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Abstract

The financial crisis has dramatically demonstrated that the tradi-

tional approach to apply univariate monetary risk measures to single

institutions does not capture sufficiently the perilous systemic risk that

is generated by the interconnectedness of the system entities and the

corresponding contagion effects. This has brought awareness of the

urgent need for novel approaches that capture systemic riskiness. The

purpose of this paper is to specify a general methodological framework

that is flexible enough to cover a wide range of possibilities to de-

sign systemic risk measures via multi-dimensional acceptance sets and

aggregation functions, and to study corresponding examples. Exist-

ing systemic risk measures can usually be interpreted as the minimal

amount of cash needed to secure the system after aggregating individual

risks. In contrast, our approach also includes systemic risk measures

that can be interpreted as the minimal amount of cash that secures

the aggregated system by allocating capital to the single institutions
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before aggregating the individual risks. This allows for a possible rank-

ing of the institutions in terms of systemic riskiness measured by the

optimal allocations. Another important feature of our approach is the

possibility of allocating cash according to the future state of the system

(scenario-dependent allocation). We illustrate with several examples

the advantages of this feature. We also provide conditions which ensure

monotonicity, convexity, or quasi-convexity properties of our systemic

risk measures.

Keywords: Systemic risk, risk measures, acceptance set, aggregation.

Mathematics Subject Classification (2010): 60A99; 91B30; 91G99;

93D99.

1 Introduction

A large part of the current literature on systemic financial risk is concerned

with the modeling structure of financial networks and the analysis of the

contagion and the spread of a potential exogenous (or even endogenous)

shock into the system. For a given financial (possibly random) network

and a given random shock one then determines the “cascade” mechanism

which generates possibly many defaults. This mechanism often requires a

detailed description of the balance sheet of each institution; assumptions

on the interbank network and exposures, on the recovery rate at default,

on the liquidation policy; the analysis of direct liabilities, bankruptcy costs,

cross-holdings, leverage structures, fire sales, and liquidity freezes.

Among the many contributions we mention here the classical conta-

gion model proposed by Eisenberg and Noe [2001], the default model of

Gai and Kapadia [2010a], the illiquidity cascade models of Gai and Kapadia

[2010b], Hurd et al. [2014] and Lee [2013], the asset fire sale cascade model

by Cifuentes et al. [2005] and Caccioli et al. [2012], as well as the model

in Awiszus and Weber [2015] that additionally includes cross-holdings. For

an exhaustive reference on the literature we defer the reader to the recent

volume: “Contagion! The Spread of Systemic Risk in Financial Networks”,

Hurd [2015].

These approaches may be relevant also from the viewpoint of a policy

maker that has to intervene and regulate the banking system to reduce the

risk that, in case of an adverse (local) shock, a substantial part or even the

complete system breaks down.

However, once such a model for the financial network has been identified

and the mechanism for the spread of the contagion determined, one still has
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to understand how to compare the possible final outcomes in a reasonable

way or, in other words, how to measure the risk carried by the global financial

system. This is the focus of our approach, as we measure the risk embedded

in a financial system taking as primitive a vector X = (X1, . . . ,XN ) of

positions, where Xi represents the position of institution i. Our approach is

very close in spirit to the “classical” conceptual framework initiated by the

seminal paper by Artzner et al. [1999] and that has been recently adopted

also to analyze systemic risk by Chen et al. [2013], Kromer et al. [2013] and

Hoffmann et al. [2014].

We recall this classical approach, in the case of one single institution, by the

following two quotes from Artzner et al. [1999]:

“The basic objects of our study shall therefore be the random variables

on the set of states of nature at a future date, interpreted as possible future

values of positions or portfolios currently held.”

...

“These measures of risk can be used as (extra) capital requirements to

regulate the risk assumed by market participants, traders, and insurance

underwriters, as well as to allocate existing capital.”

Of course one main difference is that we have to take into consideration not

just one single institution but the global system and in this paper we will

illustrate how to achieve this in an appropriate way. We interpret Xi as the

profits and losses of institution i at a future time T , precisely as the gain if

Xi is positive or as the loss if Xi is negative. Such profit and loss is typically

uncertain and therefore it will be modeled by a random variable Xi(ω) on

some space of possible scenarios ω ∈ Ω.

To summarize, we consider the random vector X = (X1, . . . ,XN ) as

primitive: One may interpret it as a “reduced form model” of a complex

financial system without reference to a specific structural network model,

and consequently X may already comprehend the potential risk of a conta-

gion spread into the system. Otherwise one may also interpret X as the net

worth of the positions before the contagion takes place and then the con-

tagion mechanism will be embedded in the risk measure via an aggregation

function (as in the model of Eisenberg and Noe [2001]). Either way, our

scope is to provide a consistent criterion to asses wether one possible vector

X is riskier than another.
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1.1 From one-dimensional to N-dimensional risk profiles

In this subsection we review the literature on risk measurement based on

acceptable sets, both in the traditional one-dimensional setting as well as

in the case of N interacting financial institutions. Here we denote with

L0(RN ) := L0(Ω,F ;RN ), N ∈ N, the space of RN -valued random variables

on the probability space (Ω,F ,P).
Traditional risk management strategies of financial systems have pre-

dominantly focused on the solvency of individual institutions as if they were

in isolation. A typical approach is to evaluate the risk η(Xi) of each institu-

tion i ∈ {1, ...N} by applying a univariate monetary risk measure η to the

single financial positions. A monetary risk measure (see Föllmer and Schied

[2004]) is a map η : L0(R) → R that can be interpreted as the minimal

capital needed to secure a financial position with payoff X ∈ L0(R), i.e. the

minimal amount m ∈ R that must be added to X in order to make the

resulting (discounted) payoff at time T acceptable:

η(X) := inf{m ∈ R | X +m ∈ A}, (1.1)

where the acceptance set A ⊆ L0(R) is assumed to be monotone, i.e. X ≥
Y ∈ A implies X ∈ A. In addition to decreasing monotonicity, the charac-

terizing feature of these maps is the cash additivity property:

η(X +m) = η(X)−m, for all m ∈ R. (1.2)

Under the assumption that the set A is convex (resp. is a convex cone)

the maps in (1.1) are convex (resp. convex and positively homogeneous)

and are called convex (resp. coherent) risk measures, see Artzner et al.

[1999], Föllmer and Schied [2002], Frittelli and Rosazza Gianin [2002]. The

principle that diversification should not increase the risk is mathematically

translated not necessarily with the convexity property but with the weaker

condition of quasiconvexity:

η(λX + (1− λ)Y ) ≤ η(X) ∨ η(Y ).

As a result, in Cerreia-Vioglio et al. [2010] and Frittelli and Maggis [2014],

the only properties assumed in the definition of a quasi-convex risk measure

are monotonicity and quasiconvexity. Such risk measures can always be

written as:

η(X) := inf{m ∈ R | X ∈ A
m}, (1.3)

where each set A
m ⊆ L0(R) is monotone and convex, for each m. Here

A
m is interpreted as the class of payoffs carrying the same risk level m.
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Contrary to the convex, cash additive case where each random variable is

binary cataloged as acceptable or as not acceptabe, in the quasi-convex case

one admits various degrees of acceptability, described by the risk level m,

see Cherny and Madan [2009]. Furthermore, in the quasi-convex case the

cash additivity property will not hold in general and one looses a direct

interpretation of m as the minimal capital required to secure the payoff X,

but preserves the interpretation of Am as the set of positions acceptable for

the given risk level m. By selecting A
m := A−m, the risk measure in (1.1)

is clearly a particular case of the one in (1.3).

However, the financial crisis has dramatically demonstrated that the

traditional approach to apply univariate monetary risk measures to single

institutions does not capture sufficiently the perilous systemic risk that is

generated by the interconnectedness of the system entities and the corre-

sponding contagion effects. This has brought awareness of the urgent need

for novel approaches that capture systemic riskiness, and a rapidly growing

literature is concerned with designing more appropriate risk measures for

financial systems. A systemic risk measure is then a map ρ : L0(RN ) → R

that evaluates the risk ρ(X) of the complete system X of financial positions.

Most of the systemic risk measures in the existing literature are of the form

ρ(X) = η(Λ(X)), (1.4)

where η : L0(R) → R is a univariate risk measure and

Λ : RN → R

is an aggregation rule that aggregates the N -dimensional risk factor X into

a univariate risk factor Λ(X) representing the total risk in the system. Some

examples of aggregation rules found in the literature are the following:

• In general, one of the most common ways to aggregate multivariate

risk is to simply sum the single risk factors: Λ(x) =
∑N

i=1 xi, x =

(x1, ..., xN ) ∈ R
N . Also in the literature on systemic risk measures

there are examples using this aggregation rule, like for example the

Systemic Expected Shortfall introduced in Acharya et al. [2010], or the

Contagion Value at Risk (CoVaR) introduced in Adrian and Brunnermeier

[2011]. However, while summing up profit and loss positions might be

reasonable from the viewpoint of a portfolio manager where the port-

folio components compensate each other, this aggregation rule seems

inappropriate for a financial system where cross-subsidization between

institutions is rather unrealistic. Further, if the sum was a suitable ag-

gregation of risk in financial systems, then the traditional approach of
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applying a univariate coherent risk measure η to the single risk factors

would be sufficiently prudential in the sense that by sub-linearity it

holds that η(
∑N

i=1Xi) ≤
∑N

i=1 η(Xi).

• One possible aggregation that takes the lack of cross-subsidization

between financial institutions into account is to sum up losses only:

Λ(x) =
∑N

i=1 −x−i . This kind of aggregation is for example used in

Huang et al. [2009], Lehar [2005]. See also Brunnermeier and Cheridito

[2013] for an extension of this type of aggregation rule that also consid-

ers a certain effect of gains, as Λ(x) =
∑N

i=1−αix
−
i +

∑N
i=1 βi(xi−vi)+

for some αi, βi, vi ∈ R
+, i = 1, · · · , N .

• Beside the lack of cross-subsidization in a financial system, the ag-

gregation rule may also accounts for contagion effects that can con-

siderably accelerate systemwide losses resulting from an initial shock.

Motivated by the structural contagion model of Eisenberg and Noe

[2001], in Chen et al. [2013] they introduce an aggregation function

that explicitly models the net systemic cost of the contagion in a fi-

nancial system by defining the aggregation rule

ΛCM (x) = min
yi≥xi+

∑N
j=1 Πijyj ,∀i=1,··· ,N, y∈RN

+

{
N∑

i=1

yi

}
.

Here, Π = (Πij)i,j=1,··· ,N represents the relative liability matrix, i.e.firm

i has to pay the proportion Πij of its total liabilities to firm j.

In the literature there are various extensions of the structural con-

tagion model of Eisenberg and Noe [2001] and the corresponding ag-

gregation rule that take into account further contagion channels of

systemic risk such as effects from firesales or liquidity freezes, see e.g.

Amini et al. [2013], Awiszus and Weber [2015], Cifuentes et al. [2005],

Gai and Kapadia [2010a].

An axiomatic characterization of systemic risk measures of the form (1.4) on

a finite state space is provided in Chen et al. [2013], see also Kromer et al.

[2013] for the extension to a general probability space and Hoffmann et al.

[2014] for a further extension to a conditional setting. Also, in these ref-

erences further examples of possible aggregation functions can be found.

Our framework may accommodate also such aggregation functions, provided

these satisfy the (simple) conditions outlined in Section 3.

If η in (1.4) is a monetary risk measure it follows from (1.1) that we can
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rewrite the systemic risk measure ρ in (1.4) as

ρ(X) := inf{m ∈ R | Λ(X) +m ∈ A} . (1.5)

Thus, presuming Λ(X) represents some loss, systemic risk can again be

interpreted as the minimal cash amount that secures the system when it is

added to the total aggregated system loss Λ(X). If Λ(X) does not allow for

an interpretation as cash, the risk measure in (1.5) has to be understood as

some general risk level of the system rather than some capital requirement.

Similarly, if η is a quasi-convex risk measure the systemic risk measure ρ in

(1.4) can be rewritten as

ρ(X) := inf{m ∈ R | Λ(X) ∈ A
m}. (1.6)

Again one first aggregates the risk factors via the function Λ and in a second

step one computes the minimal risk level associated to Λ(X).

While the approach prescribed in (1.5) and (1.6) defines an interesting class

of systemic risk measures, one could think of meaningful alternative or ex-

tended procedures of measuring systemic risk not captured by (1.5) or (1.6).

The purpose of this paper is to specify a general methodological framework

that is flexible enough to cover a wide range of possibilities to design sys-

temic risk measures via acceptance sets and aggregation functions and to

study corresponding examples. In the following subsections we extend the

conceptual framework for systemic risk measures via acceptance sets step by

step in order to gradually include certain novel key features of our approach.

1.2 First add capital, then aggregate

The interpretation of (1.5) to measure systemic risk as minimal capital

needed to secure the system after aggregating individual risks is for example

meaningful in the situation where some kind of rescue fund shall be installed

to repair damage from systemic loss. However, for instance from the view-

point of a regulator that has the possibility to intervene on the level of the

single institutions before contagion effects generate further losses it might be

more relevant to measure systemic risk as the minimal capital that secures

the aggregated system by injecting the capital into the single institutions

before aggregating the individual risks. This way of measuring systemic risk

can be expressed by

ρ(X) := inf{
N∑

i=1

mi | m = (m1, ...,mN ) ∈ R
N , Λ(X+m) ∈ A} . (1.7)
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Here, the amount mi is added to the financial position Xi of institution

i ∈ {1, ..., N} before the corresponding total loss Λ(X+m) is computed. For

example, considering the aggregation function ΛCM from above it becomes

clear that injecting cash first might prevent further losses that would be

generated by contagion effects. The systemic risk is then measured as the

minimal total amountl
∑N

i=1mi injected into the institutions to secure the

system. 1

Another interesting feature of the approach in (1.7) is that it delivers at the

same time a measure of total systemic risk as well as a potential ranking

of the institutions in terms of systemic riskiness. Indeed, for X given, let

m∗ = (m∗
1, ...,m

∗
N ) be such that ρ(X) =

∑N
i=1m

∗
i and denote the ordered

cash allocations by m∗
i1

≥ ... ≥ m∗
iN
. Then, one could argue that the risk

factor Xi1 that requires the biggest cash allocation m∗
i1

corresponds to the

systemic riskiest institution, Xi2 corresponds to the systemic second riskiest

institution, and so on. Of course, such allocation m∗ does not need to be

unique, in which case one has to discuss criteria that justify the choice of a

specific allocation.

