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ABSTRACT

Context. Lensing by galaxy clusters is a versatile probe of cosmology and extra-galactic astrophysics, but the accuracy of some of its
predictions is limited by the simplified models adopted to reduce the (otherwise intractable) number of degrees of freedom.
Aims. We aim at cluster lensing models where the parameters of all cluster member galaxies are free to vary around some common
scaling relations with non-zero scatter and deviate significantly from them if and only if the data require it.
Methods. We have devised a Bayesian hierarchical inference framework that enables the determination of all lensing parameters and
the scaling relation hyperparameters, including intrinsic scatter, from lensing constraints and (if given) stellar kinematic measure-
ments. We achieve this through BayesLens, a purpose-built wrapper around common parametric lensing codes that can sample the
full posterior on parameters and hyperparameters, which we release with this paper.
Results. We have run functional tests of our code against simple mock cluster lensing data-sets with realistic uncertainties. The
parameters and hyperparameters are recovered within their 68% credibility ranges and the positions of all the “observed” multiple
images are accurately reproduced by the BayeLens best-fit model, without over-fitting.
Conclusions. We have shown that an accurate description of cluster member galaxies is attainable, despite a large number of degrees
of freedom, through fast and tractable inference. This extends beyond the state-of-the-art of current cluster lensing models. The
precise impact on studies of cosmography, galaxy evolution, and high-redshift galaxy populations can then be quantified on real
galaxy clusters. While other sources of systematics exist and may be significant in real clusters, our results show that the contribution
of intrinsic scatter in cluster member populations can now be controlled.

Key words. Gravitational lensing: strong – Methods: numerical – Galaxies: clusters: general – Cosmology: observations – dark
matter

1. Introduction

Galaxy clusters (at z ≈ 0.3−0.9) are ideal “cosmic telescopes” to
study background galaxies out to z ≈ 7 and they boost the lens-
ing signal of their own galaxies. When galaxies reside in clusters,
their lensing cross-section is enhanced, allowing the study of
galaxy populations at z ≈ 0.2- 0.4, over a wide mass range (down
to M? ≈ 109.5M�, e.g., Keeton 2003; Grillo et al. 2014; Parry
et al. 2016; Niemiec et al. 2017; Bergamini et al. 2019). If the
total mass density distributions of lensing clusters are accurately
reconstructed, cosmological parameters can also be inferred
(e.g., Golse et al. 2002; Gilmore & Natarajan 2009; Caminha
et al. 2016; Magaña et al. 2018; Grillo et al. 2018). Dedicated
Hubble Space Telescope (HST) surveys, such as the Cluster
Lensing And Supernova survey with Hubble (CLASH, Postman
et al. 2012), the Hubble/Spitzer Frontier Fields program (HFF,
Lotz et al. 2017), and the Re-ionization Lensing Cluster Sur-
vey (RELICS, Coe et al. 2019), have enabled the identification
and multi-band characterization of tens, sometimes hundreds, of
multiple images of background sources, and hundreds of clus-
ter member galaxies per cluster so as to constrain cluster lens
models (Priewe et al. 2017). Subsequent multi-slit spectroscopic
follow-up observations, such as the CLASH-VLT survey (Rosati

et al. 2014) has gathered a wealth of multi-object spectroscopic
data on cluster member galaxies and background sources, sam-
pling light-cones around 13 clusters (≈ 20 × 20 arcmin2). Due
to their extent and magnifying power, galaxy clusters have also
been used to study faint and high-redshift sources (e.g., Ishi-
gaki et al. 2015; Livermore et al. 2015; Kawamata et al. 2016a;
Bouwens et al. 2017; Atek et al. 2018; Cerny et al. 2018;
Hoag et al. 2018; Vanzella et al. 2017; Hashimoto et al. 2019;
Vanzella et al. 2019). Since these studies may have implications
on our understanding of star-formation at high-redshift and re-
ionization, accurate magnification maps are required.

The advent of the Multi-Unit Spectroscopic Explorer
(MUSE, Bacon et al. 2012) has enabled integral-field spec-
troscopy of galaxy clusters. In particular, in recent years nu-
merous MUSE observations have targeted the cores of several
massive clusters (e.g., Richard et al. 2014; Jauzac et al. 2015;
Limousin et al. 2016; Kawamata et al. 2016b; Lagattuta et al.
2017; Caminha et al. 2016, 2017a,b; Vanzella et al. 2019). Ev-
ery MUSE pointing provides a data-cube with a field of view
of 1 arcmin2 and spatial sampling of 0.2′′. The spectra cover
4750 < λ < 9350 Å with a resolution of ∼ 2.6 Å, almost constant
along the whole wavelength range, and a spectral sampling of
1.25 Å/pix (the spectral resolution is robustly characterized, see
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Guérou et al. 2017). Integral-field spectroscopy of cluster cores
enabled a secure identification of tens of multiple images and
their redshifts and complete and pure sets of member galaxies.

Besides the identification of cluster members and multiple
images, spectroscopy provides further constraints on mass mod-
els through kinematics. The homogeneous spectroscopic cover-
age of CLASH-VLT means that velocities of individual cluster
members can be used to aid the cluster profile reconstruction
through dynamical modeling (Biviano et al. 2013; Sartoris et al.
2020). Similarly, integral-field follow-up with MUSE yields the
internal stellar kinematics of cluster members and allows to in-
dependently constrain their mass profiles.

Lensing clusters have undergone an extensive modeling ef-
fort by multiple independent teams. Up to now, the constraints
have consisted in the positions of tens of multiple images per
cluster (e.g., Richard et al. 2014; Grillo et al. 2015; Jauzac
et al. 2015; Limousin et al. 2016; Kawamata et al. 2016b; Cam-
inha et al. 2016; Lagattuta et al. 2017; Caminha et al. 2017a,b;
Bonamigo et al. 2018; Caminha et al. 2019; Bergamini et al.
2020). Mostly, lens models describe these clusters as a superpo-
sition of extended dark matter (DM) halos and more localized
over-densities corresponding to cluster member galaxies. So-
called “non-parametric”, grid-based models (e.g., Dye & Taylor
1998; Saha et al. 2001; Bradač et al. 2005; Diego et al. 2005) add
mass over-densities only where they are required by the data. Al-
ternatively, parametric models decompose the cluster potential
in different (smooth) components that are expected to follow a
physical hypothesis on how mass should be distributed in galax-
ies and clusters (see, e.g., Jullo et al. 2007, for an overview). In
particular, Natarajan & Kneib (1997) have argued that including
cluster member galaxies explicitly, like individual components
of cluster mass models, is crucial. This has also emerged from
the HFF model comparison project (Meneghetti et al. 2017),
where parametric models routinely outperformed current ver-
sions of free-form models, both on semi-analytical and on fully
simulated mocks. Towards the era of precision cosmology with
galaxy clusters, free-form models may eventually replace para-
metric models, possibly resolving some of their built-in rigid-
ity (e.g., Rodney et al. 2018). However, given the current per-
formance of parametric and free-form models, one may safely
adopt the working hypothesis that galaxy clusters can be de-
scribed as a superposition of relatively simple galaxy/halo com-
ponents.

The bottle-neck in cluster lens models consists in: ≈
0.3′′- 0.6′′ errors in image-position reconstruction (e.g., Grillo
et al. 2016), significantly higher than current positional uncer-
tainties from HST data, and the appreciable discrepancies in
magnification maps produced by different models on the same
clusters (Meneghetti et al. 2017). One cause of such discrepan-
cies may be the rigidity of the models used to reduce the de-
grees of freedom associated with cluster members, since galax-
ies are currently modeled as belonging to zero-scatter scaling
relations, typically with hyperparameters that are imposed ex-
ternally (e.g., Limousin et al. 2007). The freedom and accuracy
in lensing models have gained importance in the era of high-
accuracy cosmography (see, e.g., Treu et al. 2016), and on the
reliability of magnification maps for the study of high-redshift
galaxy populations (Bouwens et al. 2017). Up to now, departures
of individual galaxies from prescribed scaling relations were de-
termined heuristically, on a galaxy-by-galaxy basis (Jauzac et al.
2018). Ideally, all galaxies should be let free to vary around some
finite-scatter scaling relations, whose parameters (including scat-
ter) are to be determined directly from the data on each given
cluster.

The solution is a hierarchical Bayesian inference formalism,
where each galaxy has its own associated parameters, and the
parameters of all galaxies are posited to be drawn from com-
mon relations with hyperparameters to be determined through
lens modeling and (if given) auxiliary kinematic information.
In this paper, we illustrate this formalism and its application to
lensing models of three simple mock clusters of increasing com-
plexity with HFF/CLASH-VLT data quality, accounting for all
observational constraints in a self-consistent manner. This en-
sures that cluster lens models are as flexible as possible, given
the data, and that higher accuracy is reached in predicted image
positions. Since only one of the contributions to the inference
is from lensing, and in order to ensure a fair comparison with
state-of-the-art technology, we build our inference as a modular
wrapper of common lens modeling codes. This also ensures that
further constraints, such as time delays, flux-ratios, and shapes
of background sources, can be easily included in the inference.
Moreover, we perform different functional tests, comparing a
hierarchical approach with state-of-the-art zero-scatter models,
to assess which sources of systematics can be resolved by this
method, and show that the hierarchical models do not over-fit.

