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ABSTRACT
In human-robot collaboration (HRC), operators work side by side with collaborative robots
(cobots), a new type of machines able to function safely on tasks shared with humans. Despite
the increasing presence of cobots in factories, the quality of experience associated by workers
with HRC is an underexplored topic. This review is focused on the mental workload (MWL)
reported by operators interacting with cobots, its major sources, and the potential solutions to
optimize it during HRC. Out of 165 papers identified, 23 were selected as specifically devoted to
the exploration of workers’ MWL in a HRC activity. Cobot motion, predictability, task organization
and communication patterns emerged as the major factors contributing to operators’ MWL during
HRC. Endowing cobots with the capacity to meet both task demands and human needs through
modulation of motion rhythm, flexible physical interaction, and more efficient communication pat-
terns may contribute to mitigating workers’ MWL.
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1. Introduction

The European Foundation for the Improvement of Living and
Working Conditions warned on the association of work-related
stress with a variety of mental disorders (Parent-Thirion et al.,
2007). Workplace stress is reported as a common phenomenon
by around 51% of European workers (EU-OSHA, 2013); it also
represents a serious concern for nearly 80% of the companies
within the EU, as it contributes to about 50% of all lost work-
ing days. Occupational stressors can negatively affect employ-
ees’ job performance and satisfaction, commitment, subjective
well-being, prosocial behaviour, and intention to stay
(Darvishmotevali & Ali, 2020). A survey conducted by the
European Agency for Safety and Health at Work (EU-OSHA,
2015; Rial-Gonz�alez et al., 2010) showed that work-related
stress and psychosocial risks can cause mental and physical dis-
orders, resulting in high costs for the individual, the economy,
and the whole society.

One of the major dimensions of work-related stress
investigated in the scientific literature is Mental Workload
(MWL), a multidimensional construct that reflects the men-
tal fatigue resulting from performing a task under demand-
ing conditions, taking into account the operator’s capability
to face those demands (Cain, 2007). Derived from the
Cognitive Load Theory in the field of education (CLT:
Sweller, 1988, 1994; Sweller et al., 1998), MWL has been

investigated in different domains; as a consequence, a clear
and universally accepted definition is still missing (Cain,
2007; Longo et al., 2022). In cognitive psychology, for
example, it refers to the amount of working memory resour-
ces used during a task (Chen et al., 2016); in the ergonomics
and human factors literature, it is labelled as mental effort
or mental demand, and it represents the amount of mental
activity required to perform a task (e.g. Van Acker et al.,
2018; Young et al., 2015). The term workload can also refer
to the demands imposed on the operator, the subjectively
experienced effort, and the impact of those demands on the
operator (Cain, 2007), or “the relationship between primary
task performance and the resources demanded by the pri-
mary task” (Wilson & Sharples, 2015, p. 521). Suboptimal
workload (overload or underload) may lead to errors, mis-
takes, and performance degradation (Young et al., 2015),
and it may have detrimental health consequences in the
long run (Holm, 2010; Holm et al., 2009; Young et al.,
2015). More specifically, mental overload may lead to mental
fatigue, lower selective attention, decreased performance,
and lower efficiency at the workplace (Gonz�alez-Mu~noz &
Guti�errez-Mart�ınez, 2007; Lagomarsino et al., 2022); mental
underload - for example, too limited stimulation in repeti-
tive tasks - may also negatively affect attention levels,
increasing the risk of errors and attentional lapses (Wickens
et al., 1998; Wixted & O’Sullivan, 2014). An optimal level of
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mental workload can instead prevent errors, safety risks, and
performance inefficiency (Brolin et al., 2017; Longo, 2015;
Morton et al., 2019; Parmentier et al., 2020). Moreover, an
optimal MWL level may sustain workers’ engagement, well-
being and long-term mental and physical health (Brolin
et al., 2017; Demerouti et al., 2020; S. Hopko et al., 2022;
Kolbeinsson et al., 2017; Segura Parra et al., 2020).

1.1. MWL and stress: An intricate relationship

The relationship between MWL and stress is widely acknowl-
edged (Gaillard, 1993; 2001; Macdonald, 2003; Niculescu
et al., 2009). Several studies showed a significant strong posi-
tive correlation between these constructs (Alsuraykh et al.,
2019; Gjoreski et al., 2017; Hou et al., 2015; Matthews et al.,
2002). Such a strong relationship however becomes problem-
atic when exploring MWL literature: In some studies, the
term “mental stress” is used to refer to both dimensions
(Hjortskov et al., 2004); in other studies, MWL is considered
as a source of both stress (Macdonald, 2003; Pande, 1992),
and stress responses (Sato et al., 2009); other works define
stress as a core component of MWL (Alsuraykh et al., 2019;
Castillo et al., 2021; Hart & Staveland, 1988; Kantowitz, 1987;
Macdonald, 2003; Wierwille et al., 1985).

Some crucial differences were however detected between
MWL and stress (Chen et al., 2016; Hidalgo-Mu~noz et al.,
2018). More specifically, it is possible to experience high
mental workload in demanding conditions, without cogni-
tive strain or adverse physiological effects; to the opposite, it
is possible to experience high levels of stress in a low mental
workload condition (Gaillard, 1993; Gaillard & Wientjes,
1994). This can be partially explained through the Appraisal
Theory (Lazarus & Folkman, 1984) of stress: As the cogni-
tive load increases, individuals tend to unconsciously evalu-
ate their ability to cope with the demand. Stress would only
arise when the situation is subjectively deemed as exceeding
available personal resources; therefore, a highly demanding
situation may be perceived as stressful or not, based on the
individual perception of personal resources in facing it.