1.3 First add scenario-dependent allocation, then aggregate

One main novelty of this paper is that we want to allow for the possibility

of adding to X not merely a vector m = (m1, ...,mN ) ∈ R
N of cash but a

random vector

Y ∈ C ⊆ L0(RN )

which represents admissible assets with possibly random payoffs at time

T , in the spirit of Frittelli and Scandolo [2006]. To each Y ∈ C we assign a

measure π(Y) of the risk (or cost) associated toY determined by a monotone

increasing map

π : C → R . (1.8)

This leads to the following extension of (1.7):

ρ(X) := inf{π(Y) ∈ R | Y ∈ C, Λ(X+Y) ∈ A} . (1.9)

Note that in order to establish a ranking of the institutions in a system

X in terms of systemic riskiness implied by a Y∗ = (Y ∗
1 , ..., Y

∗
N ) ∈ C with

ρ(X) = π(Y∗) in analogy to the ranking process described above implied

by a deterministic m∗ = (m∗
1, ...,m

∗
N ) one now first has to introduce an or-

dering of the Y ∗
1 , ..., Y

∗
N . For example, one could say Xi is systemic riskier

1Independently a related concept in the context of set-valued systemic risk measures

has been developed in Feinstein et al. [2015].
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than Xj if E[Y ∗
i ] > E[Y ∗

j ], presumed the expectations E[Y ∗
i ], i = 1, ..., N

are well defined.

Considering a general set C in (1.9) allows for more general measurement

of systemic risk than the cash needed today for each institution to secure

the system. For example, C could be a set of (vectors of) general admissi-

ble financial assets that can be used to secure a system by adding Y to X

component-wise, and π(Y) is a valuation of Y. Another example that we fo-

cus on in this paper and which is particularly interesting from the viewpoint

of a lender of last resort is the following class of sets C:

C ⊆ {Y ∈ L0(RN ) |
N∑

n=1

Y n ∈ R} =: CR, (1.10)

and π(Y) =
∑N

n=1 Y
n. Here the notation

∑N
n=1 Y

n ∈ R means that∑N
n=1 Y

n is equal to some deterministic constant in R, even though each

single Y n, n = 1, · · · , N , is a random variable. Then, as in (1.7) the sys-

temic risk measure

ρ(X) := inf{
N∑

n=1

Y n | Y ∈ C, Λ(X+Y) ∈ A} (1.11)

can still be interpreted as the minimal total cash amount
∑N

n=1 Y
n ∈ R

needed today to secure the system by distributing the cash at the future

time T among the components of the risk vector X. However, contrary

to (1.7), in general the allocation Y i(ω) to institution i does not need to

be decided today but depends on the scenario ω that has been realized at

time T . This corresponds to the situation of a lender of last resort who

is equipped with a certain amount of cash today and who will allocate it

according to where it serves the most depending on the scenario that has

been realized. Restrictions on the possible distributions of cash are given

by the set C. For example, for C = R
N the situation corresponds to (1.7)

where the distribution is already determined today, while for C = CR the

distribution can be chosen completely freely depending on the scenario ω

that has been realized (including negative amounts, i.e. withdrawals of cash

from certain components).

Section 4, 5, and 6 will be devoted to the analysis and concrete examples of

the class of systemic risk measures using a set C as in (1.10). We will see

that in the case C = CR where unrestricted cross-subsidization is possible

the canonical way of measuring systemic risk measure is of the form (1.4)

with aggregation rule Λ(x) =
∑N

i=1 xi, x ∈ R
N , i.e. to apply a univariate

risk measure to the sum of the risk factors. Another interesting feature
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of allowing scenario depending allocations of cash Y ∈ C ⊆ CR is that in

general the systemic risk measure will take the dependence structure of the

components of X into account even though acceptable positions might be

defined in terms of the marginal distributions of Xi, i = 1, ..., N only. For

instance, the example in Section 5 employs the aggregation rule Λ(x) =∑N
i=1−x−i , x ∈ R

N , and the acceptance set Aγ := {Z ∈ L0(R) | E[Z] ≥
γ} , γ ∈ R. Then a risk vector Z = (Z1, ..., ZN ) ∈ L0(RN ) is acceptable if

and only if Λ(Z) ∈ A, i.e.

N∑

i=1

−E[Z−
i ] ≥ γ ,

which only depends on the marginal distributions of Z. Thus, if we choose

C = R
N then it is obvious that in this case also the systemic risk measure

ρ(X) in (1.11) depends on the marginal distributions of X only. If, however,

one allows for more general allocations Y ∈ C ⊆ CR that might differ from

scenario to scenario the systemic risk measure will in general depend on the

multivariate distribution of X since it can play on the dependence of the

components of X to minimize the costs.

1.4 Multi-dimensional Acceptance Sets

Until now we have always defined systemic risk measures in terms of accept-

ability of an aggregated, one-dimensional loss figure. However, not necessar-

ily every relevant systemic risk measure is of this aggregated type. Consider

for instance the popular approach (though possibly problematic for financial

systems as explained above) to add single univariate monetary risk measures

ηi, i = 1, ..., N , i.e.

ρ(X) :=
N∑

i=1

ηi(X
i) . (1.12)

In general, the systemic risk measure in (1.12) cannot be expressed in the

form (1.9). Denoting by Ai ⊆ L0(R) the acceptance set of ηi, i = 1, ..., N ,

one easily sees from (1.1), however, that ρ in (1.12) can be written in terms

of the multivariate acceptance set A1 × ...× AN :

ρ(X) := inf{
N∑

i=1

mi | m = (m1, ...,mN ) ∈ R
N , X+m ∈ A1 × ...× AN} .

Motivated by this example, we extend (1.9) to the formulation of systemic

risk measures as the minimal cost of admissible asset vectors Y ∈ C that,

when added to the vector of financial positions X, makes the augmented
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financial positions X+Y acceptable in terms of a general multidimensional

acceptance set A ⊆ L0(RN ):

ρ(X) := inf{π(Y) ∈ R | Y ∈ C, X+Y ∈ A} . (1.13)

Note that by putting A :=
{
Z ∈ L0(RN ) | Λ(Z) ∈ A

}
Definition (1.9) is a

special case of (1.13). Also, in analogy to (1.2), we remark that for lin-

ear valuation rules π the systemic risk measure given in (1.13) exhibits an

extended type of cash invariance in the sense that

ρ(X+Y) = ρ(X) + π(Y) (1.14)

for Y ∈ C such that Y′ ± Y ∈ C for all Y′ ∈ C, see Frittelli and Scandolo

[2006].

1.5 Degree of Acceptability

In order to reach the final, most general formulation of systemic risk mea-

sures, we assign, in analogy to (1.3), to each Y ∈ C a set AY ⊆ L0(RN ) of

risk vectors that are acceptable for the given (random) vector Y, and define

the systemic risk measure by:

ρ(X) := inf{π(Y) ∈ R | Y ∈ C, X ∈ AY} . (1.15)

Note that analogously to the one-dimensional quasi-convex case (1.3), the

systemic risk measures (1.15) cannot necessarily be interpreted as cash added

to the system but in general represents some minimal aggregated risk level

π(Y) at which the system X is acceptable. The approach in (1.15) is very

flexible and unifies a variety of different features in the design of systemic

risk measures. In particular, it includes all previous cases if we set

AY := A−Y,

where the set A ⊆ L0(RN ) represents acceptable risk vectors. Then obvi-

ously (1.13) is obtained from (1.15).

Another advantage of the formulation in terms of general acceptance sets

is the possibility to design systemic risk measures via general aggregation

rules. Indeed the formulation (1.15) includes the case

ρ(X) := inf{π(Y) ∈ R | Y ∈ C, Θ(X,Y) ∈ A}, (1.16)

where Θ : L0(RN ) × C → L0(R) denotes some aggregation function jointly

in X and Y. Just select AY :=
{
Z ∈ L0(RN ) | Θ(Z,Y) ∈ A

}
. In particu-

lar, (1.16) includes both the case “injecting capital before aggregation”as in

11



(1.7) and (1.9) by putting Θ(X,Y) =Λ(X+Y), and the case “aggregation

before injecting capital”as in (1.5) by putting Θ(X,Y) :=Λ1(X)+Λ2(Y),

where Λ1 : L0(RN ) → L0(R) is an aggregation function and Λ2 : C → L0(R)

could be, for example, the discounted cost of Y.

Also, again in analogy to the one-dimensional case (1.3), the more general

dependence of the acceptance set on Y in (1.15) allows for multi-dimensional

quasi-convex risk measures. Note that the cash additivity property (1.14)

is then lost in general.

The remainder of the paper is organized as follows. In the next Section we

structure and lay the theoretical foundations of the approach to systemic

risk measures motivated and outlined above. In particular, we provide rea-

sonable conditions on the ingredients C, π, A, A, and Λ such that the above

definitions of ρ are well posed and ρ has the natural properties of decreasing

monotonicity and quasi-convexity (or convexity). In Section 3 we analyze

the situation and give various families of systemic risk measures when the

risk measurement is defined in terms of the natural approach to apply some

kind of aggregation to risk factors and test acceptability with respect to

some one-dimensional acceptance set as in (1.16) above. Section 4 inves-

tigates the interesting class of systemic risk measures that are defined in

terms of a set C of scenario-dependent allocations as in (1.10). Then we

present two concrete examples within this class of systemic risk measures

in Sections 5 and 6. In Section 5 we look Gaussian systems and consider

both deterministic cash allocations as well as a certain class of random cash

allocations. Further, we apply the results to a particular Gaussian system

where the flow of money between the institutions (borrowing and lending)

is modeled by a system of interacting diffusions (see Carmona et al. [2015]).

In Section 6 we introduce an example on a finite probability space. As a

consequence of the finite probability space we are able to compute systemic

risk measures for very general random cash allocations C ⊆ CR.

2 Definition of Systemic Risk Measures and Prop-

erties

In this Section we provide the definitions and properties of the systemic

risk measures in our setting. As in the Introduction, we consider the set of

random vectors

L0(RN ) := {X = (X1, . . . ,XN ) | Xn ∈ L0(Ω,F ,P), n = 1, · · · , N},
on the probability space (Ω,F ,P). We assume that L0(RN ) is equipped

with an order relation � such that it is a vector lattice. One such example
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is provided by the order relation: X1 � X2 if Xi
1 ≥ Xi

2 for all components

i = 1, ..., N , where for random variables on L0(R), the order relation is

determined by P−a.s inequality.

Definition 2.1 Let X1, X2 ∈ L0(RN ).

1. A set A ⊂ L0(RN ) is � -monotone if X1 ∈ A and X2 � X1 implies

X2 ∈ A.

2. A map f : L0(RN ) → L0(R) is �-monotone decreasing if X2 � X1

implies f(X1) ≥ f(X2). Analogously for functions f : L0(RN ) → R.

3. A map f : L0(RN ) → R is quasi-convex if

f(λX1 + (1− λ)X2) ≤ f(X1) ∨ f(X2).

A vector X = (X1, . . . ,XN ) ∈ L0(RN ) denotes a configuration of risky

factors at a future time T associated to a system of N entities. Let

C ⊆ L0(RN ).

To each Y ∈ C we assign a set AY ⊆ L0(RN ). The set AY represents the

risk vectors X that are acceptable for the given random vector Y. Let also

consider a map

π : C → R ,

so that π(Y) represents the risk (or cost) associated to Y.

We now introduce the concept of monotone and (quasi-) convex systemic

risk measure.

Definition 2.2 The systemic risk measure associated with C,AY and π is

a map ρ : L0(RN ) → R := R ∪ {−∞} ∪ {∞}, defined by:

ρ(X) := inf{π(Y) ∈ R | Y ∈ C, X ∈ AY} . (2.1)

Moreover ρ is called a quasi-convex (resp. convex) systemic risk measure if it

is �-monotone decreasing and quasi-convex (resp. convex on {ρ(X) < +∞}).

In other words, the systemic risk of a random vector X is measured by the

minimal risk (cost) of those random vectors Y that make X acceptable.

As already sketched in the Introduction, we now focus on several examples

of systemic risk measures of the type (2.1). To guarantee that such maps are

finite valued one could consider their restriction to some vector subspaces

of L0(RN ) (for examples Lp(RN ), p ∈ [1,∞]) and impose further conditions
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on the defining ingredients (π, C, AY) of ρ. For example, suppose that C
and AY satisfy the two conditions

{
m1 ∈RN | m ∈ R+, 1 := (1, ...,1)

}
⊆ C,

−m1 ∈ Am1 and Am1 is a monotone set for each m ∈ R+,

then ρ : L∞(RN ) → R defined by (2.1) satisfies ρ(X) < +∞ for all X ∈
L∞(RN ). Indeed, for m := maxi ‖Xi‖∞, X ≥ −m1 ∈ Am1 implies that

X ∈Am1 and π(m1) < +∞.

