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Abstract: Quantum many-body systems are of great interest for many research areas, including
physics, biology, and chemistry. However, their simulation is extremely challenging, due to the expo-
nential growth of the Hilbert space with system size, making it exceedingly difficult to parameterize
the wave functions of large systems by using exact methods. Neural networks and machine learning,
in general, are a way to face this challenge. For instance, methods like tensor networks and neural
quantum states are being investigated as promising tools to obtain the wave function of a quantum
mechanical system. In this tutorial, we focus on a particularly promising class of deep learning
algorithms. We explain how to construct a Physics-Informed Neural Network (PINN) able to solve
the Schrödinger equation for a given potential, by finding its eigenvalues and eigenfunctions. This
technique is unsupervised, and utilizes a novel computational method in a manner that is barely
explored. PINNs are a deep learning method that exploit automatic differentiation to solve integro-
differential equations in a mesh-free way. We show how to find both the ground and the excited
states. The method discovers the states progressively by starting from the ground state. We explain
how to introduce inductive biases in the loss to exploit further knowledge of the physical system.
Such additional constraints allow for a faster and more accurate convergence. This technique can
then be enhanced by a smart choice of collocation points in order to take advantage of the mesh-free
nature of the PINN. The methods are made explicit by applying them to the infinite potential well
and the particle in a ring, a challenging problem to be learned by an artificial intelligence agent due
to the presence of complex-valued eigenfunctions and degenerate states

Keywords: deep learning; physics-informed neural networks; partial differential equations;
Schrödinger equation

1. Introduction

The deep learning (DL) approach is one of the most successful machine learning
(ML) paradigms, producing outstanding results on several complex cognitive tasks [1,2].
Training a deep learning model, however, usually requires an enormous amount of data.
Even when the dataset is large enough to allow for effective training, such data will be
finite and noisy, inevitably leading to issues such as overfitting. However, when addressing
the dynamics of a physical system, there is often prior knowledge about its behavior and
the laws that shape it, usually in the form of a system of integro-differential equations.

Physics-informed neural networks [3] are a promising tool to discover and address the
parametrization of a system governed by partial differential equations (PDEs) or integro-
differential equations [4]. This rather new family of models has already shown success in
a plethora of different fields [5,6], thanks to their ability to learn the implicit solution of a
PDE even when given little to no data [7]. It allows to build models able to more efficiently
simulate those systems and even to discover new physics [8]. Furthermore, integrating the
physical knowledge of the system in the training process allows to prevent overfitting. They
have been widely applied in fluid dynamics [8–10], where, among many other things, they
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have been used in predictive large-eddy-simulation wall modeling, to obtain a model with
improved extrapolation capabilities to flow conditions that are not within the training data.
Unknown physics has been discovered by improving on empirical models for viscosity
in non-Newtonian fluids. There, the PINN model removes an unphysical singularity
present in the empirical one. In astrophysics [11], they have been used to compute the first
quasinormal modes of the Kerr geometry via the Teukolsky equation. The resulting model
allows to compute the oscillation frequencies and the damping times for arbitrary black
hole spins and masses. They have also been employed in scattering in composite optical
materials [12], reconstruction of top quark kinematic properties [13], and to compute the
electronic density in complex molecular systems [14]. However, in all the aforementioned
cases, the physics has just been used as a way to augment experimental data. The approach
explained in this paper is rather different. Here, the aim is to solve Schrödinger’s equation
for a system given its governing potential, in an unsupervised way.

Previously, some of us have developed both supervised [15–17] and unsupervised [18]
machine learning methods, including supervised quantum machine learning to address
ground state classification [19–21] of a physical system. The quantum anharmonic oscillator,
typically used to describe the quantum dynamics of the Josephson junctions in supercon-
ducting qubits, has been addressed despite being non-integrable [7]. Following this latter
approach, we aim to formalize the unsupervised solution of Schrödinger’s equation [22]
and explore the potential of physics-informed neural networks (PINNs) for solving par-
tial differential equations (PDEs) as a paramount representative application to nontrivial
physical phenomena.

This tutorial explains how to apply unsupervised PINNs to Schrödinger’s equation of
a quantum mechanical system in a self-consistent way, in order to find both the ground
state and the excited states of it. As an illustrative embodiment of this method, the infinite
potential well and the particle in a ring are solved [23]. This tutorial is structured as follows:
In Section 2, we explain how to build the PINN and, in particular, its loss function. Then, in
Section 3, we show how to evaluate the training of the model to tune its hyperparameters
in a more informed way. Lastly, in Section 4, we solve the two systems that exemplify
the method.

2. Materials and Methods

In this section, we explain how to build a PINN and how to design the loss function and
to apply heuristics to optimize the network’s hyperparameters. First, Section 2.1 contains
in a concise form the required background information on artificial neural networks and
deep learning. Then, in Section 2.3, we give a detailed explanation of what a PINN is and
how to build it, and the auxiliary output method used to calculate the normalization is
explained. Afterwards, in Section 2.4, we explain how to analyze the problem to understand
the best possible way to encode the physics in the loss function of the PINN. After that,
in Section 2.5, we show how to enforce the physical constraints of the system, such as
the normalization and boundary conditions. After those sections, the reader should have
gained a picture of the main losses needed to find an eigenstate for the given potential.
More work is, however, required to find the corresponding eigenvalue. In Section 2.6,
we show how to find the energy by solving the equation in a self-consistent way. Next,
the problem of inducing the PINN to converge to a specific eigenstate is addressed. In
particular, Section 2.7 demonstrates how to build a series of PINNs where the first predicts
the ground state of the system while each subsequent network predicts the next state, in
order of increasing energy. At this point, the problem has been set up. The next sections
show how to build the best possible computational framework to solve it: In Section 2.8,
it is explained how to set the best weights, which are given special attention since those
are the main hyperparameters to tune for the PINN. Then, in Section 2.9, we introduce a
method to choose the best set of training points, and in Section 2.10, how to choose the
computational domain. Lastly, Section 2.11 gives some pointers on how to best build the



Technologies 2024, 12, 174 3 of 18

actual network, with the number of neurons, hidden layers, activation function, and loss
metrics. This pipeline is summarized in Figure 1.