1.2. Cobots and MWL

Over the last decades the increase in automation, and specif-
ically the massive introduction of robots, has brought about
substantial changes in human operators’ role (K€orner et al.,
2019), job tasks’ structure, workers’ experience and MWL
(Peeters & Plomp, 2022). Although robots convey benefits
to humans, such as relieving them from tedious, repetitive,
and dangerous tasks, they also require continuous monitor-
ing; supervision tasks can be positively perceived as mentally
stimulating, because they require knowledge and decision-
making capabilities (Smids et al., 2020), but they can also
make workers feel simple "machine controllers," rather than
active agents in production. Moreover, automatization of
workflow may result in new demands and stressors for
human operators (Mital & Pennathur, 2004; Warm et al.,
2008; Woods, 1996), such as increased workload, reduced
control over tasks, lower skill mobilization and development,

increased work pace, higher psychological pressure due to
electronic performance monitoring (EPM, i.e. the use of
technological instruments to observe, record, and analyse
information directly or indirectly related to the workers job
performance), reduced social interaction, higher psychologi-
cal/cognitive demands, increased supervisory control, and
job insecurity (Carayon et al., 1999).

In this context, a recent advancement in robotics technology
is represented by cobots, collaborative robots that are increasingly
used in laboratory and industrial environments. Compared to
industrial robots, large machines positioned in an enclosed
workspace with no or very limited interaction with workers,
cobots are designed to physically interact with human operators
in a shared workspace (International Organization for
Standardization, 2016; Litzenberger, 2019). They are flexible and
cost-effective machines with limited power and force, equipped
with sensors and safety functions to minimize workers’ exposure
to injury in case of contact; in addition, they can be easily modi-
fied to perform different tasks.

Cobots currently account for about 5% of all robot sales1,
but this percentage is expected to jump to 34% in 2025, as
reported by the International Federation of Robots2. Their
increasing presence in factories has promoted research about
related human workers’ experience.

Thanks to their flexibility and limited dimensions, cobots
can jointly work with humans through different interaction
patterns: coexistence, cooperation, and collaboration.
Coexistence is the weakest form of collaboration, as it sim-
ply implies the presence of humans and robots in the same
working space, without direct contact (Wang et al., 2018).
In cooperative tasks, the operator and the cobot share the
same workspace and work at the same product, with direct
contact if necessary. Each of them is responsible for a por-
tion of the production task, but they do not depend on each
other to reach the common goal (Gervasi et al., 2020;
Roschelle & Teasley, 1995). Collaboration instead implies to
share the same task on the same product or part of it, in the
same workspace (Schmidtler et al., 2015): humans and
robots work together to reach a common goal, continuously
interacting, negotiating, understanding and accommodating
to one another’s behaviour (Gervasi et al., 2020).

Working shoulder-to-shoulder with a collaborative robot
modifies usual practices and poses several challenges to
humans (K€orner et al., 2019; Saupp�e et al., 2015), as it implies
changes in subjective job perception, intrinsic job structure
(Fletcher & Webb, 2017; Wallace, 2021), and social relations
at workplace (Maurtua et al., 2016; Michaelis et al., 2020;
Wallace, 2021). The efficiency and tirelessness of robots may
result in workers’ concerns about their job security and
employment status (Abeliansky & Beulmann, 2019). The
human-machine proximity elicits fear of potential harm (De
Simone et al., 2022; Lu et al., 2022; Szalma & Taylor, 2011).
In addition, the complexity of the interaction with cobots
may increase workers’ mental workload, with negative conse-
quences for their mental health (De Simone et al., 2022; Lu
et al., 2022; Robelski & Wischniewski, 2016, 2018).

Besides challenges, collaborative robots can also lead to
positive changes in the working place, as humans and
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machines can assist each other with complementary skills.
Some studies have highlighted that cobots can relieve human
operators from performing repetitive or heavy and danger-
ous tasks, thus supporting optimal levels of mental workload
and increasing productivity (Welfare et al., 2019; Zanchettin
et al., 2018).

The debate around the contribution of cobots to opera-
tors’ MWL is still ongoing. What is certain is that an appro-
priate level of cognitive workload needs to be granted in
order to manage the machine’s impact on the operator,
especially in terms of performance and safety (Panchetti
et al., 2023). Therefore, understanding which factors influ-
ence MWL level and which solutions can be implemented to
optimize it has become a crucial issue (Baltrusch et al.,
2022; Van Acker et al., 2018; Young et al., 2015). Despite
the growing interest in the investigation of mental workload
(Faccio et al., 2023), most studies in the domain of HRC are
aimed at understanding how to improve performance of the
human-cobot team (Storm et al., 2022; Lorenzini et al.
2023), whereas little is known about strategies and practical
solutions to promote an optimal level of workers’ mental
workload (Van Acker et al., 2018). For this reason, a scoping
review of research studies investigating mental workload
during HRC was undertaken, paying specific attention to
the approaches adopted to measure it, and to the main sour-
ces of MWL that were identified, with the aim of providing
practical solutions for the implementation of healthy work
settings. The following research questions were formulated:

RQ1: Which measures are currently used to assess MWL during
HRC in industrial contexts?

RQ2: Which are the prominent sources of MWL during col-
laboration with cobots in industrial tasks?

RQ3: Which solutions can be implemented to attain optimal
levels of workers’ MWL in HRC?

