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Abstract
Anomaly detection for the Internet of Things (IoT) is a very important topic in the context of cyber-security. Indeed, as
the pervasiveness of this technology is increasing, so is the number of threats and attacks targeting smart objects and their
interactions. Behavioral fingerprinting has gained attention from researchers in this domain as it represents a novel strategy to
model object interactions and assess their correctness and honesty. Still, there exist challenges in terms of the performance of
such AI-based solutions. The main reasons can be alleged to scalability, privacy, and limitations on adoptedMachine Learning
algorithms. Indeed, in classical distributed fingerprinting approaches, an object models the behavior of a target contact by
exploiting only the information coming from the direct interaction with it, which represents a very limited view of the target
because it does not consider services and messages exchanged with other neighbors. On the other hand, building a global
model of a target node behavior leveraging the information coming from the interactions with its neighbors, may lead to
critical privacy concerns. To face this issue, the strategy proposed in this paper exploits Federated Learning to compute a
global behavioral fingerprinting model for a target object, by analyzing its interactions with different peers in the network.
Our solution allows the training of such models in a distributed way by relying also on a secure delegation strategy to involve
less capable nodes in IoT. Moreover, through homomorphic encryption and Blockchain technology, our approach guarantees
the privacy of both the target object and the different workers, as well as the robustness of the strategy in the presence of
attacks. All these features lead to a secure fully privacy-preserving solution whose robustness, correctness, and performance
are evaluated in this paper using a detailed security analysis and an extensive experimental campaign. Finally, the performance
of our model is very satisfactory, as it consistently discriminates between normal and anomalous behaviors across all evaluated
test sets, achieving an average accuracy value of 0.85.

Keyword Internet of Things, Federated Learning, Blockchain, Autonomy, Reliability, Machine Learning, Privacy,
Homomorphic Encryption

1 Introduction

Themassive distribution of smart and interconnected devices
is making us spectators and actors, at the same time, of a new
world of application scenarios inside the Internet of Things
(IoT, hereafter).However, as the pervasiveness and autonomy
of smart things grow, cyber attacks are becoming more and
more dangerous and complex (Adat et al., 2018), demanding
security approaches based on always improved and sophis-

These authors contributed equally to this work.

B Antonino Nocera
antonino.nocera@unipv.it

Extended author information available on the last page of the article

ticated techniques. This crucial aspect has to be tackled
because security and privacy concerns act as inhibitors of this
market’s future expansion and evolution (Al-Sarawi et al.,
2020).

A recent solution to make IoT more robust to possible
security threats and misuse is the computation of devices
fingerprint, used to detect the object anomalies caused by
attacks, hardware deterioration, or malicious software mod-
ifications (Sánchez et al., 2021). Previous strategies in this
context leveraged features derived from device information
(i.e., device name, device type, manufacturer information,
serial number, and so forth) and other basic networking data
tomodel the identity of an IoT node (Oser et al., 2018; Kohno
et al., 2005). More recent approaches, based on Machine
Learning (ML, hereafter) and Deep Learning (DL, hereafter)
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techniques, aim at modeling a complete profile of a thing,
composed not only of device and network information but
also of the hidden and unique patterns in the behavior that
a node reveals when it interacts with other peers. This so
called behavioral fingerprint is more difficult to be forged by
amalicious adversary, increasing the probability of detecting
potential misbehavior that may arise due to cyber attacks,
system faults, or misconfigurations (Aramini et al., 2022;
Bezawada et al., 2018; Ferretti et al., 2021; Celdrán et al.,
2022).

Most of the approaches based on behavioral fingerprint-
ing fall into two different groups. The first set is composed
of centralized solutions in which a single hub is in charge
of training and executing ML algorithms to assess the fin-
gerprint of all the devices of the network. Therefore, due to
the use of end-to-end encryption, these solutions cannot take
into consideration features obtainable by analyzing private
message payloads exchanged between every pair of nodes
(Hamad et al., 2019; Miettinen et al., 2017). A second group
consists of distributed approaches in which a comprehensive
profile can be built, but only concerning a single node point
of view (i.e., theMLmodel is trained and executed by a node,
based on its direct interactions with a target node) (Aramini
et al., 2022; Ferretti et al., 2021).

To overcome these limitations, in this paper, we face the
challenge of designing a global model for behavioral fin-
gerprinting considering the information frommultiple nodes
without centralizing the solution in a single super-node. To
do so, we leverage the novel paradigm of Federated Learn-
ing (FL, for short) (Yang et al., 2019). Generally, FL is a
distributed collaborative AI approach that allows the train-
ing of models through the coordination of multiple devices
with a central server, acting as an aggregator, without the
need to share the actual datasets (Nguyen et al., 2021).

In particular, in an IoT scenario, an aggregator can coor-
dinate multiple objects, called workers, to perform neural
network training. The main steps can be summarized as fol-
lows. First, the aggregator initializes a shared global model
with random parameters and broadcasts it to the worker
nodes. Secondly, for several iterations, eachworker computes
its individualmodel update, leveraging its local dataset. Once
the gradient is computed the aggregator receives all model
updates and combines them into an aggregated global model.
Finally, this global update will be downloaded by the work-
ers to compute their next local update. The steps above are
repeated until the global training is complete.

In our paper, we apply this approach to an IoT scenario
in which devices with different computational capabilities
can cooperate. In particular, the worker devices, in charge of
training local ML models, should be powerful devices with
sufficient computational capability, memory, and stability.
The role of the aggregators, instead, is distributed among
multiple devices that can have high ormediumcomputational

capabilities. Observe that, each aggregator collects informa-
tion from workers to create a global model for one or more
targets, but a target node can have only one aggregator. In
this way, FL can be simply applied to an IoT environment
in the form of a “distributed aggregation” architecture, that
involves multiple aggregation servers receiving local learn-
ing model updates from their associated devices (Khan et al.,
2021).

This approach presents several points of strength. First off,
global behavioral fingerprints can be computed for a target
node by considering aspects captured and modeled by all its
peers. This strategy allows for enhanced learning accuracy
rates. Approach scalability is also improved due to the dis-
tributed learning nature of FL.Moreover, the raw data are not
required for the training on the aggregator side, thus mini-
mizing the leakage of sensitive information to external third
parties.

However, the application of this strategy can introduce
further privacy concerns arising from the exposure of side-
channel information. For instance, all the workers involved
in the learning task would expose their interactions with the
target, and the aggregator would know the identity of the
monitored objects.

In this paper, we try to face this further issue by design-
ing a Secure Multi-party Computation (SMC, for short)
scheme based on Homomorphic Encryption (HE, for short)
and its properties.Unlike conventional encryption algorithms
such as Advanced Encryption Standard (AES) or Rivest-
Shamir-Adleman (RSA), HE has been designed to perform
operations over encrypted data (Gentry, 2009), proving end-
to-end IoT dataflow privacy. In general, HE has been applied
to IoT scenarios to securely store data in public clouds, where
computations, such as the training and execution ofML algo-
rithms, can be performed without deciphering and accessing
the user’s data (Kim et al., 2018). In our approach, we make
use of HE during a safe starting phase. We assume that this
phase has a sufficient duration to gather enough data to train
ML models in an environment in which the target node is
free from possible attacks. Specifically, the main steps of
this stage can be summarized as follows.

Every node with sufficient computation capability to train
an ML model contacts the target node (for which it wants to
compute the behavioral fingerprint) to exchange a message
containing the necessary identifier parameters encryptedwith
a homomorphic hash function.

After this step, the worker nodes query the Blockchain
to discover the identity of the aggregator node for the con-
sidered target. In our solution, we leverage Blockchain and
smart contracts technology for a number of tasks to make
it fully distributed. In particular, Blockchain is exploited to
implement a reputation mechanism to: (i) monitor aggrega-
tor nodes at a global level and (ii) store malicious nodes’
information resulting from the application of our strategy.
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To achieve this goal, our approach leverages a consolidated
practice, indeed, Blockchain smart contracts are already
being used to control and secure IoT devices (Christidis &
Devetsikiotis, 2016; Khan & Salah, 2018), and, in addition,
lightweight adaptations of a Blockchain have been designed
to support resource-constrained smart things (Corradini et al.,
2022). As for the reputation mechanism, although this func-
tion is orthogonal to our approach, several proposals can be
used to provide forms of trust in an IoT network (Corradini
et al., 2022; Dedeoglu et al., 2019; Pietro et al., 2018). Nev-
ertheless, in our solution, we adapt an existing schema by
allowing nodes to assign a trust score (i) to their peers based
on the analysis of their behavior through the proposed behav-
ioral fingerprintingmodel, and (ii) to an aggregator according
to its performance during the training phase.

With that said, leveraging information exchanged through
a refined use of HE properties, worker nodes can identify a
common aggregator and, this last can, then, group together
the ones with common learning tasks. In our solution, the
steps above are carried out by maintaining private all the side
information, as a matter of fact, to realize a fully privacy-
preserving solution, neither the aggregator must know the
identity of the target node, nor the different workers should
know each other. Finally, as stated before, in our heteroge-
neous IoT environment all these devices, even less powerful
ones, can benefit from our approach by delegating several
tasks of our schema to more capable devices. In our strategy,
also this additional facility must be privacy-preserving.

The outline of this paper is as follows. In Section 2, we
illustrate the literature related to our approach. In Section
3, we give a general overview of our reference IoT model
and describe the proposed framework in detail. In Section
4, we analyze our security model. In Section 5, we present
the set of experiments carried out to test our approach and
show its performance. Finally, in Section 6, we discuss the
limitations of our paper, draw our conclusions, and present
possible future works related to our research efforts. In the
following, we list the main challenges faced and describe the
insightful contributions provided.

1.1 Challenges and Contribution

As described above, the challenges faced by our proposal and
its main contributions are numerous and we can summarize
them as follows:

• Dynamic threat landscape. IoT devices are constantly
updated and released. Nevertheless, vulnerability exploita-
tion is developed at a similarly high pace. This makes the
threats against this context highly dynamic and difficult
to foresee. We tackle this issue by proposing a behav-
ioral fingerprinting model able to monitor the hidden and
unique patterns of the behavior of a node in a network.

