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Abstract
Purpose  To investigate whether artificial intelligence (AI) can differentiate septic from non-septic total hip arthroplasty 
(THA) failure based on preoperative MRI features.
Materials and methods  We included 173 patients (98 females, age: 67 ± 12 years) subjected to first-time THA revision 
surgery after preoperative pelvis MRI. We divided the patients into a training/validation/internal testing cohort (n = 117) 
and a temporally independent external-testing cohort (n = 56). MRI features were used to train, validate and test a machine 
learning algorithm based on support vector machine (SVM) to predict THA infection on the training-internal validation 
cohort with a nested fivefold validation approach. Machine learning performance was evaluated on independent data from 
the external-testing cohort.
Results  MRI features were significantly more frequently observed in THA infection (P < 0.001), except bone destruction, 
periarticular soft-tissue mass, and fibrous membrane (P > 0.005). Considering all MRI features in the training/validation/
internal-testing cohort, SVM classifier reached 92% sensitivity, 62% specificity, 79% PPV, 83% NPV, 82% accuracy, and 81% 
AUC in predicting THA infection, with bone edema, extracapsular edema, and synovitis having been the best predictors. 
After being tested on the external-testing cohort, the classifier showed 92% sensitivity, 79% specificity, 89% PPV, 83% NPV, 
88% accuracy, and 89% AUC in predicting THA infection. SVM classifier showed 81% sensitivity, 76% specificity, 66% 
PPV, 88% NPV, 80% accuracy, and 74% AUC in predicting THA infection in the training/validation/internal-testing cohort 
based on the only presence of periprosthetic bone marrow edema on MRI, while it showed 68% sensitivity, 89% specificity, 
93% PPV, 60% NPV, 75% accuracy, and 79% AUC in the external-testing cohort.
Conclusion  AI using SVM classifier showed promising results in predicting THA infection based on MRI features. This 
model might support radiologists in identifying THA infection.
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Introduction

Hip osteoarthritis is a frequent cause of hip pain and total 
hip arthroplasty (THA), which, to date, is one of the most 
common surgical procedures in orthopedic surgery, with 
the number of implants growing over time due to popula-
tion aging. THA failure may occur due to prosthetic joint 
infection and non-septic reasons, such as aseptic loosening, 
dislocation, adverse reaction to metal debris (ARMD), bone 
fracture, or implant rupture [1]. Several diagnostic tools 
exist, including clinical tests, laboratory exams on blood 
samples and joint fluid, and imaging examinations [2–6]. 
These tests have some limitations, particularly in detecting 
THA infection and the responsible microorganism, but all 
of them are part of a comprehensive preoperative evalua-
tion routinely performed in patients with THA failure. As a 
matter of fact, there is no highly sensitive and specific sin-
gle diagnostic preoperative test [7]. Some papers have been 
published recently on the use of magnetic resonance imaging 
(MRI) in differentiating septic from non-septic THA failure 
[8–11]. These studies have investigated the diagnostic per-
formance of different conventional imaging features (e.g., 
bone edema, synovitis, collections, and bone destruction) 
and of loco-regional lymphadenopathies reporting very good 
results. Nevertheless, the interpretation of MRI findings in 
patients with hip THA can be challenging for radiologists 
without strong experience in musculoskeletal imaging and 
other physicians, because these examinations are occasion-
ally performed, generally in referral centers, but also due to 
artifacts related to the prosthesis itself. In this regard, as in 
several other settings, artificial intelligence (AI) and machine 
learning may be supportive to radiologists [12, 13]. AI has 
several potential applications in augmenting the musculo-
skeletal radiologist in the assessment of orthopedic implants. 
Among them, characterization of prosthesis, identification of 
specific implant models, and assessment of prosthetic posi-
tioning and complications. Most works have been published 
about the use of AI-based analysis of radiographic images 
to automate postoperative evaluations of joint arthroplasty 
[14, 15]. For instance, AI-based algorithms reported good 
accuracy in predicting the dislocation risk of THA (AUC 
76.67) or in detecting THA loosening (accuracy 88.3%) [14]. 
Unfortunately, most of these studies have critical methodo-
logical limitations. Thus, current evidence is not sufficient to 
support the use of AI-based diagnostic algorithms applied to 
medical images for the evaluation of THA complications in 
daily clinical practice. The aim of our study was to investi-
gate whether AI can assist radiologists with MRI diagnosis 
of THA infection.

Methods

Institutional Review Board of Ospedale San Raffaele, 
Milano, Italy, approved this retrospective study and waived 
the need for informed consent (Protocol RETRORAD). 
After matching imaging, laboratory, and surgical data, our 
database was completely anonymized to delete any connec-
tions between data and patients’ identity according to the 
General Data Protection Regulation for Research Hospitals.

