal ECG 1 ECG LSTM 10% NIFECGC [19]

5. Advanced Data Augmentation Techniques

Basic DA often alters the properties of ECG signals, resulting in the creation of “noise”
rather than augmenting the dataset with meaningful samples. These augmented samples
may have detrimental effects on ECG classification. For example, in [52], the authors
reported that horizontal flipping and vertical flipping DA operations have detrimental
effects on their classifier. To tackle the limitations of basic DA techniques, advanced
DA techniques can be a reasonable alternative. Based on the search query, we obtained
several papers that are related to advanced DA methods. The summary of advanced DA is
tabulated in Table 4. Advanced DA techniques can be categorized into two types: statistical
generative models and learning-based models. These two approaches are described in the
following subsections.

5.1. Statistical Generative Model

ECG DA approaches based on statistical generative models typically involve mod-
eling the dynamics of the ECG with, in fact, statistical models. For example, in [11],
the authors proposed a GMM to solve the class imbalance issues of the AF detector.
The GMM model showed better performance compared to oversampling the minority
class. Silva et al. [12] designed a cardiorespiratory signal synthesizer by conditional sam-
pling from a multimodally trained stochastic system of Gaussian copulas integrated with an
MC. Zhu et al. [13] proposed a novel DA technique that took into account both probability
distribution and geometry. In their technique, they introduced variations to the data distri-
bution along the geodesic in a Wasserstein space, which is a mathematical concept used
to measure the distance between two probability distributions. To calculate the ground
metric of the Wasserstein space, they analyzed the cardiovascular characteristics of ECG
signals, enabling them to compare their geometry. Then, the augmented samples were
fed to the multi-feature transformer mode with real samples. The result was a significant
improvement in performance: the AUCROC on the PTB-XL dataset increased by 6–17%
compared to the unaugmented dataset.

5.2. Learning Based-Models

In the field of AI, DL-based generative models have emerged as a powerful tool for
generating diverse data samples. These models have received widespread attention due to
their ability to produce high-quality synthetic data that resemble real-world data. While
there are several generative models available, not all of them have been utilized for ECG
DA. Therefore, in the following subsection, we focused on the specific methods that have
been employed for DA, which can potentially help to overcome the challenges of limited
labeled ECG data in various AI-based ECG applications.
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Table 4. Summary of advanced DA methods for ECG classification using AI techniques.

Types Lead DA Methods Input Classifier
Improvem.

after
DA

Dataset Refs.

CA 1 Style-transfer ECG CRN 3% Physionet-2017 & Private [92]

CA 2 CGAN ECG CNN 1.3–
2.6% MIT-BIH AD & Physionet-2017 [93]

CA 12 VAE Spectral CNN 0–6% Private [14]
CA 1 GAN ECG CNN 1% MIT-BIH AD [94]
CA 1 GAN ECG CNN 1.3% MIT-BIH AD [15]
CA 1 Embedding space ECG CNN – Physionet-2017 [48]

CA 1 GAN Spectral CBAM-
ResNet – MIT-BIH AD [95]

CA 12 Embedding space ECG Self-
supervised – Physionet-2021 [96]

CA 1 GAN Spectral CNN 3% Physionet-2017 [11]
CA 1 GAN ECG CNN – MIT-BIH AD [17]
CA 1 GAN ECG CNN 5-37% MIT-BIH AD [18]

CA 1 GAN ECG-
PPG CNN – BIDMC [97]

CA 1 MC ECG CNN – MIT-BIH AD [12]
CA 1 Embedding space ECG CNN 5.8% ICENTIA11K [98] [99]
CA 1 GAN ECG CNN – MIT-BIH AD [100]

CA 1 VAE ECG CNN-
LSTM 2% MIT-BIH AD [101]

CA 1 & 12 BiLSTM-CNN & TimeGAN ECG CNN – MIT-BIH AD & PTB [102]
CA 12 GAN ECG ResNet 5% CPSC-2018 [103]
CA 1 GAN ECG CRNN 14% Physionet-2017 [104]

CA 1 GAN ECG Bi-
LSTM 1.9% MIT-BIH AD [105]

CA 1 GAN ECG RF 11% MIT-BIH AD [106]
CA 1 GAN ECG LSTM – MIT-BIH AD & MIT-BIH NSR [107]
CA 1 GAN ECG CNN 1.45% MIT-BIH AD [108]
CA 1 GAN ECG CNN – MIT-BIH AD [109]

