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We analyze the capability of discriminating the statistical nature of a thermal bath by exploiting
the interaction with an additional environment. We first shows that, at difference with the standard
scenario where the additional environment is not present, the modified evolution induced by the
mere presence of the extra bath allows to improve the discrimination task. We then also consider
the possibility of continuously monitoring the additional environment and we discuss in detail how to
obtain improved performances in the discrimination by considering different kinds of interaction, i.e.
different jump operators, and different monitoring strategies corresponding to continuous homodyne
and photo-detection. Our strategy can be in principle implemented in a circuit QED setup and paves
the way to further developments of quantum probing via continuous monitoring.

I. INTRODUCTION

In quantum metrology and quantum sensing [1–6] a
quantum probe is any physical system that allows for the
recovery an unknown classical parameter that has been
“attached” to its state via some dedicated dynamical
process. For instance quantum probes have been used to
estimate parameters related either to their Hamiltonian
(e.g. a frequency or a coupling constant) or to their
unitary evolution (say a dynamical phase accumulated
while moving along a certain trajectory). Quantum
probes have also been exploited in order to reconstruct
the properties of the surrounding environment [7]; ex-
amples are protocols of quantum thermometry [8–17] or
aimed to characterize the spectrum of the environment
itself [18, 19]. More recently it has been proposed to
use a quantum probe to discriminate between thermal
baths characterized by different thermal [20] or sta-
tistical [21, 22] properties. In particular in the latter
scenario, a quantum probe S is exploited to determine
whether the the thermal bath E obeys to Bosonic or
Fermionic statistics, a task which hereafter will be
referred to as Quantum Bath Tagging (QBT). In such
scheme S is let to weakly interact with E for some
time t and then measured using optimal detection
procedures identified by solving the associated quantum
hypothesis testing problem [23]. To improve further the
discrimination performances reported in [21, 22] and to
refer more closely to realistic experimental setups, we
consider here the possibility that while coupled with E,
the probe S could be made interact also with a second
auxiliary bath A which, at variance with what happens

with E, is assumed to have known statistical and
thermodynamical properties (specifically we shall take A
to be a, zero-temperature, multi-mode electromagnetic
(e.m.) field). The role of such an extra environment is
twofold: on one hand, the presence of A is used as a way
to positively interfere with the S-E coupling in an effort
to increase the distinguishability among the quantum
trajectories associated with the two hypothesis of the
problem; on the second hand, A is employed to set up
an indirect, continuous monitoring of the evolution of
S, hence allowing us to acquire information about E
in real time and not just at the end of the interaction
interval. Continuous monitoring of quantum systems
[24, 25] has indeed been proven useful in the context of
quantum metrology: in particular several works have
either discussed the fundamental statistical tools to
assess the precision achievable in this framework [26–33],
and presenting practical estimation strategies [34–49].
The theoretical framework needed to assess hypothesis
testing protocols has been put forward first by Tsang
[50] and then by Kiilerich and Molmer [51]. We will
exploit these techniques for our specific aim and we will
discuss how and when continuous monitoring can be
useful for QBT.

In Sec. II we introduce the QBT problem, presenting
the physical setup and discussing how to assess hypoth-
esis testing in continuously monitored quantum systems.
In Sec. III we show our main results, starting from the
noise-assisted case, to the scenario where we also allow
continuous measurements on the additional environment.
In Sec. IV we discuss possible implementations of our
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Figure 1. Schematic representation of the QBT setup: the
statistical nature (Bosonic or Fermionic) of the thermal bath
E is determined studying the modifications it induces on a
quantum probe S (a qubit) that has been put in thermal
contact with it, while interacting with a zero-temperature
Bosonic auxiliary bath A that is continuously monitored in
time via photo-detection or homodyne measurements. In the
picture γ, κ are the two decay rates of the unconditional evo-
lution of S for the interaction with E and A, respectively,
while η is the quantum efficiency of the continuous detection
on A. We also allow for the possibility of initially entangling
S with an external qubit memory A1 dynamically decoupled
from all the other components of the setup, and performing
joint detection on the system SA1.

protocol and draw our conclusions.

II. THE MODEL

The QBT model we study is schematically sketched in
Fig 1. A part from E (the thermal environment whose
statistical nature we wish to determine) and S (the quan-
tum probe that is put in interaction with E), it includes
two extra elements which were not present in the origi-
nal QBT scheme discussed in Refs. [21, 22]: namely an
auxiliary bath A whose statistical and thermodynamics
properties are assumed to be known and which is also at-
tached to S, and an external quantum memory A1 that
is dynamically decoupled from all the other components
of the setup. As in Ref. [21, 22], our goal is to decide
whether E is a Bosonic bath with assigned inverse tem-
perature βB (hypothesis B), or Fermionic with assigned
temperature βF (hypothesis F ), the initial priors of these
two alternatives being flat. To solve such a task we are
allowed to prepare S (that for simplicity we assume to be
a qubit) in any desired input configuration, possibly cor-
related with the memory A1, let it evolve for some time
t and perform measurements during and/or at the end
of the process. The possibility of employing correlated
states of S and A1 was not exploited in Ref. [21, 22] and
as we shall see allows for some useful technical improve-
ments. The main difference of our proposal however is
the presence of the auxiliary bath A which we schematize
as a zero-temperature multi-mode e.m. (hence Bosonic)
field. Its role is to induce positive interference effects on
the S-E coupling and to permit continuous monitoring
in time of the system evolution via photo-detection or
or homodyne measurements (a configuration which may

physically correspond to the case where we put S into
dispersive QED cavity).