This paper is structured as follows. Our hierarchical infer-
ence is detailed in Sec. 2. Sec. 3 covers some technicalities in-
herent to our code implementation of the models. In Sec. 4, we
perform functional tests on three simple but realistic mock clus-
ters. Results are discussed in Sec. 5, and we conclude in Sec. 6.

While a cosmological model is adopted to generate mock
clusters and fit them, the main results of this work are general
and separate from the choice of cosmology. In fact, if needed,
cosmological parameters may be sampled as additional hyper-
parameters in our inference scheme.

2. A Hierarchical cluster lensing model

In this section, we generalize the formalism of parametric cluster
lensing models to allow for hierarchical inference, in particular
scaling relations with non-zero scatter. Given the abundance of
symbols, in the following (Sec. 2.2 and 2.3) all model parameters
and hyperparameters are marked by a “hat” symbol.

2.1. Cluster lensing components

In a parametric cluster lensing model, the total mass distribu-
tion is typically divided into a few component classes (Jullo
et al. 2007). Here, we indicate each class through its contribu-
tion, φclass, to the lensing potential. A first, smooth, cluster-scale
component (φhalo) accounts for both the DM content of the clus-
ter and the baryonic intra-cluster gas and light contributions. A
second “clumpy” component describes the mass in cluster mem-
ber halos (φgal), in DM and baryons. A third component accounts
for the presence of massive structures in the outer cluster re-
gions, and possibly additional massive halos along the line-of-
sight (φshear+los). Within this model class, the total cluster poten-
tial is then:

φtot =

Nh∑
i=1

φhalo
i +

Ngal
tot∑

j=1

φ
gal
j +

N sl∑
k=1

φshear+los
k , (1)

with Nh, Ngal
tot , N sl, the number of cluster scale halos, cluster

members, and shear plus line-of-sight contributions respectively.
The number of constraints given by the observed multiple

image positions is usually not sufficient to fit the parameters of
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mass profiles used to describe each individual galaxy in a given
cluster lens model. For this reason, cluster members are usually
parameterized as circular dual pseudo-isothermal mass distri-
butions (circular dPIEs, Limousin et al. 2005, Elíasdóttir et al.
2007), with negligible core radii, whose parameters are related
to galaxy luminosities according to fixed scaling relations.

The circular dPIE is defined by the 3D mass density
(Limousin et al. 2005):

ρ(r) =
ρ0

(1 + r2/r2
core)(1 + r2/r2

cut)
, (2)

with:

ρ0 =
σ2

0

2πG
rcut + rcore

r2
corercut

. (3)

In these equations, σ0, rcore, and rcore are the central veloc-
ity dispersion, the core radius, and the truncation radius of the
dPIE, respectively. For a vanishing rcore, rcut encircles about half
of the total 3D dPIE mass and 60% of the projected mass. In
the limit rcut → ∞ and rcore > 0, the dPIE coincides with
the pseudo isothermal mass distribution defined in Kassiola &
Kovner (1993) (PIEMD). In lensing models of galaxy clusters,
the following scaling relations are commonly adopted for the
central velocity dispersions (σgal

0 ), core radii (rgal
core), and trunca-

tion radii (rgal
cut ) of cluster members:

σ
gal
0,i = σ

re f
0

(
Li

L0

)α
, rgal

core,i = rre f
core

(
Li

L0

)βcore

, rgal
cut,i = rre f

cut

(
Li

L0

)βcut

,

(4)

without any intrinsic scatter. Under the hypothesis of a power-
law scaling Mtot,i/Li ∝ Lγi of the total mass of a cluster member,
and since the total dPIE mass is Mtot = (πσ2

0rcut)/G, the expo-
nents are therefore related through:

βcut = γ − 2α + 1 . (5)

2.2. Measured kinematics

Spectroscopic information, when incorporated inside the lensing
models, produces robust and accurate reconstructions of the pro-
jected cluster masses. However, strong lensing models still suffer
from internal degeneracies between the parameters of their mass
components (Eq. 1). A degeneracy exists, for example, between
the two normalizations, σre f

0 and rre f
cut in Eq. 4. This degeneracy

is easily understandable if we consider that the total mass of a
dPIE, with negligible rcore, inside an aperture of radius R is (Jullo
et al. 2007):

M(R) =
πσ2

0

G

(
R + rcut −

√
r2

cut + R2

)
, (6)

and that multiple images constrain only the total mass within
their (projected) distance from the center of a galaxy. Other de-
generacies also exist between the cluster-scale DM halo param-
eters and the clumpy subhalo components since the overall mass
may be redistributed differently between the main halo and the

subhalos, except where the multiple-image positions are strongly
constraining.

Recently, velocity dispersions of cluster members (from fits
to spectra with signal-to-noise ratio grater than ten) were used
to break, or at least reduce, these internal degeneracies (Verdugo
et al. 2007; Monna et al. 2015, 2017 and more extensively by
Bergamini et al. 2019). Monna et al. (2015) and Monna et al.
(2017) fixed the velocity dispersions of several cluster galaxies
to their measured values, thereby breaking their model degen-
eracies by imposing a strong hypothesis on their mass content.
In a more flexible approach, Bergamini et al. (2019) used high-
quality MUSE spectra of cluster member galaxies to build priors
on the parameters of the scaling relations in Eq. 4.

In this work, we combine both of the above to fully char-
acterize the subhalo components of clusters. Our purpose-built
BayesLens wrapper uses the available measured velocity disper-
sions of the cluster galaxies, σgal

m ± δσ
gal
m , to infer the hyperpa-

rameters (σ̂re f , α̂) of the σ-mag scaling relation. A third hyper-
parameter, ∆̂σ

re f
, quantifies the scatter of the measured galax-

ies around the σ-mag scaling relation. Gaussian priors, centered
on the measured σgal

m and with standard deviations equal to five
times the measured errors δσgal

m , are adopted in the lens model
for the dPIE velocity dispersions of galaxies with measured ve-
locity dispersions. For galaxies without a measured velocity dis-
persion, we assumed Gaussian priors centered on the inferred
σ-mag scaling relation and with a standard deviation equal to
∆̂σ

re f
. We adopt a uniform prior for the reference cut radius of

the rcut-mag scaling relation, and βcut is obtained from Eq. 5. Un-
less otherwise stated, all model hyperparameters are left free to
vary to fully explore the model posterior probability as described
below. All “hat” symbols are introduced more formally in the
following subsection (Sec. 2.3).

2.3. Fitting it all together: the posterior

In our models, we use the measured velocity dispersions of Ngal
m

cluster galaxies, σgal
m ± δσ

gal
m , together with the positions xim

of N im multiple images, from N f am different sources with po-
sitions xsou, as observational constraints to the lens model free-
parameters. Hereafter, these free-parameters will be marked with
a hat symbol. In order to explore the lens models, we sample the
total posterior probability function ptot, expressed as the product
of: the odds pg of drawing each galaxy (independently) from a
given scaling relation (with intrinsic scatter); the likelihood psr
of the scaling relation hyperparameters, given the measured ve-
locity dispersions and luminosities; the likelihood pim of repro-
ducing the observed image positions, given the cluster model (in-
cluding the parameters of each cluster member galaxy); a prior
ph on the parameters of the main cluster-scale halo(s). We also
include a term pmg that links the dPIE lensing velocity disper-
sions of the galaxies with measured kinematics to their stellar
velocity dispersions, with large uncertainties. Although not for-
mally needed, this term is used only as a loose regularization to
ensure convergence.
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In synthesis,

ptot

(
σ̂re f , α̂, ∆̂σ

re f
, r̂re f

cut , σ̂
gal
m , σ̂gal, φ̂h | maggalσ

gal
m , δσ

gal
m , xim

)
∝

∝ psr

(
σ̂re f , α̂, ∆̂σ

re f
, r̂re f

cut | maggalσ
gal
m , δσ

gal
m

)
×

× pmg

(
σ̂

gal
m | σ

gal
m , δσ

gal
m

)
× pg

(
σ̂gal | σ̂re f , α̂, ∆̂σ

re f
)
×

× ph

(
φ̂h

)
× pim

(
xim | σ̂

re f , α̂, ∆̂σ
re f
, r̂re f

cut , σ̂
gal
m , σ̂gal, φ̂h, xsou

)
.