CA 1 GAN ECG CNN-
LSTM 2.65% MIT-BIH AD [110]

CA 1 & 12 GAN ECG CNN – MIT-BIH AD & PTB [111]
CA 1 GAN ECG CNN 0.24% MIT-BIH AD [112]
CA 2 GAN ECG SVM 32% MIT-BIH AD [113]

CA 1 GAN ECG Bi-
LSTM 2–51% MIT-BIH AD [114]

CA 1 VAE & GAN ECG CNN 5% MIT-BIH AD [115]
CA 1 GAN ECG CNN – MIT-BIH AD [116]
CA 1 GAN ECG CNN – MIT-BIH AD [117]
CA 1 GAN ECG LSTM – MIT-BIH AD [118]

CA 1 GAN ECG
ResNet-
BiLSTM-
attention

– MIT-BIH AD [119]

CA 1 AE ECG CNN – Physionet-2017 [120]
CA 1 GAN Spectral CNN – MIT-BIH AD [121]

CA 1 GAN ECG

Multi-
head

Atten-
tion

5–10% MIT-BIH AD [122]

CA 1 GAN ECG CNN – MIT-BIH AD [123]
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Table 4. Cont.

Types Lead DA Methods Input Classifier Improvem.
after DA Dataset Refs.

CA 1 GAN ECG CNN 32% MIT-BIH AD [113]

CA 1 BiRNN ECG Ensemble
Bagged Trees – MIT-BIH AD [124]

CA 1 GAN ECG CNN 4.8–8.1% Private [125]
CA 1 GAN ECG LSTM 4% MIT-BIH AD [126]
CA 1 GMM ECG ResNet 6.7% MIT-BIH AD [127]

CA 12 Embedding
space Spectral Self-

supervised – Private [128]

CA 1 GAN ECG CNN –
AHADB,
VFDB, &

CUDB
[129]

MI 1 Encoder-
decoder ECG CNN – PTB [130]

MI 12
Wasserstein

Geodesic
Perturbation

ECG MFT 6–17% PTB-XL [13]

MI 1 GAN ECG CNN 4–6% PTB [131]
Fetal 1 GAN ECG CNN 12% CTU-UHB [132]

Emotion 1 GAN ECG LSTM 17% CASE [133]
Biometric 1 GAN ECG CNN – ECG-ID [134]

Sleep-Apnea 1 GAN ECG CNN-LSTM 1.78
Apnea-ECG
& MIT-BIH

AD
[24]

Emotion – GAN ECG CNN 5.64% Private [135]
MI 12 GAN ECG SVM 0.75% PTB [136]

Emotion 1 GAN ECG SVM – DECAF [22]

Pain intensity 1 DDCAE ECG NN – BioVid Heat
Pain [23]

5.2.1. Embedding Space

ECG DA techniques should not only be able to make diverse samples but also be
able to imitate the features of real ECG. Due to the manifold unfolding in feature space,
it is hypothesized that simple transformations applied to encoded inputs instead of the
raw inputs would yield more convincing synthetic data. For example, Zhang et al. [48]
used basic DA techniques for representational learning in the embedding space. Their
learning model comprises two modules: an encoder and a classifier. The encoder generates
representations using the temporal–spatial reverse detection approach, while the classifier is
responsible for performing the temporal–spatial reverse detection task during the learning
phase. After completing the learning process, the trained encoder is transferred to the
second stage (the classifier) to be applied in different downstream tasks.

5.2.2. Deep Generative Models

To generate realistic high-dimensional data, such as images, time series, and sequence
data, deep generative models (DGMs) have lately demonstrated promising results. Based
on the obtained results regarding the ECG, we can categorize DGMs into two broad cate-
gories: encoder–decoder networks and generative adversarial networks. In the following
sections, we provide details about these two DGMs.

Variational Autoencoder (VAE): The VAE is a powerful DL architecture that has revo-
lutionized the field of unsupervised learning. At the heart of a VAE, there are three critical
components: an encoder, a decoder, and a loss function. The encoder and decoder are
two distinct types of neural network, each responsible for encoding high-dimensional
or structural inputs into a lower-dimensional latent space and decoding them back into
high-dimensional outputs, respectively. The loss function used in VAEs is the negative
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log-likelihood, augmented with a regularizer to ensure that the generated outputs remain
consistent with the input data. By sampling vectors from the latent space and transform-
ing them through the decoder, VAEs can generate entirely new patterns, making them a
powerful tool for data synthesis and augmentation. In [14], the author used vector quan-
tized VAE (VQ-VAE) to augment the training samples of spectral images of 12 leads ECG.
They reported that their method improved the performance by 6% compared with the
unaugmented data. Al Nazi et al. [101] used a VAE model to increase the variations of
ECG data. Thiam et al. [23] used deep denoising convolutional autoencoders (DDCAE).
Their approach involves optimizing both the joint representation of input channels gener-
ated by a multimodal DDCAE and the additional neural network, trained simultaneously,
performing the classification task.

