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Abstract: Studies suggest non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) as
a potential therapeutic option for various pathological conditions, such as epilepsy and depression.
Exhalation-controlled taVNS, which synchronizes stimulation with internal body rhythms, holds
promise for enhanced neuromodulation, but there is no closed-loop system in the literature capable
of performing such integration in real time. In this context, the objective was to develop real-
time signal processing techniques and an integrated closed-loop device with sensors to acquire
physiological data. After a conditioning stage, the signal is processed and delivers synchronized
electrical stimulation during the patient’s expiratory phase. Additional modules were designed for
processing, software-controlled selectors, remote and autonomous operation, improved analysis,
and graphical visualization. The signal processing method effectively extracted respiratory cycles
and successfully attenuated signal noise. Heart rate variability was assessed in real time, using
linear statistical evaluation. The prototype feedback stimulator device was physically constructed.
Respiratory peak detection achieved an accuracy of 90%, and the real-time processing resulted in a
small delay of up to 150 ms in the detection of the expiratory phase. Thus, preliminary results show
promising accuracy, indicating the need for additional tests to optimize real-time processing and the
application of the prototype in clinical studies.

Keywords: neuromodulation; tVNS; closed-loop; Node-RED

1. Introduction

Transcutaneous auricular vagus nerve stimulation (taVNS) is a non-invasive neuro-
modulation therapy that eliminates the need for internal device implantation, presenting
as a favorable therapeutic option. This method relies on electrical surface stimulation,
bypassing the need for surgical procedures [1]. In the context of evaluating autonomic
state regulation, heart rate variability (HRV) calculation stands as a commonly employed
method, allowing for the assessment of sympathetic or parasympathetic system activa-
tion [2]. Consequently, evidence suggests that taVNS effectively modulates the auricular
vagus nerve’s parasympathetic pathway, with studies proposing its systemic effects [3].
Non-invasive stimulation of auricular afferent receptors is achieved by employing surface
electrodes on the outer ear, utilizing an electronic device to produce pulses at specific
stimulation frequencies [4,5]. Despite the increased application of transcutaneous stimula-
tion techniques, commercial devices currently operate as open-loop approaches, lacking
adaptive adjustments based on the user’s physiological variables.
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1.1. Closed-Loop Stimulation

In recent years, there has been an increasing focus on enhancing therapy by synchro-
nizing stimulation parameters with a patient’s physiological response. This has led to the
proposal of closed-loop models aiming to optimize treatment outcomes [6].

Differing from the traditional approach, closed-loop VNS allows for adjusting stimula-
tion to the patient’s physiological conditions in real time. In this system, stimulation is au-
tomatically adjusted based on the detection of specific physiological signals or biomarkers,
providing a personalized and effective intervention. In therapies for stroke rehabilitation,
for instance, closed-loop VNS enables precise control over when stimulation is delivered
to the patient, ensuring it occurs during appropriate moments [7], maximizing functional
recovery and enhancing rehabilitation efficacy [8]. Stimulation can be synchronized with
specific cardiac parameters, such as heart rate or blood pressure, to aid in the treatment of
cardiovascular diseases like hypertension and myocardial ischemia [9].

Decoding techniques enabling the identification and classification of patterns assist in
determining the precise timing of VNS application in cardiovascular treatments, based on
the evaluation of neural activity [10]. As vagal neural activity synchronizes with respiratory
and cardiac cycles, these physiological signals provide an avenue for external modulation
to enhance stimulation efficacy. Furthermore, indirect and non-invasive measures like
heart rate variability, baroreflex sensitivity, and respiratory sinus arrhythmia can serve
as indicators of cardiac vagal nerve activity, allowing for adjustment of parameters in
the stimulating device [11]. Pulmonary respiratory reflexes, facilitated by mechanical
lung-stretch receptors, convey information regarding the solitary tract nucleus, thereby
influencing cardiac and autonomic rhythms. In this context, by synchronizing the pulse
train of stimulation with the respiratory rhythm, especially during the expiration phase, the
intended neuromodulation may have a more significant physiological impact. Moreover,
the acquisition and analysis of various physiological signals in response to taVNS usage can
complete the therapeutic cycle, allowing for real-time assessment of the therapy, thereby
facilitating more efficient optimization [3].

Advancements in wearable sensor technologies and real-time signal processing
methodologies collectively form the foundation for research involving closed-loop taVNS.
Not only does this approach offer innovative and personalized treatment options for the
patient, but it also enables the tailoring of stimulation dosage according to the measured
outcomes during stimulation, potentially reducing side effects and enhancing the overall
quality of life for patients.

1.2. Sensors for Signal Acquisition

Advancements in sensor technology have enabled the precise and continuous collec-
tion of physiological data, such as heart rate, blood pressure, stress levels, and even brain
activity, in an unobtrusive and real-time manner. These data are crucial for evaluating
the effects of therapy and tailoring treatments to meet the specific needs of each patient.
Commercial devices, such as smartwatches, are commonly used by athletes to track daily
vital signs and performance during activities throughout the day. They are also employed
for the continuous monitoring of patients, especially the elderly, in a discreet and com-
fortable manner, without exposing that the individual is under care. More sophisticated
devices, like biosensors and wearable sensors [6], allow for the recording of variables used
to monitor blood glucose levels, oxygen saturation, heart rate, and blood pressure [12].

1.3. Methodologies for Signal Processing and Real-Time Variable Detection

Methods for extracting physiological data using real-time signal processing are cur-
rently utilized in both research and medical devices to support remote treatment [13].
Although tools for categorizing time-varying signals are widely adopted in diverse research
areas, the majority of these solutions depend on algorithms crafted for high computational
intensity. This poses challenges when implementing them in small embedded systems that
have limited resources [14].
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In stimulation therapies, the assessment of heartbeats can assist in the safe practice of
therapy. Through real-time signal processing methodologies, instantaneous detection of a
drop in heart rate to critical levels, due to vagal stimulation, can indicate to the user to adjust
or interrupt the session. In the context of autonomic assessment, heart rate variability (HRV)
is widely used to evaluate these systems’ activation [2]. Among the challenges associated
with this metric, the need for wider time windows for frequency domain analysis stands
out, as well as the requirement for high-sampling-rate sensors to detect pulse intervals and
the capacity of the processing unit remotely.