(7)

Each of the five factors on the right-hand-side is discussed be-
low. In the following, the quantities referring to cluster galax-
ies with measured velocity dispersions are marked with the sub-
script “m”.

Some of the factors (e.g., the one on hyperparameters) can
be interpreted as a posterior on some parameters given some ob-
servations, which (by the “Bayes chain rule”) can further be used
as a prior for the full hierarchical posterior. To avoid confusion
between those posteriors and the final posterior, we alternatively
refer to them as “term” or “odds” in the following.

2.3.1. Odds on the scaling relation hyperparameters, psr

This factor is responsible for the σ-mag and rcut-mag scaling
relation hyperparameters, given the set of Ngal

m measured cluster
galaxies. For the galaxy velocity dispersions, we consider here a
scaling relation of the same form of Eq. 4 parameterized by the
reference measured velocity σ̂re f and slope α̂ plus an intrinsic
scatter ∆̂σ

re f
in measured velocity dispersions. Regarding the

rcut-mag scaling relation, in the current version of our models
we optimize only the reference value r̂re f

cut while the slope βcut is
determined using Eq. 5 from the inferred α̂ and assuming a fixed
mass-to-light scaling for the cluster galaxies. No scatter around
this relation is considered.

The term psr can be expressed as:

psr

(
σ̂re f , α̂, ∆̂σ

re f
, r̂re f

cut | maggal, σ
gal
m , δσ

gal
m

)
∝

p0,sr

(
σ

gal
m | maggal, δσ

gal
m , σ̂re f , α̂, ∆̂σ

re f
)
×

×$sr

(
σ̂re f , α̂, ∆̂σ

re f
, r̂re f

cut

)
, (8)

where the uninformative prior $sr is defined by:

ln
{
$sr

(
σ̂re f , α̂, ∆̂σ

re f
)}

=



− ln(∆̂σ
re f

), if σre f
min<σ̂

re f<σ
re f
max

and αmin<α̂<αmax

and ∆σ
re f
min<∆̂σm<∆σ

re f
max

and rre f
cut,min<r̂re f

cut <rre f
cut,max

−∞, otherwise

,

(9)

and limits the σ-mag plus scatter scaling relation hyperparam-
eters and the reference truncation radius, r̂re f

cut , to lie within
suitably chosen boundaries σre f

min(max), αmin(max), ∆σ
re f
min(max), and

rre f
cut,min(max). The log-likelihood term

ln
{

p0,sr

(
σ

gal
m | maggal, δσ

gal
m , σ̂re f , α̂, ∆̂σ

re f
)}

=

= −
1
2

Ngal
m∑

i=1


(
σ

gal
m,i − σ̂

sr
m,i

)2

(
δσ

gal
m,i

)2
+

(
∆̂σ

re f
)2 +

+ ln
{

2π
[(
δσ

gal
m,i

)2
+

(
∆̂σ

re f
)2

]}]
, (10)

quantifies the goodness-of-fit of scaling relation hyperparame-
ters to the measured velocity dispersions. In Eq. 10, we define
σ̂sr

m,i as:

σ̂sr
m,i = σ̂re f 10 0.4 α̂

(
magre f−maggal

i

)
, (11)

where magre f corresponds to the reference luminosity L0 in
Eq. 4.

2.3.2. Term on measured galaxies, pmg

This term applies only to the Ngal
m galaxies with measured ve-

locity dispersions. It allows for residual uncertainties (e.g., from
mass-anisotropy degeneracy and asphericity) in converting mea-
sured velocity dispersions in dPIE σ̂

gal
m , which in turn propagate

on the scaling relations that all galaxies are drawn from. This is
attained by linking the kinematic sigma to the lensing sigma with
some tolerance. If this were not done, one might obtain biased
results if the kinematic sigma-mag relation has some intrinsic
scatter, but the lensing sigma-mag does not. This term is also
needed in order to account for systematic uncertainties in the
“measured” dispersions, which in the high signal-to-noise ratio
regime can dominate over the statistical uncertainties. Erring on
the conservative side, we choose the conversion tolerance to five
times the uncertainties in the measured velocity dispersion.

Therefore, pmg alone consists in Gaussian priors centering
the cluster member aperture-average velocity dispersions σ̂gal

m on
their kinematic values σgal

m . We choose the standard deviation of
Gaussian priors equal to five times the error on the kinematic
measurements δσgal

m . This term is given by:

ln
{
pmg

(
σ̂

gal
m | σ

gal
m , 5 δσgal

m

)}
=

= −
1
2

Ngal
m∑

i=0


(
σ̂

gal
m,i − σ

gal
m,i

)2(
5δσgal

m,i

)2 + ln
[
2π

(
5 δσgal

m,i

)2
] . (12)

In other words, this term attributes to galaxies their measured
velocity dispersions, with very wide tolerance, unless a devia-
tion from these values produces a significant improvement of the
lensing model. We emphasize that this term is, strictly speaking,
not necessary, and formally it may prevent the finite-scatter mod-
els from reducing to zero-scatter models (if this is needed by the
data). However, given the typical δσgal

m & 15 km/s uncertainties
on measured kinematics, the 5 δσgal

m term ensures that this fac-
tor only acts as a loose regularization, preventing pathological
solutions and aiding the convergence of the models.
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2.3.3. Prior on unmeasured galaxies, pg

This term is a collection of Gaussian priors on velocity disper-
sion values for the Ngal = Ngal

tot − Ngal
m galaxies without kinemat-

ics measurements. Its form is such that the final posterior prefers
lens models in which the unmeasured galaxies lie on the σ-mag
scaling relation inferred by psr, unless otherwise required by the
lensing data:

ln
{

pg

(
σ̂gal | σ̂re f , α̂, ∆̂σ

re f
)}

=

= −
1
2

Ngal∑
i=1


(
σ̂

gal
i − σ̂

sr
i

)2(
∆̂σ

re f
)2 + ln

[
2π

(
∆̂σ

re f
)2

] . (13)

The σ̂sr are computed through Eq. 11, but now considering
galaxies without measured velocity dispersions.

2.3.4. Prior on halo parameters, ph

This term consists of flat priors on the smooth cluster-scale halo
parameters collectively indicated as φ̂h:

ln
{
ph

(
φ̂h

)}
=

{
0, if φh

min < φ̂
h < φh

max

−∞, otherwise
(14)

If (as follows) these halos are parameterized as PIEMD profiles,
ph is a prior on the sky coordinates x̂h and ŷh, on the elliptic-
ity êh, position angle θ̂h, core radius r̂h

core, and central velocity
dispersion σ̂h

0.

2.3.5. Multiple-image likelihood, pim

This final term is a likelihood function quantifying the agreement
between observed and lens model predicted multiple-image po-
sitions. Given N f am sources with N im

i multiple images associated
to the same i-th source (usually called a “family”), we follow
Jullo et al. (2007) and express the likelihood as:

pim

(
xim | σ̂

re f , α̂, ∆̂σ
re f
, r̂re f

cut , σ̂
gal
m , σ̂gal, φ̂h, xsou

)
=

=

N f am∏
i=0

e−χ
2
i /2∏

j ∆xi, j
√

2π
, (15)

where the χ2
i associated to the i-th family is:

χ2
i =

N im
i∑

j=1

∥∥∥∥xobs
i, j − xpred

i, j

∥∥∥∥2

∆x2
i, j

, (16)

with xobs
i, j the observed positions of the multiple images on the

lens plane, ∆xi, j are the isotropic uncertainties on these po-
sitions and xpred

i, j are the model predicted positions, given the
adopted cosmology and the inferred set of model parameters:
σ̂re f , α̂, ∆̂σ

re f
, r̂re f

cut , σ̂
gal
m , σ̂gal, φ̂h.

3. Technicalities

To sample the complete posterior in Eq. 7, we use the Affine-
Invariant sampling as originally introduced by Goodman &
Weare (2010), which is especially suited to our highly-
dimensional (and possibly degenerate) parameter space. In par-
ticular, to enable full portability and reproducibility, we use the
latest python release1 of emcee (Foreman-Mackey et al. 2013).

The first four terms in equation Eq. 7 are directly imple-
mented in our code, while to compute the multiple-images like-
lihood pim we exploit the publicly available software LensTool
(Kneib et al. 1996, Jullo et al. 2007, Jullo & Kneib 2009). The
synergy between our code and LensTool requires some techni-
calities, as described in the following subsections. In any case,
our code is fully modular, so that LensTool can be replaced by
any other parametric lensing software by changing only a few
python lines.

3.1. Calls to LensTool: input and output files

For each parameters combination, corresponding to a given
walker position inside the parameters space, BayesLens silently
calls LensTool to compute the pim term of the total posterior.
Every LensTool call needs a different input file generated in our
code by a specific python-function. Another function reads the
resulting likelihood, computed by LensTool, from an output file.
Since all these output files are saved on the disk using the same
name, we create folders with unique (random) names to differ-
entiate each LensTool call. These folders are deleted at the end
of every pim computation.