Generative Adversarial Networks (GAN): The GAN is a type of DL framework intro-
duced by Ian Goodfellow and his colleagues in June 2014 [137]. GANs became a common
way to make new samples be included in the training set. GANs primarily utilize ad-
versarial training to simultaneously optimize two neural networks: a generator and a
discriminator. The generator network generates a sample supposed to be similar to those of
the original distribution. This is achieved by extracting a random value from a multivariate
normal distribution and feed it as input to the generator. The discriminator compares the
output from the generator with the original samples and gives out a number between 0
and 1, indicating the probability of identifying a synthetic ECG rather than a real one.

In the context of ECG DA, the authors of [15,17,18,24,94,100,105,107–112,114–119,122,123,126]
used GAN to augment the samples of the minor classes of the MIT-BIH AD. The augmented
samples were then fed to a DL model for ECG beat classification, which demonstrated a notable
improvement ranging from 0.24–32% compared to the unaugmented samples. While other studies
such as [106,113] also employed GANs to augment ECG samples, they used ML-based classifiers,
namely, random forest (RF) and support vector machines (SVM), respectively.

Zhou et al. [93] proposed conditional GAN (CGAN) to generate versatile ECG for im-
proving the training efficiency of the DL model. Their methods improved the performance
1.3–2.6% on two different datasets, i.e., MIT-BIH AD and Physionet-2017. Instead of using
the ECG signal as a GAN input, some researchers transformed the ECG signal into spectral
images. For example, the authors in [11] converted ECG signals into images by using a
logarithmic spectrogram.

Xiong et al. [92] designed an ECG generator that consists of three components: clinical
ECG recordings, a mathematical model that uses ordinary differential equations, and a 37-
layer convolutional recurrent network (CRN) for style transfer. At first, the mathematical
model was utilized to create ECG waveforms that represent an idealized heart rate or
pacing of the RR intervals using parameters for the mean and standard deviation of the
heart rate. These ECG waveforms were then fed into the neural network for style transfer.
The authors discovered that their network boosted the accuracy of AF detection by 3%
when DA was employed.

Fangyu et al. [102] developed a novel approach to detect abnormal ECG signals with
higher accuracy. To address the challenge of imbalanced data affecting model learning, they
designed two DA techniques (BiLSTM-CNN and TimeGAN) to improve the semantic infor-
mation of various features. Additionally, they proposed a contrastive learning framework
to ensure consistency in data representation across two different channels. By maximiz-
ing the similarity of data representations and calculating contrastive loss, they obtained
more complete data category embedding and correlation, which ultimately improved
performance by 3% compared to the model without contrastive learning.

Some researchers only used the GANs for ECG synthesis. ECG synthesis has the
potential to improve our understanding of the underlying mechanisms of various heart
conditions and to develop more accurate diagnostic models. However, it is important to
validate the accuracy and reliability of the models built using synthetic ECG signals before
deploying them in clinical settings. Based on our search criteria, we found papers that
used generative methods only for ECG synthesis; the summary of the methods is tabulated



Sensors 2023, 23, 5237 13 of 22

in Table 5. In these papers, different metrics were used to evaluate the performance of
GAN models for ECG synthesis. The choice of the metric depends on the specific goals of
the research and the characteristics of the generated ECG signals. Some commonly used
metrics for evaluating the performance of GAN models for ECG synthesis include:

• Mean Squared Error (MSE) and Root MSE (RMSE) : Both MSE and RMSE are based
on the average squared difference between the generated ECG signals and the ground
truth ECG signals. A lower error indicates better performance.

• Signal-to-Noise Ratio (SNR) : The SNR metric calculates the ratio of the signal power
to the noise power in the generated ECG signals. A higher SNR value indicates better
performance.

• Fré chet Inception Distance (FID) : The FID metric measures the distance between the
distribution of the generated ECG signals and the distribution of the real ECG signals.
A lower FID value indicates better performance.