This tailored countermeasure appears suitable for a con-
stantly changing attack surface.

• Increase security. We improve the accuracy of behav-
ioral fingerprinting models by building a comprehensive
object profile. Indeed, adopting a solution based on FL
allows us to evaluate the behavior of an object across dif-
ferent services and leverage the interaction with multiple
peers.

• Solution scalability. Scalability is an issue that affects
various aspects of behaviormonitoring approaches, espe-
cially in the context of IoT. We face this problem by
adopting a FL strategy aiming at distributing the moni-
toring tasks across the nodes of the network.

• Lack of interaction data. IoT devices generate traffic by
infrequent user interactions. FL strategy empowers nodes
with global models generated from the aggregation of
different contributions.

• Autonomy. The IoT scenario demands a growing num-
ber of tasks carried out without the need for human
intervention. We leverage Blockchain and smart contract
technology for several steps in our approach to distribute
the computation and increase object autonomy.

• Privacy of data. IoT devices exchange sensitive informa-
tion, hence the privacy aspects related to behavioral data
and correspondingmodels play a key role.We adopt FL to
secure data during the training of behavioral fingerprint-
ing models. More importantly, we take a step forward in
maintaining the private identity of target nodes andwork-
ers leveraging a homomorphic encryption-based strategy.

• IoT device heterogeneity. Many IoT devices have lim-
ited capabilities in terms of availablememory, computing
resources, and energy and, therefore, they are not capable
of performing complex algorithms. Through our secure
delegation solution also less capable devices can benefit
from our approach in a privacy-preserving way.

2 RelatedWorks

With the growing complexity and pervasiveness of IoT-based
solutions, the surface and the impact of possible attacks
against this scenario are increasing as well (Hassija et al.,
2019; Li et al., 2015). In the last years, researchers have
studied novel countermeasures to the most disparate type
of threats to IoT devices (Buccafurri et al., 2016; Kozlov
et al., 2012; Sicari et al., 2016; Tweneboah-Koduah et al.,
2017), and the latest ones are involving also Machine Learn-
ing and Deep Learning techniques (Al-Garadi et al., 2020;
Cauteruccio et al., 2019). In this context, a recent trend is
to develop ML and DL algorithms to model peculiar char-
acteristics of target objects to detect compromised devices
within a network. The ensemble of these features, that an
IoT device possesses and reveals when it interacts with other
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objects over a network, represents the so called fingerprint.
Classical device fingerprinting comprehends soft identities,
such as: device name, device type, manufacturer informa-
tion, serial number, network address, and other features that
can be derived from different types of networking informa-
tion. For instance, the authors of (Oser et al., 2018) identified
19 features that can be used to assess the security level of
an object directly from the data-link header of 802.11 mes-
sages. Also physical layer information is used, for instance,
the work illustrated in (Radhakrishnan et al., 2014) focuses
on the analysis of the physical aspects of devices, like inter-
arrival times of different packets, to fingerprint them. An
evolution of such an approach that cannot be very easily
cloned by a malicious adversary, is represented by behav-
ioral fingerprinting (Aramini et al., 2022; Bezawada et al.,
2018; Celdrán et al., 2022; Ferretti et al., 2021). This type of
technique leverages application-level information to extract
features concerning the interaction among the devices and,
hence, their networking behavior. In particular, in (Beza-
wada et al., 2018) the authors leverage a number of features
extracted from the network traffic of the device to train an
MLmodel that can be used to detect similar device types. The
work presented in (Celdrán et al., 2022) illustrates a detection
framework that applies device behavioral fingerprinting and
ML to detect anomalies and classify different threats, such as:
botnets, rootkits, backdoors, and ransomware affecting real
IoT spectrum sensors. As for the work presented in (Aramini
et al., 2022), it describes an enhanced behavioral fingerprint-
ing model consisting of a fully decentralized scenario, where
it is possible to exploit the features derived from the analysis
of packet payloads (for instance, different types of devices
and their traffic characteristics) and message content as well.
Still, there exist challenges in terms of the performance of
ML-based fingerprinting solutions able to detect a forged or
corrupted smart thing in the network. The causes are related
to scalability, security, and privacy issues and also to the fact
that an object can model the behavior of another object con-
cerning its single point of view (i.e., the ML algorithm used
is thought to evaluate only the services and messages from
the interaction of the two things) (Sánchez et al., 2021).

Hence, a new perspective that can comprehend the whole
behavior of an object is demanding. Moreover, classical ML
techniques require centralized data collection and process-
ing that may not be feasible in IoT application scenarios
due to the high scalability of modern IoT networks, grow-
ing data privacy concerns, and heterogeneity of devices. To
face these issues and allow a collaborative ML approach,
Federated Learning (Khan et al., 2021; Nguyen et al., 2021;
Yang et al., 2019) solutions have emerged with the aim of
distributing ML algorithm execution without the need for
data sharing. For instance, (Rey et al., 2022) shows a frame-
work that uses FL to detect malware affecting IoT devices
using multi-layer perceptron and autoencoder neural net-

work architectures. Whereas the authors of (Preuveneers
et al., 2018) studied FL to design an intrusion detection
system. This work also includes Blockchain technology to
mitigate the problems faced in adversarial FL, however it
does not focus specifically on IoT devices. Also the authors
of (Nguyen et al., 2019) used FL, their aim is to build a
distributed system for detecting compromised IoT devices
through an anomaly detection-based approach. It consists of
a simple fingerprint of the device based on network packets
able to monitor changes caused by network attacks. All the
above works exploit FL for a different goal concerning ours.
To the best of our knowledge, no previous works have used
FL for behavioral fingerprinting computation.

Till now we described how the problem of scalability and
performances of behavioral fingerprinting computation can
be faced through FL. But other challenges arise in this new
IoT scenario, for instance, the privacy of data exchanged by
things.

To face the risk of privacy leakage of sensitive informa-
tion in the IoT caused by the centralized servers’ architecture
and the weakness and heterogeneity of devices and security
protocols, researchers have begun to exploit the potentiality
of Homomorphic Encryption (Peralta et al., 2019; Shrestha
& Kim, 2019). For instance, the work presented in (Peralta
et al., 2019) shows a possible application of HE to perform
computations in the cloud maintaining data privacy, and it
also reviews a number of challenges in this context, such as
computational cost and lack of interoperability, which will
require further research efforts. However, recently, research
advances havemade it possible to implement practical homo-
morphic cryptosystems, at least inMobile environments (Ren
et al., 2021; Shafagh et al., 2017). In particular, the encryp-
tion primitive used is the hash function and the operation
we exploit is XOR. Homomorphic Hashing, first introduced
by Bellare, Goldreich, and Goldwasser (Bellare et al., 1994)
has been used for disparate application scenarios (Kim &
Heo, 2012; Lewi et al., 2019; Yao et al., 2018). In partic-
ular, (Kim & Heo, 2012) proposes a device authentication
protocol for smart grid systems based on the properties of
this function to decrease the amount of computation on
a smart meter. Whereas, the approach presented in (Yao
et al., 2018) proposes a homomorphic hash and Blockchain-
based authenticated key exchange in the context of social
networks. Facebook researchers design a scheme based on
Homomorphic Hashing to secure update propagation in the
context database replication, ensuring consistency (Lewi
et al., 2019).

In our approach, we leverage the properties of Homomor-
phic Hashing, in particular, related to the XOR operation,
to allow the aggregator node, during the safe starting phase
of our framework design, to identify groups of objects able
to compute the device fingerprint of a target object, without
revealing the identity of the target object itself. To the best
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of our knowledge, the way we design this algorithm is novel
and has never been used before.

A novel research direction to monitor the behavior of
objects in IoT networks in a distributed way and provide
some forms of trust or authentication is Blockchain (Ali et al.,
2021; Chen et al., 2022; Dedeoglu et al., 2019; Hammi et al.,
2018; Nofer et al., 2017; Pietro et al., 2018). In particular, the
authors of (Pietro et al., 2018) present a framework based on
the concept of Islands of Trust, that are portions of the IoT
network where trust is managed by both a full local PKI and
a Certification Authority. Service Consumers generate trans-
actions forming an Obligation Chain first locally accepted
by Service Providers and, then, shared with the rest of the
network. Also the work presented in (Hammi et al., 2018)
exploits a similar concept of secure virtual zones (called bub-
bles) obtained throughBlockchain technology,where objects
can identify and trust each other. Both the work presented in
(Corradini et al., 2022; Dedeoglu et al., 2019) try to over-
come Blockchain limitations proposing a light architecture
for improving the end-to-end trust making this technology
feasible to limited IoT devices. The proposal illustrated in
(Dedeoglu et al., 2019) leverages some gateway nodes cal-
culating the trust for sensor observations based on some
parameters, such as: nodes reputation, data received from
neighboring nodes, and the observation confidence. to com-
pute the trustworthiness of a node, if the neighboring sensor
nodes are associated with different gateway nodes, then, the
gateway nodes are in charge of computing and sharing the
evidence with their neighbors’ gateway nodes. This archi-
tecture is not fully distributed and secure delegation is not
performed; indeed, more powerful nodes are used as gate-
ways. Whereas the work presented in (Corradini et al., 2022)
describes a framework based on a two-tier Blockchain able
to provide security and autonomy of smart objects in the
IoT by implementing a trust-based protection strategy. This
work leverages the idea of communities of objects and relies
on a first-tier Blockchain to record transactions evaluating
the trust of an object in another one of the same community
or of a different community. After a certain time interval,
these transactions are aggregated and stored in the second-
tier Blockchain to be globally available. In our approach the
use of Blockchain technology is limited to keeping trace of:
(i) the identity of the device in charge to act as an aggrega-
tor for a target node; (ii) the evaluation of the behavior of
aggregator after the aggregation task to enable the aforemen-
tioned FL approach; and (iii) the identity of objects for the
anomaly detection task. Hence, differently from the above-
cited approaches, the core of the strategy is not performed
through Blockchain.