Patients

This study was concerned with the assessment of MRI 
examinations performed by a consecutive series of patients 
managed at IRCCS Istituto Ortopedico Galeazzi, Milan, 
Italy, from January 2015 to January 2022. These patients 
were affected by painful THA requiring revision surgery and 
were all subjected to preoperative pelvis MRI. We gathered 
all imaging, surgical, and clinical data of these patients 
cross-referencing the database of our Radiology Department 
with that of our Hip Department and Laboratory of Clini-
cal Chemistry and Microbiology. The following inclusion 
criteria were considered: (i) patients subjected to first-time 
revision procedures for monolateral failed THA; (ii) avail-
ability of intraoperative microbiological tests; and (iii) pre-
operative unenhanced pelvis MRI performed up to 1 month 
before revision surgery with the same imaging protocol. The 
exclusion criteria were: (i) nondiagnostic MRI due to pros-
thesis-related artifacts; (ii) inflammatory arthritis, tumors, 
bowel inflammatory disease, or autoimmune disease. Over-
all, a total of 173 patients were included in this study (98 
females, 75 males; mean age: 67 ± 12 years, range 28–94). 
They were divided into training/validation/internal-testing 
and external-testing cohorts as detailed below in the machine 
learning section.

Microbiologic analysis

Intraoperative samples from periprosthetic material col-
lected during revision surgery (membranes, bones, fluid, 
THA components) were sent to our laboratory for culture 
analysis. Agar plates and enrichment broths were incubated 
for 48 h and 15 days, respectively, and daily checked for 
microbial growth. In case of broth turbidity, an aliquot was 
plated onto blood agar. Colonies grown from agar plates 
were identified by biochemical testing performed on a Vitek 
2 analyzer (BioMerieux, Marcy L’Etoile, France). The final 
diagnosis of THA infection was obtained according to 
the International Consensus Meeting Criteria [16], which 
include two or more samples of intraoperative cultures 
showing the same microorganism growth and preoperative 
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blood test results concerning the levels of C-reactive protein 
(CRP), erythrocyte sedimentation rate (ESR), and synovial 
fluid analysis that were used, together with clinical data, 
imaging findings, culture analysis from preoperative joint 
aspiration and intraoperative samples, to reach the final 
diagnosis.

MRI protocol and images interpretation

All MRI scans were done at in the same1.5 T unit (Avanto, 
Siemens Medical Solutions, Erlangen, Germany) at our 
institution. A combination of the table-integrated coil and 
abdominal coil was used. Our metal artifact reduction 
sequence (MARS) protocol included coronal T1-weighted, 
coronal STIR, axial T1-weighted, axial T2-weighted, and 
sagittal T2-weighted images [17]: coronal T1-weighted 
(repetition time/echo time, 500/9.1 ms; number of excita-
tions, 2; slice thickness, 3 mm; turbo factor, 6; flip angle, 
180; voxel size, 1.3 × 0.9 × 3 mm; bandwidth, 302), coronal 
STIR (5180/81 ms; number of excitations, 2; slice thick-
ness, 3 mm; inversion time, 160 ms; turbo factor, 28; flip 
angle, 122; voxel size, 1.4 × 1.1 × 3 mm; bandwidth, 395), 
axial T2-weighted (5000/68 ms; number of excitations, 
2; slice thickness, 3.2 mm; turbo factor, 27; flip angle, 
150; voxel size, 1.4 × 1.0 × 3.2  mm; bandwidth, 383), 
axial T1-weighted (593/9.1 ms; number of excitations, 3; 
slice thickness, 3.2 mm; turbo factor, 6; flip angle, 180; 
voxel size, 1.2 × 0.9 × 3.2 mm; bandwidth, 302), sagittal 
T2-weighted (3550/85 ms; number of excitations, 2; slice 
thickness, 3.5 mm; turbo factor, 26; flip angle, 150; voxel 
size, 1.0 × 1.0 × 3.3 mm; bandwidth, 381). The field of view 
was adapted to patient’s body build including the whole 
pelvis and all prostheses. All MRI scans were reviewed by 
a radiologist (blinded to clinical and microbiologic data) 
with 9 years of experience in musculoskeletal imaging, who 
provided a yes/no answer for each MRI feature. As done 
in a previous study on pelvis MRI in patients with THA 
[8], MRI features of THA failure were: periprosthetic bone 
destruction, periprosthetic soft-tissue mass, effusion, syno-
vitis, lamellated synovitis, extracapsular edema, fibrous 
periprosthetic membrane, bone edema, and extracapsular 
collection/sinus tract.