• Maximum Mean Discrepancy (MMD) : The MMD metric measures the distance be-
tween two distributions by comparing the mean of their feature representations in a
reproducing Kernel Hilbert Space. If the MMD is small, it means that the two distribu-
tions are similar in the feature space, and the model trained on one distribution can
generalize well to the other distribution.

• Dice Coefficient (DC) : The DC metric is used to measure the similarity or overlap
between two sets or binary masks. The DC ranges from 0 to 1, where 0 indicates no
overlap between the sets and 1 indicates a perfect match.

• Percent Mean Square Difference (PMSD) : The PMSD metric is calculated as the square
of the difference between the values of the generated and real ECG, divided by the
average of the values, and expressed as a percentage. A lower PMSD value indicates
better performance.

• Kernel Maximum Mean Difference (KMMD) : The KMMD metric is an extension of
MMD that maps data to a high-dimensional space using a kernel function to measure
similarity between data points. It is used in generative models to evaluate the quality
of generated data by comparing them to real data. A high KMMD value means that
generated data are different from real data, while a low KMMD value means they are
similar.

Table 5. Summary of generative methods for ECG synthesis using AI techniques.

Lead Input Method Metric Dataset Refs.

1 ECG GAN MMD (3.83 × 10−3) LUDB [138] [139]
1 ECG GAN KMMD (5.53) MIT-BIH AD [140]
1 ECG GAN MSE (0.017–0.099) PTB-XL [141]
1 ECG GAN SNR (40.85 dB) MIT-BIH AD [142]
1 ECG GAN RMSE (0.126) MIT-BIH AD [143]
1 ECG AE MSE (0.2) MIT-BIH AD [144]
1 ECG GAN FID (4.77–17.19) MIT-BIH AD [145]
2 ECG GAN PMSD (7.21%) – [146]

1 ECG
BiLSTM-

CNN
GAN

RMSE (0.276) – [147]

12 ECG U-Net
generator DC (0.868) Private and

INCART [148]

1 ECG GAN RMSE (0.015–0.028) MIT-BIH AD [149]

12 ECG
Genetic

Algorithm-
NN

RMSE (44.9–90) µV PTB [150]

12 ECG CycleGAN MSE ([0.5–31] × 10−3) Private [151]

6. Discussion

Small-scale and imbalanced datasets limit the application of AI-based models in
cardiology. Undoubtedly, DA is an effective way of solving such problems and has been
widely used in various domains. However, DA for ECG signals poses challenges different
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than in other domains. One of the main problems of applying DA in this context is that ECG
signals contain fine-grained information such as relative amplitudes of ECG waveforms
(down to a few microvolts) and temporal relationships between data points (down to a
few milliseconds). This fine-grained information plays a significant role in the AI-based
classifier. Indeed, a synthetic ECG signal can be advantageous for the AI-based model
if its fine-grained information is present in the generated sample. Otherwise, DA may
have a detrimental effect on the classifier. Universality is another important issue of DA
techniques, i.e, DA techniques depend on the input type, input shape (number of data
points and number of leads), number of parameters (hyper-parameters) of the AI-based
method/DL model, or applications. Moreover, the effectiveness of the same DA varies
on ECG rhythms, so applying the same DA techniques for two different types of rhythms
could increase performance in one case and degrade performance in another.

Various DA methods have been proposed to generate synthetic ECGs from real ones
and improve the performance of the AI-based models. We mostly categorized the DA
techniques into two broad categories: basic and advanced. The basic DA techniques are
generally simple to apply and relatively fast to compute. Many operations in basic DA
showed promising results compared to unaugmented datasets. We however do not recom-
mend the use of time inversion, spatial inversion, permutation, and lead shuffling, whereas
a careful design of all other basic DA techniques is needed. For example, scaling the QRS
complex of a healthy subject induces symptoms of cardiac hypertrophy. Artificially pro-
longing the PR interval is instead a symptom of atrioventricular block. In another example,
in the context of MI, the lead order is essential for the correct localization of the infarcted
area. These techniques may generate non-physiological ECGs or new ECGs belonging
to other diagnostic classes, potentially leading to detrimental effects rather than being
advantageous. In the field of advanced DA for ECG analysis, researchers have extensively
explored the use of GAN-based methods. Of note, most of these works have been on
synthesizing or generating ECG beats from the MIT-BIH AD dataset, primarily emphasiz-
ing beat-level variations. However, it is important to note that there is limited research
available on rhythm generation using advanced DA techniques for specific applications.
The focus has primarily been on beat-level augmentation, rather than capturing the broader
rhythmic patterns present in ECG data. As a result, it is challenging to generalize which
DA techniques would be optimal for specific applications where rhythm generation is the
primary concern.