Another functionality provided by this paper is the possi-
bility for the less capable devices to benefit and participate in
our FL approach through secure delegation. This algorithm
has been mentioned in the H2O framework (Ferretti et al.,

2021), without developing a detailed implementation of it.
Thanks to this paradigm, the training and inference phases
of our model can be obtained through a privacy-preserving
collaborative delegation approach in which power devices
cooperate and provide support to less powerful ones to imple-
ment the solutionwithout revealing the features of themodel.

In the following, we summarize the comparison with the
most important works introduced above based on the differ-
ent functionalities provided by our approach, namely:

• Anomaly Detection: a capability to identify action
sequences that deviate significantly from the expected
behavior.

• Reputation Model: a functionality that allows a node in
the network to compute a reliability score of another node
based on trust values and according to its neighbors’ opin-
ion, even if they have not been in contact before.

• Privacy: the implementation of measures and strategies
to protect the identity of the node during the computation
of behavioral fingerprint models.

• Secure Delegation: a mechanism allowing devices to del-
egate tasks to more capable peers, by preserving the
privacy of the involved nodes’ identity.

With the letter ‘x’ we denote that the corresponding property
is provided by the cited paper (Table 1).

3 Description of Our Approach

This section is devoted to the description of our proposal.
In particular, in the next subsections, we provide a general
overview of our approach along with its underlying model;
we illustrate our Secure Multi-party computation strategy to
formgroups of co-workers for an FL task; after that, we detail
our FL-based behavioral fingerprinting solution; finally, we
sketch the adaption of an existing reputation model into our
scenario.

3.1 General Overview

This section details the architectural design of our FL-based
approach. In particular, we will describe the system actors
and how they interact with each other during the model
training and evaluation processes. Table 2 reports all the
abbreviations and symbols used throughout this paper.

As typically done in the literature, our model for the con-
sidered IoT scenario is based on a directed graph G =
〈N , E〉, where N is the set of nodes and E is the set of
edges representing relationships between pairs of nodes. In
particular, a link is built if two nodes got in touch in the past
exchanging one or more messages. Observe that the direc-
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Table 1 Comparison of our approach with related ones

Approach Approach Type Anomaly Reputation Privacy Secure

(Bezawada et al., 2018; Celdrán et al., 2022;
Oser et al., 2018; Radhakrishnan et al., 2014)

Fingerprint x - - -

(Aramini et al., 2022) Fingerprint x - - x

(Preuveneers et al., 2018; Rey et al., 2022) FL, Blockchain x - - -

(Nguyen et al., 2019) Fingerprint, FL, Blockchain x - - -

(Kim & Heo, 2012) HE x - x -

(Yao et al., 2018) HE, Blockchain x - x -

Dedeoglu et al. (2019); Hammi et al. (2018);
Pietro et al. (2018)

Blockchain x x - -

Ferretti et al. (2021) Fingerprint, Consensus x x - -

Our approach FL, Fingerprinting

Consensus, Delegation, HE x x x x

Table 2 Summary of the main
symbols and abbreviations used
in our paper

Symbol Description

FL Federated Learning

SMC Secure Multi-party Computation

HE Homomorphic Encryption

N The set of IoT nodes of the network

Nl The set of basic devices, a subset of N

Nm The set of devices with medium computation power, a subset of N

Np The set of powerful devices, a subset of N

|N | Cardinality of the set of IoT nodes

ni An IoT device of N

ci A worker device of N

idci The id of a worker device ci
b A target node

ab An aggregator node for b

idab The id of an aggregator ab
�b List of workers training a model on b

�n the set of neighbor nodes of n

H Homomorphic Hash Function

η, ξ Nonces

t The size of a sequence of input symbols of the deep learning model

di Delegate node of ci for a task

thw Threshold for mispredicted symbols

Tci ,b Trust score assigned by a node ci towards a target node b

FPwb Behavioral fingerprinting function of b during an observation window wb

Rω
b Reputation of b after each time period ω

τ Tolerance value

m A generic Machine Learning evaluation metric

φban Ban interval
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tion of the link identifies the node that starts to communicate
during the message exchange. The group of peers a node ni
has been interacting with is the set of neighbors of ni and can
be defined as �ni = {n j ∈ N : (ni , n j ) ∈ E}.

Moreover, in ourmodel, N is partitioned into three subsets
according to the different object capabilities, thus resulting
in N = Np ∪ Nm ∪ Nl . The subset of powerful devices
Np includes all the devices with sufficient capabilities in
terms of memory and computational strength to perform the
more demanding tasks of our approach (e.g., the training
ML/DL models). The second set Nm is composed of devices
with medium computational and memory capabilities, due to
their battery constraints or power stability. The last set Nl is
composed of less capable nodes with basic functionalities.
Since they have limited computational power, they can rely
on delegation to more powerful nodes to participate in our
framework.

As stated in the Introduction, the proposal described in
this paper focuses on the computation of behavioral finger-
printing models via FL. To do so, our strategy assumes the
existence of an initial phase, called the safe starting phase,
in which several actors can train ML/DL models to learn the
behavior of target nodes in an environment free from pos-
sible attacks to these targets (i.e., no attacks are performed
on any involved target node capable of altering its behavior).
During this phase, IoT nodes can play one of the following
roles:

• Worker. It is in charge of training a local behavioral fin-
gerprinting model of a target node. Since training such a
model is themore demanding task in our solution in terms
of computational and memory capability, these nodes
belong to the Np set.

• Aggregator. They are in charge of aggregating the local
contributions of the different workers of an FL task to
compute a global model for a target. This task is less
computationally demanding than the previous one, hence
it can be taken over by nodes belonging to Np ∪ Nm (See
Section 5.2 for details on the performance).

• Target. They are the monitored nodes for which the
behavioral fingerprinting has to be computed. There are
no requirements in terms of computational power for
them, hence they can belong to any subset of nodes
defined above (Np ∪ Nm ∪ Nl ).

During this phase, less andmedium-capable nodes belonging
to Nm ∪ Nl can participate in the scheme leveraging a secure
delegation approach. In particular, they can entrust nodes in
Np to carry out actions on their behalf exchanging data in a
privacy-preserving way. The details of this task are described
in Section 3.3.

Subsequently, in the fully operational phase, also referred
to as inference phase, learned models are used by all the

actors to infer possible anomalies on the monitored targets.
This phase is less impacting than the training one in terms of
computational requirements, hence all the objects belonging
to Np ∪ Nm can actively participate in this phase. It is worth
noting that, also during this phase, less capable nodes belong-
ing to Nl can entrust nodes in Np ∪ Nm for the inference
of behavioral fingerprinting models, through the aforemen-
tioned secure delegation strategy.

The last actor of our approach is theBlockchain. This tech-
nology provides a shared ledger to record trusted information
accessible to all the nodes over the network. In particular, we
leverage smart contracts running on the Blockchain to auto-
matically execute predefined actions when certain conditions
are met. Since smart contracts are stored on the Blockchain,
their code and execution history are visible to all participants
in the network enhancing transparency in transactions. In
particular, we leverage this paradigm to keep track of several
aspects, namely:

• The information necessary to discover the identity of
aggregators for target nodes. In our approach, neither
the workers know each other nor the aggregator knows
the identity of the target. For these reasons, we design
our framework to include Blockchain technology, thus
removing the need of a trusted central authority or coun-
terpart to keep information private.

• The trust scores assigned by workers to estimate the reli-
ability of an aggregator. As a matter of fact, the use
of Blockchain for this task enhances trust and prevents
manipulation of scores. Through smart contracts’, code is
executed automatically to compute these complex mea-
sures starting from trust scores.

• The identity of corrupted objects resulting from the mon-
itoring activity of nodes owing behavioral fingerprint
model towards target peers. Once our anomaly detec-
tion framework has detected a change in the behavior of
a node, it is important to publish this information in an
immutable and trusted ledger accessible by every node
of the network.

Figure 1 shows the general architecture of our solution
illustrating the different actors of the model. In particular,
c1, c2, c3 are three worker nodes, b is the target node, and
ab is the aggregator for b. The right part of this figure shows
the Blockchain exploited during a number of steps of our
approach. It is worth noting that, the interactions between the
aggregator and the workers take place only during the safe
starting phase to train the behavioral fingerprinting model
of the target. In the subsequent phase, nodes communicate
with each other and can leverage both trained models and
the information stored in the Blockchain to evaluate the
behavior of a contact. It is worth observing that, in our sce-
nario, an anomaly in the behavior of a node can be caused
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Fig. 1 The general architecture
of our solution

by either a hardware malfunction, an environmental change,
or an ongoing cyber attack. For the estimation of a change
in the observed node behavior, a true positive will be sig-
naled if the number of unexpected actions as predicted by our
models exceeds a certain threshold. This happens also in the
case of some external causes (like environmental changes).
Moreover, our strategy leverages a mechanism to estimate
trust scores on the basis of the detected behavioral anomalies
and compute nodes’ reputations. If the reputation of a node,
computed by aggregating all the trust contributions towards
it, goes under a reference threshold, it will be isolated by
the other peers and, therefore, it is technically banned from
the system (for, at least, a time φban). At this point, system
administrators can decide to restore the node or retrain its
behavioral fingerprinting models, especially if the external
cause is known and under control.

In the next sections, we will describe our approach in
detail.

3.2 A Secure Multi-Party Computation Strategy to
Identify Federated Learning Co-Workers

This section is devoted to the definition of a privacy-
preserving strategy to identify the correct aggregator for a
specific target and, hence, define groups of workers that can
collaborate on an FL task. As said above, in our approach,
each FL task is focused on the construction of a behavioral
fingerprinting model for a target node of the network.

In practice, given a target node b, the above reasoning
involves two actions that must be carried out to configure the
FL task: (i) the identification of the aggregator for a target
node, and (ii) the creation of the group of workers for the

subsequent training task. It is worth noting that these tasks
are performed by keeping the identities of the involved actors
private. To do so, we develop a privacy-preserving strategy
for group formation and identity exchange based on a Secure
Multi-party Computation (SMC) strategy.

