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Abstract. We present constraints on the amplitude of local Primordial Non-Gaussianities
(PNG), fNL, using the quasar sample in the Sloan Digital Sky Survey IV extended Baryon
Oscillation Spectroscopic Survey Data Release 16. We analyze the power spectrum monopole,
testing for the presence of scale dependent galaxy bias induced by local PNG. Our analysis
makes use of optimal redshift weights that maximize the response of the quasar sample to
the possible presence of non zero PNG. We find −4 < fNL < 27 at 68% confidence level,
which is among the strongest bounds with Large Scale Structure data. The optimal analysis
reduces the error bar by ∼ 10% compared to the standard one, an amount which is smaller
than what was expected from a Fisher matrix analysis. This, and the reduced improvement
over previous releases of the same catalog, suggest the presence of still unknown systematic
effects in the data. If the quasars have a lower response to local PNG, our optimal constraint
becomes −23 < fNL < 21 at 68%, with an improvement of 30% over standard analyses. We
also show how to use the optimal weights to put data-driven priors on the sample’s response
to local PNG.
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1 Introduction and main results

The late time distribution of the Large Scale Structure (LSS) of the Universe is the result
of the evolution, under gravitational interaction, of the set of primordial curvature perturba-
tions. By measuring the n-point functions of a galaxy sample we have therefore the unique
opportunity to test the statistical properties of the initial conditions of the Universe. Of
particular relevance for LSS probes is the presence of possible Primordial Non-Gaussianities
(PNG). The leading hypothesis for the dynamical generation of the primordial density fluc-
tuations, Inflation (see [1] for a review), offers theoretical guidance to the most generic ways
PNG could arise in cosmological correlators, also indicating that PNG are generically smaller
than the dominant Gaussian term.

In this work we focus on the so-called local PNG, for which the primordial gravitational
potential ΦP (x) is a non-linear function of a Gaussian field φ, ΦP = φ + fNL(φ

2 −
〈
φ2

〉
).

The amplitude of local PNG is parameterized by a single number fNL, and we immediately
see that, if the primordial fluctuations are of O(10−5), local PNG are O(105) smaller than the
Gaussian term for fNL = 1. Local PNG are among the most studied in the literature because
they are exactly zero if the inflationary dynamics is driven by a single degree of freedom, the
so-called single-field models [2–4]. A robust detection of fNL will therefore exclude all such
models and point to a more complicated inflationary sector. Conversely, multi-field models of
inflation generically predict fNL ∼ O(1) [5, 6], and could be severely constrained by a strong
experimental bound. Measurements of the anisotropies of the Cosmic Microwave Background
(CMB) from the Planck satellite put the stringent limit fNL = 0.8 ± 5 [7], and upcoming
instruments are expected to reduce this error bar by another 50% [8]. Differently than the
CMB, which is sensitive to fNL starting with the three-point function, LSS can probe PNG at
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the two-point, or power spectrum in Fourier space, level. As first pointed out in ref. [9], the
quadratic term in the definition of the primordial potential ΦP induces a correlation between
the long-wavelength gravitational field and the small scale fluctuations. The latter could very
well be in the range corresponding to the formation of halos and galaxies, whose number
density is therefore modulated by the large scale value of ΦP . Mathematically, we say that
the large scale bias of galaxies is modified in the presence of local PNG, and it reads

δg(x, z) = b(z) δm(x, z) + fNL bϕ(z) ΦP (x) (1.1)

where δg is the galaxy density perturbation and b is the Gaussian linear bias. The new bias
coefficient bϕ parameterizes the actual response of small scale fluctuations to the presence of
local PNG, and it is subject to large theoretical uncertainties due to our incomplete knowledge
of galaxy formation physics [10, 11].1 Via Einstein’s Equations, the presence of ΦP in the
above expression implies that, on large scales, the power spectrum acquires a distinct k−2