Clearly, other sufficient conditions may be obtained in each specific example

of systemic risk measures considered in the subsequent Sections.

We opt to accept the possibility that such maps ρ may assume values ±∞.

However, it is not difficult to find simple sufficient conditions assuring that

the systemic risk measure in (2.1) is proper (not identically equal to +∞).

One such example is the condition:

if 0 ∈ C and 0 ∈ A0 then ρ(0) ≤ π(0) < +∞.

We now consider the “structural properties” (i.e. monotonicity, quasicon-

vexity, convexity) of our systemic risk measures and introduce two sets of

conditions (properties (P1), (P2) and (P3) below and the alternative proper-

ties (P2a) and (P3a) ) that guarantee that the map in (2.1) is a quasi-convex

(or convex) risk measure. In Section 3 we show that these sets of conditions

can be easily checked in some relevant examples of maps in the form (2.1),

where the set AY is determined from aggregation and one-dimensional ac-

ceptance sets.

We introduce the following properties:

(P1) For all Y ∈ C the set AY ⊂ L0(RN ) is �-monotone.

(P2) For all m ∈ R, for all Y1,Y2 ∈ C such that π(Y1) ≤ m and

π(Y2) ≤ m and for all X1 ∈ AY1 , X2 ∈ AY2 and all λ ∈ [0, 1] there

exists Y ∈ C such that π(Y) ≤ m and λX1 + (1− λ)X2 ∈ AY.

(P3) For all Y1,Y2 ∈ C and all X1 ∈ AY1 , X2 ∈ AY2 and all λ ∈ [0, 1]

there exists Y ∈ C such that π(Y) ≤ λπ(Y1) + (1 − λ)π(Y2) and

λX1 + (1− λ)X2 ∈ AY.

It is clear that property (P3) implies property (P2). Moreover, we have:

Lemma 2.3 i) If the systemic risk measure ρ defined in (2.1) satisfies

the properties (P1) and (P2), then ρ is �-monotone decreasing and

quasi-convex.
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ii) If the systemic risk measure ρ defined in (2.1) satisfies the proper-

ties (P1) and (P3), then ρ is �-monotone decreasing and convex on

{ρ(X) < +∞}.

Proof. Set

B(X) :=
{
Y ∈ C | X ∈ AY

}
.

First assume that property (P1) holds and w.l.o.g. suppose X2 � X1 and

B(X1) 6= ∅. Then property (P1) implies that if X1 ∈ AY and X2 � X1

then: B(X1) ⊆ B(X2). Hence:

ρ(X1) = inf{π(Y) | Y ∈ B(X1)} ≥ inf{π(Y) | Y ∈ B(X2)} = ρ(X2)

so that ρ is �-monotone decreasing.

i) Now assume that property (P2) holds and let X1,X2 ∈ L0(RN ) be

arbitrarily chosen. For the quasi-convexity we need to prove, for any

m ∈ R, that:

ρ(X1) ≤ m and ρ(X2) ≤ m ⇒ ρ(λX1 + (1− λ)X2) ≤ m.

By definition of the infimum in the definition of ρ(Xi), ∀ε > 0 there

exist Yi ∈ C such that Xi ∈ AYi and

π(Yi) ≤ ρ(Xi) + ε ≤ m+ ε, i = 1, 2.

Take any λ ∈ [0, 1]. Property (P2) guarantees the existence of Z ∈ C
such that π(Z) ≤ m+ ε and λX1 + (1− λ)X2 ∈ AZ. Hence

ρ(λX1 + (1− λ)X2) = inf{π(Y) | Y ∈ C, λX1 + (1− λ)X2 ∈ AY}
≤ π(Z) ≤ m+ ε.

As this holds for any ε > 0, we obtain the quasi-convexity.

ii) Assume that property (P3) holds and that X1,X2 ∈ L0(RN ) satisfy

ρ(Xi) < +∞. Then B(Xi) 6= ∅ and, as before, ∀ε > 0 there exists

Yi ∈ L0(RN ) such that: Yi ∈ C, Xi ∈ AYi and

π(Yi) ≤ ρ(Xi) + ε, i = 1, 2. (2.2)

By property (P3) there exists Z ∈ C such that π(Z) ≤ λπ(Y1) + (1−
λ)π(Y2) and λX1 + (1− λ)X2 ∈ AZ. Hence

ρ(λX1 + (1− λ)X2) = inf{π(Y) | Y ∈ C, λX1 + (1− λ)X2 ∈ AY}
≤ π(Z) ≤ λπ(Y1) + (1− λ)π(Y2)

≤ λρ(X1) + (1− λ)ρ(X2) + ǫ,

from (2.2). As this holds for any ε > 0, the map ρ is convex on

{ρ(X) < +∞}.
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We now consider the following alternative properties:

(P2a) For all Y1,Y2 ∈ C, X1 ∈ AY1 , X2 ∈ AY2 and λ ∈ [0, 1] there

exists α ∈ [0, 1] such that λX1 + (1− λ)X2 ∈ AαY1+(1−α)Y2 .

(P3a) For all Y1,Y2 ∈ C, X1 ∈ AY1 , X2 ∈ AY2 and λ ∈ [0, 1] it holds:

λX1 + (1− λ)X2 ∈ AλY1+(1−λ)Y2 .

It is clear that property (P3a) implies property (P2a). Furthermore we

introduce the following properties for C and π:

(P4) C is convex,

(P5) π is quasi-convex,

(P6) π is convex.

We have the following:

Lemma 2.4 i) Under the conditions (P1), (P2a), (P4), and (P5) the

map ρ defined in (2.1) is a quasi-convex systemic risk measure.

ii) Under the conditions (P1), (P3a) , (P4) and (P6) the map ρ defined

in (2.1) is a convex systemic risk measure.

Proof.

i) It follows from Lemma 2.3 and the fact that the properties (P2a), (P4),

and (P5) imply (P2). Indeed, let Y1,Y2 ∈ C such that π(Y1) ≤ m,

π(Y2) ≤ m and let X1 ∈ AY1 , X2 ∈ AY2 and λ ∈ [0, 1]. Then

there exists α ∈ [0, 1] such that λX1 + (1− λ)X2 ∈ AαY1+(1−α)Y2 . If

we set: Y :=αY1 + (1 − α)Y2 ∈ C then λX1 + (1 − λ)X2 ∈ AY and

π(αY1 + (1− α)Y2) ≤ max(π(Y1), π(Y2)) ≤ m.

ii) It follows from Lemma 2.3 and the fact that the properties (P3a) ,

(P4), and (P6) imply (P3). Indeed, let Y1,Y2 ∈ C and let X1 ∈ AY1 ,

X2 ∈ AY2 and λ ∈ [0, 1]. If we set: Y :=λY1 + (1 − λ)Y2 ∈ C then

λX1 + (1− λ)X2 ∈ AY and π(Y) ≤ λπ(Y1) + (1− λ)π(Y2).
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3 Systemic Risk Measures via Aggregation and

One-dimensional Acceptance Sets

In this Section we study four classes of systemic risk measures in the form

(2.1), which differ from each other by the definition of their aggregation

functions and their acceptance sets. However, these four classes, defined

in equations (3.2), (3.3), (3.6), (3.7), all satisfy the structural properties of

monotonicity and quasi-convexity (or convexity). We consider the following

definitions and assumptions, which will hold true throughout this Section:

1. the aggregation functions are

Λ : L0(RN )× C → L0(R),

Λ1 : L0(RN ) → L0(R),

and we assume that Λ1 is �-increasing and concave;

2. the acceptance family

(Bx)x∈R

is an increasing family with respect to x and each set Bx ⊆ L0(R) is

assumed monotone and convex;

3. the acceptance subset

A ⊆ L0(R).

is assumed monotone and convex.

The convexity of the acceptance set A ⊆ L0(R) (or of the acceptance fam-

ily (Bx)x∈R) are the standard conditions which have been assumed since

the origin of the theory of risk measures. The concavity of the aggregation

functions is justified, not only from the many relevant examples in litera-

ture, but also by the preservation of the convexity from one dimensional

acceptance sets to multi-dimensional ones. Indeed, let Θ : L0(RN ) → L0(R)

be an aggregation function, A ⊆ L0(R) a one dimensional acceptance set

and define A ⊆ L0(RN ) as the inverse image A := Θ−1(A). Suppose that Θ

is increasing and concave. Then one may easily check that if A is monotone

and convex, then A is monotone and convex.

We note that in all results of this Section, the selection of the set C ⊆ L0(RN )

of permitted vectors is left as general as possible (in some cases we require the

convexity of C and only in Proposition 3.6 we further ask that C+R
N
+ ∈ C).

Therefore, we are very flexible in the choice of C and we may interpret its

elements as vectors of admissible or safe financial assets, or merely as cash
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vectors. Only in the next Section we attribute a particular structure to C.
In the conclusive statements of the following propositions in this section we

apply Lemma 2.3 and Lemma 2.4 without explicit mention.

Proposition 3.1 Let

AY :=
{
Z ∈ L0(RN ) | Λ(Z,Y) ∈ A

}
, Y ∈C, (3.1)

Λ be concave, and Λ(·,Y) be �-increasing for all Y ∈ C. Then AY satisfies

properties (P1) and (P3a) (and (P2a)). The map ρ defined in (2.1) is given

by

ρ(X) := inf{π(Y) ∈ R | Y ∈ C, Λ(X,Y) ∈ A} , (3.2)

and is a quasi-convex systemic risk measure, under the assumptions (P4)

and (P5); it is a convex systemic risk measure under the assumptions (P4)

and (P6).

Proof. Property (P1): Let X1 ∈ AY and X2 � X1. Note that X1 ∈ AY

implies Λ(X1,Y) ∈ A and X2 � X1 implies Λ(X2,Y) ≥Λ(X1,Y). Since A

is monotone we have Λ(X2,Y) ∈ A and X2 ∈ AY.

Property (P3a) : Let Y1,Y2 ∈ C, X1 ∈ AY1 , X2 ∈ AY2 and λ ∈ [0, 1].

Then Λ(X1,Y1) ∈ A and Λ(X2,Y2) ∈ A and the convexity of A guarantees:

λΛ(X1,Y1) + (1− λ)Λ(X2,Y2) ∈ A.

From the concavity of Λ(·, ·) we obtain:

Λ(λ(X1,Y1) + (1− λ)(X2,Y2)) ≥ λΛ(X1,Y1) + (1− λ)Λ(X2,Y2) ∈ A.

The monotonicity of A implies:

Λ(λX1+(1−λ)X2, λY1+(1−λ)Y2) =Λ(λ(X1,Y1) + (1−λ)(X2,Y2)) ∈ A,

and therefore, λX1+(1− λ)X2 ∈ AλY1+(1−λ)Y2 .

The class of systemic risk measures defined in (3.2) is a fairly general rep-

resentation since the aggregation function Λ needs only to be concave and

increasing in one of its arguments and the acceptance set A is only required

to be monotone and convex. As shown in the following Corollary 3.2, such a

risk measure may describe either the possibility of “first aggregate and sec-

ond add the capital”(for example if Λ(X,Y) :=Λ1(X)+Λ2(Y), where Λ2(Y)

could be interpreted as the discounted cost of Y) or the case of “first add

and second aggregate”(for example if Λ(X,Y) :=Λ1(X+Y)).
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Corollary 3.2 Let Λ2 : C → L0(R) be concave, let AY be defined in (3.1),

where the function Λ has one of the following forms:

Λ(Z,Y) = Λ1(Z) + Λ2(Y),

Λ(Z,Y) = Λ1(Z+Y).

Then, AY fulfills properties (P1) and (P3a) . Therefore, the map ρ defined

in (3.2) is a quasi-convex systemic risk measure under the assumptions (P4)

and (P5); it is a convex systemic risk measure under the assumptions (P4)

and (P6).

We now turn to the class of truly quasi-convex systemic risk measures defined

by (3.3), which represents the generalization of the quasi-convex risk measure

in (1.6) in the one-dimensional case.

Proposition 3.3 Let θ : C → R. Then the set

AY :=
{
Z ∈ L0(RN ) | Λ1(Z) ∈ Bθ(Y)

}
, Y ∈C,

satisfies properties (P1) and (P2a). The map ρ defined in (2.1) is given by

ρ(X) := inf{π(Y) ∈ R | Y ∈ C, Λ1(X) ∈ Bθ(Y)} , (3.3)

and under the assumptions (P4) and (P5) is a quasi-convex systemic risk

measure.

Proof. Property (P1): Let X1 ∈ AY and X2 � X1. Note that X1 ∈ AY

implies Λ1(X1) ∈ Bθ(Y) and X2 � X1 implies Λ1(X2) ≥Λ1(X1). Since Bx

is a monotone set for all x, we have Λ1(X2) ∈ Bθ(Y) and X2 ∈ AY.

Property (P2a): Fix Y1,Y2 ∈ C, X1 ∈ AY1 , X2 ∈ AY2 and λ ∈ [0, 1].

Then Λ1(X1) ∈ Bθ(Y1) and Λ1(X2) ∈ Bθ(Y2). From the concavity of Λ1 we

obtain:

Λ1(λX1+(1−λ)X2) ≥ λΛ1(X1) + (1−λ)Λ1(X2) ∈ λBθ(Y1)+(1−λ)Bθ(Y2.)

Since (Bx)x∈R is an increasing family and each Bx is convex, we deduce

λBθ(Y1) + (1− λ)Bθ(Y2) ⊆ Bmax{θ(Y1),θ(Y2)}. (3.4)

Suppose that max(θ(Y1),θ(Y2)) = θ(Y1), using the monotonicity of the

set Bθ(Y1) we deduce

Λ1(λX1+(1− λ)X2) ∈ Bθ(Y1),
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and λX1+(1− λ)X2 ∈ AY1 , so that property (P2a) is satisfied with α = 1.