It is important to underlying that, as stated above, the
actions above are performed during a safe starting phase,
in which no attacks occur against the target b. We assume
that such a phase is admissible and, typically, it can coincide
with the system setup period or any subsequent maintenance
action involving b.

Given a node ci ∈ Np aiming at learning the behavioral
fingerprints of b. Let idci be the identifier of ci , and let η be
a private nonce generated by b. Finally, let H() be a homo-
morphic hash function preserving the XOR operation (Lewi
et al., 2019). Our solution would enforce the following steps.

First, ci contacts b to exchange a message containing
information about idci and a nonce generated by b, say η.
A suitable payload is generated by b crafting the identifier of
ci and η, through a bitwise XOR operation. The result of the
XOR operation is transformed by b using the homomorphic
hash function, thus obtaining the final payloadH(idci ⊕ η).

After receiving the first contact from ci , b proceeds by
identifying its referring aggregator. In our scenario, any node
of Np ∪ Nm can play the role of the aggregator, provided
that it is associated with a sufficient trust score. The details
concerning the trust mechanism are reported in Section 3.4.
In any case, the eligible aggregators along with their trust
scores are stored in the underlying Blockchain. Once b has
identified its aggregator ab, it will create a new transaction
in the Blockchain to publish this information. However, our
solution requires that the association between b and ab can
only be disclosed by b to the nodes it wishes to involve in
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the subsequent FL task. This would confer to b the capability
of filtering out unwanted workers from the learning task of
its behavioral fingerprinting model. To do so, b computes a
secret by applying again the homomorphic hash function to
a payload composed of the bitwise XOR between the public
identifier of the selected aggregator idab and its private nonce
η. Consequently, the public transaction on the Blockchain
generated by b does not save the plain identifier of its aggre-
gator, but the secret H(idab ⊕ η).

At this point, when ci wants to gather the identity of the
aggregator selected by b, it will retrieve the transaction gen-
erated by b from the Blockchain, containing H(idab ⊕ η),
and it will carry out the following computation. First, it per-
forms a bitwise XOR operation with: (i) the hash received
by the target, namelyH(idci ⊕ η); (ii)H(idab ⊕ η); and (iii)
the hash of its own identity H(idci ). For the properties of
homomorphic hashing concerning the XOR operation, we
have the following equation:

H(idci ⊕ η) ⊕ H(idab ⊕ η) ⊕ H(idci )

= H(idab ⊕ η) ⊕ H(η ⊕ idci ⊕ idci )

= H(idab ⊕ η) ⊕ H(η)

= H(idab ⊕ η ⊕ η)

= H(idab ) (1)

Now, ci can retrieve from the Blockchain the list of available
aggregators. For each identifier in such a list, c1 can apply
H() to it and compare the result with the value from the
previous computation. The search for the correct aggregator
will be completed when a match is found. Algorithm 1 sum-
marizes the steps above for the privacy-preserving discovery
of idab . Observe that, the computational complexity of such
an algorithm is O(|L|), where |L| is the number of possible
aggregators in the system.

After this step, ci is now equipped with the identity of the
aggregator ab for the target b, hence ci is ready to contact ab
to notify its intention to train a model for b.

The steps carried out by ci are repeated by any other node
c j of Np interested in a model for b. Our solution does not
enforce any restriction on the number of FL tasks an aggrega-
tor could be involved in. Indeed, as will be shown in Section
5, the computational complexity required for the aggregation
is not very high and, therefore, can be easily executed by any
node of Np ∪ Nm . However, ab must identify and synchro-
nize all the nodes related to a specific FL task (i.e., a task
dedicated to a given target b). Again, our solution enforces
that ab must not know the identity of b and, therefore, the
identification of the groups of workers can be performed as
shown in Algorithm 2. In particular, given a list of nodes
�ab = 〈c1, c2, ..., cn〉 that contacted the aggregator ab, the
identification of the groups of workers is done through an
iterative algorithm. For each worker ci ∈ �ab the aggregator

Algorithm 1 Discovering Aggregator identity

Data: ci ∈ Np , b ∈ N , ab ∈ Np ∪ Nm ; /* node, target
node, aggregator node for b */

η, H; /* nonce of b, homomorphic hash
function for XOR */

L = {idx , x ∈ N }; /* list of the aggregator
identifiers in the Blockchain */
H(idab ⊕ η); /* secret for the aggregator of
target node in the Blockchain */
Result: idab
ci contacts b;
ci ← H(idci ⊕ η) from b;
ci computes H(idci ) ;
ci computes ˜H(idab ) = H(idci ⊕ η) ⊕ H(idab ⊕ η) ⊕ H(idci ) ;
foreach idx ∈ L do

ci computes H(idx );
if H(idx ) == ˜H(idab ) then

idab = idx
end

end

computes the hash of its identityH(idci ) and performs a bit-
wiseXORoperationwith the secret previously received from
ci (i.e.,H(idci ⊕ η)). Due, once again, to the homomorphic
property of the hash function for the bitwise XOR, this will
result in the following.

	ci = H(idci )⊕H(idci ⊕η) = H(idci ⊕ idci ⊕η) = H(η)

Now, for each other node c j ∈ �ab \ ci , the aggregator
performs a XOR operation between 	ci and the secret pre-
viously received by c j , sayH(idc j ⊕ η′). Thus obtaining:

	ci ⊕H(idc j ⊕η′) = H(η)⊕H(idc j ⊕η′) = H(η⊕idc j ⊕η′)

Now, if η = η′ holds, then the previous computation will
be equal toH(idc j ). Since we assumed that different targets
will always have different nonces (no collision between gen-
erated nonces), this result would mean that ci and c j share
the same target and, hence, they belong to the same working
group �b. Observe that, ab can directly compute H(idc j )
for c j to verify the equality between the results of the com-
putation above and the identifier of c j . The computational
complexity for the group identification algorithm isO(�ab),
where �ab is the number of nodes that contacted ab for an
aggregation task.

The sequence diagram in Fig. 2 summarizes all the steps
performed during the safe starting phase of our approach.

3.3 Distributed Behavioral Fingerprinting via
Federated Learning

This section is devoted to the description of the Feder-
ated Learning strategy for the computation of behavioral
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Fig. 2 The sequence diagram of all the FL setup steps performed during the safe starting phase of our solution

fingerprinting models. Practically speaking, FL is a dis-
tributed collaborative machine learning approach that allows
algorithm training across multiple decentralized devices
holding local data sampleswithout sharing the actual datasets
(Konečnỳ et al., 2015). Recently, this paradigm has been
investigated for building intelligent and privacy-enhanced
IoT applications (Nguyen et al., 2021; Sánchez et al., 2021).

Although few works leverage this strategy for anomaly
detection in IoT, they are focused on building classical device
fingerprints based on basic parameters, like usage of CPU,

Algorithm 2 Training groups identification

Data: ci ∈ Np , b ∈ N , ab ∈ Np ∪ Nm ; /* node, target
node, aggregator node for b */

η, H, �ab ; /* nonce of b, homomorphic hash
function, set of nodes that contacted
ab */


�ab
= {H(idc j ⊕ η′) : c j ∈ �ab }; /* The set of

secrets sent by the nodes of �ab to ab
*/

Result: ab ← �b; /* List of nodes that will
train a model on b */

ci ∈ �b;
ci −→ H(idci ⊕ η) to ab;
ab computes H(idci );
ab computes
H(idci ) ⊕ H(idci ⊕ η) = H(idci ⊕ idci ⊕ η) = H(η);
foreach c j ∈ �ab do

ab computes H(η) ⊕ H(idc j ⊕ η′) = H(η ⊕ idc j ⊕ η′);
ab computes H(idc j );
if H(η ⊕ idc j ⊕ η′) = H(idc j ) then

c j ∈ �b
end

end

memory, and so on (Sánchez et al., 2022, 2021). The novelty
of our contribution concerns the fact that we aim to construct
a global device behavioral profile taking into account all the
interactions over the network, even across different services,
a node may provide.

Consider, for instance, the example shown in Fig. 3 about
a smart thermostat. This device can detect multiple metrics,
such as the temperature and humidity of the room in which
it is located; it can connect to other smart devices via Blue-
tooth or directly to the Internet allowing the owner tomonitor
the home situation, remotely. Moreover, it can control the
home heating system according to the detected temperature.
Finally, it could also communicate with a central home alarm
system in the case in which a fire or anomaly temperatures
have been detected. Hence, this device holds interfaces with
the actors it interacts with, providing different services to
each of them. This means that the communications and the
messages it exchanges can be very different according to the
service it is providing.

Classical decentralized behavioral fingerprinting solu-
tions (Aramini et al., 2022; Bezawada et al., 2018; Ferretti
et al., 2021) consider only a single interaction sequence to
build a profile of a target node and they neglect a compre-
hensive point of view coming from the messages exchanged
between the target and its other neighbors. Hence in the
example shown above, the home heating system will build
an ML model of the thermostat, which will differ from the
one trained by the home alarm system or any other smart
device.

Our strategy leverages FL to build behavioral fingerprint-
ing models combining the perspectives of different workers
(neighbors of a target node) in a global profile. Ultimately,
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Fig. 3 Smart Thermostat
interactions in a domotic
environment

this would depict the behavior of the target device in a more
general way.