Figure 1. Graphical representation of the approach followed in this paper. The circles represent
variables; the rectangles represent operations. The variables are also represented by primary colors,
while the methods are represented by the secondary colors obtained by combining the colors of their
input and their output. In green, there are the neural network inputs. In yellow, there are the two
neural networks: the main one that computes the eigenstates and the one that computes the energy.
In blue, there are the outputs of the neural networks: the auxiliary outputs, the main outputs, which
are the eigenfunctions, and the eigenvalue E. In purple, there are the operations needed to calculate
the losses. The losses are the integral loss, the boundary condition loss, the normalization loss, the
inductive biases, and the differential equation loss. SAE is the sum of the absolute errors; SSE is the
sum of the squared errors. In red, there is the final loss. It is calculated by summing the partial losses
weighted by the empirically adjusted hyperparameters wint, wbc, wnorm, wbias, and weq. In cyan, there
are the criteria and the optimization method.

2.1. Neural Networks and Deep Learning

This section gives a broad qualitative overview of the basic tools needed for this
tutorial, namely, deep neural networks. The information here has been largely taken from
Refs. [24,25]. Artificial neural networks are information processing systems whose structure
and operation principles are inspired by the nervous system and the brain of animals and
humans. They consist of a large number of fairly simple units, the so-called neurons, which
are working in parallel. These neurons communicate by sending information in the form
of activation signals, along directed connections, to each other. Deep learning algorithms
face a series of challenges to train them effectively. For instance, one of the most common
issues is the problem of overfitting. With a larger number of hidden neurons, a neural
network may adapt not only to the regular dependence between outputs and inputs we try
to capture, but also to the accidental specifics (and thus also the errors and deviations) of
the training dataset. This is usually called overfitting. Overfitting will usually lead to the
effect that the error a neural network with many hidden neurons yields on the validation
data (a second dataset whose labels are known that is not employed in training but only to
obtain a more accurate estimate of the error of the network) will be greater than the error
on the training data. This is due to the fact that the validation dataset is likely distorted
in a different fashion, since the errors and deviations are random. Furthermore, while DL
methods are known to be extremely effective when immense amounts of data are available,
this availability is not a given in all circumstances. For instance, the data might be costly
to obtain. Or they might be tied to the observation of some phenomenon that cannot be
replicated at will and is not common enough to allow the training of a DL model that relies
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on big data. PINNs aim to address both the problem of data availability and to mitigate
overfitting by making use of the underlying physics of the system.

Mathematically, an artificial neural network is a (directed) graph G = (U, C) whose
vertices u ∈ U are called neurons or units and whose edges c ∈ C are called connections.
The set U of vertices is divided into the set Uin of input neurons, the set Uout of output
neurons, and the set Uhid of hidden neurons. These sets must fulfill the following conditions:

U = Uin ∪ Uout ∩ Uhid

Uin ̸= ∅, Uout ̸= ∅

Uhid ∩ (Uin ∪ Uout) = ∅

(1)

Each connection (u, v) ∈ C carries a weight wuv and to each neuron u ∈ U three
real-valued quantities are assigned: the network input netu, the activation actu, and the
output outu. In addition, each input neuron u ∈ Uin has a fourth quantity, the external
input extu. Each neuron u ∈ U also possesses three functions:

the network input function f (u)net : R2|pred(u)|+k1(u) → R

the activation function f (u)act : Rk2(u) → R

the output function f (u)out : R → R

(2)

with which the network input netu, the activation actu, and the output outu of the neuron
u are computed. k1(u) and k2(u) depend on the type and the number of arguments of
the functions. The neurons are divided into input, output, and hidden neurons in order
to specify which neurons receive input from the environment (input neurons) and which
emit output to the environment (output neurons). The remaining neurons have no contact
with the environment (but only with other neurons) and thus are “hidden”. To operate, for
each neuron of the neural network, the network input function f (u)net computes the network
input netu from the inputs inuv1, . . . , inuvn (which correspond to the outputs outv1, . . .
, outvn of the predecessors of the neuron u) and the connection weights wuv1, . . . ,wuvn.
This computation may be influenced by additional parameters. The activation function
f (u)act computes the new activation actu of the neuron u. Finally, the output of the neuron

u is computed by the output function f (u)out from its activation. Note that the choice of the
activation function, in particular, can greatly influence the convergence of the network.
The network’s parameters can be determined by training it utilizing gradient descent and
back-propagation. The idea is that we aim to train the network’s parameters so that they
minimize a function, the loss function, that quantifies the distance from the network’s
output and the desired output. By choosing a sufficiently smooth activation function (i.e.,
the logistic function or tanh), it is possible to compute the gradient of the loss with respect to
the parameters. Then, by changing the parameters in the inverse direction to this gradient,
we can minimize the loss function. This also means that we need a differentiable function
that has a non-vanishing derivative in at least a sufficiently large region, where it provides
direction information. However, computing this gradient for a deep neural network is not
trivial. It requires a method to compute the derivatives of the outputs (and, therefore, of
the loss) with respect to the weights of both the output layers and the hidden layers. This
method is called error back-propagation. It exploits the chain rule to obtain a layer-wise
recursion formula for computing the derivatives of the neurons of the hidden layers. Note
that this method can easily be extended to compute the derivative of the outputs with
respect to the inputs, which is crucial for training PINNs.