Quantitatively, changes in heart rhythm patterns can be obtained with beat recognition
algorithms, such as QRS complex detection. Temporal domain analyses can be performed
using calculations involving “mean RR, SDNN, rMSSD, pNN50”. In turn, signal transfor-
mation methods are employed to analyze HRV indices in the frequency domain, such as
fast Fourier transform (FFT), discrete Fourier transform (DFT), wavelet transform, or auto-
regressive (AR) modeling [15]. Developed in collaboration between the European Society
of Cardiology and the North American Society for Pacing and Electrophysiology, these
methodologies delineate protocols and clarify correlations among physiological assessment
parameters [16].

While frequency domain methods are effective for assessing biological variables not
observable in the time domain, they necessitate a longer signal window—typically at least
two minutes—to extract the LF, HF, and VLF bands. Obtaining other parameters may
require even lengthier measurements [17]. This requirement could limit their utility in
short sampling periods, particularly in real-time event identification.

Conversely, methods for processing respiratory signals are commonly observed in
respiratory performance tests and polysomnography examinations. Some studies have
proposed algorithms that utilize tools like discrete wavelet transform (DWT) and FFT for
sleep respiration detection [18]. The accurate detection of the end of inspiration and the
start of expiration has been investigated by other researchers as well [14,19]. In order to
synchronize the moment of stimulation triggering and to optimize the effects of vagal mod-
ulation through transcutaneous stimulation, our research team developed a mathematical
model [20]. The online processing steps applied to the recorded respiratory signal highlight
the complexity of managing signal variations and irregular patterns [21].

1.4. Remote Therapies

The implementation of advanced signal processing techniques enables precise and
controlled delivery of therapies in conjunction with a parallel assessment of effects. There-
fore, stimulation devices can be combined with monitoring systems to evaluate patient
responses to electrical stimuli. This integration allows for better control of therapeutic
interventions and the ability to adjust stimulation settings based on the specific needs of
the patient [22].

The advancement of remote technologies has made it possible to offer remote thera-
pies, surpassing geographical barriers and granting access to specialized treatments, even
for patients in remote areas. Telemedicine and digital health platforms facilitate remote
patient monitoring, treatment adjustments, and real-time interactions with healthcare pro-
fessionals. This fosters a more convenient and flexible approach while enhancing treatment
adherence [13]. These advancements suggest a reconfiguration of healthcare management,
aiming to prioritize preventive care and well-being, shifting away from the traditional focus
solely on crisis management and disease treatment in conventional healthcare systems. The
advancement of continuous and remote monitoring is achieved through the application
of real-time data processing, transmission, and integration with cloud-connected sensors
and devices [23,24]. The process involves the segmentation of data into transmission pack-
ets, wherein each packet contains identifiable information that is utilized for subsequent
processing, aiming to accurately extract parameters.

In this study, our primary objectives revolve around innovating closed-loop taVNS
therapies by synchronizing stimulation parameters with respiratory rhythms. The aim is
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to optimize the therapy’s physiological impact by leveraging real-time signal processing
and advanced sensor technologies. Specifically, our focus includes developing a closed-
loop system capable of real-time synchronization with respiratory rhythms to enhance
the effectiveness of taVNS. Furthermore, we aim to prototype and validate a remote
and autonomous device that integrates signal conditioning, respiratory signal processing,
and precise stimulation timing, thus enabling safe and effective therapy with improved
patient outcomes.

2. Materials and Methods

This present study involves the development and assessment of a real-time exhalation
detection algorithm synchronized with the pulse train at a user-defined frequency for
taVNS. The mathematical model records, filters, and identifies the expiration phase of the
respiratory signal through an automated real-time model. The output of the processing
model comprises a pulsating signal (pulse train) whenever the expiration phase is initiated.
This pulsating output triggers the implemented electrical circuit that generates single-phase
pulses for stimulation, targeting the ear region with the predefined frequency and voltage
designated for the session. All synchronization and parameter adjustments can be carried
out during the therapy without affecting the code’s performance or the designed electrical
pulse generator circuit.

The developed stimulator was structured into five stages: (1) signal acquisition and
conditioning module, (2) implementation of the physiological signal processing respiratory
algorithm in real time, (3) pulse generation circuit (PGC) with voltage regulation module
and synchronization with the exhalation phase, along with encapsulation design, and
(4) usability and web interface for parameter adjustments.

2.1. Signal Acquisition and Conditioning Module (Manufacturing)

Heartbeats are captured using the MAX 30102 photoplethysmography sensor, which
incorporates a module for monitoring heart rate and pulse oximetry. Equipped with LEDs
and photodetectors, the sensor detects changes in blood flow while accurately measuring
the user’s pulse. The sensor works in collaboration with an MCU, and the electronic board
was designed using Autodesk’s Eagle software, v9.6.2 (Figure 1A). The respiratory signal is
obtained through a thermistor sensor positioned within a nasal cannula to record tempera-
ture variations during the inhalation and exhalation of air. This circuit includes passive
analog filtering elements and an instrumentation amplifier. The MCU is interconnected
with the board to facilitate the integration of the mathematical model, enabling the recep-
tion and digital processing of the analog signal. The initial step involved implementing
the logical diagram of the circuit, ensuring connections of the same logical signal level
(Figure 1B).

After establishing the logical circuit design, we proceeded to create the physical board
layout, known as the footprint (Figure 2A,B). Lastly, using the same software integrated
with Fusion 360, individual 3D models of each component are implemented, utilizing
resources like Grabcad, which offers a library of 3D models for electronic components
(Figure 2C). It is crucial to guarantee the project’s feasibility for subsequent manufacturing,
considering aspects like soldering access and component placement. This enables a 3D
visualization of the board before proceeding with fabrication.