Machine learning analysis

The machine learning analysis was performed using the 
TRACE4© platform (DeepTrace Technologies, Milan, Italy) 
[18].Our population of study was divided into training/vali-
dation/internal-testing and external-testing cohorts based on 
MRI performed before and after September 2019, respec-
tively. The training/validation/internal-testing cohort con-
sisted of 117 patients (38 with THA infection and 79 without 
THA infection). The external-testing cohort consisted of 56 

patients (19 with THA infection and 37 without THA infec-
tion). All imaging parameters previously assessed by the 
musculoskeletal radiologist were used to train, validate and 
test the machine learning algorithm based on support vec-
tor machine (SVM, with Gaussian kernel) to predict THA 
infection on the training/validation/internal-testing cohort. A 
nested fivefold validation (10 ensembles, 250 trained mod-
els) approach was employed. Thereafter, machine learning 
performance was evaluated on temporally independent data 
from the external-testing cohort.

Statistical analysis

Chi-square statistics were used to compare each MRI feature 
between patients with infected and non-infected THA. Sen-
sitivity, specificity, positive predictive value (PPV), nega-
tive predictive value (NPV), accuracy, area under the curve 
(AUC), and odds ratios (OR) were calculated for each MRI 
feature. We also assessed the diagnostic performance of a 
combination of conventional MRI features with the highest 
OR. Continuous variables were reported as mean ± standard 
deviation. Discrete variables were summarized as median 
and interquartile range. Bonferroni correction for multiple 
comparisons was applied and statistical significance was 
set at P < 0.003. SPSS software (v. 26, IBM, Armonk, NY) 
was used for statistical analysis. AUC, accuracy, sensitivity, 
specificity, PPV, and NPV of the machine learning classifier 
were calculated in the training-internal validation and test 
cohorts, respectively.

Results

Conventional MRI features were significantly more fre-
quently observed in patients with THA infection compared 
to patients without infection (all with P < 0.001), except 
bone destruction (P = 0.155), periarticular soft-tissue mass 
(P = 0.005), and fibrous membrane (P = 0.081). The values 
of sensitivity for detecting THA infection ranged from 5.4% 
(periarticular soft-tissue mass) to 80.7% (bone edema), spec-
ificity from 51.7% (bone destruction) to 97.4% (lamellated 
synovitis), PPV from 10.3% (periarticular soft-tissue mass) 
to 87.9% (synovitis), NPV from 62.5% (periarticular soft-
tissue mass) to 89% (bone edema), accuracy from 46.8% 
(bone destruction) to 81.5% (synovitis), and OR from 0.198 
(periarticular soft tissue mass) to 29 (synovitis). Data on 
diagnostic performance of all MRI features are reported in 
Table 1. Figure 1 shows a representative case from our study 
population.

When all MRI features were considered in the training/
validation/internal-testing cohort, SVM classifier reached 
92% sensitivity, 62% specificity, 79% PPV, 83% NPV, 82% 
accuracy, and 81% AUC in predicting THA infection, with 
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bone edema, extracapsular edema, and synovitis result-
ing the best predictors ranked by descending importance. 
After being tested on the external-testing cohort, the clas-
sifier showed 92% sensitivity, 79% specificity, 89% PPV, 
83% NPV, 88% accuracy, and 89% AUC in predicting THA 
infection.

SVM classifier showed 81% sensitivity, 76% specificity, 
66% PPV, 88% NPV, 80% accuracy, and 74% AUC in predict-
ing THA infection in the training/validation/internal-testing 
cohort based on the only presence of periprosthetic bone 

marrow edema on MRI, while it showed 68% sensitivity, 89% 
specificity, 93% PPV, 60% NPV, 75% accuracy, and 79% AUC 
in the external-testing cohort.

Table 1   Diagnostic performance of all MRI features in detecting infected THA

Sens.: sensitivity; Spec.: specificity; PPV: positive predictive value; NPV: negative predictive value; Acc.: accuracy; OR: odds ratios; P: P-value 
with statistical significance set at P < 0.003

Bone destruction Periarticular mass Effusion Synovitis Lamellated 
synovitis

Extracapsu-
lar edema

Fibrous 
membrane

Bone edema Extracapsu-
lar collec-
tions

Sens 36.8% 5.4% 73.7% 50.9% 29.8% 64.9% 36.8% 80.7% 50.9%
Spec 51.7% 77.8% 59.5% 96.6% 97.4% 87.1% 75.9% 76.7% 81.0%
PPV 27.3% 10.3% 47.2% 87.9% 85.0% 71.2% 42.9% 63.0% 56,9%
NPV 62.5% 63.2% 82.1% 80.0% 73.9% 83.5% 71.0% 89.0% 77.0%
Acc 46.8% 54.3% 64.2% 81.5% 75.1% 79.8% 63.0% 78.0% 71.1%
OR 0.625 0.198 4.111 29.000 16.008 12.457 1.833 13.785 4.425
P 0.155 0.005  < 0.001  < 0.001  < 0.001  < 0.001 0.081  < 0.001  < 0.001