A. Dynamical evolution

In this section we derive the dynamical equations that
determine the temporal evolution of the system.

Let us start first by considering the case where the
probe interacts with E and A in the absence of continu-
ous monitoring of the latter. Following Ref. [21] we model
the S-E and S-A couplings via a Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) master equation [52, 53],
a situation realized under the weak-coupling and Marko-
vian hypotheses [54]. Accordingly, defining D[θ̂] to be the
dissipative superoperator

D[θ̂]• := θ̂ • θ̂† − 1
2

{
θ̂†θ̂, •

}
, (1)

we write the dynamical evolution of the joint density ma-
trix %̂q(t) of the probe S and the memory A1 as

d%̂q(t)
dt

= Lq%̂q(t) + κD[ĉ]%̂q(t) , (2)

where the index q ∈ {B,F} is used to specify which hy-
pothesis has been selected for the statistical nature of E.
In this equation Lq is the GKSL dynamical generator
which accounts for the free evolution and for the S − E
coupling, i.e.

Lq• := −i[ĤS , •]+γ[1+sqNq(βq)]D[σ̂−]•+γNq(βq)D[σ̂+]•,
(3)

where ĤS := ω0σ̂+σ̂− is the Hamiltonian of the probe,
γ is a positive coupling constant that fixes the timescale
of the S-E interaction, and where, having set sq=B = 1
and sq=F = −1, Nq(β) := 1/(eβω0 − sq) is the Bose-
Einstein/Fermi-Dirac factor: notice that ~ has been
set equal to 1 and that no free Hamiltonian has been
assumed for A1 which effectively participates to the
process only through initial correlations with S that
have been possibly established at the beginning of the
dynamical evolution. The second term in the l.h.s of
Eq. (2) represents instead the S-A coupling with the
operator ĉ selected depending on the type of interaction
one has engineered, and with κ ≥ 0 being a parameter
that gauges its intensity – in particular setting κ = 0
we recover the model discussed in Refs. [21, 22]. In the
following we will consider the two cases ĉ = σ̂− and
ĉ = σ̂x/2: the first one corresponds to the a purely
dissipative model where S looses energy in favour to A
via spontaneous emission, while the second choice can be
obtained via dispersive coupling that can be engineered
e.g. in circuit-QED systems [55–57].

As already mentioned, Eq. (2) does not include effects
associated with a continuous monitoring of A. To ac-
count for the latter we resort to the stochastic master
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equations (SME) approach of Refs. [24, 25]. In particu-
lar we will focus on two kind of measurements, photode-
tection and homodyne detection with a fixed monitoring
efficiency η. In the case of photodetection, under hypoth-
esis q, the corresponding SME for the conditional state
of SA1 reads

d%̂cq(t) = Lq%̂cq(t) dt+ (1− η)κD[ĉ]%̂
c
q(t) (4)

− ηκ

2 H[ĉ†ĉ]%̂
c
q(t) dt+

(
ĉ%̂cq(t)ĉ†

Tr[ĉ%̂cq(t)ĉ†]
− %̂cq(t)

)
dNt ,

where dNt ∈ {0, 1}, corresponds physically to the number
of photons detected at each time t and mathematically to
a Poisson increment defined by its probability of taking
value equal to one, p(dNt = 1) = ηκTr[%̂cq(t)ĉ†ĉ] dt, and
where we have introduced the superoperator

H[θ̂]• := θ̂ •+ • θ̂† − Tr[(θ̂† + θ̂)•] • . (5)

Similarly, in the case of homodyne detection one obtains
the SME

d%̂cq(t) = Lq%̂cq(t) dt+ κD[ĉ]%̂
c
q(t) dt+√ηκH[ĉ]%̂

c
q(t) dWt ,

(6)

where the state is conditioned on the continuous output
photocurrent

dyt := √ηκTr[%̂cq(t)(ĉ+ ĉ†)] dt+ dWt , (7)

and where dWt, denoting the difference between the mea-
surement output dyt and the expected results, mathe-
matically corresponds to a Wiener increment s.t. the
relation dW 2

t = dt holds deterministically. We remark
that by choosing as jump operators the ones defined be-
fore, i.e. either ĉ = σ̂− or ĉ = σ̂x/2, one obtains pho-
tocurrents (7) with the same form, yielding information
on the average value of the operator σ̂x. However the
two operators will induce different dynamics, described
by the corresponding SMEs (6).

For both photodetection and homodyne detection
strategies, the associated SME (4) and (6) can be numer-
ically integrated following the method based on Kraus
operators suggested in [58, 59] that we review in brief
in Appendix A. This results in a collection of quantum
trajectories for the conditional density matrix %̂cq(t) each
identified by a string of records

Dt := (xt0+dt, xt0+2dt, . . . , xt−dt, xt) , (8)

where we have assumed to perform measurements ev-
ery infinitesimal time-interval dt starting from the initial
time t0 (which we set to zero hereafter) and stopping at
time t, and where for the photodetection and homodyne
detection scenario the xt’s correspond either to recorded
values of dNt or dyt respectively. It is worth pointing out
that, in principle, by averaging over all such solutions,
i.e. by averaging %̂cq(t) over all the obtained measure-
ment results (8) up to a time t or equivalently by fixing

the monitoring efficiency η = 0, one obtains an uncon-
ditional state solution that coincides with the standard
master equation (2) of the problem, i.e.