Nevertheless, the global model is fed with the single inter-
action sequences, for which we leverage an adaptation of
the behavioral fingerprinting solution described in (Aramini
et al., 2022). Observe that, according to our fully distributed
architecture, a worker has always access to payload data as
it is the intended recipient of the communication with the
target. Therefore, we can follow the solution described in
(Aramini et al., 2022), thus including payload-based fea-
tures in our strategy. These additional features allow also
for the protection against cyber-physical attacks, in which an
attacker tries to jeopardize sensing data to alter the behavior
of the cyber-physical environment. In addition to payload-
based features, to characterize the behavior of an object this
approach considers also classical network parameters (i.e.,
source port type, TCP flag, encapsulated protocol types, the
interval between arrival times of consecutive packets, and
packet length) altogether with features derived from the pay-
load.Then it proceeds bymapping the sequenceof exchanged
packets in a sequence of symbols and leverages a Gated
Recurrent Unit (GRU) neural network composed of 2 lay-
ers of 512 and 256 neurons, respectively, a fully connected
layer with size 128, and an output classification layer. The
choice of a GRU as the reference model, instead of more
complex architectures (such as LSTM), is due to the need of
solving the trade-off between the solution accuracy and the
computational complexity of training behavioral fingerprint-
ing models for IoT nodes. The objective of the deep learning
model is to classify the next symbol given a sequence of input
symbols of size t1.

1 Observe that, the value of t can be fixed based on the dynamicity
of the object-to-object interactions. In our experiment (see Section 5)

In the remainder of this section, we illustrate how we
apply FL in our approach. In the previous sections, we
focused on the description of the setup tasks crucial for
the privacy-preserving execution of our scheme, namely: (i)
the identification of the aggregator device for a target node,
and (ii) the creation of groups of workers for FL training
task. At this point, since all the roles have been assigned,
the aggregator first initializes a global model with random
learning parameters. Secondly, each worker gets in con-
tact with the aggregator to receive the current model and,
after this step, it computes its local model update. To do so,
each node leverages its own dataset gathered from the direct
interaction sequence with the target node. At each training
epoch, once the local contribution is computed, the worker
can forward it to the aggregator that is in charge of combin-
ing all the local model updates and, hence, it constructs an
enhanced global model with better performance, still ensur-
ing protection against privacy leakages. The last two steps are
performed iteratively until the global training is complete.

Figure 4 sketches the steps described above focusing on
the communication between one of the involved workers and
the aggregator.

3.3.1 Leveraging Secure Delegation

It is worth observing that, because of the high heterogeneity
of devices in an IoT network, not all the nodes are equipped
with sufficient computational and memory capability to exe-
cute the training phase of our approach. Hence, we resort to
a secure delegation mechanism according to which less pow-
erful devices in Nl ∪ Nm can delegate such tasks to powerful

following the results described in (Aramini et al., 2022), we set this
value to 10.
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Fig. 4 Detailed view of the interaction between a worker and the aggregator during the training of a FL model

devices in Np. In the recent literature, some theoretical mod-
els and ontologies have been designed for the identification of
reliable IoT devices for secure delegation, tackling the issue
of incomplete task requests owned by resource-constrained
IoT devices (Khalil et al., 2021). Of course, any existing
secure delegation strategy could be adopted in our approach.
However, for the sake of completeness, we describe a naive
approach in which both the training and the subsequent infer-
ence phases can benefit from delegation.

In particular, in the following, we describe the two sce-
narios above, separately. We start with the training phase and
we consider the situation in which a less capable device, say
ci , is involved as a worker in the construction of a behavioral
fingerprinting model for a target b. We assume that, due to
the lightweight nature of the operations described in Section
3.2, any node can perform the setup steps for the configura-
tion of the FL task (see the experiments on the performance
of IoT nodes on these tasks in Section 5.2). In practice, ci can
execute both Algorithms 1 and 2 to identify the aggregator
for b and become a member of the working group to build its
behavioral fingerprintingmodel. Secure delegating is, hence,
needed in the subsequent steps involving the training of the
local ML model.

According to our strategy, given a cryptographic salted
hash functionH∫ (v, s) (Rana et al., 2022), in which v is the
value to be hashed and s is the salt, the secure delegation of
the training phase requires the following steps:

• collection of interaction packets with the target b;
• feature extraction and mapping with the corresponding
symbols (as described before);

• pre-processing of the symbol sequence to guarantee pri-
vacy;

• upload of the training set in a shared data bucket linked
in the Blockchain;

• identification of a trusted delegated node in the network;
• interaction with the delegated node to start the training.

First, ci collects a sequence of interaction packets during
its communication with b. Adopting the approach described
in (Aramini et al., 2022), it, then, extracts both payload-based
and network-based features from such a sequence. It, then,
maps each unique combination of these features to a cor-
responding symbol. At this point, a sequence of interaction
packets is replaced by a sequence of symbols.

Now, without losing information, to protect the privacy
of the communications between the worker ci and b, our
approach imposes that each symbol of such a sequence can be
converted into its hash representation using the salted secure
hash function mentioned above. In this way, only the source
node ci can know the mapping between the original sym-
bol sequence and the hashed one. This facility is enabled at
the FL task level, i.e. once a node ci expresses its need for
a secure delegation, the whole FL task will be adjusted to
work with a converted set of symbols. To do so, ci commu-
nicates its need to use secure delegation to the aggregator
ab. The latter will, then, generate a salt s that will be sent to
all the workers involved in the FL task having b as a target.
At this point any packet sequence 〈pkt1, pkt2, · · · , pktm〉
will be converted, first into a sequence of symbols accord-
ing to the values of the considered features of each packet,
namely 〈sy1, sy2, · · · , sym〉. Then, each node will apply the
secure salted hash function H∫ to obtain the hashed sym-
bol sequence 〈H∫ (sy1, s),H∫ (sy2, s), · · · ,H∫ (sym, s)〉.
Observe that, while the first transformation can be done by
any node in the network and, hence, knowing a sequence of
symbols it is possible to derive information about the original
packet sequence, due to the property of the adopted crypto-
graphic salted hash function, it is not possible to invert the
hashed symbol sequence into its original packet sequence.
As a consequence, only the nodes involved in the FL task,
which know the salt s, can obtain the hashed symbols from
a sequence of packets and, hence, exploit the trained model.

As for the identification of a trusted delegated node,
our approach can leverage any existing state-of-the-art trust
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model for IoT. In Section 3.4, we provide an overview of a
possible trust scheme and extend it to include support for the
identification of aggregators. The only requirement is that ci
can estimate the reliability of its peers so as to identify the
correct delegate di for its task.

At this point, ci can share its privacy-preserving train-
ing set with di to start the training phase. To do so, we
leverage IPFS as a global file system in which nodes can
upload their data. Moreover, the links to IPFS folders are
shared through transactions on theBlockchain.Of course, our
privacy-preserving strategy does not require additional secu-
rity mechanisms on IPFS to protect the training set. Indeed,
as stated above, any node in the network could use these data
to train a model, however, only the node involved in the spe-
cific FL task will know the salt s and, hence, can perform
the mapping between the hashed symbol sequence and the
real packet one. With that said, di can carry out the training
task for ci by receiving the initialized global model of the FL
task from it. At each epoch, di will return the local model
updates to ci and it will receive the updated global model for
the following training epoch.

After the training phase, ci will receive the final version
of the trained model from ab. However, if the delegation
embraces also themodel inference, the delegated node retains
the trained model to support ci also for model inference.

In particular, the secure delegation for the inference phase
works as follows. First, ci collects the packet sequence from
its direct interaction with b. Then, it converts this sequence
into the corresponding symbol sequence and, hence, applies
H∫ , using the same salt s obtained by ab during the train-
ing phase, to build the hashed symbol sequence. This last
can, then, be used by di as input to the trained behavioral
fingerprinting model.

3.3.2 Exploiting behavioral fingerprints for Anomaly
Detection

The steps described above focus on the creation of deep
learning models that, given an input symbol sequence, are
capable of classifying its next symbol. The advantagebrought
about by our solution is that to estimate the behavior of a
node, it considers not only a single point-to-point interac-
tion between two peers, but a community-oriented general
perspective of the target node. However, although the perfor-
mance of such a classifier is extremely high as will be shown
in Section 5, using a single prediction to identify a change
in the behavior of a node is not adequate and could lead to
false predictions. To avoid this issue, as suggested by the
related literature (Aramini et al., 2022; Nguyen et al., 2019),
we adopt a window-based strategy. Specifically, given an
observationwindow, saywb, our approach exploits the afore-

mentioned classifier to identifymispredicted symbols. As for
the estimation of a change in the observed node behavior, a
true positive will be signaled if the number of mispredicted
symbols exceeds a threshold thw. Such a threshold should
be suitably tuned to dampen the, even low, false prediction
rate of the underlying classifier. Practically speaking, if the
overall confidence of the classifier is 0.80, to dampen the
prediction errors, thw should be fixed to a value greater than
20% of the window size. Of course, the choice of the correct
value for thw, although its lower bound can be established
by the reasoning above, strongly depends on the dynamics of
the IoT scenario under analysis. Indeed, a greater thw implies
a slower detection of behavior changes for the target nodes
(Aramini et al., 2022).

3.4 The Underlying Trust Model

In this section,we sketch the underlying trustmodel exploited
by our solution. Indeed, in the previous sections, we stated
that an IoT node can select suitable aggregators and/or del-
egated nodes by leveraging the information stored in the
Blockchain about node reliability. Behavioral fingerprinting
can be a key factor in the construction of enhanced reputation
models. Indeed, it can be used to estimate anomalous actions
that can be grounded on security attacks or device malfunc-
tions. The definition of a model to estimate trust scores and
compute nodes’ reputations is an orthogonal study concern-
ing our approach; therefore, to build our solution, we can
leverage existing proposals to provide forms of trust in an
IoT network (Corradini et al., 2022; Dedeoglu et al., 2019;
Pietro et al., 2018).

In particular, in our proposal, we adopt the approach of
(Corradini et al., 2022) to estimate trust and reputation scores.
In the following, we briefly sketch the adaptation of such an
approach into our application scenario. Specifically, in our
context, a trust score can be assigned by a node ci towards a
target node b, for which it holds a behavioral fingerprinting
model, as follows:

Tci ,b = 1 − FPwb (ci , b)

Here, FPwb is a function that exploits the behavioral fin-
gerprinting model of b to estimate changes in its behavior
during an observation window wb. This function can naively
record the number of mispredictions registered during wb

and compute the ratio between such a number and the total
length of the packet sequence exchanged by ci and b during
wb. As done in (Corradini et al., 2022), such trust scores can
be published by the monitoring node ci in the Blockchain.
Therefore, given a fixed time period ω > wb, let T Sω

b be
the set of trust transactions published by any node holding
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a fingerprinting model towards b. Moreover, let T ω
b be the

average trust score in T Sω
b . The reputation after each time

period ω can be computed as follows.