Fig. 1   Pelvis MRI of a 77-year-old female with THA infection. Coro-
nal STIR (A) shows periprosthetic acetabular bone edema (white 
arrow) and extracapsular edema (void arrow). No bone destruction 

is noted in the coronal T1-weighted image (B). Axial T2-weighted 
images (C and D) show effusion and synovitis
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Discussion

The main finding of our study is the validation of a diag-
nostic machine learning classifier to support physicians in 
the interpretation of imaging findings when dealing with 
preoperative MRI of patients with failed THA.

Few papers have investigated the diagnostic performance 
of preoperative MRI in predicting infection in patients with 
THA infection of the hip [8–10, 19] and of the knee [20, 21]. 
Our results, in line with previous studies, highlight the accu-
racy of some MRI features in predicting THA infection, such 
as bone edema, synovitis, synovial layering, and extracapsu-
lar edema with accuracy of 75.1%–81.5%. In more detail, the 
most specific findings were synovitis, lamellated synovitis, 
and extracapsular edema (specificity of 96.6%, 97.4%, and 
87.1%, respectively), while bone edema reached the high-
est values of sensitivity (80.7%) and NPV (89%). On the 
other hand, bone destruction, periarticular soft tissue, and 
periprosthetic fibrous membrane are imaging findings occa-
sionally observed in THA infection, being more commonly 
seen in aseptic THA failure. According to these data, the 
AI-based SVM classified bone edema, extracapsular edema, 
and synovitis as the best predictors of THA infection. Based 
on all MRI features, the classifier showed 82% accuracy, but 
with remarkable unbalance between sensitivity (92%) and 
specificity (62%). However, a substantial increase of speci-
ficity (79%), PPV (89%), accuracy (88%), and AUC (from 
81 to 89%) was observed in the external-testing cohort. Bone 
edema was selected by the AI-based SVM as the best predic-
tor showing 80% accuracy in the training/validation/inter-
nal-testing cohort and 75% accuracy in the external-testing 
cohort. Again, a substantial improvement in specificity 
(from 76 to 89%) and PPV (from 66 to 89%) was observed 
in the external-testing cohort. These results demonstrate that 
AI-based machine learning classifiers might be useful sup-
portive diagnostic tools in challenging conditions like the 
differentiation of septic and aseptic THA failure. Indeed, 
AI tools applied to imaging after arthroplasty may improve 
reporting activity and decrease the mistakes rate by reducing 
cognitive load and fatigue for radiologists [15]. Unfortu-
nately, a comparison with previously published data is not 
possible, since, to our knowledge, no other studies investi-
gated the diagnostic performance of an AI-based machine 
learning classifier built upon MRI features in this setting. 
Moreover, while AI models have been proven for detecting 
implant complications such as dislocations and loosening 
on radiographs [22], poor attention has been placed on the 
tremendous clinical impact that might have AI-based sup-
portive tools in the diagnosis of THA infection.

Some limitations of our study must be pointed out. 
First, the relatively limited number of patients included 

in our series. It is well known that a huge amount of data 
is essential to build robust machine learning classifiers 
[23–26]; thus, larger studies may prove even higher diag-
nostic performance of AI-based predicting models in 
failed THA. It should be noted that collecting preopera-
tive pelvis MRI in patients with failed THA eligible for 
revision surgery is not so easy. Then, we cannot exclude 
that our evaluation could have been affected by suscepti-
bility artifacts, despite the use of metal artifact reduction 
sequences, particularly concerning some imaging features 
of the periprosthetic bone (bone edema, bone destruction, 
fibrous membrane), that may be missed or wrongly seen. 
New technologies included in the most recent MRI scan-
ners reduce the risk of misinterpretation of images and 
may allow improving the diagnostic performance of both 
radiologists and AI-based supportive classifiers. Last, we 
did not include in our analysis the evaluation of locore-
gional lymphadenopathies that some authors have recently 
reported as potential imaging biomarkers of infected THA, 
even with higher diagnostic performance reported by con-
ventional MRI features [8, 27].

In conclusion, AI using SVM classifier showed promis-
ing results in predicting THA infection based on MRI fea-
tures assessed preoperatively. This model might represent 
an adjunctive tool to support radiologists in identifying 
THA infection and could form the basis for further trials 
in this little explored field. Future studies are warranted 
to build AI-based models that combine imaging, clinical, 
and laboratory data to improve the accuracy of preopera-
tive evaluation of patients undergoing revision surgery for 
failed arthroplasty.
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