To sample the posterior ptot, millions of walker positions are
required. Thus, millions of input and output LensTool files are
quickly created and deleted on the disk during this process. To
avoid the disk wear and the bottleneck represented by the process
of writing/reading files, part of our computer RAM is reserved
for creating a “RAM-disk” where the input and output files are
temporarily saved and deleted.

3.2. From measured σgal
m to LensTool fiducial σLT

The dPIE is implemented in LensTool through a fiducial veloc-
ity dispersion σLT related to the 1D central velocity dispersion
σ0 (in Eq. 3) by: σ0 =

√
3/2σLT . To convert the model pre-

dicted aperture-average line-of-sight velocity dispersions σ̂gal
m

and σ̂gal to their fiducial LensTool values (σ̂gal
(m),LT ), we relate

them through

σ̂
gal
(m),LT = σ̂

gal
(m)/cp(R) , (17)

where R is the aperture radius chosen for the cluster member
spectral extraction. Adopting orbital isotropy and a (spherical)
galaxy surface brightness profile proportional to the dPIE matter
density, the projection coefficient cp(R) is given by:

c2
p(R) =

6
π

rc + rt

r2
c rt

(√
r2

c + R2 − rc −

√
r2

t + R2 + rt

)−1

×

×

∫ R

0

∫ ∞

R′
R′

rt arctan
(

r
rt

)
− rc arctan

(
r
rc

)
(1 + r2/r2

c )(1 + r2/r2
t )

√
r2 − R′2

r2 drdR′,

(18)

with rc = rcore and rt = rcut (see, Bergamini et al. 2019).
1 https://github.com/dfm/emcee
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Galaxies with measured σgalm
Observed multiple images+ 25′ ′ 

Gal(4)

Gal(5)Gal(6)

Gal(7)

0.71 1.40 2.11 2.80 4.21 4.90 5.61 6.30
109 M⊙ kpc−2

3.51

z = 0.439

5′ ′ 

Cluster-1

Gal(3)

Gal(1)

BCG

Fig. 1. Mass density distribution, color coded in M� kpc−2, of the central region of the Cluster-1 mock used for our functional tests, loosely based
on the Caminha et al. (2017b) lens model for the cluster MACS J1206.2−0847 at redshift z = 0.439. Green circles mark the galaxies for which we
have a ‘measured’ velocity dispersion. Our working hypothesis is that these velocity dispersions are measured within apertures of radius R=0.8′′,
displayed by the green circles. We label in green and red the brightest galaxies with and without ’measured’ velocity dispersion, respectively. Cyan
crosses mark the position of ’observed’ multiple images for which we assume an isotropic statistical error of 0.2′′. In the inset, we show a galaxy-
scale multiple-image system around the cluster member Gal(7) (labeled in magenta). The critical lines computed for the redshift, z2 = 2.539, of
the second family of multiple images are shown in white (see text).

4. Functional tests

To test the ability of BayesLens in recovering the correct ha-
los and subhalos mass parameters and in predicting the cor-
rect multiple-image positions, we develop three mock galaxy
clusters, namely Cluster-1, Cluster-2, and Cluster-3, with an in-

creasing degree of complexity. Cluster-1 is a simple and well-
controlled cluster mock, while Cluster-2 and 3 have the main
scope to analyze the role of low-mass cluster substructures and
accuracy in the multiple-image positions. Although none of the
models claim to reproduce the complexity of real galaxy clus-
ters, they represent ideal preliminary tests for our code, leaving
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to future works its application to more complex simulations (see
Meneghetti et al. 2017) and to real cluster observations. In par-
ticular, the mocks allow us to verify the flexibility of our hierar-
chical approach, their dependence on the lensing or kinematics
constraints, and their robustness against over-fitting. Since our
simple mocks are developed using LensTool, the results we ob-
tain are directly comparable to model inputs, thus avoiding the
possibility of parameter misidentifications in the discussion of
the results.

In this section, we describe the main characteristics of the
simulated clusters and the settings adopted in the BayesLens op-
timization. We emphasize that these are functional tests, that is,
on the behavior of the method itself in recovering the input pa-
rameters of simple but realistic mocks. These are the very first
tests that any new method undergoes before it is tested on less-
well controlled mocks (e.g., from simulations) to ensure that
it can properly reproduce its own input parameters. On fully
simulated or real-life clusters, the performance of each separate
method may worsen because the true underlying mass distribu-
tion is unknown “a priori”, so the only meaningful comparison
is among different models on well-controlled mocks.

4.1. Cluster-1: the simplest toy cluster model

Cluster-1 is based on the best-fit LensTool lens model devel-
oped by Caminha et al. (2017b) (hereafter C-17) for the CLASH
cluster MACS J1206.2−0847 at redshift z = 0.439. With respect
to C-17, the cluster-scale component of our simulated cluster is
made by a single halo, parametrized through a PIEMD mass pro-
file. The center of the halo has an offset of 0.92′′ from the bright-
est cluster galaxy (BCG) reference position. It has a core radius
rh

core = 3′′, while its LensTool fiducial velocity dispersion has a
value of σh

LT = 1000 km s−1. Its ellipticity e = (a2−b2)/(a2 +b2)
is fixed to eh = 0.7, with a position angle of θh = 19.14◦ coun-
terclockwise from west.

The clumpy subhalo component of the mock cluster is com-
posed by 138 cluster galaxies, selected from the C-17 members
catalog to have magnitudes in the HST/F160W filter given by
mF160W < 22. All these galaxies are parametrized as circular
dPIE profiles whose rgal

core, rgal
cut , and σ

gal
LT values are determined

as follows. For rgal
core and rgal

cut we adopt the scaling relations in
Eq. 4 with slopes βcore = 0.5 and βcut = 0.66. The two normaliza-
tions, computed at the BCG luminosity L0 (mre f

F160W = 17.19), are
rre f

core = 0.01′′ and rre f
cut = 5′′. We assign line-of-sight stellar veloc-

ity dispersions to the cluster member galaxies, averaged within
a circular aperture, assuming a 15% Gaussian scatter around the
scaling relation in Eq. 4 with α = 0.27 and normalization equal
to 350 km s−1 at the BCG luminosity. To determine the LensTool
fiducial velocity dispersions, we deproject the aperture-averaged
velocity dispersions using Eq. 17 and assuming apertures of ra-
dius R = 0.8′′. No shear nor foreground structures are present in
our Cluster-1 mock.

Given the total mass distribution for the mock cluster, we use
LensTool to ray-trace the position of 15 background sources,
randomly selected from the C-17 catalog, to their multiple im-
ages on the lens plane. The sources are within a redshift range of
1.01 ≤ z ≤ 6.06 and produce a total of 85 multiple images. Im-
ages are identified using an integer number and a letter in such
a way that images with identical numbers in their ID belong to
the same family. 26 of the 85 multiple images are excluded from
the final sample, either because they are de-magnified or because
they are too close to a cluster member to be detectable, in real

Cluster proprieties

Cluster-1 Cluster-2 Cluster-3

Ngal
m 58 58 58 SU

B
H

A
L

O
S

Ngal(Out SR) 80 (80) 200 (22) 200 (22)

NDH 0 0 910

(∆xgal)sys [′′] 0.0 0.01 0.01

Nim
tot 58 69 69 IM

A
G

E
S

(∆xim)st [′′] 0.2 0.2 0.2

(∆xim)sys [′′] 0.0 0.01 0.01

χ2
tot 8.66 12.53 13.75 R

E
S.∆tot

rms [′′] 0.08 0.09 0.09

Table 1. Main features of the Cluster-1, Cluster-2, and Cluster-3 mocks.
The number of galaxies with and without a measured velocity disper-
sion is given by Ngal

m and Ngal respectively. For the latter, we also quote
(in brackets) the number of galaxies, in BayesLens, that in principle are
free to scatter around the best-fit σ-mag scaling relation. The system-
atic uncertainty assumed on galaxy positions is (∆xgal)sys. N im

tot is the
total number of observed multiple images, while (∆xim)st and (∆xim)sys
are the statistical and systematic isotropic errors assumed on their posi-
tions. In the last two lines, we quote the total chi-square and the r.m.s.
displacement between the “measured” and model-predicted image po-
sitions.

clusters, due to light contamination. We also exclude one of the
15 families of multiple images (i.e., the 10th family adopting
image IDs in Fig. 1) since it is constituted by a single lensed
image. Therefore, our final mock multiple images catalog con-
sists in 58 multiple images, from 14 background sources, shown
in Fig. 1. The final simulated cluster, despite a purposely sim-
ple mass distribution, contains a number of halos, subhalos, and
multiple images comparable to those of some CLASH or HFF
clusters.