In the risk measure (3.3) we are not allowing to add capital to X before the

aggregation takes place, as the quasi-convexity property of ρ would be lost

in general. Next, we contemplate this possibility (i.e. we consider conditions

of the type Λ(X,Y) ∈ Bθ(Y)) in the systemic risk measures (3.6) and (3.7)

but only under some non trivial restrictions: for the case (3.6) we impose

conditions on the aggregation function Λ that are made explicit in equation

(3.5) and in the Example 3.5. In contrast, for the case (3.7) we consider

a general aggregation function Λ, but we restrict the family of acceptance

sets to Bπ(Y), where π is positively linear and represents the risk level of the

acceptance family.

Proposition 3.4 Let θ : C → R and

AY :=
{
Z ∈ L0(RN ) | Λ(Z,Y) ∈ Bθ(Y)

}
, Y ∈C,

where Λ(·,Y) : L0(RN ) → L0(R) is �-increasing and concave for all Y ∈C.
Assume in addition that:

θ(Y2) ≥ θ(Y1) ⇒ Λ(X,Y2) ≥Λ(X,Y1) for all X ∈L0(RN ). (3.5)

Then properties (P1) and (P2) hold. The map ρ defined in (2.1) is given by

ρ(X) := inf{π(Y) ∈ R | Y ∈ C, Λ(X,Y) ∈ Bθ(Y)} (3.6)

and is a quasi-convex systemic risk measure.

Proof. Property (P1): Let X1 ∈ AY and X2 � X1. Note that X1 ∈ AY

implies Λ(X1,Y) ∈ Bθ(Y) andX2 � X1 implies Λ(X2,Y) ≥Λ(X1,Y). Since

Bθ(Y) is a monotone set, we have Λ(X2,Y) ∈ Bθ(Y) and X2 ∈ AY.

Property (P2): Fix m ∈ R, Y1,Y2 ∈ C such that π(Y1) ≤ m and π(Y2) ≤
m, λ ∈ [0, 1] and take X1 ∈ AY1 and X2 ∈ AY2 . Then Λ(X1,Y1) ∈ Bθ(Y1)

and Λ(X2,Y2) ∈ Bθ(Y2). Then, w.l.o.g. we may assume that θ(Y2) ≥
θ(Y1). Since (Bx)x∈R is an increasing family, we have Bθ(Y1) ⊆ Bθ(Y2).

Condition (3.5) implies Λ(X1,Y2) ≥Λ(X1,Y1) ∈ Bθ(Y1) ⊆ Bθ(Y2), so that

Λ(X1,Y2) ∈ Bθ(Y2). From the concavity of Λ(·,Y2) and the convexity of

Bθ(Y2) we obtain:

Λ(λX1+(1− λ)X2,Y2) ≥ λΛ(X1,Y2) + (1− λ)Λ(X2,Y2) ∈ Bθ(Y2).

Hence Λ(λX1+(1 − λ)X2,Y2) ∈ Bθ(Y2) which means: λX1+(1 − λ)X2 ∈
AY2 . Since π(Y2) ≤ m, property (P2) holds with Y = Y2.
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Example 3.5 Let θ : C → R and let Λ be defined by

Λ(X,Y) = g(X, θ(Y)),

where g(·, z) : RN → R is increasing and concave for all z ∈ R and g(x, ·) :
R → R is increasing for all x ∈ R

N . Then Λ satisfies all the assumptions

in Proposition 3.4. Examples of functions g satisfying these conditions are:

g(x, z) = f(x) + h(z),

with f increasing and concave and h increasing, or

g(x, z) = f(x)h(z)

with f increasing, concave and positive and h increasing and positive.

Proposition 3.6 Suppose that C ⊆ L0(RN ) is a convex set such 0 ∈C and

C + R
N
+ ∈ C. Assume in addition that π : C → R satisfies π(u) = 1 for a

given u ∈ R
N
+ , u 6= 0, and

π(α1Y1 + α2Y2) = α1π(Y1) + α2π(Y2)

for all αi ∈ R+ and Yi ∈ C. Let

AY :=
{
Z ∈ L0(RN ) | Λ(Z,Y) ∈ Bπ(Y)

}
,

where Λ is concave and Λ(X, ·) : C → L0(R) is increasing (with respect to

the componentwise ordering) for all X ∈ L0(RN ). Then the family of sets

AY fulfill properties (P1) and (P2). The map ρ defined in (2.1) is given by

ρ(X) = inf{π(Y) ∈ R | Y ∈ C, Λ(X,Y) ∈ Bπ(Y)} (3.7)

and is a quasi-convex systemic risk measure.

Proof. Property (P1): it follows immediately from the monotonicity of Bx,

x ∈ R.

Property (P2): Let Y1,Y2 ∈ C, m ∈ R and assume w.l.o.g. that π(Y1) ≤
π(Y2) ≤ m. Let X1 ∈ AY1 , X2 ∈ AY2 and λ ∈ [0, 1]. Then Λ(X1,Y1) ∈
Bπ(Y1) and Λ(X2,Y2) ∈ Bπ(Y2). Because (Bx)x∈R is increasing, we get

Λ(X1,Y1) ∈ Bπ(Y2). Set

Ŷ1 := Y1 + (π(Y2)− π(Y1))u ∈ C.

Then Ŷ1 ≥ Y1 and, since Λ(X, ·) is increasing, Λ(X1, Ŷ1) ≥ Λ(X1,Y1) ∈Bπ(Y2)

and

Λ(X1, Ŷ1) ∈ Bπ(Y2)
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because of the monotonicity of Bπ(Y2). Letting

Y := λŶ1 + (1− λ)Y2 ∈ C ,

and using the properties of π we obtain:

π(Y) = π(λ[Y1 + (π(Y2)− π(Y1))u] + (1− λ)Y2)

= λπ(Y1 + (π(Y2)− π(Y1))u) + (1− λ)π(Y2) = π(Y2) ≤ m.

From the concavity of Λ(·, ·) and the convexity of Bπ(Y2) we obtain:

Λ(λX1+(1− λ)X2,Y) = Λ(λX1+(1− λ)X2, λŶ1 + (1− λ)Y2)

= Λ(λ(X1, Ŷ1) + (1− λ)(X2,Y2))

≥ λΛ(X1, Ŷ1) + (1− λ)Λ(X2,Y2)

∈ Bπ(Y2) = Bπ(Y),

and the monotonicity of Bπ(Y) implies:

Λ(λX1+(1− λ)X2,Y) ∈ Bπ(Y),

which means: λX1+(1− λ)X2 ∈ AY. Hence, property (P2) is satisfied.

4 Scenario-dependent Allocations

We will now focus on the particularly interesting family of sets C of risk level

vectors Y defined by

C ⊆ {Y ∈ L0(RN ) |
N∑

n=1

Y n ∈ R} =: CR. (4.1)

A vector Y ∈ C as in (4.1) can be interpreted as cash amount
∑N

n=1 Y
n ∈ R

(which is known today because it is deterministic) that at the future time

horizon T is allocated to the financial institutions according to the realized

scenario. That is, for i = 1, ..., N , Y i(ω) is allocated to institution i in

case scenario ω has been realized at T , but the total allocated cash amount∑N
n=1 Y

n stays constant over the different scenarios. One could think of

a lender of last resort or a regulator who at time T has a certain amount

of cash at disposal to distribute among financial institutions in the most

efficient way (with respect to systemic risk) according to the scenario that

has been realized. Restrictions on the admissible distributions of cash are

implied by the choice of set C. For example, choosing C = R
N corresponds

to the fact that the distribution is deterministic, i.e. the allocation to each
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institution is already determined today, whereas for C = CR the distribution

can be chosen completely freely depending on the scenario ω that has been

realized. Note that the latter case includes potential negative cash alloca-

tions, i.e. withdrawals of cash from certain components which allows for

cross-subsidization between financial institutions. The (more realistic) situ-

ation of scenario-dependent cash distribution without cross-subsidization is

represented by the set

C := {Y ∈ CR | Y i ≥ 0, i = 1, ...N}.

In this section we give some structural results and examples concerning

systemic risk measures defined in terms of sets C as in (4.1). In Section 5

and 6 we then present two more extensive examples of systemic risk measures

that employ specific sets C of type (4.1).

In the following we always assume the componentwise order relation on

L0(RN ), i.e. X1 � X2 if Xi
1 ≥ Xi

2 for all components i = 1, ..., N , and we

start by specifying a general class of quasi-convex systemic risk measures

that allow the interpretation of the minimal total amount needed to secure

the system by scenario-dependent cash allocations as described above. To

this end let C ⊆ CR be such that

C + R
N
+ ∈ C. (4.2)

Let the valuation π(Y) of a Y ∈ C be given by π̃(
∑N

n=1 Y
n) for π̃ : R → R

increasing (for example the present value of the total cash amount
∑N

n=1 Y
n

at time T ). Further, let (Ax)x∈R be an increasing family (w.r.t. x) of

monotone, convex subsets Ax ⊆ L0(RN), and let θ : R → R be an increasing

function. We can then define the following family of systemic risk measures

ρ(X) := inf{π(Y) ∈ R | Y ∈ C, X+Y ∈ Aθ(
∑

Y n)} , (4.3)

i.e. the risk measure can be interpreted as the valuation of the minimal total

amount needed at time T to secure the system by distributing the cash in the

most effective way among institutions. Note that here the criteria whether a

system is safe or not after injecting a vector Y is given by the acceptance set

Aθ(
∑

Y n) which itself depends on the total amount
∑N

n=1 Y
n. This gives, for

example, the possibility of modeling an increasing level of prudence when

defining safe systems for higher amounts of the required total cash. This

effect will lead to truly quasi-convex systemic risk measures as the next

proposition shows:

Proposition 4.1 The family of sets

AY := Aθ(
∑

Y n) −Y, Y ∈ C,
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fulfills properties (P1) and (P2) with respect to the componentwise order

relation on L0(RN ). Hence the map (4.3) is a quasi-convex risk measure. If

further π̃ is convex and θ is constant then the map (4.3) is even a convex

risk measure.

Proof. Property (P1) follows immediately from the monotonicity of Ax, x ∈
R. To show Property (P2) let Y1,Y2 ∈ C, m ∈ R, and π̃(

∑N
n=1 Y

n
1 ) ≤

π̃(
∑N

n=1 Y
n
2 ) ≤ m, where w.l.o.g.

∑
Y n
1 ≤

∑
Y n
2 . Further, let X1 ∈ AY1 ,

X2 ∈ AY2 and λ ∈ [0, 1]. Because (Ax)x∈R and θ are increasing we get

X1 +Y1 ∈ Aθ(
∑

Y n
2 ). Set

Ŷ1 := Y1 + (
∑

Y n
2 −

∑
Y n
1 , 0, ..., 0) ∈ C .

Then

X1 + Ŷ1 ∈ Aθ(
∑

Y n
2 )

because of the monotonicity of Aθ(
∑

Y n
2 ), and

λ(X1 + Ŷ1) + (1− λ)(X2 +Y2) ∈ Aθ(
∑

Y n
2 )

because of the convexity of Aθ(
∑

Y n
2 ). Furthermore, with

Y := λŶ1 + (1− λ)Y2 ,

we get λX1 + (1 − λ)X2 ∈ AY and π(Y) = π(Y2) ≤ m since
∑N

n=1 Y
n =∑N

n=1 Y
n
2 . Hence, property (P2) is satisfied. The final statement follows

from Frittelli and Scandolo [2006].

Note that the quasi-convex risk measures in (4.3) are obtained in a similar

way as the ones in (3.6), the main difference being that the risk measures

in (3.6) are defined on an aggregated level in terms of one-dimensional ac-

ceptance sets while the ones in (4.3) are defined in terms of general multi-

dimensional acceptance sets. However, in the case C = CR the next propo-

sition shows that every systemic risk measure of type (4.3) can be written

as a univariate quasi-convex risk measure applied to the sum of the risk

factors. That is, when free scenario-dependent allocations with unlimited

cross-subsidization between the financial institutions are possible, the sum

as aggregation rule might not only be acceptable as mentioned in the in-

troduction but is the canonical way of aggregation and the canonical way

of measuring systemic risk is of type (1.4). However, while this situation

and insight is relevant for a portfolio manager, the typical financial systems

does not allow for unlimited cross-subsidization and more restricted sets C
together with more appropriate aggregation rules have to be considered.
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Proposition 4.2 Let C = CR. Then ρ in (4.3) is of the form

ρ(X) = ρ̃(
N∑

n=1

Xn) (4.4)

for some quasi-convex risk measure

ρ̃ : L0(R) → R := R ∪ {−∞} ∪ {∞} .

Proof. Let X1,X1 ∈ L0(RN ) be such that
∑N

n=1X
n
1 =

∑N
n=1X

n
2 . In the

notation of the proof of Lemma 2.3, let Y1 ∈ B(X1) and set

Y2 := Y1 + (X1 −X2) ∈ C .

Then X1 +Y1 = X2 +Y2, and thus Y2 ∈ B(X2) because
∑
Y n
1 =

∑
Y n
2

which implies Aθ(
∑

Y n
1 ) = Aθ(

∑
Y n
2 ). Since π(Y1) = π(Y2) this implies

ρ(X1) ≥ ρ(X2). Interchanging the roles of X1 and X2 yields ρ(X1) =

ρ(X2), and the map ρ̃ : L0(R) → R given by

ρ̃(X) := ρ(X) ,

where X ∈ L0(RN) is such that X =
∑N

n=1X
n is well-defined. For X1,X2 ∈

L0(R) define

Xi := (Xi, 0, ..., 0) ∈ L0(RN) , i = 1, 2 .