Rω
b =

{

α · Rω−1
b + (1 − α) · T ω

b if|T Sω
b | 
= 0

Rω−1
b otherwise

In this equation, again as stated in (Corradini et al., 2022),
α is a parameter introduced to tune the importance of past
behavior observations concerning new ones.

As an additional trust contribution, we design a specific
trust score for aggregators. An aggregator can be also eval-
uated based on its honesty in constructing global models
during FL tasks. To do so, we introduce an additional check
that the involved workers can perform during the training
epochs. Given a normalized performance metric m, at each
epoch e, a worker ci can compare the value of m for the
local model, say ml , and for the global one returned by the
aggregator ab for this epoch, namely mg . In practice, such
an additional trust score can be formulated as follows.

Tci ,ab = |ml − mg| · (1 − τ)

Here, τ is a tolerance value introduced to absorb the
expected variations in the values of the chosen metric
between the global and local models. Finally, as for the met-
ric m, it can be any evaluation metric typically adopted for
machine learning models, such as the accuracy, the preva-
lence, the f-measure, and so forth.

4 Security Model

This section is devoted to the security model underlying our
solution. In particular, we introduce both the attack model
and the security analysis proving that our approach is robust
to possible attacks.

4.1 Attack Model

We start this section with a preliminary assumption accord-
ing towhich our approach is applied to a scenario already in a
stationary situation, or fully operational phase, with enough
nodes available to carry out all the steps required by our
scheme. For this reason, we do not consider the initial start-
up stage, which can be characterized by an IoT network not
yet active or complete. Moreover, as stated in Section 3, we
assume the existence of a safe starting phase in which the
nodes are configured and the behavioral fingerprinting mod-
els can be trained.

In the following, we list the assumptions useful for ana-
lyzing the security properties of our model.

A.1 There exists an initial safe phase in which behavioral
fingerprinting models are built in the absence of attacks
on target nodes.
A.2 An attacker cannot control the majority of the
workers by training a behavioral fingerprinting model
associated with a target.
A.3 An attacker has no additional knowledge derived
from any direct physical access to IoT objects.
A.4 The exploited Blockchain technology is compli-
ant with the standard security requirements commonly
adopted for Blockchain applications.
A.5 The nonces and identifiers of nodes are generated
starting from different key spaces. Moreover, no pair of
identifiers or nonces can collide.

As stated above, our model ensures a list of security prop-
erties (SP, in the following), as follows:

SP.1 Resistance to attacks on Federated Learning.
SP.2Resistance to attacks on the SMCstrategy to identify
FL co-workers.
SP.3 Resistance to attacks on the Blockchain and the
Smart Contract technology.
SP.4 Resistance to attacks on the Reputation Model.
SP.5 Resistance to attacks on the IoT network.

4.2 Security Analysis

This section presents the analysis of the security properties
listed above to prove that our approach can ensure them.
In the following, we provide a detailed description of such
analysis for each of the properties listed above.

4.2.1 SP.1 - Resistance to attacks on Federated Learning

Our approach leverages Federated Learning during the safe
starting phase in which the behavioral fingerprinting mod-
els have to be trained for target nodes. For Assumption A.1,
during this stage models computation is performed in the
absence of attacks against target nodes. However, both the
workers and the aggregator nodes can be forged or attacked.
As for the first case, the large threat surface of the Feder-
ated Learning scenario makes this new type of distributed
learning system vulnerable to many known attacks targeting
worker nodes (Jere et al., 2020). In general, these security
attacks focus on poisoning the model or preventing its con-
vergence. In our approach, we can consider the protection
against these attacks as an orthogonal task. Indeed, in the
current scientific literature, there exist several countermea-
sures that FL aggregators can adopt to identify misbehaving
workers and, hence, discard their contributions. Examples
of such strategies are, for instance, the robust aggregation
functions AGRs, such as Krum, Trimmed Mean, and so forth
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(Blanco-Justicia et al., 2021). These represent lightweight
heuristics that can be easily adopted in our scenario to pro-
vide robustness against common attacks.

Considering the secondcase inwhich the aggregator nodes
are corrupted, our approach natively supports a countermea-
sure to possible attacks targeting them. Indeed, in Section
3.4, we include a facility in the underlying trust model to
evaluate their honesty. The trust score, used to assess the
quality of its aggregation behavior, is computed by analyz-
ing the performance of partial localmodels and the global one
generated by the aggregator during each epoch. If this value
goes under a reference reliability threshold, the aggregator
cannot be contacted by other nodes in the future. To avoid
the permanent removal from the system of a node, we could
hypothesize a ban interval, say φban , after which the default
reputation value will be restored. Of course, for critical sce-
narios, φban can also be infinite. Therefore, no advantage is
obtained by the attacker if, after a malicious behavior, the
node is forbidden to interact with the network for a possibly
long period.

4.2.2 SP.2 - Resistance to attacks on the SMC strategy to
identify FL co-workers

In our scenario, during the phase related to the formation
of the groups of workers for FL tasks (see Section 3.2), a
malicious node can try to contact a victim node, say b, to
discover its secret nonce η. Holding this value the attacker
can infer the identities of the workers for the victim b. To do
this, it performs a cryptographic attack exploiting the proper-
ties of HE. Indeed, it queries multiple times b trying to guess
η and analyzing the result. In particular, it sends to b a value
that is not its identifier but a guessing value for η, say η′. If
it succeeds in the guessing of η (i.e. η′ = η) b will return
H(η′ ⊕ η) = 0. At this point, the attacker can violate the
SMC scheme and break our privacy-preserving algorithm.
This attack can then be used to implement active eavesdrop-
ping, as a malicious node can sense the messages exchanged
between two nodes and try to oust the intended target node
to take some advantage.

This attack cannot happen thanks to the Assumption A.5,
indeed the nonce and the identifier of the nodes have to be
chosen in different key spaces. Therefore, an attacker cannot
guess the nonce of the victim by forging a suitable identifier
as shown above.

4.2.3 SP.3 - Resistance to attacks on the Blockchain and the
Smart Contract technology

This category of attacks tries to exploit known vulnerabilities
of the Blockchain and the Smart Contract technology. This
new paradigm has been widely used in a variety of applica-
tions in recent years, but it still presents open issues in terms

of security (Idrees et al., 2021; Kushwaha et al., 2022; Singh
et al., 2021).

The approachpresented in this paper does not focus on fac-
ing security challenges on Blockchain, instead, it leverages
this technology to equip the network with a secure public
ledger able to support some functionalities. In particular,
we exploit Blockchain and Smart Contracts to keep trace
of (i) the information necessary to discover the identity of
aggregators for target nodes; (ii) the trust scores assigned by
workers to estimate the reliability of an aggregator; and (iii)
the identity of corrupted objects resulting from the monitor-
ing activity of workers towards target nodes.

Therefore, also because our proposal does not aim at
extending existing Blockchain solutions, we do not con-
sider vulnerabilities and possible direct attacks to it. In other
words, for Assumption A.4, we presuppose that the under-
lying Blockchain solution guarantees the standard security
requirements already adopted for commonBlockchain appli-
cations (Singh et al., 2021), thus it can be considered
secure.

4.2.4 SP.4 - Resistance to attacks on the Reputation Model

Our strategy includes also a contribution to the computation
of a trust score to evaluate the trustworthiness of IoT nodes.
Anyway, although in our approach we described a simple
adaptation of an existing trust model (Corradini et al., 2022)
into our scenario, this task can be considered orthogonal to
our strategy. Therefore, for our security analysis related to
the trust model we can rely on the analysis conducted in
(Corradini et al., 2022).

Anyway, just to give a few examples of attacks targeting
the trust model of our approach, we consider in the following
how our schema proves to be robust against two of the most
popular attacks on reputation systems, namely the White-
washing and Slandering (or Bad-mouthing) attack.

The former occurs when a malicious node tries to exit
and rejoin the network to delude the system and clean its
reliability.

Our strategy is based on a community-oriented general
perspective of the trustworthiness of a target node. Indeed,
to assess the reliability of a node, we adopt a window-based
strategy leveraging our behavioral fingerprinting models.
Specifically, trust scores are computed based on the rate of
mispredicted symbols inside an observation window. At this
point, if the reputation of the node, computed by aggregating
all the trust contributions towards it, goes under a reference
threshold, it will be isolated by the other peers and, therefore,
as explained above it is technically banned from the system
(for, at least, a time φban). Moreover, as an additional secu-
rity mechanism, if a device is banned multiple times, φban

can be incremented at every ban until the object removal is
permanent.
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Observe that, in IoT, one of the main issues is related
to the difficulty of mapping a unique identifier with an
object. Therefore, in some cases, an attacker could still
perform a Whitewashing attack by exiting the system and
re-introducing his/her device with a different (forged) identi-
fier. To face this situation, we can adopt a pessimistic attitude
approach, which imposes that newly introduced devices will
start in a banned state (no other node will interact with it) for
a time φban , and only after this period they can be part of the
network. In this way, attempting a whitewashing by forging
a new identifier for a device would result again in the node
being banned for φban time, and no advantage is obtained.

As for Slandering or Bad-mouthing attacks, they occur
when an intruder tries to distort the innocent nodes’ reputa-
tion by attesting a negative opinion of them. In our approach,
a Slandering or Bad-mouthing attack can happen if a worker
lies about the result of the behavioral fingerprinting model of
a monitored node computing a false negative trust score for
that node.

If this threat is performed by a single node, only its local
contribution to the trust score is impacted. Hence, the global
trust score will not be compromised because it will be bal-
anced by the honest contributions of the other nodes testing
the behavioral fingerprinting model for the victim.