In addition, the improvements obtained vary greatly among different DA techniques,
datasets, preprocessing steps, and applications. Generally, it is not possible to determine
which augmentation method works best for a given dataset and only empirical tests can
drive the selection. On the other hand, advanced DA techniques, such as generative models,
can generate higher-quality synthetic data which preserve the statistical properties of the
original data distribution, making them more representative and similar to real-world data.
Therefore, these advanced DA techniques hold great potential in improving the accuracy
and robustness of AI-based models.

In Sections 4 and 5, we specifically discussed methods to generate ECG signals.
However, several studies implemented DL models with spectral images as inputs (see
Table 3 and 4). With spectral methods, the ECG signals are transformed into spectral images
which are then used for classification instead of the raw ECG signals [11,14,26,59,62,95].
DA is performed directly on the spectral images rather than the ECG signals. Despite their
use being motivated by the fact that ECG features are often accompanied by changes in
frequency band energy, the role of the phase of the sinusoidal components (in which the
ECG is decomposed) is overlooked, which could potentially reduce the DL performance.
Although spectral methods have shown promising results in certain research settings,
interpretability and explainability are further compromised because variations in spec-
tral images cannot straightforwardly be associated with changes in ECG features known
to cardiologists.
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In our analysis, we also have come to the conclusion that there are still obstacles and
challenges that need to be addressed. First, there is currently no clear consensus on the most
effective proportion of real and synthetic ECGs to use in order to enhance performance and
address overfitting issues. Some studies have investigated the impact of different ratios of
real and synthetic ECGs on classification performance and have shown that increasing the
number of synthetic ECG samples may not necessarily result in an increase in enhancement
effect [46,92,136]. Researchers have used varying ratios of synthetic ECG and real ECG
to improve AI-based model performance, but the optimal ratio depends on the specific
application and must be determined based on the dataset being used. Therefore, further
research is needed to explore the most effective use of real and synthetic ECGs in AI-based
models for various applications. Second, quantifying the quality of generated synthetic
ECGs is challenging since there is no universal method to quantify its similarity with real
ECG signals. How does one quantify whether a synthetic ECG is “real” enough? One
method is simply visual inspection: “Does it look right?” However, this often requires
domain expertise and cannot be scaled. Most studies have not considered any evaluation
scheme to quantify how much closer the synthetic ECG signal is to the real ECG signal (they
rely on an increase in classification performance). There are several possible solutions for
quantifying the quality of the synthetic ECGs. To begin with, we can extract some important
features, i.e., heart rate, the amplitude of the QRS complex, peak-to-peak differences, etc.,
for every real and synthetic ECG. Then, some distance metrics such as Wasserstein distance,
Kullback-–Leibler divergence, or Kolmogorov—Smirnov could be used to quantify the
similarity of the distributions.

In conclusion, we recommend conducting further research to overcome these issues.
One promising avenue for exploration is the combination of various approaches of DA in
order to expand the datasets. This could involve augmenting data in both the input space
and feature space. For instance, adversarial learning can be used to provide secondary
augmentation on synthetic ECGs generated using basic DA, potentially leading to a higher
degree of variation in the synthetic ECGs. Moreover, combining meta-learning with DA
might reveal why DA affects the performance of AI-based model for ECG classification.
While DA using adversarial learning is currently popular, it is still important to figure out
how to enhance the quality of synthetic ECGs. There is room for development in the areas
of improving sample quality and evaluating their efficacy across a variety of datasets.

7. Conclusions

Collecting large-scale ECG datasets is challenging due to constraints on available
patients, expert cardiologists, recording duration, and operational complexity. Data aug-
mentation can be considered as an effective strategy to augment small-scale datasets and
unbalanced minority classes of samples for addressing overfitting and to boost the perfor-
mance of AI models. The paper discussed the current level of data augmentation research
for ECG interpretation using artificial intelligence techniques. After examining the studies,
we may conclude that effectiveness of DA methods can vary depending on the specific
application. What works well for one application may not be suitable for others. Therefore,
advancements in this field necessitate further investigations. In general, we found that data
augmentation boosts the performance of automatic ECG analysis. In summary, the paper
presented the practical suggestions and performance outcomes presented in the literature.
It may provide guidance and help for ECG research and assist to model the inter-patient
variability of ECG interpretation.
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