2. Methods

A scoping review was deemed as the most adequate
approach to pursue the study aims, as it allows for broadly
mapping what is known about this topic, without excluding
sources based on their publication venue, study design and
quality, thus offering a broader scope for research questions
(Levac et al., 2010). We followed the five stages for scoping
reviews outlined by Arksey and O’Malley (2005): (1) identi-
fying the research question, (2) identifying relevant studies,
(3) study selection, (4) charting the data, and (5) collating,
summarizing, and reporting the results. In addition, the
PRISMA-ScR checklist (included as electronic supplementary
material) was used to guide reporting (Tricco et al., 2018).
Ethical approval for this study was not required, as results
were extracted from published papers and no primary data
collection was performed.

2.1. Identifying relevant studies and eligibility criteria

Due to the multidisciplinary nature of the topic, the search
was conducted on four different digital libraries, covering
psychological and technological areas: Web of Science,
Scopus, Psycinfo and IIEE Explore. Three sets of keywords
were chosen, coherently with the three research questions
(Table 1): The first set concerned keywords related to
Human-Robot Collaboration (HRC); specifically, we decided
to include studies involving tasks designed and described as
collaborative, in which human operators and cobots are in
the same workspace, working together to reach a common
goal. This type of interaction requires a coordinated and
synchronized activity from all parties involved, which also
entails direct physical contact (haptic or auditory).

The second set of keywords referred to mental workload.
As described in the introductory section, there is a lack of
clarity in how stress and MWL are related, because they are
often used to describe similar phenomena. Moreover, the
international standards on mental workload terminology
(ISO, 2017) specifically endorse the connection of MWL
with mental stress (intended as “total of all assessable factors
impinging upon an individual mentally”; see ISO, 2017,
Section 3.1.1) and mental strain (intended as “immediate
effect of mental stress”; see ISO, 2017, Section 3.1.2) (Young
et al., 2015). Therefore, following Alsuraykh and colleagues’
suggestion (2019), we decided to include both “mental work-
load” and “stress” in the search strategy.

Finally, in line with the aims of the study, the third key-
word set circumscribed the search to industrial contexts. All
possible combinations of keywords from the three sets were
considered, using the Boolean “AND” operator between
each set, and the “OR” operator within each set. The asterisk
was used as a truncation function, which allows for search-
ing a word through all its possible variants.

Searches covered titles, keywords, and abstracts of papers
in the databases.

The search led to the identification of 155 publications; a
manual search in Google Scholar based on the reference lists
of the selected papers (snowballing method) or suggestions
by experts allowed to identify 10 additional papers, leading
to a corpus of 165 salient studies.

Publications referring to HRC with physical or virtual
robots, and studies conducted in laboratory or work settings
were deemed as relevant to the review purposes, regardless
of their publication year.

Regarding restriction criteria, the review was limited to
articles written in English, with full text available, and focused
on MWL during HRC in real or simulated industrial settings.
Additional exclusion criteria were text unavailability; study not
related to all three sets of keywords; study not related to the
industrial context; studies that focused solely on the physical
dimension of workload assessment. Reviews and theoretical

Table 1. Set of keywords used in the search.

HRC Impact on workers Context

Cobot OR co-robot OR collaborative robot
OR human robot collaboration OR HRC

Mental workload
OR fatigue OR stress

Work� OR industry�
OR manufact�
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papers were excluded, but they were cited in the Introduction
and Discussion sections of the present work, when appropriate.

2.2. Study selection

The selection process was articulated in two stages. After
removal of duplicate records, two authors independently

screened the publications according to their title, abstract
and keywords. In the second stage, a careful reading of the
full texts of the selected papers was undertaken, to identify
the studies fully consistent with the research questions. Any
discrepancy and disagreement were resolved by consensus
or discussion among all authors. The Preferred Reporting
Items for Systematic Reviews and Meta-Analysis (PRISMA)

Figure 1. Flow chart of the screening process.
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chart (Figure 1) was adopted to illustrate the phases of paper
identification and selection.

2.3. Charting the data, collating, summarizing, and
reporting the results

A standardized data extraction form was developed to guide
data charting, and relevant information was extracted from
the papers selected in the second stage of the screening.
Specifically, the following fields were considered:

� Main characteristics: Title, author(s), year of publication,
journal/proceedings, country, area of research, and study
aims (summarized in Table 2). Figure 2 provides a visual
description of the publication trend of the selected papers
over time.

� MWL measures: The research instruments adopted in the
selected studies to assess MWL were divided into three
categories: self-report, physiological and performance
measures (see Table 3).

� Study design and findings: Setting, type of cobot, task,
sample size, dependent and independent variables, and
findings are reported in Table 4. Table 4 also includes
the factors representing potential sources of MWL associ-
ated with HRC identified in each paper, grouped into
three categories: (1) Motions, predictability, and proxim-
ity of robot; (2) Robots’ communication skills; (3) Task
organization.

� Possible solutions identified to manage workers’ MWL:
Solutions reported by the selected studies were described
in the last paragraph of the result section.

3. Results

3.1. Study characteristics

The literature search was conducted in June 2022; the two-
stage screening resulted in the inclusion of 23 publications,
listed in Table 2.

As shown in Figure 2, the selected papers were published
between 2009 and 2022, with the majority being published
in the last four years (N¼ 14, 60.9%). Most papers were
included in conference proceedings (N¼ 15, 65.2%), while
eight (34.8%) were published in peer-review journals.

Most studies (N¼ 17, 73.9%) were conducted in labora-
tory settings, three (13.0%) in virtual working scenarios, and
one study (4.4%) in a simulation environment based on
mathematical equations. Only two studies (8.7%) were con-
ducted in factories with workers. Around half of the studies
(N¼ 12, 52.2%) involved less than 20 participants, seven
(30.4%) involved 20 to 50 participants, three (13.0%) more
than 50, and one study (4.4%) was conducted through a
mathematical simulation, without participants.