Then

ρ̃(λX1 + (1− λ)X2) = ρ(λX1 + (1− λ)X2) ≤ max{ρ(X1), ρ(X2)}
= max{ρ̃(X1), ρ̃(X2)} .

Further, if X1 ≤ X2 then X1 ≤ X2 and

ρ̃(X1) = ρ(X1) ≥ ρ(X2) = ρ̃(X2) .

So ρ̃ : L0(R) → R is a quasi-convex risk measure and ρ(X) = ρ̃(
∑N

n=1X
n).

We conclude this Section by two examples that compare the risk measure-

ment by “injecting after aggregation”as in (1.5) versus the risk measurement

by “injecting before aggregation”as in (1.9) for different sets C ⊂ CR in the

situation of the worst case and the expected shortfall acceptance sets, re-

spectively.
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4.1 Example: Worst Case Acceptance Set

In this example we measure systemic risk by considering aggregated risk

factors defined in terms of the aggregation rule

Λ(X) :=
N∑

i=1

−(Xi)
−.

Further, we consider the acceptance set AW associated to the worst case risk

measure, that is a system X is acceptable (or safe) if
∑N

i=1−(Xi)
− ∈ A

W

where A
W := L0

+(R), and we denote by ρW : L0(R) → R the univariate

worst case risk measure defined by

ρW (X) := inf
{
m ∈ R | X +m ∈ A

W
}
.

The possible sets C are on one hand the deterministic allocations C = R
N

and on the other hand the family of constrained scenario-dependent cash

allocations of the form

Cγ := {Y ∈ CR | Yi ≥ γi , i = 1, ...N} ,

where γ := (γ1, ..., γN ), γi ∈ [−∞, 0]. Note that for γ := (−∞, ...,−∞) this

family of subsets includes C∞ = CR. Finally, we let the valuation be

π(Y) :=

n∑

i=1

Yi.

The objective of the following proposition is to analyze and relate the sys-

temic risk measurement by “injecting cash after aggregation”:

ρag(X) := inf
{
y ∈ R | Λ(X) + y ∈ A

W
}
= ρW (

N∑

i=1

−(Xi)−) ,

to the systemic risk measurement by “injecting cash before aggregation”,

both in the case of deterministic cash allocations:

ρR
N

(X) := inf
{
π(Y)| Y ∈ R

N ,Λ(X+Y) ∈ A
W
}
,

as well as in the case of scenario-dependent cash allocations:

ργ(X) := inf
{
π(Y)| Y ∈ Cγ ,Λ(X+Y) ∈ A

W
}
.
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Proposition 4.3 It holds that

ρR
N

(X) =

N∑

i=1

ρW (Xi) ≥ ρag(X)

ργ(X) = ρW

(
N∑

i=1

(Xi
I{Xi≤−γi} − γiI{Xi≥−γi})

)
≤ ρag(X) .

In particular, for γ = 0 := (0, ..., 0) we get ρ0(X) = ρag(X), and for γ =

−∞ := (−∞, ...,−∞) we get ρ−∞(X) = ρW (
∑N

i=1X
i).

Before we prove the proposition we make some comments on the results.

We see that if we interpret the risk measure as capital requirement (which

in this situation also is possible for ρag since the aggregation Λ(X) can be

interpreted as a monetary amount), the capital requirement when “inject-

ing before aggregation”with deterministic allocations is higher than the one

when “injecting after aggregation”. When allowing for “injecting before ag-

gregation”with scenario-dependent cash allocations, the gained flexibility in

allocating the cash leads to decreasing capital requirements. For fully flexi-

ble allocations the minimum amount ρ−∞(X) = ρW (
∑N

i=1X
i) is obtained,

which corresponds to the representation given in Proposition 4.2 in terms

of the sum as aggregation rule. Obviously, here the relations between ρag,

ρR
N

, and ργ depend on the choice of the acceptance set in conjunction with

the aggregation function as is illustrated in the next example.

Further, from the proof below it follows that in the case C = R
N there

exists a unique allocation Y∗ ∈ R
N for a given X ∈ L0(RN ) such that

ρR
N

(X) = π(Y∗), which implies an unambiguous ranking of the systemic

riskiness of the institutions. On the other hand, in the case C = Cγ there

generically exist infinitely many scenario-dependent allocations Y∗ ∈ Cγ for

a given X ∈ L0(RN ) for which the infimum of the risk measure ργ(X) =

π(Y∗) is obtained. In that case one needs to discuss further how to pick an

allocation and to establish a ranking of systemic riskiness of the institutions.

Proof. Note that for X ∈ L0(RN ) it holds that Λ(X) ∈ A
W iff Xi ∈

A
W , i = 1, ..., N . Thus we can rewrite

ρR
N

(X) := inf

{
N∑

i=1

Y i|Y ∈ R
N ,X+Y ∈ (AW )N

}
,

and obviously get

ρR
N

(X) =

N∑

i=1

−ess.inf(Xi) =

N∑

i=1

ρW (Xi),
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and for X ∈ L0(RN ) the allocation Ŷ := (ess.inf(X1), ..., ess.inf(XN )) is the

unique Ŷ ∈ R
N such that ρR

N
(X) = π(Ŷ).

For ργ we analogously rewrite

ργ(X) := inf

{
N∑

i=1

Y i|Y ∈ Cγ ,X+Y ∈ (AW )N

}
.

Now consider first the optimization problem

ρ̃(X) := inf

{
ess.sup(

N∑

i=1

Y i)|Y ∈ L0(RN ), Y i ≥ γi ,X+Y ∈ (AW )N

}
.

(4.5)

Then clearly ρ̃ ≤ ργ and Y∗ := −(Xi
I{Xi≤−γi} − γiI{Xi≥−γi})i=1,...N is an

optimal solution of (4.5). Now define

Ỹ := Y∗ + (ess.sup(

N∑

i=1

Y ∗
i )−

N∑

i=1

Y ∗
i , 0, ..., 0).

Then Ỹ ∈ Cγ and ργ(X) ≤ π(Ỹ) = ess.sup(
∑N

i=1 Y
∗
i ) = ρ̃(X) ≤ ργ(X), and

thus

ργ(X) =

N∑

i=1

Ỹi = ess.sup

(
N∑

i=1

Y ∗
i

)

= ess.sup

(
N∑

i=1

−(Xi
I{Xi≤−γi} − γiI{Xi≥−γi})

)
.

Finally we remark that generically for a given X ∈ L0(RN ) the above allo-

cation Ỹ ∈ Cγ is not unique such that ργ(X) = π(Ỹ). In fact, any allocation

of the form

Y∗ + (Z1, ..., ZN )

with (Z1, ..., ZN ) ∈ L0(RN ) such that
∑N

i=1 Zi = ess.sup(
∑N

i=1 Y
∗
i )−

∑N
i=1 Y

∗
i

will satisfy the desired property.

4.2 Example: Expected Shortfall Acceptance Set

Now consider the acceptance set associated to the “Expected Shortfall”risk

measure ρES (at some given quantile level):

A
ES := {X ∈ L0(R) | ρES(X) ≤ 0}.
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See e.g. Föllmer and Schied [2004] for the definition of ρES. Everything else

is assumed to be as in Example 4.1. Then

ρag(X) = ρES(

N∑

i=1

−(Xi)−) .

For ρR
N

and ργ , however, AES gives the same result as AW , i.e.

ρR
N

(X) =
N∑

i=1

ρW (Xi) ≥ ρag(X) (4.6)

ργ(X) = ρW

(
N∑

i=1

(Xi
I{Xi≤−γi} − γiI{Xi≥−γi})

)
. (4.7)

Indeed, by the definition of ρES it immediatly follows that
∑N

i=1−(Xi)− ∈
A
ES if and only if Xi ∈ A

W , i = 1, ..., N , and (4.6) and (4.7) is then ob-

tained from Proposition 4.3. So opposite to the situation in Example 4.1,

here the risk measure when “injecting before aggregation”even with scenario-

dependent allocations might be higher than the one when “injecting after

aggregation”. Indeed, we easily see that we always have ρ0 ≥ ρag, and gener-

ically even ρ−∞ ≥ ρag holds. This illustrates that these kind of relations

highly depends on the interplay between aggregation and acceptance set.

5 Gaussian Systems

In this Section we assume a Gaussian financial system, i.e. we let X =

(X1, · · · ,XN ) be anN -dimensional Gaussian random vector with covariance

matrix Q, where [Q]ii := σ2i , i = 1, · · · , N , and [Q]ij := ρi,j for i 6= j,

i, j = 1, · · · , N , and mean vector µ := (µ1, · · · , µN ), i.e. X ∼ N(µ,Q). The

systemic risk measure we consider is given by

ρ(X) := inf

{
N∑

i=1

Y i | Y ∈ C ⊆ CR , Λ(X+Y) ∈ Aγ

}
, (5.1)

where the set CR of scenario-dependent cash allocations is defined in (4.1),

the aggregation rule is given by Λ(X) :=
∑N

i=1−(Xi − di)
− for di ∈ R, and

the acceptance set is

Aγ :=
{
Z ∈ L0(R) | E [Z] ≥ −γ

}
(5.2)

for some γ ∈ R
+. Here, di in the aggregation rule denotes some critical

liquidity level of institution i, i = 1, ...N , and the risk measure is concerned
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with the expected total shortfall below these levels in the system. In Sub-

section 5.1 we compute the allocation and the systemic risk measure in case

of deterministic cash allocations C := R
N, and in Subsection 5.2 we allow

for more flexible scenario-dependent allocations of the form

C :=

{
Y ∈ L0(Rn) | Y = m+ αID, m, α ∈ R

N ,

N∑

i=1

αi = 0

}
⊆ CR, (5.3)

where ID is the indicator function of the event D :=
{∑N

i=1X
i ≤ d

}
for

some d ∈ R. Note that the condition
∑N

i=1 αi = 0 implies that
∑N

i=1 Y
i is

constant a.s. Cash allocations in (5.3) can be interpreted as the flexibility

to let the allocation depend on whether the system at time T is in trouble

or not, represented by the events that
∑N

i=1X
i is less or greater than some

critical level d, respectively. In Subsection 5.3 we then apply the results to

a Gaussian system that is interconnected by the flow of capital between the

institutions through a system of interacting Ornstein-Uhlenbeck diffusions.

5.1 Deterministic Cash Allocations

We now consider the case C = R
N and we are interested in computing the

systemic risk measure

ρ(X) := inf

{
N∑

i=1

mi | m = (m1, · · · ,mN ) ∈ R
N , Λ(X+m) ∈ Aγ

}
,

(5.4)

where for notational clarity we write m instead of Y for deterministic cash

allocations. We thus need to minimize the objective function
∑N

i=1mi over

R
N under the constrained Λ(X+m) ∈ Aγ , which clearly is equivalent to the

constraint
N∑

i=1

E
[
(Xi +mi − di)

−] = γ . (5.5)

This constrained optimization problem can be solved with the associated

Lagrangian

L(m1, ...,mN , λ) :=
N∑

i=1

mi + λ(
N∑

i=1

ψi(mi)− γ) (5.6)

where ψi(mi) := E
[
(Xi +mi − di)

−]. Since Xi ∼ N(µi, σ
2
i ), one obtains

for i = 1, ..., N that

ψi(mi) =
σi√
2π

exp

[
−(di − µi −mi)

2

2σ2i

]
− (mi + µi − di)Φ(

di − µi −mi

σi
),

(5.7)
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where Φ(x) =
∫ x
+∞

1√
2π
e−t2/2dt. By direct computation this leads to

∂L(m1, ...,mN , λ)

∂mi
= 1 + λΦ(

di − µi −mi

σi
). (5.8)

By solving the Lagrangian system we then obtain the critical point m∗ =

(m∗
1, · · · ,m∗

N ) given by

m∗
i = di − µi − σiR,

where R solves the equation

P (R) := RΦ(R) +
1√
2π

exp

[
−R

2

2

]
=

γ
∑N

i=1 σi
. (5.9)

It is easily verified that m∗ is indeed a global minimum and thus the optimal

cash allocation associated with the risk measure (5.4). The unique optimal

cash allocation m∗ now also induces a ranking of the institutions according

to systemic riskiness, and we can discuss the dependence of this ranking

with respect to µi and σi:

1. ∂mi

∂µi
= −1: the systemic riskiness decreases with increasing mean.

2. ∂mi

∂σi
> 0: the systemic riskiness increases with increasing volatility. In

order to show ∂mi

∂σi
> 0 we first note that R is a solution of (5.9) if and

only if R is negative. Indeed, for R ≥ 0 the left-hand side of (5.9) is

always strictly positive, the right-hand side is negative. Thus

∂mi

∂σi
= −R− σi

∂R

∂σi
. (5.10)

By differentiating (5.9) we obtain

∂P

∂σi
=
∂P

∂R

∂R

∂σi
= − γ

(
∑N

k=1 σk)
2
. (5.11)

Since ∂P
∂R = Φ(R), we can compute ∂R

∂σi
and substitute it in (5.10):

∂mi

∂σi
= −R+

σiγ

(
∑N

k=1 σk)
2

1

Φ(R)

= −R+
σi(
∑N

k=1 σk)P (R)

(
∑N

k=1 σk)
2Φ(R)

= −R+
σi(RΦ(R) +

1√
2π

exp
[
−R2

2

]
)

(
∑N

k=1 σk)Φ(R)

= (
σi∑N
k=1 σk

− 1)R +
σi∑N
k=1 σk

1√
2πΦ(R)

exp

[
−R

2

2

]
.