In our tests, we consider isotropic statistical errors of 0.2′′on
the multiple-image positions. This is a compromise choice be-
tween the sharper accuracies that can be achieved (in principle)
with state-of-the-art imaging and the tolerance that the mod-
els need in order to efficiently explore the full parameter space,
avoiding narrow likelihood peaks around local minima. Choos-
ing a 0.2′′ tolerance on the image positions also allows us to
keep conservative uncertainties on the posteriors in the hyperpa-
rameters. In practice, one may apply these models in subsequent
iterations where the tolerance is gradually reduced to match the
astrometric uncertainties.

We also suppose that the stellar velocity dispersions of 58
luminous cluster galaxies are measured within apertures of ra-
dius R = 0.8′′. This is comparable to the number of veloc-
ity dispersions that Bergamini et al. (2019) measured from the
MUSE data-cube of MACS J1206.2−0847. To associate an er-
ror to these simulated measures, we use the following empiri-
cal relation derived from the measurements by Bergamini et al.
(2019):

δσ
gal
m

σ
gal
m

= 1.6 × 10−3 m3
F160W − 8.53 × 10−2 m2

F160W

+ 1.509 mF160W − 8.879 (19)
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Fig. 2. Mass density distribution, color-coded in M� kpc−2, of the central region of the Cluster-2, and Cluster-3 mocks. As in Fig. 1, green circles
mark the galaxies for which we have a “measured” velocity dispersion, while cyan crosses are the “observed” multiple images. We label in green
and blue the same set of measured and unmeasured galaxies selected in Fig. 1. On the right panel, we plot magenta data-points showing the spatial
distribution of the low-mass subhalo population of Cluster-3.

4.2. Cluster-2 and Cluster-3: harder rungs with low-mass
substructures and systematics in the astrometry of
cluster galaxies and multiple images

Similarly to Cluster-1, the cluster-scale component of both
Cluster-2 and Cluster-3 mocks is described through a single
elliptical PIEMD profile. The PIEMD has an off-set of about
1.41′′ from cluster BCG and it is characterized by an ellip-
ticity eh = 0.72, a position angle of θh = 19.8◦, a core ra-
dius rh

core = 11′′, and a LensTool fiducial velocity dispersion
σh

LT = 1080 km s−1. The galaxy-scale component of the new
mocks extends over a wider magnitude range from the BCG lu-
minosity (mre f

F160W = 17.19) down to mF160W = 24, and amounts
to 258 galaxies extracted from the cluster member catalog by
C-17. Cluster galaxies are modeled as circular dPIEs whose
rgal

core, rgal
cut , and σ

gal
LT are determined as in Sec. 4.1 but assuming

α = 0.28, σre f = 295.5 km s−1, βcut = 0.64, and rre f
cut = 3.74′′.

As in Cluster-1, a 15% Gaussian scatter around the σgal-mgal
F160W

scaling relation is assumed for the line-of-sight projected, aper-
ture average, stellar velocity dispersion of galaxies. With this
choice of dPIE parameter values, the cluster member popula-
tion in Cluster-2 and Cluster-3 ranges from a total mass of
1.6 × 1012 M�, for the cluster BCG, down to a total mass of
1.1×109 M�, for the less massive galaxy of the cluster. In the fol-
lowing, we assume to know the measured stellar velocity disper-
sion and associated errors of 58 cluster galaxies (see Sec. 4.1).
These velocities are given as inputs to BayesLens for the lens
model optimization.

What differentiates Cluster-2 from Cluster-3 is that in the lat-
ter model, we introduce, in addition to cluster galaxies, a large
population of low mass subhalos inside the simulated cluster.

Thus, Cluster-3 is mainly designed to test the impact of nu-
merous, undetected, substructures on BayesLens performances.
To assign a mass to the faint subhalos, we exploit the subhalo
mass function fitted by Giocoli et al. (2010) and adopted by
the MOKA algorithm for simulating the gravitational lensing
by galaxy clusters (see Giocoli et al. 2012). In using this for-
mula, we assume a virial mass of Mvir = 1.59 × 1015 M� for
the host cluster halo. This value corresponds to the total mass of
MACS J1206-0847 (C-17) contained within a distance from the
cluster center of r200c = 2.06 Mpc (362.79′′ at z = 0.439) that is
expected to be close to the virial radius of the cluster (Umetsu
et al. 2014). Note that, a circularly symmetric PIEMD mass dis-
tribution with rh

core = 11′′ and σh
LT = 1080 km s−1 has a mass,

within a radius of 362.79′′, exactly equal to 1.59 × 1015 M�.

Low mass subhalos are spatially distributed according to the
function derived by Gao et al. (2004) fitting the results of cos-
mological simulations. In particular, we adopt a concentration
parameter c200c = r200c/rs = 3.5 for the host cluster halo and we
assume a = 1.944 in Eq. 3 of Gao et al. (2004). Recent work by
Meneghetti et al. (2020) shows a detailed comparison between
subhalos in state-of-the-art N-body and hydrodynamical simu-
lations and observed subhalos from a sizable sample of cluster
lens models.

In Cluster-3, we consider all the faint substructures within
a distance of 89.65′′ from the cluster BCG (this is the distance
of the most external galaxy considered in the model), and with
masses ranging between 1.56 × 109 M�, that is about the mass
of the least massive cluster member, down to 0.93 × 109 M�.
Under these assumptions, the low mass subhalo population of
the Cluster-3 mock amounts to 910 profiles.
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Fig. 3. BayesLens marginalized posterior distributions on the free-parameters of the Cluster-1 mocks. The contours limit the 1σ, 2σ and 3σ
regions. The black dashed vertical lines in the histograms correspond to the 16th, 50th, and 84th percentiles of the marginalized distributions
(these values are reported in the titles). The solid red lines are the ’true’ values of the parameters of the mock cluster. In panel a, the scaling
relation hyperparameters are shown. In this plot we omit β̂cut because its value is not optimized in BayesLens but directly derived from Eq. 5
assuming γ = 2. Panel b shows the posterior distributions for the cluster-scale halo parameters, while in panel c we show the average velocity
dispersions within apertures of radius R = 0.8′′ of the four brightest ’measured’ galaxies: BCG, Gal(1), Gal(2) and Gal(3). Finally, panel d refers
to the average velocity dispersions within apertures of radius R = 0.8′′ of the three brightest galaxies without a ’measured’ σ: Gal(4), Gal(5),
and Gal(6). In the plot, we also include the galaxy Gal(7), forming a galaxy-scale strong lensing system (see text). In panels c and d, we mark
with blue vertical lines the stellar, aperture-averaged, velocity dispersion of cluster members predicted by the best-fit σgal-mF160W scaling relation
(zero-scatter solution).

Each low-mass subhalo in the mock is parameterized as a
circular dPIE, and to obtain a value for their σLT and rcut param-
eters, we adopt the following procedure. Firstly, we compute the
total mass for all the simulated cluster member galaxies (Mgal

tot ).

Then, we fit a Mgal
tot -mgal

F160W relation between galaxy masses and
magnitudes. This relation is adopted to associate a fictitious
magnitude to each low-mass subhalo. Finally, we use scaling
relations in Eq. 4 to derive velocity dispersions, core radii, and
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Scaling relation hyperparameters (mre f
F160W

= 17.19)

α̂ ˆσre f [km s−1] ∆̂σ
re f [km s−1] r̂re f

core [arcsec]

True (Cluster-1) 0.27 350.0 27.6 5.00

BL (Cluster-1) 0.27+0.02
−0.02 351.3+17.6

−15.7 28.9+3.0
−3.1 4.50+1.14

−0.73

True (Cluster-2,3) 0.28 295.5 22.7 3.74

BL (Cluster-2) 0.28+0.02
−0.02 289.9+11.5

−11.2 19.3+2.2
−2.1 3.91+0.78

−0.61

BL (Cluster-3) 0.28+0.02
−0.02 290.1+10.8

−12.0 19.3+2.6
−2.1 3.93+0.77

−0.64

Halo parameters

x̂h [arcsec] ŷh [arcsec] êh θ̂h [◦] σ̂h
LT

[km s−1] r̂h
core [arcsec]

True (Cluster-1) −0.86 0.32 0.70 19.14 1000.0 3.00

BL (Cluster-1) −0.83+0.11
−0.10 0.35+0.06

−0.06 0.70+0.01
−0.01 19.20+0.19

−0.15 1001.6+2.8
−4.5 3.00+0.27

−0.20

True (Cluster-2,3) −1.40 0.14 0.72 19.80 1080.0 11.00

BL (Cluster-2) −1.33+0.16
−0.16 0.16+0.07

−0.07 0.72+0.004
−0.004 19.77+0.12

−0.11 1079.0+2.5
−3.0 11.00+0.18

−0.17

BL (Cluster-3) −1.34+0.17
−0.16 0.17+0.08

−0.07 0.72+0.004
−0.005 19.76+0.11

−0.12 1079.3+2.7
−2.8 11.02+0.17

−0.17

Galaxies with measured σ [km s−1]