Concerning the methodology approach, eight (34.8%) of
the selected papers proposed a solution to reduce MWL in
the working context of HRC (Arntz et al., 2020; Bettoni
et al., 2020; Lagomarsino et al., 2022; Messeri et al., 2023;
Rahman & Wang, 2015; Rajavenkatanarayanan et al., 2020;

Roncone et al., 2017; Tan et al., 2009). In one paper (4.4%),
workers were directly invited to report perceived advantages
and disadvantages of HRC collaboration (Brun & Wioland,
2021); in another paper (4.4%) a mathematical model was
developed to analyse human cognitive performance during
HRC (Rabby et al., 2019). The remaining studies (N¼ 13,
56.5%) investigated MWL and associated factors during
HRC in laboratory settings.

3.2. Measures of mental workload

Table 3 summarizes the MWL measures used in the selected
papers, comprising physiological and self-report measures,
as well as measures of performance. Six studies (26.1%)
included all three types of assessment (Bettoni et al., 2020;
Etzi et al., 2020; S. K. Hopko et al., 2021; Kato et al., 2010;
Koppenborg et al., 2017; Zhao et al., 2020). Two types were
adopted in nine studies (39,1%; Chac�on et al., 2021;
Fournier et al., 2022; Lagomarsino et al., 2022; Messeri
et al., 2023, 2021; Pollak et al., 2020; Rahman & Wang,
2015; Roncone et al., 2017; Tan et al., 2009); more specific-
ally, three studies combined physiological measures with
performance data (Messeri et al., 2023, 2021; Tan et al.,
2009), two included physiological and self-report measures
(Lagomarsino et al., 2022; Pollak et al., 2020), three studies
combined performance assessment and quantitative or quali-
tative self-report measures (Chac�on et al., 2021; Fournier
et al., 2022; Rahman & Wang, 2015; Roncone et al., 2017).
Among the remaining eight studies (34.8%), three adopted
only physiological measures (Arai et al., 2010; Fujita et al.,
2010; Rajavenkatanarayanan et al., 2020), four only self-
report instruments (Arntz et al., 2020; Brun & Wioland,
2021; M€uller et al., 2017; Ustunel & Gunduz, 2017), and one
paper relied on a mathematical procedure (Rabby et al.,
2019).

3.2.1. Self-report measures
Self-reports are based on the assumption that individuals
can evaluate and rate their own cognitive processes, includ-
ing - for example - the level of mental workload during
completion of a task (Anmarkrud et al., 2019, p. 5). Their
advantages are low cost, high sensitivity, low intrusiveness,
and high easiness. Their disadvantages include difficulties to
compare results between participants, and the impossibility
to administer them during the execution of the task, but
only after interrupting or completing it (Butmee et al., 2019;
Cain, 2007; Longo et al., 2022).

In over half of the selected studies (N¼ 14, 60.8%) MWL
was assessed through self-report measures, primarily quanti-
tative scales (N¼ 13, 56.5%, of which two were adapted ver-
sions of standardized questionnaires). Qualitative methods,
such as interviews or open-ended questions, were adopted
in three studies (13.0%).

The most frequently used instrument was the National
Aeronautics and Space Administration-task load index
(NASA-TLX; Hart, 2006), employed in 11 studies (47.8%).
This multidimensional measure allows for assessing the
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association between perceived MWL and six factors: mental,
physical, and temporal demands, performance level, effort,
and frustration. Participants are invited to rate the level of
MWL perceived in relation to each factor on scales ranging
from 0 to 100. Single factor scores are then averaged to
determine total MWL. The instrument has good reliability
and validity; it is primarily used in the context of flight
simulation, air traffic control, and vigilance tasks.

Considering the above-described interconnections between
MWL and stress, three of the selected studies (13.0%)
adopted stress scales. The Short Stress State Questionnaire
(SSSQ; Helton, 2004), adopted in M€uller et al. (2017) is a 24-
item instrument on a 5-point Likert-type scale, aimed at
assessing the multiple dimensions of task related stress - task
engagement, distress, and worry - in pre-task and post-task
conditions. The Primary Appraisal Secondary Appraisal scale

Figure 2. Number of papers per year (up to June 2022).

Table 3. MWL measures used in the selected studies.

N. Study Self-report Physiological Performance

1 Tan et al., 2009 == EDA Completion time and quality
2 Kato et al., 2010 NASA RTLX (Hart, 2006) EDA Completion time
3 Fujita et al., 2010 == EDA ==
4 Arai et al., 2010 == EDA ==
5 Rahman and Wang, 2015 NASA RTLX (Hart, 2006) == Accuracy and efficiency
6 Ustunel and Gunduz, 2017 NASA RTLX (Hart, 2006) == ==
7 Müller et al., 2017 Short Stress State-

Questionnaire (Helton, 2004)
== ==

8 Koppenborg et al., 2017 NASA RTLX (Hart, 2006) IBI Completion time and accuracy
9 Roncone et al., 2017 Open questions == Completion time
10 Rabby et al., 2019 == == ==
11 Pollak et al., 2020 Four items from Primary and

secondary appraisal scale
(PASA - Gaab at al., 2009)