feature, which is then interpreted as the smoking gun of local PNG. In this respect, knowing
the value of bϕ is not a fundamental limitation, since what ultimately matters to exclude
single field models is a detection rather than the actual value of fNL. The possibility to
measure local PNG with the galaxy power spectrum has spurred a tremendous amount of
research activities, and all major spectroscopic and photometric instruments like the Dark
Energy Spectroscopic Instrument [DESI; 15], Euclid [16], SPHEREx [17] and the Vera C.
Rubin Observatory [18], have the search for PNG as one of their primary science goals. It
also serves as an important science case for future facilities [19]. Current LSS bounds are still
far from the CMB one, |fNL| ∼ O(20 − 30) [20–23], but are expected to improve down to
σfNL

∼ 1 with current and future observations [24–28].2

The main goal of this work is to provide the most stringent and robust constraints on
local PNG with current data. We will use the extended Baryon Oscillation Spectroscopic
Survey (eBOSS) Data Release 16 quasar (QSO) sample [DR16Q; 30, 31]. Our analysis takes
advantage of optimal signal weighting that maximizes the response of a given galaxy sample
to the presence of local PNG. These weights were first derived in ref. [20], and are based on
optimal quadratic estimators [32–34]. The main reason to use optimal weights lies in eq. (1.1):
the non-Gaussian contribution is proportional to the primordial potential, and therefore it
does not evolve over time, while the linear bias term is proportional to the matter density,
which grows over time. This suggests that, in a given sample, high-redshift objects should be
given more weight than low-redshift ones, since the Gaussian piece is smaller at earlier times.
As we will see in section 2 in more detail, the optimal analysis downweights the Gaussian
signal by w0 ∼ b(z)D(z), where D(z) is the linear growth factor that decreases with increasing
redshift, and upweights the PNG term by w̃ ∼ bϕ.

The optimal redshift weighting therefore requires some prior knowledge of the response
bϕ of a given sample to the presence of local PNG. For mass selected halos, analytical models
[35, 36] and simulations [37, 38] suggest that bϕ ∝ (b − p), where p is a number of O(1), is
a very good approximation to the true response. As stated above, the picture is however
much more complicated for observed galaxies. In this work we will present constraints on
fNL for the two values of p mostly used in the literature, p = 1.0 and p = 1.6. The fact that

1This point could however be turned the other way around and suggests that by carefully selecting the
galaxy sample one could maximize the response, i.e. the value of bϕ, to improve the constraint [12–14].

2Recent work, ref. [29], presents evidence of non zero fNL at more than 99% confidence level (c.l.) with
DESI imaging data. However, CMB and LSS measure local PNG on the same range of scales, which suggests
a non-cosmological origin for the signal reported in ref. [29].
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the bound on local PNG depends on p could raise some concern about the robustness of our
results. However, as we already pointed out, what matters is only a possible detection of
fNL, not what the actual value is. Moreover, galaxy selection based on luminosity, color, or
magnitude, correlates reasonably well with host halo mass [39, 40], therefore we do not expect
a large deviation from the values used in this work. Nevertheless, we will also show, in a novel
application of our framework, how optimal signal weights can be used to put a data-driven
prior on the value of bϕ or p. As mentioned above, the optimal weights w̃ are proportional
to the response of the galaxy number density to the presence of local PNG. This implies that
if the input value of bϕ we use for the weighting is very different from the true response, the
optimal analysis will not improve the bound on fNL over the un-weighted case, or will even
worsen the constraints. As a first application of this idea, we will show in section 4 that a
large value of p ≳ 3 for the response of the QSOs in DR16 is not favored by the data, without
relying on any numerical simulations. We expect that as the uncertainty on fNL reduces in
the near future, our method will provide invaluable information on the most likely value of
p to use in the data analysis. It should, however, be kept in mind that assuming a value of
p implies that different data sets cannot be combined together or with the CMB. For this
reason we will also show, in appendix A, constraints for bϕfNL for all the data sets used in
this work.