With the complete board design, the footprint file was printed onto a transparent sheet,
sensitized with dry film, cleaned and drilled, after corrosion process (Figure 3).

After completing the entire board design, the footprint file was printed onto a trans-
parent sheet, treated with a sensitive dry film, cleaned thoroughly, and then drilled as part
of the corrosion process (Figure 3).



Healthcare 2024, 12, 31 5 of 22Healthcare 2023, 11, x FOR PEER REVIEW 5 of 24 
 

 

 

Figure 1. Construction of the logical diagram. (A) Electronic design for heartbeat measurement. (B) 

Electronic design for respiratory signal acquisition and conditioning module. 

After establishing the logical circuit design, we proceeded to create the physical 

board layout, known as the footprint (Figure 2A,B). Lastly, using the same software inte-

grated with Fusion 360, individual 3D models of each component are implemented, uti-

lizing resources like Grabcad, which offers a library of 3D models for electronic compo-

nents (Figure 2C). It is crucial to guarantee the project’s feasibility for subsequent manu-

facturing, considering aspects like soldering access and component placement. This ena-

bles a 3D visualization of the board before proceeding with fabrication. 

 

Figure 1. Construction of the logical diagram. (A) Electronic design for heartbeat measurement.
(B) Electronic design for respiratory signal acquisition and conditioning module.

Healthcare 2023, 11, x FOR PEER REVIEW 5 of 24 
 

 

 

Figure 1. Construction of the logical diagram. (A) Electronic design for heartbeat measurement. (B) 

Electronic design for respiratory signal acquisition and conditioning module. 

After establishing the logical circuit design, we proceeded to create the physical 

board layout, known as the footprint (Figure 2A,B). Lastly, using the same software inte-

grated with Fusion 360, individual 3D models of each component are implemented, uti-

lizing resources like Grabcad, which offers a library of 3D models for electronic compo-

nents (Figure 2C). It is crucial to guarantee the project’s feasibility for subsequent manu-

facturing, considering aspects like soldering access and component placement. This ena-

bles a 3D visualization of the board before proceeding with fabrication. 

 

Figure 2. Electronic circuit design and printed circuit board. (A–C) Illustrate sequential steps within
the Eagle software: (A) defines component placement, track design and the dimensions of the circuit
board; (B) validates assembly through 3D component insertion; (C) generates the footprint for circuit
board evaluation before printing.



Healthcare 2024, 12, 31 6 of 22

Healthcare 2023, 11, x FOR PEER REVIEW 6 of 24 
 

 

Figure 2. Electronic circuit design and printed circuit board. (A–C) Illustrate sequential steps within 

the Eagle software: (A) defines component placement, track design and the dimensions of the circuit 

board; (B) validates assembly through 3D component insertion; (C) generates the footprint for cir-

cuit board evaluation before printing. 

With the complete board design, the footprint file was printed onto a transparent 

sheet, sensitized with dry film, cleaned and drilled, after corrosion process (Figure 3). 

After completing the entire board design, the footprint file was printed onto a trans-

parent sheet, treated with a sensitive dry film, cleaned thoroughly, and then drilled as part 

of the corrosion process (Figure 3). 

 
Figure 3. Printing the circuit for the photolithography process of the board. (A) Black and white 

printing model. (B) PCB board after the corrosion process, cleaned and drilled. 

2.2. Real-Time Implementation of the Physiological Signal Processing Respiratory Algorithm 

The implementation of expiration-controlled taVNS requires the development of 

real-time signal processing methodologies to accurately detect the signal and synchronize 

the stimulus at the precise moment. A crucial aspect involves incorporating a linear re-

gression model and subroutines for identifying the trend of the respiratory signal, as de-

termined by the expiration phase detection algorithm (EPDA). The MCU samples the res-

piratory signal at a frequency of 25 Hz. The sampled signal exhibits behavior resembling 

a sine wave, with an increase in signal amplitude during inspiration and a gradual decline 

during expiration, often accompanied by high-frequency noise. To manage computational 

resources efficiently, a ring buffer concept was employed, ensuring the optimal use of 

memory and enhancing performance (Figure 4) [25]. These routines are executed sequen-

tially for every new sampled signal point, facilitating high-resolution signal processing 

for real-time analysis. 

 

Figure 4. Schematic representation of the ring buffer. When new data are inserted and the vector 

reaches its capacity limit, the new point overwrites the oldest point at the beginning of the data 

structure. 

The implemented routine for processing respiratory signals involves acquiring a new 

vector comprising the latest sampled point. This vector serves as a trigger for subsequent 

processing routines, including the computation of the moving average for signal filtering 

Figure 3. Printing the circuit for the photolithography process of the board. (A) Black and white
printing model. (B) PCB board after the corrosion process, cleaned and drilled.

2.2. Real-Time Implementation of the Physiological Signal Processing Respiratory Algorithm

The implementation of expiration-controlled taVNS requires the development of real-
time signal processing methodologies to accurately detect the signal and synchronize the
stimulus at the precise moment. A crucial aspect involves incorporating a linear regression
model and subroutines for identifying the trend of the respiratory signal, as determined by
the expiration phase detection algorithm (EPDA). The MCU samples the respiratory signal
at a frequency of 25 Hz. The sampled signal exhibits behavior resembling a sine wave, with
an increase in signal amplitude during inspiration and a gradual decline during expiration,
often accompanied by high-frequency noise. To manage computational resources efficiently,
a ring buffer concept was employed, ensuring the optimal use of memory and enhancing
performance (Figure 4) [25]. These routines are executed sequentially for every new
sampled signal point, facilitating high-resolution signal processing for real-time analysis.
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Figure 4. Schematic representation of the ring buffer. When new data are inserted and the vec-
tor reaches its capacity limit, the new point overwrites the oldest point at the beginning of the
data structure.

The implemented routine for processing respiratory signals involves acquiring a new
vector comprising the latest sampled point. This vector serves as a trigger for subsequent
processing routines, including the computation of the moving average for signal filtering
or performing linear regression. The flow of the algorithm presented is explained in
Appendix A, along with the variables and parameters proposed for each computation.
Figure 5 represents the logic stages of the implemented algorithm. After the signal is
received and set up, the dynamic vector of the ring buffer is used. This means that a digital
low-pass filter (moving average) is put in place to reduce noise (stage 1).