Since R must be negative, this implies ∂mi

∂σi
> 0.
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5.2 A Class of Scenario-Dependent Allocations

We now allow for different allocations of the total capital at disposal de-

pending on which state the system is in. More precisely, we differentiate

between the two states that D := {S ≤ d} and Dc = {S > d} for some

level d ∈ R and S :=
∑N

i=1X
i, and consider allocations C given in (5.3).

The systemic risk measure now becomes

ρ(X) := inf

{
N∑

i=1

mi| m+ αID ∈ C , Λ(X+m+ αID) ∈ Aγ

}
.

To compute the risk measure in this case we now need to minimize the

objective function
∑N

i=1mi over (m, α) ∈ R
2N under the constraints

N∑

i=1

αi = 0 and

N∑

i=1

E
[
(Xi +mi + αiID − di)

−] = γ .

In analogy to the Section 5.2 we apply the method of Lagrange multipliers

to minimize the function

φ(m1, · · · ,mN , α1, · · · , αN−1, λ) =
N∑

i=1

mi + λ (Ψ(m1, · · · ,mN , α1, · · · , αN−1)− γ) , (5.12)

where

Ψ(m1, · · · ,mN , α1, · · · , αN−1) :=

N−1∑

i=1

E
[
(Xi +mi + αiID − di)

−]+ E


(XN +mN −

N−1∑

j=1

αjID − dN )−


 ,

as follows.

1. By computing the derivatives with respect to αi, i = 1, · · · , N − 1:
∂φ
∂αi

= 0 if and only if

Fi,S(di −mi − αi, d) = FN,S(dN −mN +

N−1∑

j=1

αj , d) (5.13)

for i = 1, · · · , N − 1, where Fi,S and FN,S are the joint distribution

functions of (Xi, S) and (XN , S) respectively.
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2. By computing the derivatives with respect to mi, for i = 1, · · · , N − 1:
∂φ
∂mi

= 0 if and only if

Φ(
di − µi −mi

σi
) + Fi,S(di −mi, d) =

Φ(
dN − µn −mN

σn
) + FN,S(dN −mN , d), (5.14)

for i = 1, · · · , N − 1.

3. By computing the derivatives with respect to λ: ∂φ
∂λ = 0 if and only if

Ψ(m1, · · · ,mN , α1, · · · , αN−1) = γ, where

Ψ(m1, · · · ,mN , α1, · · · , αN−1) =

N∑

i=1

ψi(mi)

+
N−1∑

i=1

[(mi − di)FN,S(di −mi, d)− (mi + αi − di)Fi,S(di −mi − αi, d)

+

∫ di−mi

di−mi−αi

∫ d

−∞
xFi,S(x, y)dydx

]
+ (mN − dN )FN,S(dN −mN , d)

− (mN −
N−1∑

j=1

αj − dN )FN,S(dN −mN +
N−1∑

j=1

αj , d)

+

∫ dN−mN

dN−mN+
∑N−1

j=1 αj

∫ d

−∞
xFN,S(x, y)dydx,

where ψi, i = 1, · · · , N , are defined in (5.7).

From (5.12) and (5.13) we immediately obtain that if the Xi, i = 1, · · · , N ,

are identically distributed, then the optimal solution is obtained for αi = 0,

i = 1, · · · , N , and corresponds to the one obtained explicitly in Section 5.1

for deterministic injections.

We now present numerical illustrations of our results in the simple case with

two banks.

In Table 1 we set the means µi = 0 for i = 1, 2, the standard deviations

σ1 = 1, σ2 = 3, the acceptance level γ = 0.7 and the critical level d = 2.

The last 2 columns show the sensitivities with respect to the correlation

for deterministic allocation (case α = 0, computed in Section 5.1) and for

scenario-dependent allocation, respectively. We observe that for highly pos-

itively correlated banks the scenario-dependent allocation does not change

the total capital requirement m1 + m2. Indeed, as expected, if the banks

are moving together, one may have to subsidize both of them. However,
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ρ1,2 ↓ Deterministic Random

m1 0.5772 0.1597

m2 1.7316 1.7230

-0.8 α 0 2.8704

ρ = m1 +m2 2.3088 1.8827

m1 0.5772 0.2908

m2 1.7316 1.7776

-0.5 α 0 2.3161

ρ = m1 +m2 2.3088 2.0683

m1 0.5772 0.4490

m2 1.7316 1.7796

0 α 0 1.7208

ρ = m1 +m2 2.3088 2.2286

m1 0.5772 0.5463

m2 1.7316 1.7461

0.5 α 0 1.3389

ρ = m1 +m2 2.3088 2.2924

m1 0.5772 0.5737

m2 1.7316 1.7314

0.8 α 0 0.7905

ρ = m1 +m2 2.3088 2.3053

Table 1: Sensitivity with respect to correlation.

when they are negatively correlated, one benefits from scenario-dependent

allocation since the total allocation m1 +m2 is lower in that case.

In Table 2 we set the means µi = 0 for i = 1, 2, the correlation ρ = −0.5,

the standard deviation σ1 = 1, the acceptance level γ = 0.7 and the critical

level d = 2 and we show sensitivity with respect to the standard deviation

σ2 of the second bank. We observe that for equal marginals (σ1 = σ2 = 1)

random allocation does not change the total capital requirement, as already

stated in Section 5.2. As σ2 increases, the systemic risk measure increases

and the allocation increases with increasing standard deviation in agreement

with the sensitivity analysis presented in Section 5.1 for the deterministic

case. Also we observe that scenario-dependent allocation allows for smaller

total capital requirement m1 +m2.
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σ2 ↓ Deterministic Random

m1 0.1008 0.1008

m2 0.1031 0.1031

1 α 0 0.0002

ρ = m1 +m2 0.2039 0.2039

m1 0.8168 0.3167

m2 4.0816 4.1295

5 α 0 3.5987

ρ = m1 +m2 4.8984 4.4462

m1 1.1417 0.4631

m2 11.3964 11.4333

10 α 0 6.9909

ρ = m1 +m2 12.5381 11.8963

Table 2: Sensitivity with respect to standard deviation.

5.3 Application to Models of Borrowing and Lending

We consider the Gaussian vector Xt = (Xi
t , i = 1, · · · , n) generated by the

following dynamics

dXi
t =




N∑

j=1

pi,j(X
j
t −Xi

t)


 dt+ σi

(
ρidW

0
t +

√
1− ρ2i dW

i
t

)
, i = 1, · · · , N,

(5.15)

where
(
W 0

t ,W
i
t , i = 1, · · · , N

)
are independent standard Brownian motions

and W 0
t is a common noise. The lending-borrowing preferences pi,j are

nonnegative and symmetric: pi,j = pj,i. This model is studied in detail

in Carmona et al. [2015] in the mean-field context where pi,j = p/N with

p ≥ 0. It is shown that in that case the dynamics (5.15) emerges as a Nash

equilibrium of a specific stochastic game.

The total “capitalization”is given by:

N∑

i=1

Xi
t =

N∑

i=1

xi0 +

(
N∑

i=1

σiρi

)
W 0

t +

N∑

i=1

σi
√

1− ρ2iW
i
t

D
=

N∑

i=1

xi0 + αBt,

where Bt is a standard Brownian motion and

α2 =

(
N∑

i=1

σiρi

)2

+

N∑

i=1

(σi)2(1− ρ2i ).
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We are interested in the system at a given time t > 0 and in quantities

such as the liquidity available at time t defined by
∑N

i=1(X
i
t − di)

+, or the

shortfall −∑N
i=1(X

i
t − di)

−.

The class C of random vectors Y is for instance chosen as Y = wY

where wi’s are weights, and Y = Yt is defined by

Yt = y0 + s

(
ρ0W

0
t +

√
1− ρ20Wt

)
,

and Wt is a Brownian motion independent of W 0
t . This reflects that the

money which can be allocated to banks can be correlated to the common

factor driving the system. In fact the choice of Wt is general ranging from

a linear combination of the W i’s to being independent of the W i’s. This

situation corresponds to using securities (in this case bonds) as allocation

at the future time t. To keep the example simple we consider the case with

s = 0, that is Yt = y0, and constant injection as we did in Section 5.1.

5.3.1 Homogeneous Network

Here we consider the fully homogeneous case where xi0 = x0, pi,j = p/N ,

σi = σ, ρi = ρ, di = d, so that the model becomes

dXi
t =


 p
N

N∑

j=1

(Xj
t −Xi

t)


 dt+ σ

(
ρdW 0

t +
√
1− ρ2dW i

t

)
, i = 1, · · · , N,

or

dXi
t = p

[
X̄t −Xi

t

]
dt+ σ

(
ρdW 0

t +
√

1− ρ2dW i
t

)
, i = 1, · · · , N, (5.16)

where

X̄t =
1

N

N∑

j=1

Xj
t .

In order to apply the results from Section 5.1, we will need to compute the

distribution of a single Xi
t . The joint distribution of the Xi

t ’s being obviously

Gaussian, Xi
t is Gaussian with mean µi and variance σ2i in the notation of

Section 5.1. A straightforward computation from (5.16) gives:

µi = E(Xi
t) = x0,

and

σ2i = σ2(1− ρ2)(1− 1

N
)

(
1− e−2pt

2p

)
+ σ2

(
ρ2 +

1− ρ2

N

)
t. (5.17)
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Note that, even though we only consider marginal distributions in the sys-

temic risk measure proposed in Section 5.1, these marginal distributions

depend on the coupled dynamics of the Xi, in particular on the parameters

p and ρ. For instance, one sees that increasing p, that is increasing liquid-

ity, would decrease σ2i (from σ2t for p = 0 to σ2
(
ρ2 + 1−ρ2

N

)
t for p = ∞),

and therefore, would decrease systemic risk according with our findings in

Section 5.1.

5.3.2 Central Clearing Network

Here we consider a centralized model where bank 1 (for instance) plays a

clearing role and is related to each of the other banks which are not directly

related to each other. That is pi,j = p if i = 1 or j = 1, and pi,j = 0 if i 6= 1

and j 6= 1; xi0 = x0 if i 6= 1; σi = σ if i 6= 1; ρi = ρ if i 6= 1; di = d if i 6= 1.

The model becomes

dX1
t = p

N∑

j=2

(Xj
t −X1

t )dt+ σc

(
ρcdW

0
t +

√
1− ρ2cdW

1
t

)
,

dXi
t = p(X1

t −Xi
t)dt+ σ

(
ρdW 0

t +
√

1− ρ2dW i
t

)
, i = 2, · · · , N,

with initial conditions X1
0 = x10 and Xi

0 = x0 for i = 2, · · · , N . The joint

distribution of the Xi
t ’s is again Gaussian. Choosing x10 = x0 = c0/N , we

get

µi = E(Xi
t) = E(X1

t ) = c0/N.

We turn now to the computation of the variances. Applying Itô’s formula

we get:

dE[(Xi
t)

2] = 2p
(
E(Xi

tX
1
t )− E[(Xi

t)
2]
)
dt+ σ2dt, i = 2, · · · , N,

dE[(X1
t )

2] = 2p
N∑

j=2

(
E(X1

tX
j
t )− E[(X1

t )
2]
)
dt+ σ21dt,

dE(Xi
tX

1
t ) = p

N∑

j=2

(
E(Xi

tX
j
t )− E(Xi

tX
1
t )
)
dt

+ p
(
E[(X1

t )
2]− E(Xi

tX
1
t )
)
dt+ σσcρρcdt, i = 2, · · · , N,

dE(Xi
tX

j
t ) = p

(
E(X1

tX
j
t )− E(Xi

tX
j
t )
)
dt+ p

(
E(X1

tX
i
t)− E(Xi

tX
j
t )
)
dt

+ σ2ρ2dt, i ≥ 2, j ≥ 2, i 6= j.
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By symmetry among the Xi’s for i ≥ 2, we deduce that E[(Xi
t)

2],E(Xi
tX

1
t ),

and E(Xi
tX

j
t ) do not depend on i ≥ 2, j ≥ 2. Accordingly, we define:

E[(Xi
t)

2] = v(t), i ≥ 2,

E(Xi
tX

1
t ) = w(t), i ≥ 2,

E(Xi
tX

j
t ) = χ(t), i ≥ 2, j ≥ 2, i 6= j,

E[(X1
t )

2] = v1(t).

These functions satisfies the differential system Y ′ = pAY +B with:

Y =




v

v1
w

χ


 , A =




−2 0 2 0

0 −2(N − 1) 2(N − 1) 0

1 1 −N N − 2

0 0 2 −2


 , B =




σ2

σ2c
σσcρρc
σ2ρ2


 .

We are interested in v(t) and v1(t). Note that by subtracting x20 to these

four functions it is enough to solve the system with zero initial conditions.

A straightforward but tedious computation shows that:

σ21 = v1(t) = var(X1
t ) = σ2ρ2t

+
1

N

[
(σ2 + 2σσcρρc − 3σ2ρ2)t+

2

p
(σ2c − σσcρρc)

]
+O(

1

N2
),

and

σ2i = v(t) = var(Xi
t) = σ2(1− ρ2)

(
1− e−2pt

2p

)
+ σ2ρ2t

+
1

N

[
(σ2 + 2σσcρρc − 3σ2ρ2)t− σ2(1− ρ2)

(
1− e−2pt

2p

)]
+O(

1

N2
),

to be compared with the exact formula (5.17) in order to compare the sys-

temic risk for a fully connected homogenous network with a central clearing

network. At order one in 1/N , the variance is the same but they may differ

at order 1/N . Writing σ2 +2σσcρρc− 3σ2ρ2 = σ2(1− ρ2)+ 2σρ(σcρc −σρ),

we see that the sign of σcρc − σρ determines which network is most stable,

that is the one with smaller variance according to the conclusion in Section

5.1.