Our strongest bounds read{
−4 < fNL < 27 , 68% c.l. ,
−18 < fNL < 42 , 95% c.l. ,

for p = 1.0 , (1.2)

and {
−23 < fNL < 21 , 68% c.l. ,
−43 < fNL < 44 , 95% c.l.

for p = 1.6 , (1.3)

which should be compared with a standard Feldman-Kaiser-Peacock [FKP; 41] analysis, see
figure 8 and table 2 for the full results. The optimal analysis improves by 10% and 30% over
the FKP one for the p = 1.0 and p = 1.6 cases respectively. It is worth stressing that the power
spectrum of DR16Q catalog is, on all scales, dominated by the shot-noise, and we therefore
did not expect much larger gains [20]. Our optimal constraints are robust to the treatment
of systematic effects. The bounds using a linear method to remove known foregrounds are
statistically indistinguishable from the ones obtained with a non-linear algorithm based on
Neural-Network [NN; 42]. However, compared to the previous eBOSS data release [20], the
improvement in the constraint is smaller than what was expected from the increase in volume,
and it is most likely due to the presence of residual foregrounds in the maps. This could also
be the reason for the more limited improvement of the optimal analysis with respect to the
standard one in comparison to the improvement found in DR14 [20].

Our results are roughly comparable with the ones in ref. [21], which also used the DR16Q
data set. However, there are a number of important differences with our analysis. First, the
weights employed in ref. [21] are defined for pairs of galaxies, and cannot be automatically
applied to individual galaxies, as relevant for a power spectrum analysis. To avoid imaginary
weights for a single object, the Authors of [21] imposed, by hand, the positivity of the weights,
which is not by itself an optimal procedure. In our case, the weights can very well be negative,
precisely in the region where the signal is: in this way the product of the weights times
the signal contributes positively to the total signal-to-noise. More generally, cosmological
information is contained in the galaxy fields and not in its non-linear transformations, like for
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Figure 1. The quasar number density as a function of redshift for the DR16Q sample. The dashed
blue line corresponds to the NGC and the dotted red line to the SGC. The SGC has a lower density
in comparison to the NGC due to the difference in mean depth in the two regions [30].

example pairs of galaxies. The other main difference with the work of [21] is in the modeling
of the signal. As discussed in section 2.4, we think the bound of ref. [21] is artificially tighter
due to an incorrect choice for the effective redshift, zeff , at which the theoretical model is
evaluated. For most applications the precise definition of zeff does not matter, but it becomes
important in searches for local PNG, where the signal is proportional to bϕ(z) ∼ b(z)−p. For
the DR16Q analysis in ref. [21], a too high value of zeff results in a higher linear bias b(z),
which artificially reduces the uncertainty on fNL to keep the product bϕfNL ∼ constant. In
section 2.4 we will also clarify on this issue and on what the more accurate definition of zeff
is.

The rest of this paper is organized as follows: in section 2 we present the DR16Q data
set and the measurements of the power spectrum; in section 3 we discuss the modeling of
the QSO power spectrum, its convolution with the window function and the definition of
the effective redshift; in section 4 we present and discuss the constraints on fNL; section 5
concludes and summarizes our results.

All the codes, scripts, measurements, and MonteCarlo Markov chains used in this work
are freely accessible at https://github.com/mcagliari/eBOSS-DR16-QSO-OQE.

2 Data

2.1 The eBOSS QSO Sample

In this work we use the eBOSS DR16Q sample [30, 31]. As part of the Sloan Digital Sky
Survey IV (SDSS-IV) experiment [43], the eBOSS data were acquired at the Apache Point
Observatory in New Mexico.