Both the raw and filtered signals are not stored in the MCU memory to reduce process-
ing time, improve response time, and reduce transport delay. They are updated with a new
sliding vector of five points for each one. This is used to determine the linear regression
(stage 2) and the slope of the respiratory curve (stage 3), which finds the highest and lowest
points. They are then cleaned from memory to reduce processing. Following that, an outlier
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removal routine detects sinusoidal patterns that differ from the expected physiological
breathing pattern (stage 4).
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in Figure 6.
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During the identified expiration phase, the algorithm concurrently activates a function
designed to adjust the frequency of the stimulation pulse train. This parameter is user-
defined and adjustable through the therapist interface on the web portal (stages 5 and 6).
This output is transmitted to the MCU output port, referred to as the pulse train signal (PTS)
(stages 7 and 8). This process continues as long as the function remains active, correspond-
ing to the real-time identification of the expiration phase. These data are synchronously
transmitted from the web portal to the MCU via serial communication for respiratory signal
visualization. Therefore, the processing module generates a pulsating signal (PTS) at the
appropriate frequency exclusively during the exhalation phase, which is observed at the
output of the microcontroller unit (MCU). The output is connected to the pulse generator
circuit (PGC). Figure 7 displays the illustrations of stages 1, 3, and 7 of the EPDA.
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2.3. HRV Analysis

Intervals between beats were computed within a circular buffer to calculate the rMSSD
index. This approach enables continuous signal measurement throughout the stimulation
period. Studies suggest that the extraction of data with enhanced statistical significance
relies on the size of the moving buffer window. For instance, a minimum recording interval
of 30 s for heartbeat recording in ECG may be necessary to extract reliable parameters [26].
Accordingly, the current model has been updated to enhance the precision of the earlier
algorithm [27]. Moreover, additional cardiac signal parameters have been integrated for
plotting on the web portal, including a vector of RR intervals and heart rate. To facilitate
broader applicability, a normalized rMSSD value was proposed, aligning with commercial
applications. While the rMSSD was typically measured in milliseconds, the baseline
value and its variation, which increase with parasympathetic activation, may vary across
users [28]. Hence, the suggested model normalizes the identified index within a range of
1 to 100, facilitating a comprehensive evaluation of the therapy’s efficacy.

2.4. Pulse Generation Circuit (PGC) Incorporating Voltage Regulation and Synchronization with
the Exhalation Phase, along with Encapsulation Design

Two printed circuit boards were developed for the manufacture of the PGC and the
stimulation voltage regulation module. A voltage doubler module was implemented to
increase the voltage supplied from the PGC up to four times its original value. Following
the voltage boost, a voltage regulator stage within the 1.27–12 V range was incorporated,
enabling users to adjust the output voltage to the desired stimulation limit. To facilitate this,
a potentiometer and an LCD display were integrated into the device’s casing, enabling users
to regulate and monitor the output voltage during therapy. Concurrently, the PTS output
from the MCU is linked to this module. Consequently, during expiration, the PTS output
generates a signal comprising high and low rectangular pulses, which is then connected
to a switching circuit to generate a pulse train, producing a variable pulse train with the
user-regulated voltage, subsequently linked to the electrodes intended for placement on
the auricular branch.

The design of the stimulation voltage regulation module (Figure 8A) and pulse gen-
eration circuit (PGC) (Figure 8B) was represented through logical diagrams. The board
project in Eagle software was designed for both modules (Figure 8C), as explained before
in the topic “Signal acquisition and conditioning module board”.
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for (B).

2.5. Usability and Web Interface for Parameter Adjustments

The MCU was connected to the computer via a USB cable, enabling the evaluation
of the respiratory signal and the performance of the pulse train during stimulation. To
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facilitate this process, a web interface is currently under development using Node-RED
software, v2.2.2. A dedicated patient data tab has been incorporated to enable the recording
of pertinent information, including age, gender, baseline heart rate variability, stimulation
duration, and the selected frequency. The interface also has frequency selectors that let
users change the frequency and length of stimulation at any time during the therapy
session. The frequency ranges from 2 Hz to 25 Hz. Finally, the interface provides real-time
visualization of HRV for immediate monitoring when the user employs the sensor for
cardiac surveillance.

After the manufacturing and assembly of all modules, validation tests were conducted
for each stage of EPDA. To ensure a comprehensive assessment of the device’s functionality,
precision tests for exhalation detection were performed. Six measurements, each lasting
three minutes, were obtained to evaluate the precision of the system. These measurements
encompassed both the unprocessed and filtered respiratory signals. The filtering process
involved the application of a moving average filter with varying window sizes to enhance
signal accuracy and reliability. This detailed validation approach aimed to assess the
performance of individual components and their seamless integration into the overall
functionality of the EPDA.

The modules detailed in Sections 2.1–2.5 underwent rigorous unit testing procedures
aimed at ensuring the utmost code quality. This meticulous testing process involved
in-depth scrutiny of each module to detect and resolve potential issues. All subsystems
underwent meticulous testing procedures, both in isolation and when integrated, to guar-
antee flawless operation. To evaluate the effectiveness of the developed device, a cohort
of six healthy individuals, free from any comorbidities, was selected for this study. The
participants, with an average age of 40 ± 1 years (2 male and 4 female), were instructed to
maintain a seated position and follow regular breathing patterns. To accurately capture
respiratory signals, the thermistor sensor was strategically placed near the nasal region
of each participant. Device activation was initiated, and a stimulation frequency of 25 Hz
was chosen via the user interface. This frequency selection aimed to conduct a compre-
hensive and rigorous assessment of the equipment, ensuring its effective operation under
diverse conditions.