2.2. Materials

Due to the pedagogical nature of this article, we decided to not use examples that
require expensive computational resources. Therefore, all the results in the paper are
reproducible using a laptop with an NVIDIA GeForce RTX 3060 Laptop GPU.
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2.3. Physics-Informed Neural Networks

In this section, we revise the ideas behind a generic physics-informed neural network.
The particular kind of PINN used here is then detailed for solving Schrödinger’s equation,
the A-PINN [4] (physics-informed neural network with auxiliary output). Physics-informed
neural networks [3], or PINNs, are a category of neural networks that aim to solve par-
tial differential equations by encoding prior knowledge about the physical system, most
importantly the differential equation itself, in their loss function. This loss can be written as:

f = Lossdata + LossPDE + Lossphys (3)

Lossdata is the standard loss for a neural network: take a set of N training points {x⃗i} with
0 ≤ i ≤ N − 1 and the corresponding labels {y⃗i}, where y⃗i is the value that the objective
function assumes in x⃗i. Given the network outputs {o⃗uti} for the inputs {x⃗i}, Lossdata
will be:

Lossdata = Err({y⃗i}, {o⃗uti}) (4)

where Err represents a chosen metric. We will now list the relevant ones for this tutorial:

Mean Squared Error: MSE({y⃗i}, {o⃗uti}) =
1
N ∑

i
∥y⃗i − o⃗uti∥2

Sum of Squared Errors: SSE({y⃗ii}, {o⃗uti}) = ∑
i
∥y⃗i − o⃗uti∥2

Mean Absolute Error: MAE({y⃗i}, {o⃗uti}) =
1
N ∑

i
∥y⃗i − o⃗uti∥

Sum of Absolute Errors: SAE({y⃗i}, {o⃗uti}) = ∑
i
∥y⃗i − o⃗uti∥

(5)

Note that in our case, this Lossdata will not be present since we are working in an
unsupervised setting. Those metrics are still used to compute the unsupervised losses.
Lossphys corresponds to the losses given by the physical constraints of the system, like
the boundary conditions and the initial conditions. Lastly, LossPDE is the error for the
differential equation. For instance, given a PDE with an implicit solution µ(t) that depends
on µ(t) and its derivative ∂tµ(t) with respect to the independent variable t, the differential
equation can be written as:

∂tµ(t) + N[µ; λ] = 0 (6)

where N is a nonlinear operator and λ is some set of parameters. Given this, we can write
LossPDE (using MSE as metric) for a network designed to solve this equation as:

1
n

n

∑
i=1

(∂tµ(ti) + N[µ(ti); λ])2 (7)

where {ti} is the set of n points, called collocation points, where the PDE will be evaluated.
This makes it possible to train neural networks even in the presence of noisy or very little
data, and even in a fully unsupervised setting, such as in this paper.

However, when working with quantum mechanical systems, we are usually not just
dealing with partial differential equations, but often with integro-differential Equations.
At the very least, there is always the need to compute an integral to enforce the wave
function’s normalization. Normally, to compute an integral, numerically finite difference
methods are employed. Those methods utilize a mesh, a set of finite elements used to
represent the function, to compute the integral. However, being mesh-free is one of the
advantages of utilizing a neural method. This advantage can be retained if we are able
to employ a mesh-free way to compute the required integrals. To this end, we employ
so-called auxiliary outputs; beyond the wave function, we add an additional output to
the network for each integral we need to compute. For instance, an integral is needed for
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the normalization in a domain [− L
2 , L

2 ]. It can be represented by the auxiliary output ν(x),
defined as:

ν(x) =
∫ x

− L
2

|ψ(k)|2 dk (8)

and the normalization will be fulfilled if ν( L
2 ) = 1; ν(− L

2 ) = 0. Note that there is a trade-
off here. On the one hand, the discretization error can be potentially removed using an
auxiliary output. On the other hand, using it makes the network harder to train due to the
additional outputs and losses. Therefore, the choice to utilize an auxiliary output or a finite
difference method has to be made on a case-by-case basis.

2.4. Potential Analysis

This section enters into the specifics of how to build a PINN to solve Schrödinger’s
equation. Here, we focus, in particular, on the analysis of the potential to find the opti-
mal representation of the problem. The potential is then used to define the associated
Schrödinger equation. Beyond that, it is also important to identify the independent vari-
ables that will make up the input of the neural network. Likewise, we must identify any
integrals that will make up the auxiliary output. For instance, for an infinite potential
well, the representation of the Schrödinger equation will just contain the kinetic part, and
the potential {

V(x) = 0 f or x ∈ [− L
2 , L

2 ]

V(x) = ∞ otherwise
. (9)

can be represented by having [− L
2 , L

2 ] be the computational domain and the imposing
Dirichlet boundary conditions:

ψ(− L
2
) = ψ(

L
2
) = 0 (10)

The position x will be the input. The outputs will be the main one, ψ(x), and an
auxiliary one, ν(x), as defined in (8).

2.5. Physical Constraints and Inductive Biases

After defining the main differential equation loss in the previous section, here, we
explain the other losses used to build a neural network capable of solving the equation. In
particular, here are defined the losses linked to the physical constraints of the system. We
also add a kind of loss not essential to solving the equation but which greatly improves
convergence, namely, the inductive biases.

To define these losses, one needs to understand which are the physical constraints of
the system and if any symmetries can be exploited to obtain an inductive bias. By inductive
bias, we mean a set of conditions that leads the network to prioritize a set of solutions
over another, for instance, prioritizing solutions that follow a given symmetry. Biases can
be invaluable because they limit the search space, and thus reduce the number of epochs
needed to obtain a solution.