HR ==

12 Etzi et al., 2020 Questions on feelings and
user experience

EDA, HR Completion time and accuracy

13 Zhao et al., 2020 NASA RTLX (Hart, 2006) HRV Completion time
14 Rajavenkatanarayanan et al.,

2020
== HRV, and EDA ==

15 Bettoni et al., 2020 Questionnaire adapted from
NASA RTLX (Hart, 2006)

HRV Productivity

16 Arntz et al., 2020 Cohen's perceived stress scale
(Cohen, 1994); Frustration
from NASA TLX Load index
(Hart, 2006)

== ==

17 Hopko et al., 2021 Questions about fatigue;
NASA TLX (Hart, 2006)

HRV Efficiency and accuracy

18 Messeri et al., 2021 == HRV Productivity
19 Chacón et al., 2021 NASA RTLX (Hart, 2006) == Completion time
20 Brun and Wioland, 2021 Interviews == ==
21 Lagomarsino et al., 2022 NASA RTLX (Hart, 2006) HRV ==
22 Fournier et al., 2022 NASA RTLX (Hart, 2006) == Completion time and accuracy
23 Messeri et al., 2023 == HRV Completion time

Notes. MWL = Mental Workload; Cobot = Collaborative Robot; EDA = Electrodermal Activity; IBI = Interbeat interval of heart rate; HR = Heart Rate.
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(PASA; Gaab, 2009), adopted in Pollak et al. (2020), is
designed according to the transactional stress theory.
(Lazarus & Folkman, 1984). This instrument is aimed to
measure threat and challenge as primary stress appraisals
(PA) and perceived personal abilities and control expectancy
as secondary appraisals (SA). It is composed by 16 items,
rated on a 6-point scale (from strongly disagree to strongly
agree; eight items assess PA and eight SA). In the selected
paper including PASA (Pollak et al., 2020), two items refer-
ring to the event as stressful, challenging, or irrelevant were
extrapolated from the primary appraisal subscale; similarly,
two items concerning individual resources and options to
deal with the stressor were selected from the secondary
appraisal subscale. The Cohen’s Perceived Stress Scale (PSS-
10) (Chan & Greca, 2013; Cohen, 1994; Cohen et al., 1997),
adopted in another study (Arntz et al., 2020) is a 10-item
questionnaire that measures the frequency of stress percep-
tion in life events and situations, on a scale ranging between
0 and 40.

3.2.2. Physiological measures
Measures assessing operators’ physiological response while
executing a task allow for gathering continuous and objective
data. Considered as highly sensitive to changes in workload,
they are increasingly adopted in experimental settings, thanks
to the evolution of sensor technologies (Longo et al., 2022).
Physiological signals are also increasingly used to adjust
cobots’ behaviour to the operator’s psychophysical state.

In 14 (60.9%) of the selected papers, physiological meas-
ures were used to assess MWL; more specifically, the elec-
trodermal activity (EDA) was measured in six studies
(26.1%; two of them also assessing heart rate signals), and
heart activity (HR, Interbeat Rate or HRV) in 10 stud-
ies (43.5%).

The Electro Dermal Activity (EDA), or Galvanic Skin
Response (GSR), also known as Skin Conductivity (SC), is
one of the most accessible signals levered by the central ner-
vous system. EDA is an effective indicator of physical and
mental strain, as increased sweating of hand palms (typically
characterizing mental strain) results in greater EDA and Skin
Potential Response (SPR) spike amplitude and frequency
(Arai et al., 2010; Fujita et al., 2010; Kato et al., 2010).

Electrocardiogram (ECG) can be used as a psychophysio-
logical indicator of physical and mental stress through the
evaluation of Heart Rate (HR) and Heart Rate Variability
(HRV, the variation over time of the period between con-
secutive heart beats), both providing information on the per-
son’s level of relaxation versus activation. HR increases with
higher task demands (De Rivecourt et al., 2008), whereas
HRV comprises sympathetic and parasympathetic compo-
nents. A condition of heavy MWL is associated with
increased sympathetic control and reduced vagal tone, with
a decrease in HRV (Delliaux et al., 2019; Hjortskov et al.,
2004; Li et al., 2022; Wang et al., 2005). One of the most
common indicators of HRV is LF/HF ratio (low frequency
band/high frequency band), that represents the dominance
of the sympathetic nervous system with respect to the para-
sympathetic one.Ta
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3.2.3. Performance measures
Performance measures are used to quantify how well an
operator is performing the assigned task, based on the
assumption that optimal levels of MWL are associated with
performance maximization, while decrease in performance
reflects suboptimal workload levels. To this purpose, pri-
mary and secondary task performance measures can be used
(Cain, 2007). The former directly assess the operator’s per-
formance on the task of interest; the latter investigate the
operator’s remaining cognitive reserves while performing the
primary task. The adoption of a dual tasking methodology
allows for assessing performance in primary and secondary
tasks, and cognitive interference between them. Researchers
in the domain of robotics have investigated the effects of
various factors on dual-task performance, including embodi-
ment, virtualization of human-robot interactions, and haptic
feedback during teleoperation of mobile robots (Corujeira
et al., 2017; Iwasaki et al., 2022; Nenna et al., 2023).

Over half of the selected articles (N¼ 13; 56.5%) adopted
one or more performance measures - productivity, task
completion time, performance efficiency, task accuracy - in
combination with other measurement approaches; all these
studies except one (Chac�on et al., 2021) used primary task
performance measures.

3.3. Sources of mental workload

Findings from the selected studies revealed different factors
associated with workers’ MWL. Working side by side with
cobots without any protective barrier can be demanding per
se, especially in conditions of high speed and unpredictability
of robots’ movements (De Simone et al., 2022); the cobot’s
communication abilities and patterns, as well as its role in the
collaborative task structure and organization can also contrib-
ute to operators’ MWL and stress. In Table 4 the potential
MWL sources investigated across studies are described in the
column “independent variable”; in the same table, these sour-
ces are also classified into three typologies: Motions, predict-
ability, and proximity; Robot Communication skills; Task
organization. In the following paragraphs, a more detailed
description of the related findings will be provided.