E[%̂cq(t)] = %̂cq(t)
∣∣
η=0 = %̂q(t) . (9)

B. Quantum hypothesis testing in continuously
monitored quantum systems

In this section we review the methods that allow us
to characterize how efficiently one can solve the QBT
problem we are facing.

To begin with, consider first the simple case where
the data from the continuous monitoring in time are ne-
glected, e.g. by averaging them away or setting η = 0, a
regime in which thanks to (9) the evolution of the system
is provided by the master equation (2). Having hence se-
lected an input state %̂(0) for the SA1 system and a total
evolution time t, what we have to do is to determine
whether at the end of the process the state of SA1 is
better described by the density matrix %̂B(t) or by the
density matrix %̂F (t) obtained by solving Eq. (2) under
the two alternative QBT hypotheses. This problem can
be easily framed as a special instance of quantum hy-
pothesis testing [23]: accordingly we can bound the error
probability associated with the selected strategy through
the Helstrom inequality

perr(t; %̂(0)) ≥ HEP(t; %̂(0)) , (10)

HEP(t; %̂(0)) := 1
2

(
1− ‖%̂B(t)− %̂F (t)‖1

2

)
, (11)

where ‖•‖1 denotes the trace norm, and where we used
the fact that the prior probability associated with the
events B and F is flat. The threshold value HEP(t; %̂(0)),
conventionally called the Helstrom error probabilitiy, can
always be attained via a projective measurement on SA1
that at time t distinguishes the positive and negative
eigenstates of the operator %̂B(t) − %̂F (t). Accordingly
in Refs. [21, 22] HEP(t; %̂(0)) was used as a bona-fide
quality factor for the QBT efficiency one can achieve
with the selected choice of t and %̂(0). Notice however
that in such works %̂B(t) and %̂F (t) referred to the local
states of S (i.e. the presence of the external quantum
memory A1 was not allowed) and, most importantly,
the auxiliary bath A was not included in the picture (a
condition which in our modelization corresponds to set
κ = 0 in Eq. (2)). As we shall see in the next section,
even without resorting to continuous monitoring in
time, lifting these two constraints already allows one for
some non trivial improvements on the minimum error
probability value.

Let’s now address the QBT problem and continuous
monitoring assumptions. As described in [51], in this
case the hypothesis testing can follow two different ap-
proaches: in order discriminate between the two hypothe-



4

ses, one may exploit the continuous experimental data
Dt only, or one can also implement a final direct mea-
surement on S and A1 on the corresponding conditional
states. We now start to asses the first scenario. In this
case one can resort to a Bayesian analysis, by first observ-
ing that each trajectory Dt is characterized by a proba-
bility P (Dt|q), when conditioning on the initial assump-
tion that the bath is defined by a statistics associated
with the QBT hypothesis q. Hence, introducing a like-
lihood L(Dt|q) = P (Dt|q)/p0(Dt) with p0(Dt) denoting
a positive function of Dt only [51], and by resorting to
Bayes theorem, it is possible to compute the a-posteriori
probability as

P (q|Dt) = P (Dt|q)∑
q′ P (Dt|q′)

= L(Dt|q)∑
q′ L(Dt|q′)

, (12)

which we present here exploiting the fact that the flat
prior distribution on q is flat (the specific definition
of L(Dt|q) and the method to efficiently compute it
is discussed in details in Appendix A). Observe next
that as (12) is normalized for each values of the QBT
hypothesis index q we have two possibilities, namely
P (q|Dt) ≥ 1/2, in such a case the bath is most likely
to be of q nature, and P (q|Dt) < 1/2 in which the oppo-
site hypothesis is more plausible. However, the inherent
stochasticity of the measurement outcomes can result in
P (B|Dt) ≥ 1/2 (P (F |Dt) ≥ 1/2) even if the statistics
of the bath was Fermionic (resp. Bosonic), i.e. there
are measurement records that may lead to a wrong in-
ference process. The goal is thus to quantify the prob-
ability of occurrence of such wrong tagging events. In
the spirit of a thought experiment, we consider a sample
of Ntraj trajectories Dt, supposing that half of them are
generated by indirectly probing a Bosonic environment
(DB

t ), while the rest are Fermionic (DF
t ). A wrong tag-

ging event is triggered every time we have a trajectory Dq
t

such that P (q|Dq
t ) < 1/2. Counting the number Nwrong

of such trajectories leads to a first way to quantify the
error probability as the following ratio

p(cont)
err (t; %̂(0)) := Nwrong

Ntraj
, (13)

where the notation stresses the implicit dependence upon
the specific choice of the input state %̂(0) of SA1 and on
the total evolution time t.

As mentioned before, a discrimination capability
higher than (13) can in principle be achieved by improv-
ing our continuous monitoring scheme with the addition
of a Helstrom projective measurement on S and A1 at
the final time t. In this case the ultimate bound for the
error probability is given by the Helstrom bound (11), for
the two quantum states %̂cB,F (t), solutions of the SMEs
(4) or (6) for the dataset Dt, and obtained numerically
via Eq. (A1), with prior probabilities P (q|Dt). In for-
mula we obtain the following non linear functional of the

detector records

HEPc(t; %̂(0)) :=
1− ‖P (F |Dt)%̂cF (t)− P (B|Dt)%̂cb(t)‖1

2 .