5.3.3 Heterogeneous Networks

In practical situations, the network will be heterogeneous described by a

system like our simplified Gaussian model (5.15). The joint distribution

will be fully characterized by the means µi’s and by the covariance matrix
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Q = [cov(Xi
t ,X

j
t )] which will depend on the parameters of the model, in

particular the preferences pi,j and the individual σi. In that case, for given

coefficients and initial conditions, one will be able to numerically compute

the marginal means and variances needed in our systemic risk measures.

Doing so, one will obtain the optimal allocation m = (mi)i=1,··· ,N and a

ranking of the banks with respect to their systemic risk contributions.

5.3.4 An Example with Random Injections

In order to illustrate the results from Section 5.2, we consider a system of

three banks. If it is fully connected and homogenous as in Section 5.3.1,

then in the context of random injections in Section 5.2, by symmetry, the

optimal mi’s will be equal, the αi’s will also be equal and therefore αi = 0

because of the constraint
∑
αi = 0. Consequently, the injection will simply

be constant as studied in Section 5.3.1.

Now we consider the case a heterogenous network with symmetric prefer-

ences such that p2,3 = p/2 and p1,2 = p1,3 = 0, equal starting points xi0 = x0,

equal volatility σi = σ, and correlation to common noise ρ1, ρ2 = ρ3 = ρ.

The vector X = (X1,X2,X3) satisfies

dX1
t = σ

(
ρ1dW

0
t +

√
1− ρ21dW

1
t

)
,

dX2
t =

p

2

(
X3

t −X2
t

)
dt+ σ

(
ρdW 0

t +
√

1− ρ2dW 2
t

)
,

dX3
t =

p

2

(
X2

t −X3
t

)
dt+ σ

(
ρdW 0

t +
√

1− ρ2
)
dW 2

t .

The bankX1 is uncoupled with the symmetric network (X2,X3). A straight-

forward computation shows that the Gaussian pair (X1
t ,X

2
t +X3

t ) (where

we have aggregated X2 and X3) admits the covariance matrix

Q = σ2t

(
1 2ρρ1

2ρρ1 2(1 + ρ2)

)
.

In the following numerical illustration, we take xi0 = 0, i = 1, 2, 3, σ2t = 1,

ρ = .8 and we vary ρ1 ∈ {−.5,−.2, 0, .2, .5}. In the notation of Section 5.2,

this translates into σ21 = σ2t = 1, σ22 = 2σ2t(1 + ρ2) = 3.28 and varying the

covariance 2ρρ1 ∈ {−.8,−.32, 0, .32, .8}. The results are displayed in Table

3 where we show the values of m1,m2, α, and the value of the systemic risk

measure m1 +m2. In the deterministic column, these values do not change

since they depend only on the marginal distributions and α = 0 since in

that case allocations are deterministic. Then, they can be compared with

the values in the case with random allocations where we see that the gain

is more pronounced for negative correlation.
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2ρρ1 ↓ Deterministic Random

m1 0.3486 0.2671

m2 0.6313 0.6347

-0.8 α 0 2.1413

m1 +m2 0.9799 0.9018

m1 0.3486 0.2799

m2 0.6313 0.6577

-0.32 α 0 1.1161

m1 +m2 0.9799 0.9376

m1 0.3486 0.3062

m2 0.6313 0.6530

0 α 0 0.8416

m1 +m2 0.9799 0.9592

m1 0.3486 0.3271

m2 0.6313 0.6414

0.32 α 0 0.6813

m1 +m2 0.9799 0.9685

m1 0.3486 0.3436

m2 0.6313 0.6294

0.8 α 0 .6597

m1 +m2 0.9799 0.9750

Table 3: Sensitivity with respect to correlation to common noise.
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6 Example: Systems on a Finite Probability Space

We now consider a financial system X = (X1, · · · ,XN ) that is defined on a

finite probability space (Ω,F ,P) with Ω = {ω1, · · · , ωM}, F = 2Ω, P(ωi) =

pi ∈ (0, 1), i = 1, · · · ,M . The systemic risk measure we are interested in

here is given by

ρ(X) := inf

{
N∑

i=1

Y i | Y = (Y 1, · · · , Y N ) ∈ Ch ,Λ(X+Y) ∈ Aγ

}
, (6.1)

where as in Section 5 the acceptance set is Aγ =
{
Z ∈ L0(R)| E[Z] ≥ −γ

}

for γ > 0 and the admissible allocations Ch are introduced below. The

aggregation is defined by

Λ(x1, · · · , xN ) :=

N∑

i=1

− exp (−αixi) (6.2)

for αi > 0, i = 1, · · · , N . Compared to the aggregation in Section 5, the

aggregation in (6.2) is more risk averse with respect to bigger losses but also

takes benefits of gains into account.
Due to the finite probability space the computation of the optimal al-

location associated to the risk measure (6.1) reduces to solving a finite-
dimensional system of equations even for most general scenario-dependent
allocation. More precisely, let h := (h1, .., hk) with 0 < h1 < h2 < · · · <
hk−1 < hk = N represent some partition of {1, .., N} for a given k ∈
{1, · · · , N}. We then introduce the following family of allocations:

Ch =

{
Y ∈ L0(RN ) | ∃ d = (d1, · · · , dk) ∈ R

k such that

h1∑

i=1

Y i(wj) = d1,

h2∑

i=h1+1

Y i(wj) = d2, · · · ,
N∑

i=hk−1+1

Y i(wj) = dk, for j = 1, · · · ,M
}

⊆ CR. (6.3)

This corresponds to the situation when the regulator is constrained in the

way that she cannot distribute cash freely among all financial institutions

but only within k subgroups that are induced by the partition h. In other

words, the risk measure is the sum of k minimal cash amounts d1, ..., dk
determined today, that at time T can be freely allocated within the k sub-

groups in order to make the system safe. Note that this family spans from

deterministic allocations C = R
N for k = N to CR for k = 1.

For a given partition h of subgroups one can now explicitly compute a
unique optimal allocation Y∗ and the corresponding systemic risk ρ(X) =∑N

i=1 Y
i,∗ in (6.1) by solving the corresponding Lagrangian system. For
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better readability of the text we here state the explicit expressions for the
following subfamily of allocations

Cr =

{
Y ∈ L0(R)N | ∃ (cN , cN−1, · · · , cN−r) ∈ R

r+1 such that

N∑

i=1

Y i(wj) = cN ,

N−1∑

i=1

Y i(wj) = cN−1, · · · ,
N−r∑

i=1

Y i(wj) = cN−r, for j = 1, · · · ,M
}

(6.4)

for 0 ≤ r ≤ N − 1. This class corresponds to r subgroups of size one and

one remaining bigger subgroup of size N − r, and the two extreme cases are

recovered for r = 0 and r = N − 1. Note that the summation over the Y i’s

of the subgroups in (6.4) has been re-parametrized compared to (6.3) for

the sake of more accessible expressions below.

The following are the optimal solutions when computing the systemic risk

measure (6.1) with the set C = Cr of type (6.4). The proof is deferred to the

appendix. For notational simplicity we denote by ykj := Y k,∗(ωj) for k =

1, · · · , N , j = 1, · · · ,M the optimal allocation. The optimal cN−r, · · · , cN
are given by

cN−r = −βN−r log(
γ

α1βNdN−r
), (6.5)

where

βN−r =

N−r∑

i=1

1

αi
and βN =

N∑

i=1

1

αi
,

dN−r =
M∑

j=1

pj exp

[
− 1

βN−r

N−r∑

i=1

Xi(wj)−
1

βN−r

N−r∑

i=1

1

αi
log(

α1

αi
)

]
,

and by

ck = ck−1 −
1

αk
log(

γ

αkβNKk
)

= cN−r −
k∑

j=N−r+1

1

αj
log(

γ

αjβNKj
)

= −βN−r log(
γ

α1βNdN−r
)−

k∑

j=N−r+1

1

αj
log(

γ

αjβNKj
) (6.6)

for k = N − r + 1, · · · , N , r ≥ 1, with

Kk =

M∑

j=1

pj exp
(
−αkX

k(wj)
)
.
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In particular the optimal cN provides the value of the systemic risk measure,

i.e.

ρ(X) = −βN−r log(
γ

α1βNdN−r
)−

N∑

j=N−r+1

1

αj
log(

γ

αjβNKj
). (6.7)

The optimal allocations are given by

y1j =
1

α1βN−r

N−r∑

i=1

Xi(wj)−X1(wj)+
1

α1βN−r

N−r∑

i=1

1

αi
log(

α1

αi
)+

1

α1βN−r
cN−r

(6.8)

for j = 1, · · · ,M , by

ykj =
1

αk

[
α1X

1(wj)− αkX
k(wj)− log(

α1

αk
) + α1y

1
j

]
(6.9)

=
1

αkβN−r

N−r∑

i=1

Xi(wj)−Xk(wj)−
1

αk
log(

α1

αk
)

+
1

αkβN−r

N−r∑

i=1

1

αi
log(

α1

αi
) +

1

αkβN−r
cN−r (6.10)

for all k = 2, · · · , N − r − 1 and j ∈ 1, · · · ,M , and by

ykj = ck − ck−1 = − 1

αk
log(

γ

αkβNKk
) (6.11)

for all k = N − r, · · · , N and j ∈ 1, · · · ,M .

Remark 6.1 One could extend the above setting further by adding the pos-

sibility to limit cross-subsidization in the allocations. This can be done by

introducing another constraint into the family (6.3) of cash allocations:

Ch,b =

{
Y ∈ L0(R)N | Y i ≥ bi, i = 1, · · · , N ;

h1∑

i=1

Y i(wj) = d1,

h2∑

i=h1+1

Y i(wj) = d2, · · · ,
N∑

i=hk−1+1

Y i(wj) = dk,

for j = 1, · · · ,M, and dt ∈ R for t = 0, · · · , k
}

⊆ CR,

where (b1, ..., bN ) ∈ R
N . For example, putting b := (0, ..., 0) excludes cash

withdrawals from institutions and in this sense doesn’t allow for any cross-

subsidization. The systemic risk measure and corresponding optimal allo-

cations solution can now be computed by resorting to the Karush Kuhn

Tucker conditions (Boyd and Vandenberghe [2009]), see the computations

in Pastore [2014].
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Systemic risk measure Case

−26.36 r = 0

−0.56 r = 2, {X1,X3}
4.44 r = 2, {X2,X3}
63.71 r = 2, {X2,X4}
68.36 r = 2, {X1,X4}
72.96 r = 2, {X3,X4}
74.48 r = 2, {X1,X2}
79.02 r = 3

Table 4: Systemic risk measure.

Example 6.2 We conclude this section with a numerical example. We con-

sider a system of four banks represented by the random variables X1,X2,X3

and X4 on the probability space (Ω,F ,P), where Ω = (ω1, ω2, ω3, ω4), F =

2Ω and P(ω1) = 0.64, P(ω2) = P(ω3) = 0.16 and P(ω4) = 0.04. We assume

that X4 is independent of X1,X2,X3, that X2 is comonotone with X1 and

that X3 is countermonotone with X1. Furthermore X1(w1) = X1(w3) =

100,X1(w2) = X1(w4) = −50, X2(w1) = X2(w3) = 50,X2(w2) = X2(w4) =

−25, X3(w1) = X3(w3) = −25,X3(w2) = X3(w4) = 50 and X4(w1) =

X4(w2) = 50,X4(w3) = X4(w4) = −25. We set αi = 0.3 for i = 1, · · · , 4
and γ = 50 and consider the set Cr defined in (6.4).

In this setting, Tables 5 and 6 reproduce the deterministic allocations and

optimal scenario-dependent allocations for r = 2 given by (6.8), (6.9) and

(6.11) as well as the systemic risk measure ρ given by (6.7). In Table 4 we

provide the systemic risk measures for all r = 0, 1, 2, 3. From Table 4 we note

that the maximum and minimum value of ρ are obtained respectively in the

deterministic (r = 3) and the fully unconstrained scenario-dependent (r = 0)

cases. Whenever one groups (X1 and X3) or (X2 and X3), ρ is substantially

reduced (−0.56 or 4.44), compared to the deterministic case (79.02), as these

couples of vectors are counter monotone. Whenever one groups X4 with

any of the X1, X2, X3, there is little difference (68.36, 63.71, 72.96) with

respect to the deterministic case (79.02), as X4 is independent from the

others. Grouping X1 and X2 has very little effect (74.48) compared to the

deterministic case (79.02), as X1 and X2 are comonotone.
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Groups: {X1}, {X2}, {X3}, {X4) Deterministic

Y1 36.18

Y2 15.82

Y3 15.82

Y4 11.20

Systemic risk=
∑
Yi 79.02

Table 5: Case r = 3.

A Appendix

A.1 Gaussian Case with Random Injections

We provide here the computations necessary to minimize the function (5.12).