A condition that is always needed is the normalization:∫
Ω
|ψ(x⃗)|2 dx⃗ = 1 (11)

where Ω is the domain of the wave function, chosen depending on the dimensionality and
nature of the system. For instance, for a one-dimensional infinite potential well in [− L

2 , L
2 ],

Ω can be restricted to Ω = [− L
2 , L

2 ]. It is important to note that imposing the condition
defined in (11) is the only thing that forces the wave function to be nonzero. Otherwise,
ψ(x) = 0 for all x would exactly satisfy all losses. This integral can be solved by utilizing
an auxiliary output ν(x) with form (8) and by imposing ν( L

2 ) = 1; ν(− L
2 ) = 0. However,

we must first train the network so that ν(x) has the desired form (8). Once again, this can
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be achieved by exploiting automatic differentiation to compute ∇⃗ν(x⃗) and thus use the
following as a loss:

∇⃗ν(x⃗) = |ψ(x⃗)|2 (12)

obtaining the integral loss. We typically need to set some boundary conditions. In general,
one can either use hard or soft boundary conditions. The former choice forces the network
output to fulfill the boundary conditions exactly. This can be performed by employing
a change of variable or modifying the output in some way, such as by multiplying it by
another function. The latter choice makes the network learn the BCs via an additional loss,
the boundary condition loss. This loss is 0 when the BCs are fulfilled. For instance, in the
infinite potential well to impose soft Dirichlet boundary conditions (10), we can add to the
network’s loss |ψ(− L

2 )|+ |ψ( L
2 )|. In this tutorial, we always use soft boundary conditions.

Further constraints can be required on a case-by-case basis, but normalization and
boundary conditions are always essential. Moreover, we can also employ an additional
kind of loss—the inductive biases. These are losses that are not required to obtain a solution,
but can instead be added to allow the network to converge much faster. They are usually
based on the symmetries of the potential; for instance, the infinite well is symmetric with
respect to 0. This symmetry makes its eigenfunctions alternatively even and odd with
respect to 0. A condition that can be enforced in the PINN by the symmetry loss:

ψ(x)− sψ(−x) = 0 (13)

where s is 1 for symmetric states and −1 for anti-symmetric ones (the value of s is switched
each time a network is trained, starting from s = 1). In general, we can utilize as inductive
biases any kind of additional constraint that we know the wave function must follow. The
implementation depends on the inductive bias we want to add, but in general, it can be
added as an additional loss. Like all neural network losses, it must always be nonnegative,
and must reach 0 when the bias is satisfied. It is usually effective to give such additional
losses a higher weight compared to the other losses in order to let the inductive bias better
fulfill its role as a condition that limits the space of the solution. For instance, in the example
in Equation (13), the total loss will greatly increase for each pair of points that does not
follow the symmetry constraint. This leads the neural network to only explore the space of
symmetric or anti-symmetric solutions (depending on the value of s).

2.6. Self-Consistent Computation of the Eigenenergy

In this section, we explain how to find the eigenvalue to pair with the eigenfunction
obtained thanks to the techniques described in the previous sections.

Currently, the network can only find the eigenfunction of the potential when the
energy is known. However, in general, when solving the Schrödinger equation, that will
not be the case. Therefore, a way to find it in parallel with the eigenfunction is needed.
There are two ways to do this: the first is to set the energy E itself as a trainable parameter,
but this seems to result in fairly slow training. The second is to build a second neural
network to train in parallel with the one that predicts the wave function. It will take as
input a constant stream of ”1”s of the same length as the input vector, and output a guess
for the energy E. Since the output is constant, this second network will have no hidden
layers and there will be no nonlinear activation function. The network will just perform a
linear transformation from 1 to the value of the energy, based on a trainable parameter.

2.7. Finding the Desired State

A crucial step is to build the losses that allow the network to distinguish the desired
eigenstate from the infinite spectrum of the Hamiltonian. This is explained in this section.
By training the PINN with the current losses, it will solve the Schrödinger equation for
a random state anywhere in the spectrum. Usually, however, we are looking for some
amount of eigenstate starting from the ground state and going in order of increasing energy.
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In particular, it is especially important to build a network that finds the ground state first.
This can be achieved by introducing an energy minimization condition in the loss:

ea(EPINN−Einit) = 0 (14)

where EPINN is the predicted energy, a is a hyperparameter. and Einit is either another
hyperparameter when training the network to predict the ground state, or the energy
of the previous state, for the excited states. The choice to increase Einit as the quantum
number increases was made to avoid the loss exploding for higher energy states due to its
exponential increase. Otherwise, the network might fail to converge at all. We also have to
take into account that this energy minimization loss keeps pushing the network to lower
energies even when the correct solution is reached. This moves the global minima of the
loss from the eigenstate to a lower energy state, causing the loss to converge to an incorrect
state. To avoid such a situation, the weight of the loss is gradually decreased as the training
continues. This reduction should be such that the loss becomes approximately 0 towards
the end of the training. Thanks to this, in the earlier epochs, this loss will steer the network
towards the desired lower energy state. On the other hand, in the latter epochs, the energy
minimization loss will become negligible and allow the network to settle to the correct
solution. The resulting neural network can now find the ground state of the wave function.
We now want to obtain the excited states. To do so, a sequence of networks is built, each
of which predicts one of the Hamiltonian’s eigenstates and the corresponding eigenvalue,
in order of increasing energy. To do so, an additional loss is employed—the orthogonality
loss. This loss forces each network’s output to be orthogonal to all the ones before it:

∑
i
⟨ψ(x⃗)|ψi(x⃗)⟩ = 0 (15)

where ψi(x⃗) are the known eigenfunctions. This loss will, of course, always be 0 when
training the first network. But each time a network converges, it will be saved and utilized
to obtain the ψi(x⃗) needed to compute this loss for the networks following it in the sequence.