To assess hardware limitations and signal processing in embedded systems, we con-
ducted stimulation sessions that incorporated a comprehensive feedback circuit. During
these sessions, we observed the behavior of the respiratory signal, examined linear re-
gression patterns, and studied the switching of the pulse train at various frequencies.
This evaluation was crucial, considering the inherent challenges associated with the ef-
fective and accurate implementation of detection algorithms in real-time scenarios. This
is particularly relevant in applications involving instantaneous biofeedback and respi-
ratory synchronization [14,29], where the complexity of the algorithms can impact their
real-world performance.

3. Results and Discussion

In this section, we present the results obtained from our study, which focused on
the effective use of real-time signal processing techniques along with an integrated vagal
stimulation device, developed within a closed-loop system. In order to achieve complete
validation of each component implemented, this topic additionally analyzes the outcomes
achieved through a series of signal processing procedures. These steps involve the applica-
tion of filtration and amplification techniques to the user’s respiratory signals, followed by
their transmission to an embedded microcontroller. This microcontroller carries a real-time
exhalation detection algorithm that is coordinated with user-defined frequencies for au-
ricular vagal stimulation. The resulting output consists of a square signal that generates a
pulse train composed of a single-phase pulse, precisely timed and designed to stimulate
the ear region at predetermined frequencies and voltages. In addition, the device prototyp-
ing involved the creation of printed circuit boards that incorporated analog circuitry and
MCU. Furthermore, we present advancements in graphical visualization tools specifically
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designed for respiratory and cardiac signals, along with preliminary studies with users
that validate the accuracy and sensitivity of our prototyped device.

3.1. Signal Acquisition and Conditioning Module (Manufacturing)

The thermistor, utilized for the acquisition of the respiratory signal, was carefully posi-
tioned near the user’s nostrils with the assistance of a microphone accessory
(Figure 9A). The PCB board, developed following the outlined methodology, was adept at
accommodating all the components of the signal conditioning circuit, as well as the MCU
(Figure 9B).
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Figure 9. Respiratory signal acquisition and conditioning module. (A) Nasal thermistor positioned
near the nostril. (B) Circuit components soldered, and MCU positioned.

3.2. Evaluation of Real-Time Physiological Signal Processing Algorithm

As depicted in Figure 4 of the methodology section, the EDPA algorithm utilizes a dy-
namic window for conducting real-time analysis and extracting ascending and descending
signals. This procedure entails the continuous acquisition of new data while discarding
older data from memory using a series of sliding windows. To visually showcase the
effectiveness of the EPDA algorithm in detecting the expiration phase in real time, data
were initially recorded in a .csv file and subsequently cleared during each processing
iteration. The subsequent sections illustrate the results of each phase, as described in the
EDPA algorithm (Figure 5).

Stage 1—Move average filter: the respiratory signal underwent real-time digital
filtering using window sizes of N = 5 and N = 10 points. The N = 10 window filter
demonstrates improved noise reduction but also introduces a longer delay in the filtered
signal. Figure 10A illustrates the raw respiratory signal (in blue) and the N = 10 filtered
signal (in red).

Stage 2—Linear Regression: at each of the five sampled points, the result of linear
regression produced a data vector consisting of the angular coefficients of the straight line
connecting these points.

Stages 3 and 4: Figure 10A also depicts the rectangular pulse signal (in orange) that
demarcates the inspiration (low level) and expiration (high level) phases (expiration phase
detection), along with the filtered signal. The resulting square wave oscillates according
to the slope of the respiratory signal, and it is this state that switches the next stages.
Through the process of outlier removal, intervals with strong signals that do not match the
physiological respiratory cycle are also taken out of the analysis.

Stages 5 and 6: following the detection of the initiation of the expiration phase, the
phases comprising the serial port reading and frequency parameters check of the EPDA
algorithm watch the stimulation frequency selected in the user’s web interface and adjust
it accordingly to reach the specified period.

Stages 7 and 8: the algorithm modifies the state of the PTS output based on the selected
frequency. To illustrate the outcome of this particular stage, Figure 10B displays the PTS
signal corresponding to a specific frequency of 20 Hz, depicted alongside the breathing
signal and square wave.
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Figure 10. Results of the EPDA algorithm’s phases. (A) A rectangular pulse (orange signal), a digitally
filtered respiratory signal (blue line), and a respiratory signal (red line). (B) A PTS signal associated with
a particular frequency of 20 Hz is illustrated in conjunction with the breathing signal and square wave.

The evolution of the angle derived from the linear regression line, as illustrated in
Figure 11, was depicted for specific signal segments ranging from region 1 to region 16.
Accuracy tests revealed that a vector consisting of five points was adequate for determining
the slope of the line and proved applicable to all respiratory signals collected. This precision
is crucial for identifying the inflection points of the signal, which, in turn, correspond to
the onsets of the inspiration and expiration phases.

A second analysis of the results is based on evaluating the period of inspiration and
expiration for plotting and statistical analysis using the signals presented in Figure 12
to explain the performance results. Square-wave and low-to-high signal transition times
were recorded.

Statistical analyses were conducted using the MCU-filtered signal to assess the pre-
cision and accuracy of the EPDA model. In Figure 12A, we present the filtered signal
alongside the rectangular EPDA output pulse. Figure 12B displays points R1 (representing
the measured start of the expiration phase) and E1 (indicating the moment identified by
EPDA), while points R2 and E2 represent the measured and EPDA-identified starts of
the expiration phase, respectively. The delay time taken by our algorithm to detect the
initiation of expiration was calculated by measuring the time interval between the peak
identified using the ‘findpeaks()’ function from the Matlab software, vR2021a and point E1
obtained through real-time analysis. This analysis included a semi-automatic routine for
outlier removal and false positives, as well as the measurement of the time interval (DT
delay) for statistical analysis (Figure 12C).