σ̂BCG
m (mF160W = 17.19) σ̂Gal(1)

m (mF160W = 17.72) σ̂Gal(2)
m (mF160W = 17.98) σ̂Gal(3)

m (mF160W = 18.21)

True (Cluster-1) 354.0 ± 12.9 278.2 ± 10.4 344.1 ± 12.9 230.8 ± 8.8

BL (Cluster-1) 350.0+52.1
−55.7 265.5+44.1

−52.7 351.3+15.3
−18.2 239.6+39.0

−41.6

True (Cluster-2,3) 292.9 ± 10.6 261.2 ± 9.7 202.0 ± 7.6 233.8 ± 8.9

BL (Cluster-2) 290.5+15.6
−15.8 252.3+44.5

−42.8 208.3+16.8
−16.4 233.1+41.6

−43.1

BL (Cluster-3) 292.1+15.2
−16.4 256.8+46.2

−45.6 209.4+16.8
−17.1 234.9+41.2

−42.4

Galaxies without measured σ [km s−1]

σ̂Gal(4) (mF160W = 18.01) σ̂Gal(5) (mF160W = 18.30) σ̂Gal(6) (mF160W = 18.31) σ̂Gal(7) (mF160W = 18.66)

True (Cluster-1) 266.6 274.1 244.9 285.5

BL (Cluster-1) 282.8+27.4
−28.1 266.8+28.1

−31.8 263.2+30.1
−26.3 288.3+14.0

−15.4

True (Cluster-2,3) 174.3 217.6 210.4 256.8

BL (Cluster-2) 231.6+20.9
−20.6 218.9+20.3

−20.8 218.4+19.0
−19.7 216.1+20.4

−20.3

BL (Cluster-3) 233.3+19.4
−20.5 217.8+20.2

−19.9 217.1+20.8
−19.9 225.6+16.6

−16.3

Table 2. Comparison between the ‘true’ input values of the Cluster-1, Cluster-2, and Cluster-3 mocks and the BayesLens output results. The
50th, 16th, and 84th percentiles computed from the marginalized posteriors are quoted. The first table refers to scaling relations hyperparameters,
including the scatter of cluster galaxies around the inferred σ-mag relation. In the second table, we show the cluster-scale halo parameters. The
third table shows the results for the four brightest galaxies with a ’measured’ velocity dispersion: BCG, Gal(1), Gal(2), and Gal(3). Finally, the
last table shows the results for the galaxy Gal(7) (see text) and for the three brightest galaxies without a ’measured’ velocity dispersion: Gal(4),
Gal(5), and Gal(6). The galaxy magnitudes are shown within round brackets.

truncation radii for the simulated subhalos from their inferred
magnitudes. As for cluster galaxies, also for the low-mass sub-
halos, we assume 15% Gaussian scatter around the σgal-mgal

F160W
scaling relation.

Using Cluster-2 and Cluster-3 mocks, we map the position
of 22 background sources, within the redshift range 1.012 ≤
z ≤ 5.793 and randomly selected from the C-17 catalog, to their
multiple images on the lens plane. Both Cluster-2 and Cluster-
3 amount to 69 magnified multiple images, whose positions
are used as constraints for the lens model optimizations. As in

Cluster-1, we still assume an isotropic statistical error of 0.2′′
on multiple image positions, but an additional systematic uncer-
tainty on the position of multiple images and cluster member
galaxies is considered in the Cluster-2, and Cluster-3 mocks. To
do so, we assign random Gaussian displacements to the “true”
positions, with a dispersion of 0.01′′ in both directions. These
are comparable to the residual uncertainties from the HST-like
quality of imaging data.

In Fig. 2, we plot the total projected mass distribution of
Cluster-2 and Cluster-3. Cluster member galaxies with measured
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Fig. 4. Velocity dispersions of the Cluster-1 member galaxies as a func-
tion of their magnitudes. In the mock cluster, we assume for the galaxy
velocity dispersion a 15% of Gaussian scatter (black dashed lines)
around the scaling relation plotted as a solid black line. In the top panel,
the “measured” velocity dispersions with their errors are plotted in red.
Similarly, the “true” velocity dispersions of the galaxies without a mea-
sured velocity dispersion are marked with red dots in the bottom panel.
The green rectangles in the plots are bounded by the 16th and 84th per-
centiles of the marginalized posterior distribution for each galaxy, while
the 50th percentiles are the small green bars. We label in black and red
the most luminous galaxies with and without “measured” velocity dis-
persion, respectively. We label in magenta the cluster member Gal(7)
forming the galaxy-scale strong lensing system displayed in the cut-out
of Fig. 1.

velocity dispersions are encircled in green, while we mark the
position of the “observed” multiple images using cyan crosses.
The spatial distribution of the low-mass subhalo population in-
cluded in the Cluster-3 mock is shown using magenta data-points
on the right panel of the figure.

In Tab. 1, we report a summary of the main proprieties of
Cluster-1,2,3 mocks, such as: the number of galaxies with and
without a measured velocity dispersion (Ngal

m and Ngal), the num-
ber of low-mass subhalos (NDH), the statistical and system-
atic errors on galaxy and multiple images positions (∆xgal)sys,
(∆xim)st, (∆xim)sys, and the number of observed multiple images
(N im

tot).
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Fig. 5. Velocity dispersions of cluster member galaxies from the
BayesLens lensing model of Cluster-1 (y-axis) versus their “true” val-
ues in the mock (x-axis). The galaxies with and without a “measured”
velocity dispersion are in green and red, respectively. In magenta the
cluster member Gal(7) responsible for the creation of the galaxy-scale
strong lensing system displayed in the cut-out of Fig. 1.

4.3. BayesLens on the mock clusters

In this subsection, we describe the parameter ranges adopted
in BayesLens to probe the mass distribution of the Cluster-1,
Cluster-2, and Cluster-3 mocks. The cluster-scale component
of all three lens models is parametrized using a single PIEMD
profile. The x, y coordinates of its center can vary within flat
priors, 3′′ wide, centered on the BCG position, while for the
ellipticity êh, position angle θ̂h, and fiducial velocity disper-
sion σ̂h

LT , we adopt uniform priors inside the following inter-
vals respectively: 0.0 - 0.9, 5 - 35◦, and 700 - 1300 km s−1. Fi-
nally, for the PIEMD core radius r̂h

core, we assume a uniform
prior between 1′′and 7′′in the Cluster-1 lens model and be-
tween 3′′and 15′′for Cluster-2 and Cluster-3. The subhalo com-
ponent of lens models is parametrized using the three scaling
relations in Eq. 4 normalized at the BCG luminosity. In partic-
ular, we fix r̂re f

core = 0.01′′ and β̂core = 0.5, while the following
flat priors are assumed on the others scaling relation parameters:
Cluster-1 (0.20 ≤ α̂ ≤ 0.34, 250 km s−1≤ σ̂re f ≤ 450 km s−1,
1′′ ≤ r̂re f

cut ≤ 11′′); Cluster-2, and Cluster-3 (0.21 ≤ α̂ ≤ 0.35,
150 km s−1≤ σ̂re f ≤ 350 km s−1, 1′′ ≤ r̂re f

cut ≤ 9′′). Note that
the slope of the rcut-mag scaling relation, β̂cut, is not a lens
model free-parameter since its value is derived from α̂ through
Eq. 5 with γ = 0.2. Differently from LensTool, in our code, the
σ-mag cluster member scaling relation refers to measured (line-
of-sight) stellar velocity dispersions averaged within apertures
of radius R = 0.8′′.

The BayesLens model optimization is performed on the lens
plane using the positions of the multiple images inside the simu-
lated catalog and the 58 “measured” stellar velocity dispersions
of the cluster galaxies. These velocities are used on the one hand
to determine the best σ-mag scaling relation parameters, and on
the other, to derive a Gaussian prior for each measured galaxy.
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Fig. 6. Top: Cumulative projected total mass profiles for the Custer-1
mock as a function of the projected distance from the center of the BCG.
The red line corresponds to the true mass profile. The solid black line is
obtained from the best-fit BayesLens model. The projected distances of
the multiple images from the BCG center are shown as vertical black
lines. Bottom: Relative variation of the BayesLens total mass profile
with respect to the true mass profile of the mock cluster. The dashed
blue line in the bottom panel marks a 2% relative difference between the
mock and model mass profiles. In both panels, the gray shaded stripes
delimit the 16th-84th percentiles of the mass profiles with parameters
drawn from the posterior.

Thanks to these priors, the lens model tends to prefer solutions
with cluster members velocities that coincide with the measured
values (see Eq. 12), unless the lensing data require them to devi-
ate. The presence of a non-zero scatter also enables the models
to fairly sample the whole parameter space, thereby avoiding the
underestimation of systematics.