2.8. Weights

In the previous sections, the losses to minimize were defined. In the following section,
it is explained how to build the actual computational framework that ensures the network
is able to minimize those losses. In this section, in particular, some pointers are given on
how to tune one of the most important sets of hyperparameters—the weights. Usually,
when training PINNs, it is better to set weights that ensure all the losses have the same
scale. That is not the case for this problem; it is very easy for a network that has to predict
eigenfunctions to get stuck in local minima, such as ψ(x⃗) = 0 ∀x⃗ or an already discovered
eigenvector. This means that it is actually better to set the weights in such a way that the
network first enforces the physical constraints of the system, such as normalization and
orthogonality. Only once these are fulfilled should the network be trained to actually solve
the equation. This means setting the losses for those physical constraints higher than those
of the differential equations.

In general, this means that the integral loss should have the highest weight, then
the normalization, needed to avoid the constant solution, and the orthogonality, needed
to avoid repeating solutions. At this point, the network should minimize the boundary
conditions loss. The last loss to minimize is the differential equation loss. However, since
solving the differential equation is the main objective of the network, it is often beneficial
to gradually increase its loss weight. This allows the network to learn how to enforce the
physical conditions in the first epochs but makes it focus more on the differential equation
in the latter epochs. It is important to stress that weights are probably the most impactful
hyperparameters to tune; a correct choice of weights will be the difference between quick
convergence and a network getting stuck on a suboptimal solution.
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2.9. Choice of Training Points

In order to train the PINN, the losses must be evaluated on a set of points, known as
collocation points. These can be taken anywhere in the domain, and this section contains
the optimal way to choose them. When training a PINN such as this, each batch of training
points should span the whole domain. Furthermore, since no dataset is being used, the
choice of points is not constrained in any way—they can be taken anywhere in the domain.
This can be exploited to basically work with an infinitely large dataset. To fully take
advantage of this, first a batch size N is decided. Then, a mesh of N points that spans the
whole domain is built. Each of these points will be the center of a normal distribution from
which one of the points in the given batch will be sampled. This results in batches that are
always slightly different but always span the whole domain, thus ensuring the maximum
exploration and fastest possible convergence.

2.10. Domain Definition

This computational framework inevitably requires the collocation points to be chosen
within a certain domain. In this section, the best way to identify this domain is explained.
The choice of the computational domain is crucial for an effective convergence of the
network. First of all, this method only makes sense if almost all of the nonzero part of
the desired wave function exists within the chosen domain. This means that outside it,
the wave function must be either exactly 0 or vanishingly small and thus negligible. On
the other hand, if the computational domain is too wide, then the network will be trained
on a vast area of just 0s that will provide no information to it, resulting in greatly slowed
down training. This means that more points in each batch would be needed to properly
sample the “interesting” part of the domain. In the case of the well, the choice of the
optimal domain is an immediate consequence of the structure of the system; as mentioned
in Section 2.4, just using [− L

2 , L
2 ] is ideal since the wave function will be nonzero only inside

the well. For more complex potentials, the choice of the domain must be made based on
an analysis of the potential under study. One needs to find out at which distance from the
origin the wave function becomes negligible. Doing this will probably require some trial
and error.

2.11. Network Architecture

In this section, we give some suggestions and tricks on how to better build a feed-
forward neural network to solve the Schrödinger equation in a physics-informed way. We
focus on which metrics to use for the loss and which activation function should be employed
in the network. PINNs tend to work better as relatively shallow but wide networks. For
instance, in [7], the main network was made up of 7 hidden layers of 256 neurons each. In
general, the physics-informed approach can can be applied to any kind of neural network,
since its implementation is based on modifying just the loss function, independently of
the network’s architecture. Here, we choose to focus on feed-forward PINNs due to their
being the simplest architecture, which makes them ideal for a tutorial. The number of
hidden layers, of course, depends on the problem we need the PINN to address. For the
examples given in this tutorial, we employed a PINN with 6 hidden layers to solve the
infinite potential well and one with 10 hidden layers to find the spectrum of the particle
in a ring. As for the activation function, an infinitely differentiable one, such as tanh, is
needed, otherwise, the network would be unable to compute higher-order derivatives
via automatic differentiation. Choosing an activation function of this type, instead of
something like ReLU, might, however, cause vanishing gradient problems. If this happens,
it might be beneficial to look into adaptive activation functions [26] as a solution. For this
tutorial, we always employ tanh as the activation function. The output of each layer was
not normalized, since empirically it was found that output normalization does not improve
convergence. Lastly, it is not necessary to compute all the partial losses using the same
metric. It usually makes more sense to utilize something like the sum of absolute errors for
the losses enforcing the physical conditions of the system, such as the boundary conditions
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loss or the normalization loss. This is because the rest of the training makes sense only if
those losses are approximately 0 in all points. And this is enforced more strictly with SAE
rather than something like MSE. On the other hand, the mean squared error is usually the
best choice for the integral and differential equation losses. Utilizing the sum of squared
error to compute these losses is also worth considering. This is especially true when the
wave function is expected to have a complex behavior in a small section of the domain and
a relatively simple one in the rest. This choice of metric will avoid underestimating the loss
due to the averaging of the error for the points in the large “simple” area and the small
“complex” area. As for the optimizer, Adam [27] is usually rather effective.

3. How to Evaluate Training

In this section, some ways to evaluate the PINNs training to optimize their architecture
and hyperparameters are shown. The focus will be on some typical pathological behaviors
and some ways to understand what causes them and how to fix them. The behavior of the
loss actually tends to be a quite reliable metric when training PINNs in an unsupervised
way, and is actually more reliable than for standard neural networks. This is because a
PINN follows a given physical law, and the loss quantifies how well its output follows the
given law. It does not have a set of training points it might memorize instead of learning
the underlying law.