Moreover, these attacks can be performed also in a dis-
tributed fashion, through some colluding nodes trying to
poison the trust score of a victim with multiple negative
trust contributions. Anyway, for Assumption A.2, an attacker
cannot control the majority of workers holding a behavioral
fingerprinting model for a target. It is worth noting that this
assumption is commonly accepted for distributed domain
scenarios, inwhich themajority of users or nodes in a network
or a system can be considered honest at any time (Cramer
et al., 1997; Rottondi et al., 2016; Zwierko et al., 2007).
As an additional consideration, our approach preserves the
privacy of the identity of the nodes forming the group of
workers for an object thanks to HE. Hence, the components
of the group do not know each other, also an attacker can-
not have this information from additional knowledge derived
fromanydirect physical access to IoTobjects forAssumption
A.3. For all these reasons, our approach can be considered
robust against Slandering or Bad-mouthing attacks.

4.2.5 SP.5 - Resistance to attacks on the IoT network

As for attacks undermining network and node availability, we
consider the two most popular ones, namely DoS and Sleep
Deprivation attacks.

During a Denial of Service (DoS) an attacker introduces
a large amount of (dummy) transactions in the network to
overflow it and affect its availability. In our approach, this
attack could also result in the impossibility for nodes to run
the FL algorithm and check peers’ behavior. For this reason,

any existing solution aiming at preventing DoS attacks in
IoT could be exploited in our approach, such as the ones
presented in (Abughazaleh et al., 2020; Baig et al., 2020;
Hussain et al., 2020). It is worth explaining that, however,
our approach does not add any advantage to an adversary
performing such a category of attacks.

A form of DoS attack specific to the IoT environment is
known as Sleep Deprivation Attack (SDA, hereafter) whose
objective is to undermine the power of the node to consume
its battery life and power it off (excluding the victim from the
network). As for this attack, our approach natively supports
a countermeasure. Indeed, the alteration in the behavior of
an attacked node can be detectable by our behavioral finger-
printing models. Therefore, our approach can prevent SDA,
because once a change in the behavior of the attacked node is
detected, the other nodes can safely discard all the requests
coming from it.

5 Experiments

This section deals with the analysis of our experimental cam-
paign useful for validating our approach. In particular, in
the next subsections, after the description of our dataset, we
report in detail the performance evaluation of our solution
to build a global behavioral fingerprinting model using FL,
the results of our solution for anomaly detection, and, finally,
the tests to assess the performance of the overall approach in
terms of execution times.

5.1 The Dataset

To validate our proposal, we started from a dataset pub-
licly available online concerning IoT traffic collected by a
centralized network hub. The dataset is available at https://
iotanalytics.unsw.edu.au/attack-data.html and has been orig-
inally produced by the authors of (Hamza et al., 2019). It
contains about 65 GB of data describing daily IoT traffic
(i.e., traffic generated by smart devices, such as light sensors,
motion sensors, and so forth). The original dataset contains
both data generated in the absence of cyber attacks, as well
as traffic generated when some attack is deployed on the IoT
nodes. Interestingly, this same dataset has been adopted in
(Aramini et al., 2022) to test the performance of the origi-
nal behavioral fingerprinting model which is extended in this
proposal. The authors of (Aramini et al., 2022) also enhanced
this dataset to simulate the collection of traffic from the IoT
nodes, directly (no central hub collector); thus, granting that
payload data is accessible from monitoring nodes. Because
in our scenario, we are also focusing on a fully distributed
context, we adopt the extended version of the above dataset
generated in (Aramini et al., 2022). Some statistics about our
referring data are, then, reported in Table 3.
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Table 3 Statistics of the dataset considered in our study

Communication Type Min # of packets Max # of packets

Benign 12,793 97,256

Benign with payload 4,670 39,000

Malign 6,971 89,148

Malign with payload 2,196 8,694

5.2 Performance Analysis of our Global Behavioral
FingerprintingModel

To assess the performance of our approach to build a global
behavioral fingerprinting model using FL, we performed a
comparison analysis between our solution and the baseline
approach proposed in (Aramini et al., 2022). Indeed, the
approach of (Aramini et al., 2022) started from the results
reported in (Nguyen et al., 2019) and demonstrated that,
by exploiting additional features related to the payload, it
is possible to improve the solution performance. Indeed, the
authors of (Aramini et al., 2022) proposed a fully distributed
behavioral fingerprinting model, which, however, is focused
on just a point-to-point vision of a node towards a target
peer. Our approach, instead, extends this idea by consider-
ing that in IoT a node can participate in multiple services,
thus showing different behavioral patterns according to them.
Therefore, we aim to build a global model considering all
such patterns to represent the complete behavior of a target
node, and we leverage Federated Learning for this objective.

With that said, we start our comparison by analyzing the
performance of our model and the model of (Aramini et al.,
2022) for 12 nodes monitoring 3 different targets. As for
our approach, we extracted from the original dataset groups
of nodes having communications with the same targets; in
this way, we could build our Federated Learning scenario. In
particular, after analyzing all the communications available
in the dataset, we were able to set the number of workers to
4. Hence, for each target, we obtained a global model built
according to our strategy and 4 point-to-point models built
according to the strategy of (Aramini et al., 2022). As for
the training data, we used the communication sequences but
we kept the 20% of them for the subsequent testing. Indeed,
once the models have been built, to compare the obtained
performance, we used the test set of each involved node,
independently. Of course, the point-to-point (P2P) models
are trained and tested on the data of the same communication
(direct testing), whereas our global model (GM) is trained on
global data and, then, tested on the individual test sets of the
involved nodes; thus, we can expect a slight reduction in
the performance. However, we argue that such a reduction
is negligible. The results of this experiment are reported in
Table 4 where we analyzed prediction accuracy results and

Table 4 Comparison of the performance of our approach (GM) and the
solution of (Aramini et al., 2022) (P2P) with direct testing in terms of
prediction accuracy

Model c1 c2 c3 c4

Target 1 P2P 0.78 0.75 0.86 0.83

GM 0.77 0.76 0.82 0.83

Target 2 P2P 0.81 0.82 0.85 0.83

GM 0.82 0.80 0.75 0.83

Target 3 P2P 0.82 0.89 0.74 0.84

GM 0.86 0.89 0.79 0.84

in which c1, c2, c3, and c4, for each target node, act as both
individual nodes building P2P models of the target behavior
and the workers of the Federated Learning task building the
global model GM .

By analyzing this table we can see that, as expected,
the point-to-point models achieve sometimes slightly bet-
ter performance when tested against a test set derived by the
same communication from which the training set has been
extracted. However, our hypothesis is also correct as the per-
formance reduction of our approach is negligible (less than
1%, on average).

However, the characteristic of our global model is just the
capability of being generally valid for any communication
towards a target node (also for communications related to
different services). To test this aspect, we proceeded with
a similar experiment as above, but we performed a cross-
testing and assessed the performance of each point-to-point
model (P2Pc1 , P2Pc2 , P2Pc3 , and P2Pc4 ) and our global one,
on every test set available from the different involved nodes.
We reported the results of this experiment in Table 5.

In practice, in our testbed, each client owns a dataset refer-
ring to its individual communications with the shared target
node. From these datasets, for each client, we extracted a test
set namely, Test-set c1, Test-set c2, Test-set c3, and Test-set
c4, respectively. At this point, differently from the previous
experiment, the cross-testing consisted in applying all the
P2P models and our global one on all the available test sets
from the clients. Of course, when a P2P model, say P2Pc1 ,
is applied to the test set belonging to the client that built

Table 5 Comparison of the performance of our approach and the solu-
tion of (Aramini et al., 2022) with cross testing

#Model Test-set c1 Test-set c2 Test-set c3 Test-set c4

P2Pc1 0.82 < 0.01 < 0.01 < 0.01

P2Pc2 < 0.01 0.89 < 0.01 < 0.01

P2Pc3 < 0.01 < 0.01 0.74 < 0.01

P2Pc4 < 0.01 < 0.01 < 0.01 0.84

GM 0.86 0.89 0.79 0.84
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this model, c1 in this case, the experiment implies a direct
testing, thus returning the optimal performance for that spe-
cific model. With this experiment, we aim at demonstrating
that, because the communications of different clientswith the
same target node may concern different services, local P2P
models are not a general solution to monitor the behavior of
a node.

As a matter of fact, by inspecting Table 5, we can clearly
see that the point-to-point models return satisfactory accu-
racy results only when applied to the test set generated by
the same communication of the original training set (direct
testing). The last row of this table, instead, shows the per-
formance of our global model which is very satisfactory
across every considered test set. This confirms our intuition
that classical behavioral fingerprinting approaches, such as
(Aramini et al., 2022) and (Nguyen et al., 2019), reach very
satisfactory performance assessing the behavior of a node
concerning only a single target communication type (i.e.,
communications generated for a specific service or action).
Our approach, on the other hand, allows for the construc-
tion of consistent and complete behavioral fingerprints of an
IoT node. In practice, the models built by our approach are
more stable and can be used to characterize the behavior of
a target node in general, and not just for a specific single
service/action it may offer/perform.

5.3 Windows-Based Anomaly Detection with
Behavioral Fingerprint

As described in Section 3.3.2, our approach exploits behav-
ioral fingerprinting models to detect anomalies on target
nodes by leveraging a window-based mechanism. In particu-
lar, once again, our solution is based on the strategy originally
described (Nguyen et al., 2019) and (Aramini et al., 2022).

The proposed strategyworks by computing themispredic-
tion rate of the next symbol inside an observation window.
As seen in Section 3.4, the misprediction rate is defined as
the ratio between the number of symbols inside the win-
dows not predicted by our behavioral fingerprinting model
as plausible ones in the analyzed sequence and the over-
all number of symbols in the observation window. Clearly,
the choice of the right size for such a window plays a key
role. Intuitively, largerwindows imply amore stable anomaly
detection capability, as any noise, even the one caused by
the errors in the predictions introduced by our model, would
be smoothed out (smaller oscillations in the misprediction
curve). Of course, the larger thewindow the slower the detec-
tion of possible anomalies, since more symbols (and, hence,
more packets) would be required to detect it. A possible,
strategy for identifying the correct size is to use the difference
between the maximum and minimum peaks of the mispre-
diction curve. Indeed, a lower difference would imply better
stability. At this point, to find the optimal solutionwe can rely

on theKneedle algorithm (Satopaa et al., 2011). Specifically,
it seeks to find the elbow/knee in the misprediction curve,
which corresponds to the point where the curve has the most
visible change from high slope to low slope. In Fig. 5, we
show the application of this algorithm in our context.