The DR16Q sample contains 343 708 quasars in the redshift range 0.8 < z < 2.2. The
sample is divided into two fields of view, the North Galactic Cap (NGC), which covers an area
of 2 924 deg2, and the South Galactic Cap (SGC), with an area of 1 884 deg2; in comparison to
Data Release 14 (DR14) the area is approximately doubled. The whole sample has a volume
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of ∼ 20 (Gpc/h)3. The NGC has a mean density of n ≈ 1.8×10−5 (Mpc/h)−3, while the SGC
has a slightly lower density of n ≈ 1.6×10−5 (Mpc/h)−3. The number densities as a function
of the redshift of the NGC and the SGC quasars are shown in figure 1. The number density
of SGC is about 10% lower than the NGC number density because of the lower mean depth of
the survey in the SGC region. The data of the North and South Galactic Cap were released in
two separate catalogs, each one with the corresponding random catalog. The random catalogs
are 50 times more dense than the data catalogs, and their redshift distributions are produced
by sampling from the observed data redshifts [30], a procedure known as shuffling. The use
of the shuffling scheme to produce the random catalogs introduces a systematic effect called
radial integral constraint [RIC; 44]. We discuss how to estimate and correct for the RIC effect
in section 3.2.

Both the data and random catalogs contain three weights for each data point. First,
there are the close pairs weights, wcp, which take into account fiber collisions. The second
weights are related to the spectroscopic completeness, wnoz, and correct for the expected red-
shift failure rate. Third, there are the imaging systematic weights, wsys. These weights correct
for systematic effects at large angular scales, and they are therefore especially important for
fNL measurements. In the official data release of eBOSS DR16 [30], these weights are com-
puted with linear regression of the imaging properties and Galactic foregrounds. Additional
catalogs were released for the quasars [42]. In these catalogs, the imaging systematic weights
were computed using neural networks. Neural networks are able to approximate non-linear
functions, hence they could in principle produce a better correction than the weights com-
puted with the linear regression. NN methods will however remove part of the signal as well,
and could bias negative the constraint on local PNG. Hereafter we will refer to the official
DR16Q catalogs as the linear weight catalog, and to the catalogs with NN systematic weights
as NN weight catalog. The completeness weight contribution to any data point is [30]

wc = wcp wnoz wsys , (2.1)

where wsys can either be from the linear weight catalog or the NN weight catalog. The same
weighting procedure of eq. (2.1) applies to the objects in the random catalogs.

2.2 Mocks

A set of 1000 synthetic clustering catalogs for each Galactic cap [45] was simulated using
the effective Zel’dovich approximation mock method [EZmock; 46]. The EZmock catalogs
were produced assuming a flat ΛCDM cosmology with Ωm = 0.307115, ΩΛ = 0.62885, Ωb =
0.048206, h = 0.6777, σ8 = 0.8225, ns = 0.9611, and fNL = 0. The mocks reproduce the two
and three-point clustering statistics of DR16Q.

In the official release of the eBOSS DR16 EZmock catalogs, three sets of mock catalogs
are provided. Each set of EZmocks consists of 1000 pairs of data and random catalogs. We
refer to the first set of EZmocks as EZmock realistic, since the data and random catalogs
of this set contain all the known observational systematic effects. Each data catalog has
a corresponding random catalog, whose redshift distribution is produced by shuffling the
redshift of the data catalog. The 1000 data-random pairs of the EZmock realistic set are used
to estimate the covariance matrix, Σ. The imaging systematic weights of the realistic EZmock
are computed only with the linear regression method and not with the neural network. The
covariance matrix will thus only contain information about the linear imaging weights. The
other two sets are the EZmocks complete and the EZmocks shuffled. These two sets share the
same data catalogs, which do not have any observational systematic effect, while the random
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Figure 2. Weights as a function of redshift for the eBOSS DR16Q. The solid blue line corresponds
to the FKP weights, eq. (2.3); its almost flat behavior as a function of redshift is due to n(z)Pfid ≪ 1.
The optimal weights to estimate fNL are shown in red and dot-dashed green. The solid and dashed red
lines respectively correspond to w̃(z) for p = 1.0 and p = 1.6. These weights have a clear dependence
on the quasar response to the fNL signal.

catalog redshift distributions were produced in different ways. In the EZmock shuffled set
each data catalog has a corresponding random catalog the redshift distribution of which is
produced with the shuffling scheme. The EZmock complete set only has two random catalogs,
one for each Galactic cap. The redshift distributions of these random catalogs were sampled
from the same n(z) interpolation used for the EZmock data catalogs. We use the EZmock
complete and shuffled sets to estimate the RIC effect.