As such, overfitting on some training sets is not a risk and it does not make sense to
build the training, the validation, and the test sets from a dataset. In spite of this, due to the
complexity of the loss function, just looking at the full loss does not tell the whole story of
what is happening during training. In the following subsections, some ways to interpret
the behavior of the network during training more deeply will be detailed. This should
allow one to make more informed decisions when tuning hyperparameters.

3.1. Partial Losses

The first thing to look at when the PINN does not converge is to try to understand
which loss (or losses) is failing to converge. At this point, the first thing one can do to
try and improve the training can be to try to either increase the weight for the losses that
are struggling to converge or reduce the weights for other, competing losses. One very
common problem is the orthogonality loss failing to converge while other losses get very
close 0. This means that the network is predicting an already discovered eigenfunction (in
low dimensions, this can also be seen by looking at partial plots). For this, increasing the
weight of the orthogonality loss is usually a quite safe solution.

Another common occurrence is the normalization loss staying high while all other
losses become 0. This usually means that the network has converged to the local minimum
ψ(x⃗) = 0 ∀x⃗. While it could be fixed by increasing the normalization loss’ weight (this
usually means also increasing the normalization integral’s weight, since the normalization
loss does not have any meaning if the normalization integral is incorrect), it can also
be useful to change the initialization of the network, for instance, going from Xavier
uniform [28] to Kaiming normal [29], in order to start the network further from this local
minimum. This could also be a sign of the energy minimization loss having excessive
weight or growing too quickly. A way to decide this in low dimensions is to display the
plot of the best wave function (i.e., the one with the lowest loss) every number of epochs,
and look for any pathological behavior in its evolution. Another example is the case in
which the boundary condition loss seems to fail to converge; in this case, if the plotted
wave function resembles what we expect for the given potential but does not vanish at
the border of the domain, it might mean that a larger domain is needed. It is important to
note that a plateauing loss is not always a sign of a failed convergence. While training, it
might happen that the PINN’s loss remains stuck around a certain value for thousands of
epochs but will start decreasing again after some time. On the other hand, wild oscillations
of the loss might be a sign of an excessively high learning rate. Note that these are only
some empirical heuristics and might not apply in all cases. It is important to look at the
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loss’ behavior on a case-by-case basis and adjust the weights depending on what is best in
the current circumstances.

3.2. Evaluation Metrics

In the previous section, only the losses have been utilized to understand how successful
the training has been. However, depending on the problem, other, more informative,
metrics might be available. In this section, two metrics that allow to gauge the goodness of
the PINN’s solution for the Schrödinger equation are detailed. When a solution is already
known due to different numerical methods or because the potential has an analytic solution,
the correctness of the PINN’s output can be easily evaluated by utilizing fidelity [30–32]
and relative error on the energy. To gauge the eigenvalue’s correctness, the relative error
for the energy is used:

errE =
EEx − EPINN

EEx
(16)

where EEx is the analytic value of the energy, while EPINN is the one predicted by the
network. On the other hand, to evaluate the eigenvector, the fidelity between the predicted
wave function and the exact one is employed:

Fψ = |⟨ψEx|ψPINN⟩|2 (17)

numerically evaluated as:

Fψ = |∑
i

ψPINN(x⃗i)ψEx(x⃗i)|2 (18)

where the xi are a set of points spanning the whole domain, and ψEx(x) and ψPINN(x) are
the values of the wave function at the point x, as given by the analytic expression and by
the network, respectively. Both of the vectors will be normalized before calculating the sim-
ilarity, to avoid obtaining incorrect results due to inaccurate scaling. This should equal one
when the two wave functions are the same (or if their difference is just a nonphysical phase).

4. Examples

Some examples of quantum mechanical systems that can be solved by using PINNs
are now shown, including the infinite potential well and the particle in a ring.

4.1. Infinite Potential Well

In this section, we study the infinite potential well. This system has been chosen due
to its extreme simplicity, making it an excellent testbed to build the basis of the method.
We are studying, in particular, the infinite potential well [− L

2 , L
2 ], with L = 3:{

V(x) = 0 f or x ∈ [− 3
2 , 3

2 ]

V(x) = ∞ otherwise
. (19)

As mentioned in Section 2.4, this potential can be represented just by studying the
region with V(x) = 0 with Dirichlet boundary conditions. Therefore, based on the previous
sections, the neural network takes as input the position x and outputs the wave function
ψ(x) and auxiliary output ν(x). The network’s losses will be:
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Integral loss:
∂ν(x′)

∂x′

∣∣∣∣
x′=x

= |ψ(x)|2

Normalization loss: ν(− L
2
) = 0, ν(

L
2
) = 1

Boundary conditions loss: ψ(− L
2
) = ψ(

L
2
) = 0

Energy minimization loss: ea(EPINN−Einit) = 0, with a = 0.8; Einit = 0 when n = 0

Orthogonality loss: ∑
i
⟨ψ(x)|ψi(x)⟩ = 0

Differential equation loss: − 1
2

∂2ψ(x)
∂x2 − Eψ(x) = 0

(20)

To those losses, an inductive bias can be added, since the potential is symmetric
with respect to 0. Due to this symmetry, the wave functions that solve the equation are
alternatively symmetric and anti-symmetric with respect to 0. This condition can be
enforced by adding the loss:

ψ(x)− sψ(−x) = 0 (21)

where s is a parameter that assumes the value one, if we are looking for a symmetric state
(n even), or s = −1, if we are looking for an anti-symmetric one (n odd). For the sake of
clarity, it is worth mentioning that the value of s starts at one and is switched every time a
new model is trained.

The weights for each of these losses are summarized in Table 1. Note how they follow
the heuristics in Section 2.8.