As shown in this figure, in our scenario, a possible optimal
configuration for the window is 100 symbols.

With this setting, we performed a further experiment to
demonstrate the capability of our solution to detect anoma-
lies in the behavior of an IoT node and we compared the
obtained performance with those obtained by related point-
to-pointmodels. Specifically,we focused again on the testbed
introduced in the experiment described in Section 5.2, in
which we considered 4 different point-to-point behavioral
fingerprinting models (P2P models, for short), according to
the strategy of (Aramini et al., 2022), built by 4 IoT nodes,
namely c1, c2, c3, and c4, and targeting the same node b.
Moreover, we simulated an FL task involving the same 4
nodes and built a global model for b (GM, for short) accord-
ing to our approach. Of course, each involved monitoring
node, c1, . . . , c4, collects the portion of traffic originated by
b towards it and creates its training and test sets. At this
point, we analyzed the performance of the window-based
anomaly detection strategy using both the P2P models and
the GM model as underlying fingerprinting models. To do
so, we fixed a threshold of 0.5 (i.e., 50% of the symbols in a
window), so that a misprediction rate higher than this thresh-
old in a window would correspond to the detection of an
anomalous behavior. Moreover, we simulated the situation
in which the first 280 packets from b are benign and after
that, the node performs an attack. To simulate the attack, we

Fig. 5 Application of theKneedle algorithm to identify the bestwindow
size
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used the malign traffic for this node contained in our original
dataset (see Section 5.1). The obtained results are visible in
Fig. 6.

As shown in this figure, the anomaly detection strategy
using P2P models works only when the traffic analyzed is
derived from the test set of the node that built the underly-
ing P2P model. Instead, when it is applied to different test
sets it cannot distinguish between normal and anomalous
behaviors. When our GMmodel is used instead, the anomaly
detection strategy achieves very good performance across all
the different test sets (see the subplots in the last line of
Fig. 6). This allows for the construction of a solid anomaly

detection solution for IoT nodes, which is agnostic on the
specific services the monitored nodes could be involved in.

5.4 Analysis of Execution Times

This section is devoted to the tests performed to validate
the feasibility and effectiveness of our proposal in terms of
execution times. Indeed, our approach is designed for an
IoT scenario, typically characterized bymany heterogeneous
devices.

We start by considering our privacy-preserving schema for
the identification of the correct aggregator of a node (Algo-

Fig. 6 Performance of the window-based anomaly detection strategy using both P2P and GM models to monitor a common target
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Table 6 Average execution times of Algorithm 1 on different device
types

Device Type Average MPC Time

Desktop PC 49.6 ms

Raspberry Pi4 185.3 ms

1 core ARM1176 (QEMU) 774 ms

rithm 1), and for the creation of groups of workers for the FL
tasks (Algorithm 2). Both cases share a similar strategy and
are based on the computation of bitwise XOR operations on
hashed value through homomorphic hashing. Therefore, we
focus here on Algorithm 1, which is based on Equation 1,
and, hence, test the feasibility of this computation on differ-
ent types of devices. For this experiment, we considered the
same Federated Learning scenario analyzed in the previous
experiment and derived from the original dataset. Moreover,
we considered 3 types of device, namely: (i) a desktop per-
sonal computer equippedwith aRyzen 7 5800xOcta-core 3.8
GHz base, 4.7 GHz boost processor, and 32GB of RAM, (ii)
a Raspberry Pi4 with a Quad-core Cortex-A72 processor and
8GB of RAM, and (iii) a single-core ARM1176 CPU with
512MB of RAM, emulated with the QEMU virtualization
environment2. We executed Algorithm 1 on each considered
device type and reported the results in Table 6.

By inspecting this table, we can conclude that our privacy-
preserving scheme is feasible for all the considered device
types. The computation is, in general, carried out in less than
1 second with a maximum value of 774 milliseconds for the
less capable considered device type.

After that, we focused on the computational requirements
for the aggregator in our solution. Aggregators coordinate
Federated Learning tasks and, during each training epoch,
aggregate the gradient updates produced by the workers to
build the global model.

To evaluate the execution times of the aggregation task,
we considered, again, the 3 types of device and the Federated
Learning task mentioned above. Hence, we measured the
time required, on average, to aggregate the gradient updates
of the local models (i.e., of the local GRU deep learning
models described in Section 3.3) during the epochs of such
a Federated Learning task. The result of this experiment is
reported in Table 7.

This result confirms again that both our secure multi-party
computation and the aggregation task canbe executed byvery
heterogeneous devices including those with limited compu-
tational capability (such as a node equipped with a single
core ARM1176 and 512MB of RAM).

As a final evaluation of execution times, we focused on
the performance of the inference of a trained instance of

2 https://www.qemu.org/

Table 7 Average aggregation time for different device types

Device Type Average Aggregation Time

Desktop PC 118ms

Raspberry Pi4 241ms

1 core ARM1176 (QEMU) 755ms

our behavioral fingerprinting model. In particular, we ana-
lyzed the impact of our secure delegation strategy in such a
task to validate its feasibility. Therefore, we executed model
inferences with and without the secure delegation strategy
and computed the execution times for batches of consecutive
symbols of variable sizes. The obtained results are reported
in Fig. 7.

This figure shows that the performance reduction intro-
duced by our secure delegation strategy is about 16.6% on
average.Although such a difference is not negligible, the very
low general inference times of our model make the inclusion
of the delegation strategy still feasible across all the possible
scenarios.

6 Discussion and Conclusion

In recent years, IoT devices have grown in number and
complexity to empower new applications with enhanced
possibilities in monitoring, decision-making, and automa-
tion contexts. Clearly, in this scenario, privacy and security
aspects become a major concern.

This paper provides a contribution to this setting by
designing a novel distributed framework for the computation

Fig. 7 Inference time with and without our secure delegation strategy

123

https://www.qemu.org/


Information Systems Frontiers

of global behavioral fingerprints of objects. Indeed, classi-
cal behavioral fingerprints are based on Machine Learning
solutions to model object interactions and assess the correct-
ness of their actions. Still, scalability, privacy, and intrinsic
limitations of adopted Machine Learning algorithms repre-
sent the main aspects to be improved to make this paradigm
entirely suitable for the IoT environment. Indeed, in classi-
cal distributed fingerprinting approaches, an object models
the behavior of a target contact by exploiting only the infor-
mation coming from the direct interaction with it, which
represents a very limited view of the target because it does
not consider services and messages exchanged with other
neighbors. However, building global models with informa-
tion coming from several interactions of nodeswith the target
may lead to critical privacy concerns.

To face this issue, we assumed a comprehensive perspec-
tive analyzing the hidden patterns of the behavior of a node
in the interactions with all its peers over a network. To do
so, we designed a solution based on Federated Learning that
benefits from a distributed computation of behavioral finger-
prints involving differentworkingnodes. Thanks to this novel
ML strategy, besides enriching the fingerprinting model with
information coming from different interactions of multiple
nodes, our approach addresses also several aspects related
to the security and privacy of data exchanged among the
involved actors. Moreover, it guarantees the scalability of the
proposed solution and very satisfactory accuracy results of
the anomaly detection schema making our approach suitable
to the constantly changing attack surface that characterizes
the modern IoT. Furthermore, our solution considers the
intrinsic heterogeneity of the entities involved in the con-
sidered scenario, allowing less capable nodes to participate
in the framework, by relying on a secure delegation strat-
egy for both the training and the inference of FL models in
a privacy-preserving way. Finally, through the properties of
Homomorphic Encryption and the Blockchain technology,
our approach guarantees the privacy of both the target object
and the different contributors, as well as the robustness of
the solution in the presence of security attacks. All these fea-
tures lead to a secure fully privacy-preserving solutionwhose
robustness and correctness have been evaluated in this paper
through a detailed security analysis. Moreover, an extensive
experimental campaign showed that the performance of our
model is very satisfactory, and we can distinguish between
normal and anomalous behavior across every considered test
set, reaching a 0.85 value of accuracy on average. Further-
more, the very lowgeneral inference times of ourmodelmake
the inclusion of the delegation strategy still feasible across
all the possible scenarios with a performance reduction of
only 16.6%, on average.

While this work has provided valuable insights into the
potential of our solution for anomaly detection in IoT, several
limitations should be acknowledged. Firstly, our framework

needs a sufficient total number of heterogeneous nodes to
perform its operations properly.Moreover, even if secure del-
egation can be applied, still an adequate number of powerful
nodes with sufficient computational capability, memory, and
stability should be present to train local ML models. Fur-
thermore, the effectiveness of our approach, which is based
on FL, heavily relies on frequent communications between
the aggregator and the workers in the training phase. In
an IoT scenario, this might lead to longer training times
and potentially hinder convergence. Anyway, a number of
recent studies have already tackled the issue of training dis-
tributed machine learning models for resource-constrained
IoT devices (Imteaj et al., 2021). Our work can leverage one
of the existing studies on the application of FL to IoT since
this part is orthogonal to our work.

We plan to expand the research described in this proposal
with further investigations in the next future. For instance, we
are planning to study a solution to build, still in a collaborative
and distributed way, the behavioral fingerprinting of objects
in the network but also taking into account an optimized
orchestration of theirworkload. In particular, thanks to secure
delegation, this solution should allow a better distribution of
the workload, generated by FL tasks, among the nodes of
the network, according to power consumption minimization,
Service Level Agreement (SLA, for short) requirements, and
the reliability of the nodes.
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