3.3.1. Motions, motion predictability and proximity
Closeness to moving cobots during collaborative assembly
tasks can represent per se a source of psychophysiological
strain (Arai et al., 2010; Fujita et al., 2010; Kato et al., 2010;
Koppenborg et al., 2017), especially for naïve and less expert
workers (M€uller et al., 2017).

The combination of high speed and proximity was associ-
ated with participants’ higher levels of physiological reac-
tions (i.e. skin conductance), and stress (Arai et al., 2010;
Fujita et al., 2010; Kato et al., 2010; Tan et al., 2009).
Compared to slow-motion situations, fast cobot motions
were associated with higher stress levels also during inter-
action with a virtual robot, even though physiological data
did not mirror subjective stress perception (Etzi et al., 2020).
Robots’ higher working pace, posing time pressure on

workers, also led to increased MWL (Bettoni et al., 2020;
Rajavenkatanarayanan et al., 2020).

Motion trajectory is of great importance in HRC, as
straight trajectories can increase stress and MWL compared
to smooth ones (Arai et al., 2010; Fujita et al., 2010; Kato
et al., 2010; Koppenborg et al., 2017). Unpredictable cobot
motion can also increase stress, whereas providing workers
with pre-knowledge and predictability cues can decrease it
(Kato et al., 2010); low predictability of cobot motion was
associated with higher risk perception, anxiety, mental work-
load, and a tendentially lower task performance in virtual
settings as well (Koppenborg et al., 2017).

3.3.2. Robots’ communication skills
Cobots endowed with social skills can contribute to lower
MWL thanks to better communication and synchronization
of movements with workers. To investigate this aspect,
Rahman and Wang (2015) developed an affect-based robot
able to express emotions coherent with the situation and the
mental state of the co-workers. In their experiment, the
robot’s emotional ability resulted in better communication,
smooth workflow, clearer operating roles between team-
mates, and lower cognitive workload (Rahman & Wang,
2015). Another study showed that equipping an HRC work-
ing cell with augmented communication channels can
increase predictability of the robot’s behaviour, thus decreas-
ing workers’ stress and frustration; lack of information about
the robot’s intentions may generate stress due to feelings of
uncertainty and attempts to guess the machine’s subsequent
actions (Arntz et al., 2020). In the same vein, providing a
picture of the product that participants had to assemble
with the cobot was associated with lower MWL (Ustunel &
Gunduz, 2017). It is important to notice that information
about tasks can be helpful to workers only if provided in the
proper quantity and through an appropriate support; other-
wise it may generate an increase in MWL (Arai et al., 2010;
Kato et al., 2010).

Robot performance and reliability seem to influence
MWL as well: According to the mathematical model devel-
oped by Rabby et al. (2019), the association between human
cognitive workload and task performance in an HRC frame-
work varies according to task complexity and robot per-
formance (i.e. human intervention required or not).
Specifically, given a certain task complexity level, human
cognitive workload decreases as the robot’s performance
improves. As concerns cobot’s reliability, higher levels can
reduce operator’s cognitive workload (Rabby et al., 2019).

3.3.3. Task organization
The introduction of cobots inevitably brings about changes
in the organization of work. First, cobots are designed to
perform heavy, dangerous and repetitive handling tasks in
collaborative cells (Brun & Wioland, 2021), while workers
are assigned primarily mental tasks, such as monitoring
robot operations, production flow and quality, and trouble-
shooting malfunctions; this multifaceted role contributes to
increased cognitive load and stress (Chac�on et al., 2021), but
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also satisfaction and engagement, if the cobot is pro-
grammed to adapt to the worker’s needs (Brun & Wioland,
2021; Fournier et al., 2022). A robot able to offer proper
support during collaborative activities may contribute to
lower fatigue and MWL (Hopko et al., 2021). In addition,
during the collaborative situation, study workers reported
higher stress when they are assigned the role of task follower
rather than task leader, most likely due to the perceived lack
of control on the situation; the perception of control over
the robot system is instead associated with lower stress levels
(Pollak et al., 2020). Notably, in Messeri et al. (2023), and in
Roncone et al. (2017), the productivity is higher when the
robot guides the collaborative operations.

The level of interdependence, that is the extent to which
one team member’s actions affect the performance of the
other one, was also investigated by Zhao et al. (2020) as a
potential source of MWL variations, leading to the identifi-
cation of three types of interdependence: Pooled inter-
dependence (robot and worker complete tasks separately),
sequential interdependence (robot and worker complete
tasks together in a pre-defined order), and reciprocal inter-
dependence (each partner specializes in a certain skill or
specific aspect of the task). Participants in the reciprocal
interdependence condition (i.e. in which humans perceived
cobot as a teammate with shared responsibilities and goals)
reported lower levels of stress compared to the other two
conditions. Moreover, in the reciprocal interdependence
condition, participants reported higher freedom in setting
their work pace, at the same time perceiving collaboration
with the robot, compared to sequential interdependence
(Zhao et al., 2020).

3.4. How to reduce MWL: Solutions from the selected
studies

The studies included in this review suggest that collabor-
ation with cobots is intrinsically characterized by specific
demands, that may increase human partners’ cognitive load,
with detrimental effects on their mental health and task per-
formance (Fallahi et al., 2016; Midha et al., 2022; Minowa,
2000; Shao et al., 2020). It is therefore crucial to design
HRC systems capable of maximizing productivity while
maintaining workers’ MWL levels within a healthy range
(Baltrusch et al., 2022). Some of the selected papers propose
solutions to this problem.