(14)
We remark that, apart influencing the dynamics of the
density matrices %̂cb(t) and %̂cF (t), the knowledge com-
ing from continuous monitoring updates the two priors
probabilities [51], and in general indentifies the optimal
Helstrom projective measurement. An average over all
the Ntraj trajectories of our sample returns the following
figure of merit

p(cont+proj)
err (t; %̂(0)) := E [HEPc(t; %̂(0))] , (15)

that thus takes into account the average information
gained from both the continuous monitoring and from
a final Helstrom projective measurement for each trajec-
tory.

III. ANALYSIS/RESULTS

In this section we will present our main results. We
will start by discussing the standard QBT scenario pre-
sented in [21], but allowing the system to be entangled
with a qubit ancilla. We will then study how the pres-
ence of the auxiliary bath A can be useful in solving
the quantum hypothesis testing problem even in the ab-
sence of the continuous monitoring (an effected which we
can dub noise-assisted scenario). Finally we address the
continuous-monitoring scenario showing how the indirect
information obtainable from A could help in the discrim-
ination strategy.

A. Advantage from initial entanglement

As already discussed in the previous sections in the
original QBT schemes of Refs. [21, 22] the probing sys-
tem S was not correlated with external memory elements.
We argue here that adding A1 into the picture already
introduces some major advantages, even in the absence of
the extra auxiliary bath A and of its continuous monitor-
ing in time. To see this explicit let us introduce Eq,t the
Linear, Completely Positive, Trace Preserving (LCPT)
channel [60, 61] that allows one to express the solution of
Eq. (2) as %̂q(t) = Eq,t%̂(0). Observe hence that, for fixed
t, the minimal value that the HEP function of Eq. (10)
can attain can be expressed as

HEP(t; %̂(0)) ≥ HEP�(t) := 1
2

(
1− ‖EB,t − EF,t‖�2

)
,

(16)
with

‖EB,t−EF,t‖� := max
%̂(0)∈SSA1

‖EB,t%̂(0)−EF,t%̂(0)‖1 , (17)

being the the diamond norm distance [62, 63] obtained
by maximizing over the set of SSA1 of the input joint
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density matrices of S and A1. The term HEP�(t) of (16)
should be compared with the quantity

HEP1(t) := 1
2

(
1− ‖EB,t − EF,t‖1

2

)
, (18)

with

‖EB,t − EF,t‖1 := max
%̂(0)∈SS

‖EB,t%̂(0)− EF,t%̂(0)‖1,(19)

which represents instead the optimal QBT error prob-
ability one can get by restricting the analysis to only
local density matrices of S as assumed in Refs. [21, 22].
The fact that using A1 can provide better QBT perfor-
mances then follows simply by the natural ordering be-
tween the diamond norm distance and the corresponding
trace norm distance [60], which implies ‖EB,t − EF,t‖� ≥
‖EB,t − EF,t‖1, and hence

HEP1(t) ≥ HEP�(t) . (20)

A quantitive evaluation of the advantages implied by
Eq. (20) can be attained by focusing on the scenario
where A is disconnected (i.e. κ = 0) and the tem-
perature of E in two QBT hypothesis is the same, i.e.
βB = βF = β, and sufficiently large, i.e. β → 0. Under
these conditions, the rescaled rate constants correspond-
ing to the Bosonic hypothesis, i.e. q = B, diverge while
those for the Fermionic hypothesis, i.e. q = F , remain
finite. As a consequence the Bosonic channel EB,t will
imply immediate thermalization of S, in the sense that it
leads to thermalization of the probe system on time scales
τ where the Fermionic channel EF,t has not significantly
affected the dynamics yet, i.e. formally

EB,τ• ' %̂β ⊗ TrS [•] , EF,τ• ' I• , (21)

with

%̂β := exp(−βĤS)/tr[exp(−βĤS)] , (22)

the Gibbs thermal state of the probe, TrS [•] represents
the partial trace with respect to S, and I is the identity
superoperator. Choosing hence the initial state %̂(0) of S
and A1 to be the maximally entangled state

|Φ+〉 := (|11〉SA1
+ |00〉SA1

)/
√

2 , (23)

from (11) we get

‖EB,τ %̂(0)− EF,τ %̂(0)‖1 '
∥∥∥∥%̂(0)− %̂β ⊗

1
2

∥∥∥∥
1

(24)

'
∥∥∥∥|Φ+〉 〈Φ+| − 1

2 ⊗
1
2

∥∥∥∥
1

= 3
2 ,

where in the second line we invoke the β → 0 limit to
approximate %̂β ' 1/2. Replacing this into Eq. (11) gives
finally

HEP(τ ; |Φ+〉) ' 1/8 , (25)

which should be compared with the values one would get
by discarding A1 from the problem, i.e. forcing %̂(0) to be

a local density matrix of just S. Under this circumstance,
Eq. (24) gets replaced by

‖EB,τ %̂(0)−EF,τ %̂(0)‖1 ' ‖%̂(0)− %̂β‖1 ' ‖%̂(0)−1/2‖1 ≤ 1 ,
(26)

with the last inequality being reachable by taking %̂(0)
pure, e.g. the vector |1〉. Accordingly we can write

HEP1(τ) = HEP(τ ; |1〉) ' 1/4 , (27)

which is twice the minimum value (25) attained by using
as input for S and A1 the maximally entangled state (23).