The analysis encompassed six respiratory signals, which were real data collected
during an experimental protocol involving healthy subjects. Each signal had a duration of
3 min, excluding nonstationary segments contaminated by noise originating from speech
or movement artifacts. These data represent authentic physiological signals obtained
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directly from the study participants, providing a robust and reliable foundation for the
analysis. The algorithm achieved a peak detection accuracy of over 90% with a maximum
delay of 150 ms. Figure 13 illustrates the average delay time through a boxplot analysis,
emphasizing the largest deviation and providing a visual representation for the evaluation
of response delays.
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Figure 11. The angle evolution derived from linear regression is illustrated for select signal segments
spanning from region 1 to region 16. In this diagram, the red points symbolize actual values sampled
from the respiratory signal, while the blue arrow denotes the slope of the straight line derived from
real-time linear regression calculations using these five sampled points.

Healthcare 2023, 11, x FOR PEER REVIEW 14 of 24 
 

 

 

Figure 11. The angle evolution derived from linear regression is illustrated for select signal segments 

spanning from region 1 to region 16. In this diagram, the red points symbolize actual values sampled 

from the respiratory signal, while the blue arrow denotes the slope of the straight line derived from 

real-time linear regression calculations using these five sampled points. 

A second analysis of the results is based on evaluating the period of inspiration and 

expiration for plotting and statistical analysis using the signals presented in Figure 12 to 

explain the performance results. Square-wave and low-to-high signal transition times 

were recorded. 

Statistical analyses were conducted using the MCU-filtered signal to assess the pre-

cision and accuracy of the EPDA model. In Figure 12A, we present the filtered signal 

alongside the rectangular EPDA output pulse. Figure 12B displays points R1 (representing 

the measured start of the expiration phase) and E1 (indicating the moment identified by 

EPDA), while points R2 and E2 represent the measured and EPDA-identified starts of the 

expiration phase, respectively. The delay time taken by our algorithm to detect the initia-

tion of expiration was calculated by measuring the time interval between the peak identi-

fied using the ‘findpeaks()’ function from the Matlab software, vR2021a and point E1 ob-

tained through real-time analysis. This analysis included a semi-automatic routine for out-

lier removal and false positives, as well as the measurement of the time interval (DT delay) 

for statistical analysis (Figure 12C). 

 

Figure 12. Respiratory signal and statistical analysis with real data. (A) Respiratory signal (blue 

signal) and rectangular pulse of EPDA output (red signal). (B) Mainly points for delay time analysis, 

Figure 12. Respiratory signal and statistical analysis with real data. (A) Respiratory signal (blue
signal) and rectangular pulse of EPDA output (red signal). (B) Mainly points for delay time analysis,
where time between exhalation beginning chase (R1) and high level of EPDA signal is measured.
(C) Time delay and false positive moments are indicated.

The MCU processes the 25 Hz stimulation frequency delivered for stimulation at an
equivalent processing rate of 20 ms per cycle. The processing performances of the previ-
ously mentioned routines were evaluated through testing conducted on an oscilloscope.
The statistical values obtained demonstrated high levels of accuracy and minimal latency
when employed in conjunction with the moving window technique. This suggests that
the performance is significantly enhanced, resulting in improved efficiency and reduced
storage requirements. In subsequent investigations, alternative approaches for mitigating
delay, such as segmenting the stages into distinct processing hues, may be subjected to
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empirical examination. Therefore, additional accuracy tests may be necessary to optimize
the proposed real-time processing, and further studies are required for a comprehensive,
long-term assessment of effects.

Healthcare 2023, 11, x FOR PEER REVIEW 15 of 24 
 

 

where time between exhalation beginning chase (R1) and high level of EPDA signal is measured. 

(C) Time delay and false positive moments are indicated. 

The analysis encompassed six respiratory signals, which were real data collected dur-

ing an experimental protocol involving healthy subjects. Each signal had a duration of 3 

min, excluding nonstationary segments contaminated by noise originating from speech or 

movement artifacts. These data represent authentic physiological signals obtained directly 

from the study participants, providing a robust and reliable foundation for the analysis. 

The algorithm achieved a peak detection accuracy of over 90% with a maximum delay of 

150 ms. Figure 13 illustrates the average delay time through a boxplot analysis, emphasiz-

ing the largest deviation and providing a visual representation for the evaluation of re-

sponse delays. 

 
Figure 13. Boxplot analysis. Evaluation of response delays. 

The MCU processes the 25 Hz stimulation frequency delivered for stimulation at an 

equivalent processing rate of 20 ms per cycle. The processing performances of the previ-

ously mentioned routines were evaluated through testing conducted on an oscilloscope. 

The statistical values obtained demonstrated high levels of accuracy and minimal latency 

when employed in conjunction with the moving window technique. This suggests that 

the performance is significantly enhanced, resulting in improved efficiency and reduced 

storage requirements. In subsequent investigations, alternative approaches for mitigating 

delay, such as segmenting the stages into distinct processing hues, may be subjected to 

empirical examination. Therefore, additional accuracy tests may be necessary to optimize 

the proposed real-time processing, and further studies are required for a comprehensive, 

long-term assessment of effects. 

3.3. Pulse Generation Circuit (PGC) with Voltage Regulation and Synchronization with the 

Exhalation Phase and Encapsulation Design 

Individual results of the PGC block used in this article were tested and validated in 

previous works within our research group [20,27]. The model of the pulse train generation 

circuit was proposed and simulated, assembled on a breadboard and validated by visual-

izing the frequencies of interest using an oscilloscope (Appendix B). The modules were 

validated by simulating the circuits using LTspice software, v17.0.30.0. 

The casing for encapsulation underwent a validation process through additive man-

ufacturing using a SethiAip printer. Following the initial print, specific refinements were 

identified to fine-tune its dimensions and facilitate the installation of components, as well 

as to ensure a proper fit for the two parts. The ultimate outcome of the casing is displayed 

in Figure 14, with three boards of PGC integrated. The first board contains the respiratory 

signal acquisition and conditioning module, the second board contains the voltage regu-

lation module connected to the switching circuit, and the third board contains the voltage 

doubler circuit. 

Figure 13. Boxplot analysis. Evaluation of response delays.