Bettoni et al. (2020) implemented a smart decision maker
system able to balance productivity and a general reduction
of the workers’ mental and physical workload, based on
physiological data gathered from operators through three
different wearable devices: chest strap, wristband, and a
smartwatch. The continuous monitoring of workers’ physio-
logical parameters allows the system to adjust cobots’ actions
to humans’ conditions along the entire production process,
for example by proposing a different allocation of tasks to
the workers, who can accept or refuse it through the touch
screen of their smartwatches (Bettoni et al., 2020). This solu-
tion, tested at a manufacturing company on a workstation
with four workers, was associated with globally lower mental

and physical workload, higher job engagement, and less per-
ceived monotony (Bettoni et al., 2020).

Another solution is represented by RobotAssist
(Rajavenkatanarayanan et al., 2020), a multi-sensory minim-
ally invasive HRC system that enables the cobot to assess
the cognitive load of the human partner through ECG and
EDA sensors, and to analyse and model them based on
machine learning techniques.

The joint evaluation of the worker’s stress and productiv-
ity is the core of another potential solution (Messeri et al.,
2021). Through an online control strategy, a learning auto-
mation system can modify the robot’s work pace over time,
to guarantee the best compromise between mitigation of
human stress and maximization of productivity. In another
paper, a decision-making algorithm was developed to opti-
mize productivity and mental fatigue based on HRV signals
(Lagomarsino et al., 2022). The tuning algorithm allows for
adapting robots’ motion characteristics and pace to workers’
mental states, regulating MLW and ensuring an optimal
level of productivity. A similar solution is represented by a
transparent task planner, embedded on a dual arm robot,
able to perform basic evaluations of role assignments and
task allocation (Roncone et al., 2017). The system introduces
a shift in task allocation from human to robot based on the
task completion time, freeing the operator from reasoning
about the task, and leading to reduction in task completion
time. Study participants expressed their preference for this
allocation system compared to a traditional one, in which
they were fully responsible for task definition, emphasizing
that the reduction in cognitive load relieved them from the
need to remember steps by heart and to waste less time in
making decisions (Roncone et al., 2017).

4. Discussion

This scoping review was aimed at identifying the approaches
adopted to investigate mental workload, and the prominent
sources of mental workload detected in the literature con-
cerning collaboration with cobots.

Almost all the selected studies were performed in labora-
tory settings, participants were volunteers, and the sample
sizes were rather small (82.6% of the studies involved less
than 50 participants; 52.2% less than 20). Moreover, the
cobots used in laboratory experiments were equipped with
single or dual robotic arms, thus reproducing a specific type
of robot used in factories to perform assembly and pick and
place tasks. Finally, the tasks in which the participants were
engaged were generally short and isolated, and did not
reflect the prolonged, continuous HRC operations that are
commonly observed in industrial settings. Furthermore, the
experimental design of the selected studies often lacked a
multimodal approach, which further limits the generalizabil-
ity of the findings to real-world industrial scenarios. These
features limit the generalizability of the laboratory findings
to real-world industrial settings. Further research with larger
samples and longer task duration is needed to fully under-
stand the impact of HRC on mental workload in real indus-
try settings.
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Discrepancies emerged in the relationship between cobot
behaviour and human MWL levels in the four studies adopt-
ing virtual scenarios: In two of them (Koppenborg et al.,
2017 and Rabby et al., 2019), results were consistent with
those derived from real-world scenarios; in the other two
studies (Arntz et al., 2020; M€uller et al., 2017), mental work-
load levels were lower or unrelated to robot behaviour.
Virtual environments may not always replicate the complex-
ities of real-world scenarios, and related results should
therefore be interpreted with caution when generalizing to
real-world settings (Wijnen et al., 2020; 2020). Further
investigation is required to fully comprehend the impact of
HRC on mental workload in real-world industrial settings.

As concerns the assessment of MWL, the most frequently
used objective measure was EDA, characterized by high sen-
sitivity and low intrusiveness. NASA TLX was instead the
most common self-report instrument adopted to evaluate
the subjective perception of MWL. Despite repeated
acknowledgements that only a multimodal approach, includ-
ing physiological, task-performance, and self-report meas-
ures, can adequately capture the complexity of HRC (Cain,
2007; Longo et al., 2022; Miller, 2001), only six of the
selected studies adopted this strategy.

As concerns sources of mental workload, the most rele-
vant factors that can negatively impact on both productivity
and workers’ mental conditions were patterns of cobot
motion and interaction with the human worker, as well as
task organization and procedures. However, in two studies
(Chac�on et al., 2021; Fournier et al., 2022) collaboration
with robots was not associated with an increase in perceived
cognitive load. This heterogeneity of findings calls for fur-
ther investigation; to this purpose, it is important to notice
that most of the selected studies were conference proceed-
ings, suggesting that human mental functioning during HRC
is still a young and expanding research field (Storm et al.,
2022).

As for possible solutions to reduce workers’ cognitive
load during HRC, five of the selected studies proposed
methods to dynamically control cobot actions in response to
workers’ mental stress during collaborative tasks. Overall,
their authors converged on acknowledging the need for
designing cobots sensitive to human mental resources and
functioning, equipped with the ability to adjust their behav-
iour to workers’ psychophysical states through regulation of
speed and pace, and variations in task allocation. The cur-
rent technological advancements, allowing for the continu-
ous assessment of MWL related physiological data through
increasingly sensitive and non-invasive sensors, could enable
cobots to use information about workers’ mental state as a
basis for defining and modulating collaboration patterns.

This scoping review is not exempt from limitations.
Despite efforts to make it exhaustive, it is possible that rele-
vant publications were not included because of the selection
criteria or involuntary omissions in the screening phase.
Another limitation is related to the generalizability of the
findings, which were predominantly obtained in simulated
laboratory settings from small samples of volunteers, often
students or university staff. Finally, at the methodological

level the selected studies widely differed in quality, an issue
related to the still limited literature available on HRC.