B. Noise-assisted QBT

In this section we show that the presence of the ad-
ditional environment A can enhance the QBT procedure
even when A is not continuously monitored, i.e. for κ > 0
but η = 0 so that the equation of motion of the system
is governed by Eq. (2). Since in this case A introduces
only extra dissipative effects in the dynamics of S we
dub such enahacement noise-assisted QBT. As we shall
see the origin of this phenomenon can be traced back to
the fact that adding A into the picture (i.e. passing from
κ = 0 to κ 6= 0 in Eq. (2)) modifies the dynamical process
which is responsible for the encoding of the statistical na-
ture of E on the SA1 system. While in a generic metrol-
ogy setting there is no guaranty that such interference
will have positive effects, the theory does not prevent
that for some special task this could happen: the QBT
problem we present here is one (indeed to our knowledge
probably the first) of the such special examples.

To enlighten the possibility of exploiting the mere pres-
ence of A to boost the QBT performances it is use-
ful to consider the scenario where the two QBT hy-
pothesis are characterized by the same temperature (i.e.
βB = βF = β): under this condition for t sufficiently
large, the contact with E alone (κ = 0) will lead S to
the Gibbs state (22), regardless to the nature of the bath
hence making the QBT discrimination impossible [21].
Yet there is a chance that by taking κ 6= 0, the simulta-
neous interactions of S with E and A will interfere lead-
ing to departures from such dead-end behaviour paving
the way for improvements of the discrimination efficiency
even for large t (it is also clear however that one also ex-
pect that in order to be beneficial, such deviations should
not be too strong so that the S-E coupling gets com-
pletely dominated by the S-A interaction). To see this
explicitly let us study the values that the HEP figure
of merit HEP(t; %̂(0)) of Eq. (11) attains in the asymp-
totic regime of t→∞ as a function of κ, considering the
scenario where the S-A interaction is mediated by the
operator ĉ = σ̂− (dissipative coupling). In this case, ir-
respectively from the choice of the initial state %̂(0) of S
and A1, we obtain the following steady state HEP value

HEP(t→∞) = 1
2 −

1
2ω0κ

∣∣∣Q̇(EB⇒A)− Q̇(EF⇒A)
∣∣∣ , (28)
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where Q̇(Eq⇒A) denotes the heat flows from E to A as-
sociated with the QBT hypotheses q = B,F , i.e. the
quantities

Q̇(EB⇒A) =ω0κ
NB(βB)

1 + 2NB(βB) + κ/γ
, (29)

Q̇(EF⇒A) =ω0κ
NB(βF )

1 + 2NB(βF ) + [1 + 2NB(βF )]κ/γ ,

which we report here for arbitrary choices of βB and βF .
The result (28) holds also for the case ĉ = σ̂x/2, up to
a numerical factor and different expressions for the heat
flows (see Appendix B for the derivation of all the re-
sults). As anticipated we notice that for βB = βF = β
and κ = 0, one gets HEP(t → ∞) = 1/2 signalling the
impossibility of solving the QBT problem [21]. We ob-
serve also that for κ � γ one has HEP(t → ∞) = 1/2
signalling that the large disturbance originated by A nul-
lifies the sensitivity to the statistics of the bath E. Most
interestingly however when κ is finite we get a clear ad-
vantage with respect to the κ = 0 case, see Fig. 2. The
physical interpretation of such noise-assisted QBT im-
provement is that since A is a zero-temperature bath
there is finite average heat flowing from the hot bath E
with q = B,F that can be monitored by the probe: the
non-zero discrimination capability hence follows due to
the fact that a Fermionic E implies a slower heat trans-
fer from E to S than a Bosonic E. Figure 2 makes also
evident that there exists in particular an optimal cou-
pling constant κ minimizing (28), that for ĉ = σ̂− can be
analytically evaluated as

κbest/γ =
√

2NB(β) + 1 , (30)

(when the S-A is mediated by the operator ĉ = σ̂x/2 the
optimal value is twice as above – see Appendix B).

A similar analysis can also be conducted for the case of
asymmetric temperatures (βB 6= βF ): here however the
model naturally allows also for discrimination at steady
state also in the case κ = 0, as already studied in [22].
Accordingly, while in some regimes one can still get im-
provements by working with κ 6= 0 the study become
slightly more involved and possibly less interesting. In-
stead we would like to report the fact that in this unequal
temperature scenario there can be critical κ values

κc/γ = NB(βF )−NB(βB)
NB(βB)[1 + 2NB(βF )]−NB(βF ) (31)

where QBT discrimination is made impossible (i.e.
H(t → ∞) = 1/2) by the presence of A, see the dashed
line in Fig. 2. For the ĉ = σ̂− coupling this is actually
happening if and only if either we have

1
2 < NB(βB) < NB(βF ) , (32)

or

NB(βB) < NB(βF ) < NB(βB)
1− 2NB(βB) . (33)

Figure 2. Plots of the noise-assisted Helstrom bound
HEP(t → ∞) reported in Eq. (28), as function of κ/γ. Solid
blue line: isothermal QBT scenario βB = βF = β with
NB(β) = 2. Dashed red line: example of an asymmetric tem-
perature QBT scenario (NB(βB) = 1, NB(βF ) = 2). Here
we notice that HEP(t → ∞) is smaller than 1/2 for κ = 0,
reaching instead the zero discrimination threshold at an in-
termediate critical value determined by Eq. (31).