In running BayesLens on the Cluster-1 mock, we leave all
galaxies free to scatter around the fitted σ-mag scaling relation,
while in Cluster-2 and Cluster-3 lens models, only the 58 galax-
ies with a measured velocity dispersion, and the 22 most lumi-
nous unmeasured galaxies are left free to vary. The number of
free-to-scatter galaxies is one of the inputs of our code, and in
general, a lower number of free galaxies sensibly speed-up the
optimization of the lens model.

The total posterior probability distribution (ptot) of the
Cluster-1 lens model is sampled using 298 walkers, while we use
500 walkers for the other two models. The initial walker posi-
tions are randomly distributed within the flat priors of the cluster-
scale parameters (φh), but they are initialized inside a Gaussian
hyper-sphere, around an estimated maximum of the likelihood
(in psr, pmg, pg), in the subspace of the other free-parameters.
In the following, we derive the marginalized posterior distribu-
tion of model free-parameters by flattening the final Monte Carlo
Markov chain (MCMC) of the walkers after removing a suffi-
ciently large burn-in phase. Moreover, to determine the model-
predicted multiple image positions and the r.m.s. displacement,
∆tot

rms, we use the best-fit BayesLens model. This best-fit model
is defined as the set of free-parameter values that maximize the
total posterior ptot.

5. Results and discussion

In this section, we describe the main results obtained from an
application of BayesLens on the three simulated clusters, namely
Cluster-1, Cluster-2, and Cluster-3.

5.1. BayesLens results for Cluster-1

In Fig. 3, we show in black the marginalized BayesLens poste-
rior distributions for the free-parameters of the Cluster-1 lens
model. The “true” parameter values assumed in the mock clus-
ter are marked with solid red lines. Panels a and b show the
posterior distributions of the scaling relation and cluster-scale
halo parameters, respectively. In panel c, we plot the marginal-
ized posterior distributions for the stellar velocity dispersions
of the four brightest “measured” cluster galaxies: σ̂BCG

m , σ̂Gal(1)
m ,

σ̂Gal(2)
m and σ̂Gal(3)

m . Similarly, panel d shows the velocity disper-
sions of the three brightest cluster galaxies without measured
kinematics (σ̂Gal(4), σ̂Gal(5) and σ̂Gal(6)) and of the lens galaxy,
σ̂Gal(7), forming the galaxy scale strong lensing system zoomed
in Fig 1. In these last two panels, we plot also blue solid lines
showing the value of galaxy stellar velocity dispersions, as pre-
dicted by the best-fitσgal-mgal

F160W scaling relation. The “true” and
BayesLens optimized values of the lens model free-parameters
are reported in Tab. 2. The latter correspond to the medians of
parameter marginalized posterior distributions, while the 16th
and 84th percentiles are quoted as an error. Thanks to the “mea-
sured” cluster members stellar velocity dispersions and to the
observed multiple-image positions, BayesLens recovers, well
within the 1σ uncertainty, all of the mock true hyperparame-
ters of the scaling relations and the cluster-scale halo parameters.
To quantify the accuracy of BayesLens in determining the cor-
rect stellar velocity dispersions of the cluster members, we plot
in Fig. 4 the aperture average velocity dispersions within aper-
ture of 0.8′′radius, σgal, as a function of the galaxy magnitudes,
mF160W. The solid black lines correspond to the scaling relation,
with the dashed lines marking the 15% scatter in the mock. The
(red) errorbars in the upper panel denote the “measured” veloc-
ity dispersions with their uncertainties, and the (green) rectan-
gles mark the 16th-to-84th percentiles from the posterior distri-
butions. All of the galaxies lie on their measured velocity dis-
persions, and the zero-scatter solution still exists within the sam-
pled parameter space. This shows that the loose prior on “mea-
sured” galaxies still allows the models to generalize the zero-
scatter ansatz. The bottom panel shows the mock and poste-
rior dispersions for the “unmeasured” galaxies. Most of them
are compatible with their true values (red dots) within the un-
certainties. Most notably, one galaxy-scale strong lensing sys-
tem (marked as Gal(7), see Fig. 1 closeup) departs automatically
form the zero-scatter best-fit scaling relation and has a dispersion
that is very well constrained by the lensing data. The compatibil-
ity of mock and posterior dispersions for all galaxies (within the
intrinsic scatter) is displayed in Fig. 5, showing that there is no
appreciable systematic mismatch trend between the “true” and
inferred dispersions.

Fig. 6 shows the cumulative mass profile of the whole cluster,
projected along the line of sight, for the mock and the best-fit
(maximum a posteriori) model. Even though the total mass of the
mock cluster is redistributed in a slightly different way between
the cluster halo and the member galaxies, its value at large radii
is accurately recovered by the lens model. At the distances where
most of the multiple images form, yielding more constraints to
the lens model, the model predicts a correct value for the mass
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profiles within 1%. This is simply because the projected mass
M(< RE) = πΣcrR2

E within the Einstein radius of a lens does not
depend on its density profile.

To relate the goodness of fit of the models to a commonly
used benchmark, we examine the r.m.s. offset of “observed”
vs inferred positions of the multiple images (∆tot

rms). Our best-
fit hierarchical model for Cluster-1 can reproduce all images
with ∆tot

rms = 0.08′′, while the lens model total chi-square is
χ2

tot = 8.66 (see Tab. 1). This non-zero ∆tot
rms shows that our hi-

erarchical model does not over-fit while also reproducing all ob-
servables well within their uncertainties.

The robustness against over-fitting can be understood in two
ways. First, if we re-run the models on a mock with 0.05′′ sta-
tistical uncertainties on the image positions, the maximum-a-
posteriori parameters do not change, and the r.m.s. offset is still
≈ 0.08′′, while only the confidence intervals in the inferred pa-
rameters are shrunk. This is because all image-positions in this
first mock are kept on their true locations, and the statistical
uncertainties are simply a tolerance parameter that enables a
smooth exploration of parameter space. Second, from the pos-
terior we see that only about ten galaxies deviate by more than
1σ from the backbone of the scaling relation; if we re-run a
LensTool model with only these galaxies free, and all other
galaxies on the zero-scatter scaling relation, the χ2 improves by
≈ 33, that is three times the change in degrees of freedom.

5.2. BayesLens results for Cluster-2 and Cluster-3

A comparison between “true” values of the Cluster-2 and
Cluster-3 parameters with BayesLens results is in Tab. 2. Note
that in this table we are showing the same set of free-parameters
for the three mocks, however, their “true” values are different in
the Cluster-1 and Cluster-2,3 mocks.

Despite the increasing complexity of the last two mock clus-
ters, BayesLens recovers well within 1σ all cluster-scale halo
and scaling relations parameters. Moreover, it finds similar val-
ues for the stellar, aperture-average, velocity dispersions of mea-
sured and unmeasured cluster galaxies in the two mocks.

In Fig 7, we plot marginalized posterior distributions, ob-
tained from the Cluster-3 MCMC chains, for the same set of
model parameters reported in Tab. 2. The figure shows that the
four measured galaxies BCG, Gal(1), Gal(2), Gal(3), and the two
unmeasured galaxies Gal(5), Gal(6) have marginalized posterior
distributions that pick very closed to the “true” mock stellar ve-
locity dispersions (red vertical lines). Conversely, we observed
large deviations from “true” values for Gal(7) and even more for
Gal(4). The reason for these deviations is at the basis of the hi-
erarchical approach implemented in BayesLens, and it is due to
the interplay between the pg and pim terms of the total posterior
in Eq. 7. In fact, the unmeasured galaxy Gal(4) has marginal-
ized posterior distribution centered on the stellar velocity disper-
sion value predicted by the best-fit σgal-mF160W scaling relation
(marked with a blue line in Fig 7). In the absence of constraints
from the position of the observed multiple images, the pg term
encourages a zero-scatter lens model solution with all unmea-
sured galaxy velocity dispersions that lie on the best-fit scaling
relation. Similarly, the displacement of the σ̂Gal(7) posterior dis-
tribution from the scaling relation toward the “true” mock value
is possible because the increase of the pim term (due to a lower
r.m.s displacement of the images close to Gal(7)) overcome the
decrease of pg that penalizes scattered solutions.

The best-fit Cluster-2 lens model reproduces the position of
multiple images with a ∆tot

rms = 0.09′′, while the total chi-square
is χ2

tot = 12.53. As displayed in Tab. 1, the addition of the low-

mass subhalo population in the Cluster-3 mock produces a small
increase, equal to 1.22, of the lens model total chi-square, how-
ever, the final ∆tot

rms of multiple images remains essentially un-
changed.