We first consider

E
[
(Xi + Y i − di)

−] = E
[
(Xi +mi + αiID − di)

−]

= E
[
(Xi +mi + αi − di)

−ID
]
+ E

[
(Xi +mi − di)

−IAc

]

= E
[{

(Xi +mi + αi − di)
− − (Xi +mi − di)

−} ID
]
+ E

[
(Xi +mi − di)

−]

(A.1)

for i = 1, · · · , N . To compute (A.1), we distinguish between the cases

αi > 0 and αi < 0. Note that by the definition of C, we cannot a pri-

ori argue on the sign of α. For αi > 0, we have that
{
Xi ≤ di −mi

}
={

Xi ≤ di −mi − αi

}
∪
{
di −mi − αi < Xi ≤ di −mi

}
. Here we set A1 :={

Xi ≤ di −mi − αi

}
and A2 :=

{
di −mi − αi < Xi ≤ di −mi

}
. Then

(Xi +mi + αi − di)
− − (Xi +mi − di)

− = −αiIA1 + (Xi +mi − di)IA2 ,

and

E
[
(Xi + Y i − di)

−]

= −αiE [IA1ID] + E
[
(Xi +mi − di)IA2ID

]
+ E

[
(Xi +mi − di)

−]

= (mi − di)Fi,S(di −mi, d)− (mi + αi − di)Fi,S(di −mi − αi, d)

+

∫ di−mi

di−mi−αi

∫ d

−∞
xfi,S(x, y)dydx + E

[
(Xi +mi − di)

−] ,

where Fi,S and fi,S are the joint distribution function and the density of

(Xi, S), respectively. Recall that in our setting (Xi, S) ∼ N2(µ̄
i, Q̄i) with

mean vector µ̄i = (µi,
∑n

j=1 µj) and covariance matrix

Q̄i =




σ2i σ2i +
∑

j 6=i ρi,j
σ2i +

∑
j 6=i ρi,j

∑n
j=1 σ

2
j +

∑n
j,k=1 ρj,k


 .
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Groups: {X1,X2}, {X3}, {X4) Random Deterministic

Y1(ω1) = Y1(ω3) = 11.27

Y1 Y1(ω2) = Y1(ω4) = 36.23

E[Y1] = 6.23

Y2(ω1) = Y2(ω3) = 48.73

Y2 Y2(ω2) = Y2(ω4) = 11.23

E[Y1] = 41.23 Y1 + Y2 = 47.46

Y3 15.82

Y4 11.20

Systemic risk=
∑

Yi 74.48

Groups: {X1,X3}, {X2}, {X4)

Y1(ω1) = Y1(ω3) = −76.29

Y1 Y1(ω2) = Y1(ω4) = 36.21

E[Y1] = −53.79

Y3(ω1) = Y3(ω3) = 48.71

Y3 Y3(ω2) = Y3(ω4) = −63.79

E[Y3] = 26.21 Y1 + Y3 = −27.58

Y2 15.82

Y4 11.20

Systemic risk=
∑

Yi -0.56

Groups: {X1,X4}, {X2}, {X3)

Y1(ω1) = −6.64, Y1(ω2) = 68.36

Y1 Y1(ω3) = −44.14, Y1(ω4) = 30.86

E[Y1] = 0.86

Y4(ω1) = 43.36, Y4(ω2) = −31.64

Y4 Y4(ω3) = 80.86, Y4(ω4) = 5.86

E[Y4] = 35.86 Y1 + Y4 = 36.72

Y2 15.82

Y3 15.82

Systemic risk=
∑

Yi 68.36

Groups: {X2,X3}, {X1}, {X4)

Y2(ω1) = Y2(ω3) = −58.97

Y2 Y2(ω2) = Y2(ω4) = 16.03

E[Y2] = −43.97

Y3(ω1) = Y3(ω3) = 16.03

Y3 Y (ω2) = Y3(ω4) = −58.97

E[Y3] = 1.03 Y2 + Y3 = −42.94

Y1 36.18

Y4 11.20

Systemic risk=
∑

Yi 4.44

Groups: {X2,X4}, {X1}, {X3)

Y2(ω1) = 5.86, Y2(ω2) = 43.36

Y2 Y2(ω3) = −31.64, Y2(ω4) = 5.86

E[Y2] = 5.86

Y4(ω1) = 5.85, Y4(ω2) = −31.65

Y4 Y (ω3) = 43.35, Y4(ω4) = 5.85

E[Y4] = 5.85 Y2 + Y4 = 11.71

Y1 36.18

Y3 15.82

Systemic risk=
∑

Yi 63.71

Groups: {X3,X4}, {X1}, {X2)

Y3(ω1) = 47.98, Y3(ω2) = 10.48

Y3 Y3(ω3) = 10.48, Y3(ω4) = −27.02

E[Y2] = 32.98

Y4(ω1) = −27.02, Y4(ω2) = 10.48

Y4 Y (ω3) = 10.48, Y4(ω4) = 47.98

E[Y4] = −12.02 Y3 + Y4 = 20.96

Y1 36.18

Y2 15.82

Systemic risk=
∑

Yi 72.96

Table 6: Case r = 2.
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Analogous computations hold in the case αi < 0. Summing up, we obtain

that

E

[
N∑

i=1

(Xi + Y i − di)
−
]
=

N∑

i=1

E
[
(Xi + Y i − di)

−]

=

N∑

i=1

E
[
(Xi +mi − di)

−]

+
N∑

i=1

Iαi≥0 [(mi − di)Fi,S(di −mi, d)− (mi + αi − di)Fi,S(di −mi − αi, d)

+

∫ di−mi

di−mi−αi

∫ d

−∞
xfi,S(x, y)dydx

]

+

N∑

i=1

Iαi<0 [(mi − di)Fi,S(di −mi, d)− (mi + αi − di)Fi,S(di −mi − αi, d)

+

∫ di−mi

di−mi−αi

∫ d

−∞
xfi,S(x, y)dydx

]

=

N∑

i=1

E
[
(Xi +mi − di)

−]

+

N∑

i=1

[(mi − di)Fi,S(di −mi, d)− (mi + αi − di)Fi,S(di −mi − αi, d)

+

∫ di−mi

di−mi−αi

∫ d

−∞
xfi,S(x, y)dydx

]

=

N∑

i=1

E
[
(Xi +mi − di)

−]

+
N−1∑

i=1

[(mi − di)Fi,S(di −mi, d)− (mi + αi − di)Fi,S(di −mi − αi, d)

+

∫ di−mi

di−mi−αi

∫ d

−∞
xfi,S(x, y)dydx

]

+ (mN − dN )FN,S(dN −mN , d)− (mN −
N−1∑

j=1

αj − dN )FN,S(dN −mN

+
N−1∑

j=1

αj , d) +

∫ dN−mN

dN−mN+
∑N−1

j=1 αj

∫ d

−∞
xfN,S(x, y)dydx,

where in the last equality we have used the constraint
∑N

j=1 αj = 0. We now

denote by µi, σi the mean and the quadratic variation of Xi, i = 1, · · · , N ,
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and Φ(x) =
∫ x
+∞

1√
2π
e−t2/2dt. Set f̄i,S(x, y) =

∫ y
−∞ fi,S(x, s)ds.

1. By computing the derivatives with respect to αi, i = 1, · · · , N − 1, we
obtain ∂φ

∂αi
= 0 if and only if

0 = λ
(
(mi + αi − di)f̄i,S(di −mi − αi, d)− Fi,S(di −mi − αi, d)

+ (di −mi − αi)

∫ d

−∞

fi,S(di −mi − αi, y)dy

+ FN,S(dN −mN +
N−1∑

j=1

αj , d)

− (mN −
N−1∑

j=1

αj − dN )f̄N,S(dN −mN +

N−1∑

j=1

αj , d)

+ (mN −
N−1∑

j=1

αj − dN )

∫ d

−∞

fN,S(dN −mN +
N−1∑

j=1

αj , y)dy
)

= λ


FN,S(dN −mN +

N−1∑

j=1

αj , d)− Fi,S(di −mi − αi, d)


 .

We then obtain that the equation above has a solution if λ = 0 or

when

Fi,S(di −mi − αi, d) = FN,S(dN −mN +
N−1∑

j=1

αj , d) (A.2)

for i = 1, · · · , N − 1.

2. By computing the derivatives with respect to mi, for i = 1, · · · , N , we

obtain ∂φ
∂mi

= 0 if and only if

0 = 1 + λ

(
Φ(
di − µi −mi

σi
)− (mi − di)f̄i,S(di −mi, d) + Fi,S(di −mi, d)

−Fi,S(di −mi − αi, d) + (mi + αi − di)f̄i,S(di −mi − αi, d)

+(di −mi − αi)

∫ d

−∞
fi,S(di −mi − αi, y)− (di −mi)

∫ d

−∞
fi,S(di −mi, y)dy

)

= 1 + λ


Φ(

di − µi −mi

σi
) + Fi,S(di −mi, d)− FN,S(dN −mN +

N−1∑

j=1

αj, d)


 ,

where we have used (5.8), (A.2) and the notation above. In particular

λ = −


Φ(

dN − µN −mN

σN
) + FN,S(dN −mN , d)− FN,S(dN −mN +

N−1∑

j=1

αj , d)




−1

,

(A.3)
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if the denominator is different from zero. By (A.3) we then obtain

Φ(
di − µi −mi

σi
) + Fi,S(di −mi, d)

= Φ(
dN − µN −mN

σN
) + FN,S(dN −mN , d), (A.4)

for i = 1, · · · , N − 1.

A.2 Example on a Finite Probability Space

We give the proof of the optimal solutions (6.5)-(6.11) in Section 6.

Proof. We restrict the proof to the case r = 0. The general case can be

obtained following the same steps. For further details on the proof in the

general case, we refer to Pastore [2014]. Note that the following computa-

tions apply in any other case when the derivatives of Ui are invertible for all

i = 1, · · · , N . We can rewrite the definition of ρ in this particular setting as

follows:

ρ(X) := inf

{
c ∈ R|

N∑

i=1

Y i = c,E

[
N∑

i=1

exp
(
−αi(X

i + Y i)
)
]
≤ γ

}
. (A.5)

Note that for r = 0 we now have yNj := c −∑N−1
i=1 yij for j = 1, · · · ,M .

We compute ρ by using the method of Lagrange multipliers to minimize the

function

φ(c, y11 , · · · , y1M , · · · , yN−1
1 , · · · , yN−1

M , λ)

= c+ λ




M∑

j=1

pj

[
N−1∑

k=1

exp
(
−αk(X

k(ωj) + ykj )
)

+exp

(
−αN (XN (ωj) + c−

N−1∑

i=1

yij)

)]
− γ

)
.

We have:

1. By computing the derivatives with respect to ykj , k = 1, · · · , N − 1 ,

j = 1, · · · ,M : ∂φ
∂ykj

= 0 if and only if for all fixed j = 1, · · · ,M

αk exp
(
−αk(X

k(ωj) + ykj )
)
= αN exp

(
−αN (XN (ωj) + c−

N−1∑

i=1

yij)

)
.

(A.6)

This also implies that for all fixed j = 1, · · · ,M

αk exp
(
−αk(X

k(ωj) + ykj )
)
= α1 exp

(
−α1(X

1(ωj) + y1j )
)

(A.7)
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for all k = 1, · · · , N − 1, i.e.

ykj =
1

αk

[
α1X

1(ωj)− αkX
k(ωj)− log

α1

αk
+ α1y

1
j

]
. (A.8)

Furthermore, by (A.6) we obtain that

y1j =
1

α1βN

N∑

i=1

Xi(ωj)−X1(ωj)+
1

α1βN

N∑

i=1

1

αi
log

α1

αi
+

1

α1βN
c, (A.9)

where βN =
∑N

k=1
1
αk

as before.

2. By computing the derivatives with respect to c: ∂φ
∂c = 0 if and only if

0 = 1− αNλ
M∑

j=1

pj exp

(
−αN (XN (ωj) + c−

N−1∑

i=1

yij)

)
. (A.10)

We can insert (A.6) in (A.10) and obtain

0 = 1− αkλ
M∑

j=1

pj exp
(
−αk(X

k(ωj) + ykj )
)
,

i.e.
M∑

j=1

pj exp
(
−αk(X

k(ωj) + ykj )
)
=

1

αkλ
(A.11)

for all k = 1, · · · , N − 1.

3. By computing the derivatives with respect to λ: ∂φ
∂λ = 0 if and only if

γ = E

N∑

i=1

exp
(
−αi(X

i + Y i)
)

=
M∑

j=1

pj

[
N−1∑

k=1

exp
(
−αk(X

k(ωj) + ykj )
)
+ exp

(
−αN (XN (ωj) + c−

N−1∑

i=1

yij)

)]
.

(A.12)
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We now substitute (A.10) and (A.11) in (A.12) and obtain:

γ =
M∑

j=1

pj

(
N−1∑

k=1

exp
(
−αk(X

k(ωj) + ykj )
)

+exp

(
−αN (XN (ωj) + c−

N−1∑

i=1

yij)

))

=

N−1∑

k=1

M∑

j=1

pj exp
(
−αk(X

k(ωj) + ykj )
)

+
M∑

j=1

pj exp

(
−αN (XN (ωj) + c−

N−1∑

i=1

yij)

)

=

N−1∑

k=1

1

αkλ
+

1

αNλ
=

1

λ

N∑

k=1

1

αk
. (A.13)

Hence

λ =
1

γ

N∑

k=1

1

αk
=
βN
γ
. (A.14)

We now compute c by inserting (A.8), (A.9) and (A.14) in (A.11) for k = 1:

e
− c

βN

M∑

j=1

pj exp

(
− 1

βN
(

N∑

i=1

Xi(ωj) +

N∑

i=1

1

αi
log

α1

αi
)

)
=

γ

α1βN
. (A.15)

Hence the systemic risk measure, i.e. the optimal c, is given by

ρ(X) = c∗ = −βN log

[
γ

α1βNdN

]
, (A.16)

where dN =
∑M

j=1 pj exp
(
− 1

βN

∑N
i=1X

i(ωj)− 1
βN

∑N
i=1

1
αi

log α1
αi

)
.

By substituting the optimal value for c in (A.8) and (A.9) we also obtain

the optimal allocations

ykj =
1

αkβN

N∑

i=1

Xi(ωj)−Xk(ωj)−
1

αk
log(

Xjα1

αk
)

+
1

αkβN

N∑

i=1

1

αi
log

α1

αi
− 1

αk
log

[
γ

αkβNd

]
,

for j = 1, · · · ,M and k = 1, · · · , N .
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