This last property marks a difference with the noise as-
sisted QBT with ĉ = σ̂x/2 where a non zero discrimi-
nation capability at steady state for κ finite may occur
but the critical points appear only for NB(βB) ≥ NB(βF )
(see Appendix B). In summary, the additive noise implied
by an engineered additional environment on the one hand
can open the discrimination window for two baths at the
same temperature, on the other hand can prevent dis-
crimination of two baths at different temperatures when
choosing “unlucky” values of the loss coefficient.

C. Monitoring-enhanced QBT

We now discuss the performance in the QBT proto-
col when the additional environment can be continuously
monitored, by considering the two scenarios correspond-
ing to either flourescence or dispersive monitoring corre-
sponding respectively to the jump operators ĉ = σ̂− or
ĉ = σ̂x/2. We remind that under these circumstances
the system dynamics is described by the SME (4) or
(6) depending on the type of measurements we have
selected, and that the attainable mean error probabil-
ity can be evaluated either in terms of the functional
p

(cont)
err (t; %̂(0)) of Eq. (13), or in terms of its improved

version p
(cont+proj)
err (t; %̂(0)) of Eq. (15), depending on

whether or not we allow for a final Helstrom measure-
ment on S and A1. In an effort to simplify the study in
what follows we shall fix as input state for SA1 the maxi-
mally entangled state (23) – the only exception being for
the data reported in panel (a) of Fig. 3 where we assume
S1 to be uncorrelated with A1. While in principle for
given t this is possibly not the optimal choice in terms of
the diamond norm requirement, the choice is an educated
guess as its evolved counterpart is nothing but the Choi-
Jamiolkowski state [60, 61] of the associated dynamical
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input |0〉

(a)

input |Φ+〉

(b)

Figure 3. Plot of p(cont+proj)
err , Eq. (15), for the different

values of the efficiency η reported in the legend. In panel (a)
we choose the input state of S to be the ground state of its
local Hamiltonian, while in panel (b) we consider as input
of S and A1 the maximally entangled state |Φ+〉. All data
in the figure are obtained in the isothermal QBT scenario
βB = βF = β, for βω0 = 1/5.5; κ/γ = 1 and by considering
the jump operator ĉ = σ̂−.

map that is known to provide a faithful representation of
the latter.

1. Purely dissipative S-A coupling regime

Here we focus on the case where S and A interact
through the jump operator ĉ = σ̂−.

The usefulness of exploiting the knowledge deriving
from the continuous monitoring of A are well enlightened
in Fig. 3 where for brevity we only focus on homodyne-
detection: in this figure the quantity p

(cont+proj)
err (t) is

plotted as function of t, for different choices of the quan-
tum efficiency η. As intuitively expected increasing η
leads to better discrimination performance: in particular
the worst case scenario is obtained for η = 0 (blue curves
in the plot, corresponding to the noise-assisted strategy
where we do not monitor A), while the best case is associ-
ated with η = 1 (black dash-dotted curve, corresponding
to perfect detection efficiency).

We then fix the monitoring efficiency to its maximum

value η = 1 and turn our attention to the coupling κ
that gauges the S-A coupling, which in this framework
can be also interpreted as a measurement strength. The
results are depicted in the panels (a), (b), (d) and (e)
of Fig. 4 where in the top (bottom) panels we show the
behaviour of p(cont)

err (t) (p(cont+proj)
err (t)) for different val-

ues of κ. The first thing one may notice is that for low
values of κ photo-detection is less efficient than homo-
dyne in reducing p(cont)

err (t), while for large values of κ it
becomes the preferable choice – see panels (a) and (b).
Regarding p

(cont+proj)
err (t) independently on the type of

detection on A, we can make two relevant observations:
(i) at short time scales the monitoring of A does not lead
to a better discrimination as indeed the optimal value
still corresponds to the case κ = 0 (blue curves in the
figure); (ii) on the other hand, at long time scales the
cumulative information acquired by continuous monitor-
ing definitely improves discrimination for increasing val-
ues of κ. In particular we have numerical evidence that
both p

(cont)
err (t) and p

(cont+proj)
err (t) go to zero in the long

time limit, and thus that in general the minimum error
probability obtainable for κ = 0 can be overcome by con-
sidering either κ and/or time large enough – see Fig. 5.

2. Dispersive S-A coupling

Consider next the possibility of coupling dispersively
the system to the environment A represented by taking
ĉ = σ̂x as the jump operator of the model [55]. We
start by observing that, as ĉ†ĉ = σ̂2

x = 1, the probability
for continuous photodetection is independent on the
state, and thus it cannot contain any information on the
bath E. For this reason for the photo-detection unravel-
ling one would obtain p(cont)

err (t) = 1/2 at any time t. We
thus show the result of p(cont)

err (t) for homodyne detection
only, see panel (c) of Fig. 4, with the corresponding
case of final projective measurement on SA1 in panel
(f). Also in this case, we find that at short time scales
the coupling with A and the monitoring is not helpful,
as the best performances are observed for κ = 0. On
the other hand we find that p

(cont+proj)
err (t) decreases

towards zero at long time scales and that, as in the
previous case, better results are obtained by increasing
the coupling κ. We do not provide results for continuous
photodetection with a final projective measurement as,
while error probabilities below 1/2 are observed, the
performances are definitely worse respect to the other
cases we have considered.