5.3. Testing against main halo mismatch

Different mass models, related through unobservable source-
position transformations, may be able to reproduce the same im-
age positions, even though these degeneracies are more severe
for systems with less symmetry (Schneider & Sluse 2014; Un-
ruh et al. 2017). This occurrence is common to all parametric
lensing codes. Here, we check whether BayesLens uses the non-
zero scatter to over-fit models that are different from the mocks.

To test whether this happens, we also considered one last
simulation whose main halo has a Navarro-Frenk-White (here-
after NFW) density profile, while the BayesLens model still
adopt a PIEMD to parameterize the main cluster halo. The
cluster-scale NFW halo has a total mass M200c = 1.59× 1015 M�
within a radius r200c = 2.06 Mpc. These values correspond
to those measured by Umetsu et al. (2014), using weak lens-
ing techniques, for the cluster MACS J1206.2−0847. Assum-
ing a concentration c200c = 3.5, we derive a scale radius rs =
588.6 kpc. The center position of the NFW profile has an offset
of 1.4′′ from the cluster BCG, an ellipticity of 0.4, and a position
angle of 19.8◦ counterclockwise from west. The subhalo com-
ponent of the cluster and the position of the lensed sources are
assumed the same as the Cluster-2 simulation. The lens model
for this cluster is constrained by 69 “observed” multiple images,
and systematic isotropic uncertainties of 0.01′′ are assumed on
galaxies and image positions (see Cluster-2 model for more de-
tails).

The r.m.s. displacement of the best-fit BayesLens model is
0.40′′, that is about 0.32′′ higher than the ≈ 0.08′′ of a PIEMD
model on a PIEMD mock. Some of the observed multiple images
are not produced by the best-fit model, whereas the PIEMD mod-
els on PIEMD mocks (Cluster-1,2,3) were all able to produce the
whole set of images. We re-run BayesLens while also penalizing
models for each multiple image that cannot be produced by the
model2. In this case, the best-fit r.m.s. displacement is just 0.35′′,
and all the images are well reproduced by the model.

The slightly higher r.m.s. displacement, as well as the new
issues in producing all multiple images, indicate that a main-
halo mismatch may be diagnosed when modeling real clusters.
BayesLens does not seem to over-fit the most evident systemat-
ics, despite higher freedom in the cluster member galaxies.

6. Conclusions

We have shown that, despite the (nominally) large number of
degrees of freedom in cluster lensing, the exploration of flexible
models is feasible thanks to tractable, hierarchical Bayesian in-
ference. Unlike conventional models, where galaxies are placed
on a razor-thin scaling relation, and some are “freed” ad hoc, we
populate a scaling relation with non-zero scatter, with hyperpa-
rameters that are inferred directly from the lensing constraints
and (when available) stellar kinematic data. Our tests on a re-
alistic, albeit simplified, mock cluster (namely Cluster-1) show
that the improvement over conventional models may be signif-
icant: the velocity dispersions of all the galaxies of our mock

2 We add -100 to the log-likelihood for each multiple image that is not
produced by the lens model.
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Fig. 7. Same as Fig. 3 but for the Cluster-3 mock.

cluster are reliably recovered, as are the scaling relation hyper-
parameters, and the r.m.s. displacement of multiple images be-
tween measurements and model predictions can decrease appre-
ciably (in the simplest mocks, from 0.40′′ to 0.08′′) unless there
are other major sources of systematics. As shown by the tests in
Sec. 5.3, the impact of the non-zero scatter is mainly in the de-
flections from the cluster member galaxies and cannot correct for
a mismatch between the ‘true’ density profile of the main cluster
halo and the one used in the models. This also has some prac-
tical implications when modeling real-life clusters: if the r.m.s.
displacements do not change appreciably from zero-scatter to hi-
erarchical models, this would indicate that other major sources

of systematics must be analyzed (e.g., the density profile of the
main halo, or major mass contributions along the line of sight).
We also remark that these models do not make any claim on
the internal mass content of the galaxies themselves, but just on
the fact that they do not necessarily have simple PIEMD pro-
files, that there is a real and measured scatter in their properties,
and that the information from lensing is complementary to that
from the measured stellar kinematics (i.e., the hyperparameters
are free to differ from the ones from stellar kinematics).

We have also tested the robustness of the hierarchical models
against two systematic effects: dark subhalos and small system-
atic offsets in the measured image and cluster member positions
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Fig. 8. Maps of absolute magnification for the three simulated clusters computed for a source redshift zs = 3.0. In the first line, we plot magnifica-
tion maps for the “true” Cluster-1, Cluster-2, and Cluster-3 mocks. Maps in the second line are obtained from BayesLens best-fit lens models of
the clusters, while in the third line, we show normalized residuals between BayesLens and true magnifications: ||µBL| − |µtrue|/|µtrue||. In the last line,
we plot absolute uncertainties associated with BayesLensmagnification maps. These are computed considering 100 realizations of the lens models
by randomly extracting 100 parameter samples from the MCMC chains and taking half of the difference between the 84th and 16th percentiles of
magnification distributions in each pixel.

(Cluster-2 and Cluster-3 mocks). Within realistic regimes, com-
patible with current (HST) or upcoming (ELT) depth and image
quality, the model performance on the mock cluster does not de-
grade appreciably.

A crucial consequence of our hierarchical approach is that
it also resolves a “false dichotomy” between well-fitting clus-
ter models and realistic population properties of galaxies. Zero-
scatter models around a kinematic prior have realistic galaxy
populations but a higher r.m.s. offset than models without any

Article number, page 15 of 17



A&A proofs: manuscript no. HierLensRevPlain

kinematic prior, whose scaling relations are significantly dis-
crepant from the “true” input relation. In zero-scatter models,
there is typically a trade-off between the r.m.s. and recovering re-
alistic galaxy populations (see e.g., Bergamini et al. 2019). Our
hierarchical models have realistic galaxy populations and pro-
duce a small r.m.s. offset (on our mock cluster). With respect
to zero-scatter models, BayesLens automatically identifies the
galaxy-scale systems where more freedom from the scaling re-
lation backbone is needed in order to reproduce the positions of
multiple images around those galaxies with high accuracy. This
makes the hierarchical models robust against over-fitting since,
in our mocks, only about ten galaxies deviate from the scaling re-
lation backbone by more than 1σ while the chi-square improves
by ∆χ2 ≈ 33.

We should emphasize that this is a functional test on mocks,
and additional effects may play a role in real-life systems, such
as massive substructure, deviations from simple geometry of the
main DM halo(s) and cluster members, and additional contribu-
tions along the line of sight. However, our hierarchical models
can eliminate part of the systematic source of uncertainties and
show that internal systematics can be controlled.

The freedom in the parameters of each cluster member
galaxy, within the intrinsic scatter of their parent population, has
multiple implications. First, the data themselves dictate which
galaxy should be “freed” and deviate significantly from a base-
line scaling relation. Second, intrinsic scatter is a hyperparame-
ter that is left free in the modeling inference, and this allows for
a direct determination of galaxy-population properties, whence
accurate studies of galaxy formation and evolution. In particu-
lar, accurate mass functions of cluster member galaxies can be
compared to predictions from cosmological simulations. Also,
the freedom in cluster member parameters allows (in principle)
for the quantification of environmental effects on galaxies at dif-
ferent locations across the cluster – which up to now has been
possible only on stacked weak-lensing measurements (Niemiec
et al. 2017).

An important feature of our inference is that BayesLens is
fully modular. Changing specific python functions within our
code, it is possible, in theory, to allow for calls to any chosen
parametric lensing software (besides LensTool, used here as the
benchmark), as well as to implement different mass profiles.
Moreover, different prescriptions to relate the stellar velocity
dispersions and lensing parameters of cluster member galaxies
can be used. The currently used scaling relations may be easily
replaced with fundamental-plane relations (with free hyperpa-
rameters) so as to study the evolution of the fundamental plane
across redshift and the environment. Its modular structure also
enables the use of additional constraints from, for example, flux
ratios or extended-source reconstruction. Samples of magnifica-
tion maps may be produced simply through an other module,
which may enable accurate studies of high-redshift galaxy pop-
ulations.

This is not central to this first paper, so for the sake of
brevity, in Fig. 8, we show simply a comparison of magnifica-
tion maps from the best-fit models of the three mock clusters
(namely Cluster-1,2,3). The magnification maps are well repro-
duced, and as can be expected, the appreciable differences hap-
pen only across the critical lines and in high magnification re-
gions (|µ| & 20), where the posterior also predicts a wider vari-
ance in the magnification. We remark that these models are al-
ready an extension over the state of the art, and the availability of
samples from the posterior allows one to evaluate magnification
uncertainties at all points.

While our set of hyperparameters is currently limited to
those of the scaling relations (intercepts, slopes, scatter widths),
this can be in principle extended to cosmological parameters,
enabling (fully self-consistent) cosmographic measurements.
Our code is released publicly3 and documented at https://
github.com/pietrobergamini89/BayesLens.
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