3.3. Pulse Generation Circuit (PGC) with Voltage Regulation and Synchronization with the
Exhalation Phase and Encapsulation Design

Individual results of the PGC block used in this article were tested and validated in
previous works within our research group [20,27]. The model of the pulse train generation
circuit was proposed and simulated, assembled on a breadboard and validated by visu-
alizing the frequencies of interest using an oscilloscope (Appendix B). The modules were
validated by simulating the circuits using LTspice software, v17.0.30.0.

The casing for encapsulation underwent a validation process through additive manu-
facturing using a SethiAip printer. Following the initial print, specific refinements were
identified to fine-tune its dimensions and facilitate the installation of components, as well
as to ensure a proper fit for the two parts. The ultimate outcome of the casing is displayed
in Figure 14, with three boards of PGC integrated. The first board contains the respiratory
signal acquisition and conditioning module, the second board contains the voltage regula-
tion module connected to the switching circuit, and the third board contains the voltage
doubler circuit.
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Figure 14. Case and boards: (A) 3D printing of case model for validation; (B) three circuit boards
mounted in the case.

Figure 15 illustrates the behavior of the signal generated by the PGC, synchronized
with the user’s breathing through data processing. Stimulation electrodes were connected to
an oscilloscope for signal analysis. Notably, the ‘pulse train’ signal, active during exhalation,
follows a high-level signal initiated during inhalation. The high-level signal was designed
to enhance the sensitivity of the electrode placed in the auricular region, although it can be
fine-tuned based on more specific testing. This pattern repeats throughout the respiratory



Healthcare 2024, 12, 31 15 of 22

cycle and therapy sessions. In this example, the stimulus voltage was maintained at 9.2 V
(regulated by the potentiometer), and the user-defined pulse train frequency was set to 25 Hz.
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3.4. Usability and Web Interface for Parameter Adjustments

The assembled stimulator, equipped with integrated algorithms within the MiniEsp
32, simplifies the functioning of the stimulation device. During usability tests, thermistor
sensors are employed to capture the respiratory signal, while ear electrodes are utilized
for administering the stimulation. The positioning of these peripherals in relation to the
user is depicted in the figures below, along with the connections of these peripherals to the
stimulator (Figure 16).
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Figure 16. Stimulation device connected to the temperature sensor, stimulation electrodes, and a
notebook for monitoring the therapy through the web interface. (A) Stimulator connected to the
user’s peripherals. (B) Electrodes positioned in the auricular region and nasal thermistor positioned
near the nostril.

The implemented web interface is depicted in Figure 17, emphasizing the patient data
collection form and the stimulation frequency selectors. It is important to note that, in
the experimental protocol with healthy subjects, all participants utilized the device. The
signal visualization graphs on the web interface receive real-time updates as each piece
of information processed by the MCU algorithm is transmitted via the USB port. It is
worth mentioning that the figure provided is illustrative and represents one of the recorded
signals during the experimental sessions.

Therapy analysis can be conducted concurrently with the pulse sensor during the
session. The collected data are then made available on a web portal with various analyt-
ical options. Consequently, the assessment of autonomic therapy modulation using the
developed device can be explored in future research involving a larger number of users for
statistical validation.
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Figure 17. Web interface for patient data collection, visualization, and selection of stimulation
parameters. Exemplary signals recorded during the experimental sessions.

The application of vagal stimulation therapy through this method has yielded promis-
ing results in the treatment of chronic diseases, showing efficacy comparable to traditional
invasive approaches. Recent studies have underscored the significance of synchronizing
vagal stimulation with the supervised respiratory cycle, particularly during the expiratory
phase. In this context, the innovative device we have developed, coupled with a real-time
signal processing algorithm, represents a major milestone in the field of vagal stimulation
therapies. This device empowers the orchestration of stimulation sequences synchronized
with the respiratory cycle over the course of treatment, facilitating closed-loop operation of
the stimulator.

Furthermore, the designed firmware can accommodate other approaches, including
the automation of variations in stimulation frequency parameters. This feature aims to
mitigate the risk of users developing pharmacological tolerance to the treatment, which
often necessitates higher stimulus dosages. This approach not only broadens the treatment
options for a wide range of disorders but also enhances effectiveness and the overall patient
experience. It offers a personalized and accessible approach to transcutaneous vagal stimu-
lation (taVNS) treatment, ultimately promoting more humane and impactful outcomes.

4. Conclusions

In summary, this study presents the successful development of a feedback-driven
stimulator prototype integrating real-time respiratory signal processing and autonomic
assessment. Leveraging electronic design tools such as Eagle and 3D modeling via Catia
V4, the device integrates a sophisticated algorithm embedded in the MiniEsp MCU for
reliable detection of the expiration phase. The embedded software seamlessly interacts
with the electronic circuit, allowing for the modulation of stimulation voltage pulse switch-
ing. The user-friendly visualization interface further enables flexible frequency selection,
facilitating pulse delivery at speeds of up to 25 Hz. Offline signal analysis using the
peak identification functions in Matlab demonstrated the algorithm’s robust performance,
achieving an impressive 90% precision with slight delays of up to 150 ms. Nevertheless,
the proximity of the sensor to oral and nasal regions may impact accuracy, particularly in
the presence of coughing or speech. Through comprehensive operational and usability
tests, the closed-loop device, coupled with peripherals, has demonstrated the potential for
comprehensive stimulation, fostering optimism for future clinical validation and potential
practical implementation.
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Appendix A

Appendix A.1. Steps of the Algorithm (Stage 0)

Objective: To implement a circular buffer to store a fixed number of the most recent
values from a data stream (such as a signal). The buffer replaces the oldest value with the
new one at each update.

I. Initialization:

Specify the size of the circular buffer;
Initialize a buffer as an array of size, filled with zeros;
Initialize an index as 0 to track the current position in the buffer.

II. Adding values to the buffer:

Define a function add(value) to append a new value to the buffer;
Put the value in the current buffer position:
buffer[index] = newValue // Most recent value recorded;
Increment index to point to the next position, ensuring circularity:
index = (index + 1) % size. // This expression is fundamental for the implementation of the
circular buffer and guarantees the circularity of the buffer.
Circularity module:

1. The term “index + 1” within this expression is responsible for advancing the
index to the subsequent position within the buffer. As each new value is added,
this incrementation ensures that the index accurately points to the next storage
position for the incoming value.