3. Strategies Comparision

We compare the three different strategies, continuous
homodyne and photodetection with ĉ = σ̂− and contin-
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ĉ = σ̂−

(a)

ĉ = σ̂−

(b)

ĉ = σ̂x/2

(c)

ĉ = σ̂−

(d)

ĉ = σ̂−

(e)

ĉ = σ̂x/2

(f)

Figure 4. Setting |Φ+〉 as initial state of the SA1 system, we plot (a)-(c) p(cont)
err (t) and (d)-(f) p(cont+proj)

err (t) for different
detection strategies: for ĉ = σ̂− Photo-detection (a),(d) and Homodyne-detection (b),(e); and for ĉ = σ̂x/2 Homodyne-detection
(c),(f). Different curves refer to different values of κ as indicated in the legend with κ = 0 referring to the case where A is
decoupled from the probe. All data in this figure are obtained in the isothermal QBT scenario βB = βF = β, setting βω0 = 1/5.5
and η = 1.

0 10 20 30 40 50
0.0

0.1

0.2

0.3

0.4

0.5

Figure 5. Long time behaviour of p(cont+proj)
err (t) for differ-

ent continuous monitoring strategies (see legend). All data
are obtained in the isothermal QBT scenario βB = βF = β,
setting βω0 = 1/5.5, η = 1, κ/γ = 1 and considering |Φ+〉 as
the initial state.

uous homodyne with ĉ = σ̂x/2 in Fig. 5. We observe
that in the long-time limit the two best strategies corre-
spond to either performing continuous homodyne on an
environment coupled dispersively via the jump operator
ĉ = σ̂x/2 or continuous photodetection with jump oper-
ator ĉ = σ̂−. Moreover the first strategy is also the best

one in the short-time limit (we remark that similar re-
sults are obtained numerically for different values of the
parameters).

IV. CONCLUSIONS AND FINAL REMARKS

In this work we have investigated the possibility of
improving the performances of QBT task originally
presented in [21, 22] using extra auxiliary resources such
as an extra memory element A1 that could be initially
entangled with the original probe S, and an extra envi-
ronment A that instead is allowed to interact with the S
while possibly being monitored continuously in time. In
particular we notice that the QBT task can benefit even
when A is monitored very inefficiently (η = 0), an effect
that for instance is observed in the equal temperature
case which for long interaction time would not allow for
QBT discrimination in the original proposal [21, 22].
We finally compared the performances associated to
different realizations of continuous monitoring of A
via photo-detection or homodyne, proving that a finite
detection efficiency is naturally beneficial to the QBT
task. Before concluding we would like to comment that
the reported results, while derived in the specific QBT
setting of [21, 22] can be generalized to improve the
performances of arbitrary quantum hypothesis tasks,
in particular in all those problems where an agent is
asked to use an external probe to discriminate between



9

alternative quantum trajectories associated with differ-
ent dynamical quantum generators. We also would like
to mention that experimental realizations for specific
setup we have analyzed in the manuscript are feasible
e.g. in the context of superconducting qubits [55, 64]. In
these models, assuming S and A1 to be superconducting
transmon qubits, the initial entanglement configuration
between them can be reached for example with the
use of a common bus resonator [65]. Notice also that
configurations where S is capacitively coupled with two
baths E and A (the latter being continuously monitored)
are now experimentally under control, e.g. interpreting
the S as a quantum valve [66]. In particular in our case
the engineered environment A may consist in a cavity
where this time only S is embedded and the initial
coupling with A1 is now off-detuned, and the transmis-
sion of input microwave fields are used for quadrature
and dispersive measurements [67]. Specifically either

a fluorescence measurement [64], corresponding to a
jump operator ĉ = σ̂−, or a dispersive measurement
[55], corresponding for example to a jump operator
ĉ = σ̂x/2, is performed by using a resonant field. The
output for homodyne measurement is instead recorded
via a Josephson parametric amplifier, or, in the case of
heterodyne measurements, via a Josephson parametric
converter [64]. The final Helstrom measurement on
SA1 can be generally achieved in these experiments
by applying a strong, dispersively coupled probe field
[51, 67, 68].

V.G. acknowledges MIUR (Ministero dell’ istruzione,
dell’ Universita’ e della Ricerca) via project PRIN 2017
“Taming complexity via QUantum Strategies a Hybrid
Integrated Photonic approach” (QUSHIP) Id. 2017SRN-
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Appendix A: Numerical integration of stochastic master equations

We here describe the method proposed in [58, 59] in order to efficiently numerically integrate SMEs, as the ones
reported in Eqs. (4) and (6). One proves that the quantum state solution of these SMEs can be written after each
time step dt as

%̂cq(t+ dt) =
∑
k M̂

(k)
xt

[
%̂cq(t) + Lq%̂cq(t)dt

]
M̂

(k)
xt
†

Tr(
∑
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(k)
xt

[
%̂cq(t) + Lq%̂cq(t)dt

]
M̂

(k)
xt
†)
, (A1)

where we have introduced the Kraus operators M̂ (k)
xt that describe the effect of the measurement, with outcome xt,

on the quantum state at each time t. The form of these operators depends on the kind of measurement that is
performed. In the case of photodetection, the two Kraus operators corresponding to the two possible measurement
outcomes xt = {0, 1} are {

M̂
(1)
0 = 1̂− κ

2 ĉ
†ĉ dt

M̂
(2)
0 =

√
(1− η)κdt ĉ

, M̂
(1)
1 =

√
ηκdt ĉ , (A2)

that are applied according to the Poisson increment probabilities p0 = 1− ηκTr[%̂cq ĉ†ĉ]dt and p1 = ηκTr[%̂cq ĉ†ĉ]dt. As
regards continuous homodyne detection, the continuous outcome corresponds to the photocurrent xt = dyt and the
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corresponding Kraus operators have the form{
M̂

(1)
dyt

= 1̂− κ
2 ĉ
†ĉ dt+√ηκĉ dyt

M̂
(2)
dyt

=
√

(1− η)κdt ĉ
, (A3)

where the randomness of the process is originated by the Wiener increment entering in the formula for the photocur-
rent (7).