Table 1. Weights for the infinite potential well.

Loss Weight

Normalization 1000
Boundary conditions 10

Integral 5000
Orthogonality 1000

Symmetry 1000
Energy minimization (starting) 10
Differential equation (starting) 1

Six networks are trained, predicting the ground state and first five excited states. Each
of them has 6 hidden layers of 64 neurons and is trained on batches of 512 collocation
points. The hyperbolic tangent has been used as the activation function.

All networks quickly converge. (The network is considered converged if the total loss
is less then 10−1 and the differential equation loss is less than 5 × 10−3. These values can be
reduced to obtain greater accuracy at the cost of a longer training run. Note that a patience
condition cannot be utilized due to the tendency of the PINN’s loss to plateau for a long
period before it resumes going down.). The exact eigenfunctions and eigenvalues of the
well are known analytically:

ψ(x) =

√
2
L

sin
(

n
π

L

(
x +

L
2

))
En =

n2π2

2L2

(22)

Therefore, we can use the metrics in Section 3.2 to judge the performance of the
network. The results are reported in Table 2.
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Table 2. Metrics for the infinite potential well.

Quantum Number n errE Fψ

1 (Ground state) 2.68 × 10−4 0.9999943
2 2.68 × 10−4 0.9999943
3 −6.07 × 10−4 0.9999910
4 −7.65 × 10−4 0.9999955
5 −9.82 × 10−5 0.9999910
6 1.78 × 10−5 0.9999998

It is now useful to look at the final plots for the ground state and the last excited state.
Starting with the ground state (Figure 2), one can immediately see from Figure 2a that the
neural network prediction closely aligns with the ground truth. Furthermore, by looking at
the evolution of the fidelity in Figure 2b, it can be seen that it quickly reaches a decent value
after the first few thousand epochs and then starts growing very slowly until it approaches 1.
This behavior of the fidelity is also matched by the behavior of the loss (Figure 2c), decreasing
monotonically but more slowly in the latter epochs. For the fifth excited state (Figure 3), the
situation is slightly different. In particular, the wave function itself in Figure 3a shows good
convergence, given a qualitative look. It is interesting to look at the fidelity in Figure 3b. This
graph once again grows very quickly in the first epochs, then the increase in fidelity stagnates
until it goes back to increasing until it saturates. This can actually already be seen in Figure 2b
but is much more marked here. This behavior is once again matched by the loss in Figure 3c,
which plateaus around the same time as the fidelity decreases, only to resume decreasing at a
decent speed after a couple of thousand epochs. This is a kind of pathological behavior that is
very common for PINNs, and is probably further exacerbated by the presence of the energy
minimization condition. This condition may be causing the network to not converge early
since the energy minimization loss would be too high. The network converges only once that
loss’ weight becomes approximately 0.

Figure 2. (a) Ground state for the well. The red dots are the PINN’s predictions, while the blue line is
the ground truth. The yellow vertical lines represent the walls of the well. (b) Fidelity throughout
training for the ground state. (c) Loss behavior throughout training. The y-axis is in logarithmic scale;
therefore, the oscillations on the y-axis for low losses are overemphasized.

Figure 3. (a) Fifth excited state for the well Equation (22). The red dots are the PINN’s predictions,
while the blue line is the ground truth. The yellow vertical lines represent the walls of the well.
(b) Fidelity throughout training for the ground state. (c) Loss behavior throughout training. The y-axis
is in logarithmic scale; therefore, the oscillations on the y-axis for low losses are overemphasized
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4.2. Particle in a Ring

In this section, we show another example of potential—the particle in a ring. In
this case, the potential is 0 on a ring of radius L, and ∞ everywhere else. Using polar
coordinates, the wave function depends only on the angular coordinate θ. The shape of
the potential actually becomes the same as the infinite potential well of Section 4.1, with
the difference that instead of having Dirichlet boundary conditions, it requires periodic
boundary conditions, that is:

ψ(0) = ψ(2π) (23)

Or, more generally, we require:

ψ(θ) = ψ(θ + 2π) (24)

Furthermore, the change of variable makes the gradient assume the following form:

∇⃗2
=

1
L2

∂2

∂θ2 (25)

This makes the analytical form of the solutions:

ψ(θ) =
1√
2π

einθ

En =
n2

2L2 where n = 0,±1,±2,±3, . . .

(26)

This actually introduces two significant challenges in training the PINN: first of all,
ψ(θ) will, in general, be a complex number, which means that the main output of the
network will now be two-dimensional, where the two outputs are Re(ψ(θ)) and Im(ψ(θ)).
Furthermore, each of the eigenstates of the ring with the same absolute value of n is
degenerate. This means that the neural network will, in general, find an arbitrary linear
combination of the two degenerate states. This still results in correct solutions, but will
make calculating metrics such as fidelity more complex. Therefore, in order to make the
results more readable for this tutorial, we impose an additional loss that forces the two
wave functions to have the same norm. This allows the solution to converge to (26) instead
of any linear combination of degenerate states. The network’s losses will be:

Integral loss:
∂ν(θ′)

∂θ′

∣∣∣∣
θ′=θ

= |ψ(θ)|2

Normalization loss: ν(0) = 0, ν(2π) = 1

Boundary conditions loss: ψ(0) = ψ(2π)

Periodicity loss: ψ(θ) = ψ(θ + 2π)

Energy minimization loss: ea(EPINN−Einit) = 0, with a = 0.4; Einit = 0 when n = 1

Orthogonality loss: ∑
i
⟨ψ(θ)|ψi(θ)⟩ = 0

Differential equation loss: − 1
2L2

∂2ψ(θ)

∂θ2 − Eψ(θ) = 0

(27)

Here, the periodicity loss and boundary conditions loss are treated as two separate
losses in order to utilize two different metrics to compute them. The boundary conditions
loss is computed with SAE and ensures the correct behavior of the wave function at the
domain’s boundaries. On the other hand, the periodicity loss is computed with SSE and acts
more as an inductive bias. The main neural network is made up of 10 layers of 256 neurons
each. A total of 1024 collocation points were employed. The results for L = 0.95 are reported
in Table 3. Note that for the trivial ground state ψ(θ) = 1√

2π
, we relay the predicted energy
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instead of the relative error for the energy. This is because for this state E = 0, and this
metric is thus undefined.