2. The modulo operator (%) is employed in this context to ensure the index “loops
back” to the beginning once it reaches the end of the buffer. This operation
computes the remainder of dividing (index + 1) by the buffer size, effectively
managing the circular indexing within the buffer structure.

3. If the index is smaller than size − 1, the expression (index + 1) % size effectively
increments the index value. This operation functions to adjust the index within
the buffer size, ensuring a proper sequential increase without reaching or
exceeding the buffer’s limits.

4. Upon reaching size − 1 (representing the last position within the buffer), the
subsequent increment would lead the index to become equal to size, which lies
beyond the buffer’s permissible range.
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5. At this point, when (size) % size equals 0, it signifies that the index is reset to
the starting position of the buffer, effectively wrapping it back to the beginning.

6. Consequently, this mechanism causes the buffer to “rotate”, ensuring that the
index consistently references a valid position within the buffer. As new values
come in, older ones are replaced, maintaining the buffer’s continuity without
exceeding its allocated size.

In the implemented algorithm, a buffer of size 10 is used for digital filtering with
moving average (stage 1), while a buffer of size 5 is employed for linear regression (stage 2)
routine. These computations are performed during each iteration routine of the circular
buffer, with the signal sampled in real time.

Appendix A.2. Steps of the Algorithm—Stage 1

Objective: A moving average is a smoothing technique that calculates the average of a
subset of the original signal within a “window” that moves along the signal. This algorithm
is effective in reducing random noise and revealing underlying trends or patterns in the
signal. With low computational complexity, it is relatively efficient for real-time signal
processing, as demonstrated in the presented application. Simple moving average (SMA) is
computed by taking the arithmetic mean of a specific set of numbers, which are the most
recent values in the dataset:

SMAN =

n
∑

i=n−N+1
xi

N
where:

• xi represents each value in the dataset;
• n is the index of the last value in the moving average window;
• N is the size of the moving average window, i.e., the number of data points considered

in the average;
• The ∑. . . calculates the total sum of the last N values in the dataset. This sum is then

divided by N, the number of points in the window, to find the average;
• The script for instant calculation of the sampled raw signal is presented below:

I. Initialization:

Inputs:
signal: a list or array containing the data of the signal to be processed;
window_size: an integer specifying the size of the window for calculating the
moving average.
Variables: moving_avg_signal: an empty list or array to store the smoothed values of
the signal.

II. Moving Average Processing:

For each point i in the signal:
If i is greater than or equal to window_size − 1 (to ensure sufficient data for
the average):
Calculate the average of the points in the signal from i—(window_size − 1) to i.
Add the calculated average value to moving_avg_signal.

III. Output:

Return moving_avg_signal containing the original signal smoothed by the
moving average.

Appendix A.3. Steps of the Algorithm—Stages 2 and 3

Objective: This process utilizes the linear regression formula to determine the coefficients
that best fit the given points. These coefficients can then be used to predict additional values
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or represent the best-fit line for the original data. For the detection of inspiration, the obtained
coefficient m is evaluated in relation to the slope of the trend line that comprises it.

I. Initialization:

Inputs:
x_values: a list or array containing the x-values of the points;
y_values: a list or array containing the corresponding y-values of the points.

II. Calculation of Necessary Sums and Products:

Variables:
n: number of points in the vector (in this case, 5).
sum_x: sum of the x-values.
sum_y: sum of the y-values.
sum_xy: sum of the product of corresponding x and y values.
sum_x_squared: sum of the squares of the x-values.
Linear Regression Calculation

III. Function to calculate the angular coefficients in each iteration of the algorithm:

m =
n∑ xy − ∑ x∑ y

n∑ x2 − (∑ x) 2 (slope)

b =
∑ y − m∑ x

n
(intercept)

IV. Output:

Return the calculated values, such as the slope (m) and intercept (b), which can be
used to form the equation of the regression line.
When there is a positive inclination, the newly measured point will be correlated
with the inspiration, and when there is a negative inclination, the collected point will
indicate the trend of the expiration phase.

Appendix A.4. Steps of the Algorithm—Stage 4

Finally, in stage 4, the collected data, computed as inspiration, are assessed against
physiological breathing. To achieve this, the time of the last identified inspiration is
compared. If the time between inspirations is greater than 10 s or less than 400 ms, this
point is discarded and will not be used to trigger the pulse train.

I. Initialization:

Inputs:
last_inspiration_time: time of the last identified inspiration.
current_inspiration_time: time of the current inspiration.
min_time_threshold: minimum time threshold for a valid inspiration (e.g., 400 ms).
max_time_threshold: maximum time threshold for a valid inspiration (e.g., 10 s).

II. Inspiration Detection:

Check if the time difference between the current and last inspiration is greater than
the maximum time threshold or less than the minimum time threshold.
If current_inspiration_time—last_inspiration_time > max_time_threshold or current_inspi-
ration_time—last_inspiration_time < min_time_threshold:
Discard_point() // If the condition is met, discard the point as it falls outside the valid range. If
the condition is not met, use the point to trigger the pulse train.
Else: trigger_pulse_train()

III. Output:

The point is either discarded or used to trigger the pulse train based on the conditions.
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Appendix B

Tests of individual circuit modules:
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Figure A1. Testing, simulation, and implementation of each module of the pulse generation circuit to
evaluate the operation of each stage. (A) Testing the first stage of the circuit on the simulator: the 555
mi-crocontroller is used in a stable mode to activate a voltage doubler. (B) The integrated 555 circuit
is connected to the doubler and switching circuit [20,27]. (C) LTspice software simulation of the board
incorporating the pulse generation module.

Circuit simulations were performed to validate the modules. A breadboard assembly
and validation of the proposed and simulated model of the circuit for generating pulse
trains was accomplished through the utilization of an oscilloscope (Figure A2). The sinu-
soidal respiratory signal, acquired through a conditional module, and the square signal,
computed using the EPDA algorithm, are both observable.
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