This numerical method also allows to evaluate straightforwardly the likelihood of each trajectory. In fact, at each
time step, the likelihood of obtaining the measurement outcome xt can be evaluated by taking the trace of the operator
at the numerator in Eq. (A1), i.e.

lxt = Tr[%̃cq(t+ dt)] , (A4)

where

%̃cq(t+ dt) =
∑
k

M̂ (k)
xt

[
%̂cq(t) + Lq%̂cq(t)dt

]
M̂ (k)
xt
† . (A5)

As remarked in the main text, by assuming to start and stop the monitoring respectively at time t0 and time t, each
trajectory can be identified by the string of records Dt of Eq. (8): the corresponding likelihood can thus be evaluated
as

L(Dt|q) =
t∏

t′=t0

lxt′ =
t∏

t′=t0

Tr[%̃cq(t′ + dt)] . (A6)

Appendix B: Steady state for a multichannel master equation

When we are not continuously monitoring the bath A, the dynamical evolution of S is described by the master
equation (2) whose dynamical generator is given by the super-operator

L(ext)
q • := Lq •+κD[ĉ]• = −i

[
ĤS , •

]
+ γ−q D[σ̂−] •+γ+

q D[σ̂+] •+γxqD[ σ̂x2 ]• ,

where for two cases considered in the main text ĉ = {σ̂−, σ̂x/2} we have

For ĉ = σ̂− : γ−q = γ(1 + sqNq(βq)) + κ; γ+
q = γNq(βq); γxq = 0,

For ĉ = σ̂x
2 : γ−q = γ(1 + sqNq(βq)); γ+

q = γNq(βq); γxq = κ. (B1)

To discuss the statistics tagging in the long time limit we solve the equation L(ext)
q %̂ssq = 0 which, irrespectively from

the input state of the system, provides the steady state %̂ssq solution of the system dynamics, i.e.

lim
t→∞

%̂q(t) = %̂ssq . (B2)

Writing hence %̂ssq = pq |1〉 〈1|+ (1− pq) |0〉 〈0|+ cq |0〉 〈1|+ c∗q |1〉 〈0| we obtain the following conditions

pq =
γ+
q + γxq /4

γ+
q + γ−q + γxq /2

, cq = 0 . (B3)

Notice that irrespectively from the selected QBT hypothesis the off-diagonal elements are always null. On the other
hand the associated conditions for the populations at steady state are obtained by plugging (B1) in the equation (B3):

For ĉ = σ̂− : pB = γNB(βB)
γ(2NB(βB) + 1) + κ

, pF = γNF (βF )
γ + κ

,

For ĉ = σ̂x
2 : pB = γNB(βB) + κ/4

γ(2NB(βB) + 1) + κ/2 , pF = γNF (βF ) + κ/4
γ + κ/2 . (B4)

With the above expressions we can now express the asymptotic limit of the HEP functional (11)

lim
t→∞

HEP(t; %̂(0)) = HEP(t→∞) := 1
2

(
1− ‖%̂

ss
B − %̂ssF ‖1

2

)
= 1

2 (1− |pB − pF |) . (B5)
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We can also represent the figure of merit in terms of the heat flowing between the two environments at steady state.
The heat flowing in A is characterized in terms of the following equation [69]

Q̇(Eq⇒A) = −κTr[ĤSD[ĉ]%̂
ss
q ], (B6)

that in the case of ĉ = σ̂− gives ω0κpq. Combining equation (B6) with the first of Eqs. (B4) it is straightforward
to obtain the results (28) and (29) of the main text, after expressing the Fermi function in terms of the Bose
function for uniforming the notation NF (βF ) = NB(βF )

1+2NB(βF ) . Also in the case of ĉ = σ̂x/2 we are able to establish a
connection between the modulus of the population difference and the heat flow. Using the definition (B6) we have
−κTr

[
ĤSD[ σ̂x2 ]%̂

ss
q

]
= −ω0κ

4 (1− 2pq) from which we derive

|pB − pF | =
2
ω0κ
|Q̇(EB⇒A) − Q̇(EF⇒A)|, (B7)

and hence

HEP(t→∞) = 1
2

(
1− 2

ω0κ

∣∣∣Q̇(EB⇒A) − Q̇(EF⇒A)
∣∣∣) . (B8)

At last, we discuss how the tagging procedure can be influenced by the coupling with the bath A, gauged through
the parameter κ. Choosing the value of κ for which Eq. (28) is equal to 1/2 allows to find κc in Eq. (31). The same
analysis for the case with ĉ = σ̂x

2 leads to the following critical value

κc
γ

= 2NB(βB)
NF (βF ) − 1. (B9)

The optimal value for the discrimination at steady state when βF = βB = β, instead, is obtained by optimizing the
figures of merit with respect to κ. In this way the results (30) and

κbest
γ

= 2
√

2NB(β) + 1. (B10)

are found for ĉ = σ̂− and ĉ = σ̂x/2, respectively.
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