Table 3. Metrics for the infinite potential well.

Quantum Number n errE Fψ

0 (Ground state) 2.54 × 10−3 0.99992261
+1 1.48 × 10−2 0.9998474
−1 1.22 × 10−2 0.9996434

It is also useful to look at the plot for the state n = +1 Figure 4. In Figure 4a, there
are the plots of the outputs of the second network compared to the ground state for n = 1.
Due to the fact that n = 1 and n = −1 are degenerate states, however, the network there
predicted the state for n = −1. This is not an issue since the two are at the same energy,
and the only condition asked of the network is that it gives valid eigenstates in order of
increasing energy. Furthermore, since the difference between the two is just the sign of
either the real or imaginary part, depending on whether or not a global phase is also present,
it is possible to modify the plot so that the real and predicted version of the same state are
plotted. This is performed by multiplying one of the two by the relative phase of the real
and imaginary part (also see the caption of Figure 4). The result is the plot in Figure 4a.
Once again the plots for the fidelity, Figure 4b, and the loss, Figure 4c, have roughly the
same behavior. In this case, there is no elbow; however, they only really improve around
the first 15,000 epochs, and only reach the convergence condition very late. Note that
here, the values of the loss are much larger then in the previous case. This is because
SSE was employed in place of MSE, since empirically it can be seen that it leads to better
convergence for this system.

Figure 4. (a) One of the two first excited states for the ring Equation (26). The red dots are the PINN’s
predictions, while the blue line is the ground truth. Note that in this case, the ground truth and
the neural prediction are actually different states of the pair of degenerate states for |n| = 1. This
discrepancy is due to the fact that the two minima given by the states for n = 1 and n = −1 are
equally valid, and thus the neural network can converge freely to either one. However, in order to
have fidelity be an informative metric, the real and imaginary parts of the neural network predictions
are first multiplied by sign(⟨Re(ψEx)|Re(ψPINN)⟩) and sign(⟨Im(ψEx)|Im(ψPINN)⟩), respectively,
resulting in the two plots superimposing in the figure. (b) Fidelity throughout training for the
ground state. (c) Loss behavior throughout training. The y-axis is in logarithmic scale; therefore, the
oscillations on the y-axis for low losses are overemphasized

5. Challenges, Limitations, and Potential of PINNs

PINNs have the potential to be able to scale rather well with the complexity of the
system. This is thanks to the extreme expressive power of deep neural networks, which
are known to be able to successfully approximate any continuous function [33–36], given a
sufficient amount of parameters. However, PINNs do have limitations and disadvantages
compared to other computational methods. First of all, the multiple losses create an
extremely complex loss landscape, which can be very frustrated [37]. This makes training
the PINN rather difficult, and makes it very likely for it to get stuck in a local minimum
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if the hyperparameters have not been set correctly or if the initialization was especially
unlucky. Overcoming this challenge is essential to make the method feasible for more
complex systems. A way to do that would be to optimize the way weights are set, going
beyond heuristics and trial-and-error [38–40]. Furthermore, for potentials with degenerate
states, the PINN has no way to prefer any particular set of states, and is equally likely to
output any linear combination of the degenerate states. This is generally not an issue if
we are just looking for solutions of Schrödinger’s equation for the given potential, since
the PINNs will output valid solutions. However, if a particular set of eigenfunctions is
preferred, we need to add further physical constraints to the network to ensure the correct
output. It is also important to note that for these simple systems, the PINN’s performances
are inferior to those of numerical solvers, both from the point of view of accuracy and
speed, if we take into account the training time. For instance, numerical inversion of
the Hamiltonian for the particle in a ring leads to errors for the eigenvalues of the order
of 10−11 and can be performed in a few seconds. However, while there are still many
challenges with PINNs, especially related to their training, this tool is potentially able
to represent any quantum mechanical system given either the governing potential or a
sufficient amount of data, possibly even going beyond what current numerical solvers are
able to do. Furthermore, a PINN trained on a more complex system could be utilized to
quickly output the wave function ψ(x⃗) at any point x⃗, possibly faster then classical solvers.

6. Conclusions

The application and development of deep learning for science and technology has
huge potential, and PINNs are among the most promising tools to progress science by
using machine learning. Nowadays, one of the most stimulating fields of research aims at
the development of novel technologies able to actively leverage quantum resources. For
such purposes, the characterization of the energy spectrum (and the corresponding eigen-
functions) of the system is essential and it passes through the solution of the Schrödinger
equation. This tutorial provided the bases to build a PINN to solve the Schrödinger equa-
tion in an unsupervised way. We have discussed the infinite potential well and the particle
in a ring, exemplifying systems that allow the reader to fully understand the essential steps
to build such type of neural networks. The research in the use of PINNs in quantum tech-
nologies is still relatively novel, requiring more research to find the optimal way to employ
such techniques. Future directions include finding a better way to optimize the weights,
improve on the computation of integrals, building models able to better handle degenerate
states, and most importantly applying the method to increasingly more complex systems,
such as atomic nuclei, to assess the role played by coherence in quantum technologies [41],
and to solve stochastic Schrödinger’s equation modeling decohering processes [42].
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