5. Conclusion and future directions

This scoping review summarized the literature investigating
cobot and task related factors that may contribute to
increase workers’ mental workload, and the potential solu-
tions to address this problem. Cobot motion patterns, speed,
and pace, as well as the cobot’s role in task allocation during
HRC were associated with higher MWL. These findings
have been primarily interpreted through the transactional
theory of stress (Lazarus & Folkman, 1984), a psychological
model derived from the investigation of the interplay
between environmental demands and individual resources. It
is interesting to notice that most of the studies included in
this scoping review were designed and conducted by
researchers working in the domain of engineering or
robotics, suggesting that multidisciplinary collaboration is
not yet the rule in this area of investigation. Moreover,
although all the studies were focused on workers’ psycho-
logical functioning, only seven papers (30.4%) involved psy-
chologists as co-authors. This lack of interdisciplinary
collaboration is a potential risk when dealing with HRC, an
intrinsically relational condition jointly involving humans
and machines (Dautenhahn, 2007; Gervasi et al., 2020; 2020;
Meissner et al., 2020; Tsai et al., 2022). The involvement of
researchers with specific expertise in human psychological
functioning and relational needs may help identify the most
appropriate methods and measures to investigate such a
complex interplay, as well as open novel pathways to explore
it, fruitfully integrating the perspective of experts in technol-
ogy and robotics.

To define the features of a positive and effective human-
robot interaction, however, more refined information should
be collected from the workers, besides MWL or stress indi-
cators. A promising though still novel area of research in
this domain is the real-time repeated assessment of the
experience reported by operators during HRC in the factory
setting. This emerging area opens new research and inter-
vention avenues, including the implementation of new work
patterns, new manufacturing workplaces and new roles for
cobots, with the goal of protecting and promoting workers’
mental health. To this purpose, a new type of cobot is cur-
rently under development by a multidisciplinary consortium
of researchers within the European H2020 “MindBot” pro-
ject, aimed at designing collaborative robots able to interact
with the human operator in ways that promote optimal
experiences and foster positive mental health (Nicora et al.,
2021). The conceptual and empirical model guiding the
MindBot project is Flow Theory (Csikszentmihalyi, 1975,
2000). “Flow” or “optimal experience” is a state of well-
being characterized by high concentration, involvement,
control of the situation, perception of high stakes and clear
goals, positively balanced mood, and perceived intrinsic
reward. It is “a state in which people are so involved in an
activity that nothing else seems to matter; the experience
itself is so enjoyable that people will do it even at a great
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cost, for the sheer sake of doing it” (Csikszentmihalyi, 1990,
p. 4). A vast literature highlighted that a key prerequisite for
flow onset is the perception of high challenges in the task at
hand, matched with adequate personal skills in facing them
(for a review, see Delle Fave et al., 2011). In the work
domain, flow was found to be positively associated with
higher work performance (Demerouti, 2006) and positive
mental functioning (Csikszentmihalyi, 1997; Csikszentmihalyi
& LeFevre, 1989; Fullagar et al., 2017; Llorens et al., 2013). In
HRC settings, fostering the onset of flow experiences based
on the challenge/skill balance may promote optimal MWL
levels, thus preventing workers’ exposure to mental overload,
derived from the perception of challenges exceeding workers’
skills, and mental underload, generated by the perceived lack
of significant challenges. By means of their flexibility and
adaptability, cobots could be a relevant resource to this aim,
as they could become active partners in promoting a func-
tional match between job task challenges and workers’ skills,
thus supporting human motivation and work engagement.
Cobots can be designed to meet both task demands and
worker’s needs, through the tuning of their speed and motion
patterns according to workers’ MWL levels, and through
enhanced communication features, making HRC a source of
optimal experiences. Monitoring a worker’s MWL levels and
deviations from optimal mental states in real-time can be
used by the cobot as trigger to adopt strategies aimed at
achieving a better match between task demands and the
worker’s skills.

Over and above technological implementations, projects
aimed to endow cobots with features that may facilitate
workers’ actions, speed up the pace of work, and promote a
better HRC should rely on a multifaceted approach, includ-
ing industry-specific institutional and regulatory changes,
broader policy changes, and workplace organizational efforts
(Hammerling, 2022). Interdisciplinary support and counsel-
ling may be the most appropriate way to create cobot
increasingly able to maximise performance and productivity,
at the same time respecting and even promoting humans’
mental health.

Almost all the selected physiological data in the industrial
context raises ethical concerns regarding privacy and
informed consent (McAleenan et al., 2019). The disclosure
of these data could convey potential benefits, such as the
identification and resolution of workers’ health problems
before they become more serious; at the same time, how-
ever, it could entail the risk of violating workers’ rights to
privacy and equal treatment, as this information could be
used by employers to make decisions about employee per-
formance or promotions, or to discriminate workers based
on their health status (Bernhardt et al., 2021). In addition,
workers may feel forced to provide their consent to this type
of monitoring when, for example, it is presented as a pre-
requisite for hiring. In order to prevent these problems,
workers should get thorough and transparent information
about the type of data collected, their use, and the access
policy (Bernhardt et al., 2023; Tindale et al., 2022). The
implementation of technologies able to gather and under-
stand physiological and behavioural data from human

workers is not enough to promote a better HRC; it is also
necessary to define clear policies and guidelines on the use
of these data (Wullenkord & Eyssel, 2020). Workers should
be able to refuse this type of monitoring if they so wish,
without negative consequences on their job status; respect
for workers’ rights to privacy and informed consent should
be granted, in order to properly exploit the benefits of this
technology in the workplace (Jacobs et al., 2019).
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