2.3 Power spectrum estimation

As shown in [20], the optimal power spectrum is the cross-correlation of two different fields
produced by weighting the underlying catalog. To arrive at the power spectrum estimator we
start from the two quasar density fields [41],

F̃ (r) = w̃tot [w
qso
c nqso(r)− αsw

s
c ns(r)] , F0(r) = wtot, 0 [wqso

c nqso(r)− αsw
s
c ns(r)] , (2.2)

where nqso and ns respectively are the number density of the quasar sample and the corre-
sponding random catalog, wqso

c and ws
c are the completeness weights from eq. (2.1) for the

quasars and the randoms. The total weights, w̃tot and wtot, 0, are the product of the FKP
weights [41],

wFKP(z) =
1

1 + n̄(z)Pfid
, (2.3)

and the optimal weights for a fNL measurements with power spectrum data [20],

w̃(z) = b(z)− p , w0(z) = D(z)

(
b(z) +

f(z)

3

)
. (2.4)

Therefore the total weights read [20]

w̃tot(z) = wFKP(z) w̃(z) , wtot, 0(z) = wFKP(z)w0(z) . (2.5)
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In eq. (2.3), n̄(z) is the mean density as a function of redshift, and Pfid = 3× 104 (Mpc/h)3,
which corresponds to the expected power on the scales affected by PNG in the sample. In
eq. (2.4), b(z) is the fiducial value of the QSO bias model [47],

b(z) = 0.278
(
(1 + z)2 − 6.565

)
+ 2.393 , (2.6)

and D(z) and f(z) are respectively the growth factor and growth rate as functions of redshift.
As mentioned in section 1, in this work we use p = 1.0 and p = 1.6. The dependence on
the redshift of the weights defined in eq. (2.3) and eq. (2.4) is plotted in figure 2. It shows
the difference between the FKP weighting scheme, which is almost constant in redshift, as
n(z)Pfid ≪ 1, and the optimal weights, which have a strong dependence on redshift. Finally,
the factor αs in eq. (2.3) is defined as

αs =

∑qso wc∑s wc
, (2.7)

and it properly normalizes the number density of the random catalog.
Following ref. [48], we write the monopole of the cross-correlation between the two

weighted fields in eq. (2.2) as

P̃0(k) = A−1
0

∫
dΩk

4π

[∫
dr1 F̃ (r1) e

ik·r1
∫

dr2 F0(r2) e
−ik·r2L0(k̂ · r̂2)

]
− S0 , (2.8)

where L0 is the first Legendre polynomial. The normalization factor A0 and the shot noise
contribution, S0, are respectively defined as

A0 =

∫
drwtot, 0(r) w̃(r) [wc nqso(r)]

2 , (2.9)

S0 = A−1
0

∫
drwc nqso(r) (wc(r) + αs) wtot, 0(r) w̃(r)L0(k̂ · r̂) . (2.10)

We calculate the monopole of the power spectrum using nbodykit [49], which implements
eq. (2.8) as follows [50, 51],

P̃0(k) = A−1
0

∫
dΩk

4π
F̃ (k)F0(−k) , (2.11)

with

F0(k) =

∫
drF0(r) e

ik·rL0(k̂ · r̂)

= 4π Y00(k̂)

∫
drF0(r)Y

∗
00(r̂) e

ik·r , (2.12)

where Y00 is the first spherical harmonic. The normalization and the shot noise are computed
as discrete sums over the quasars and the randoms. The normalization is

A0 = αs

Ns∑
i

ns(ri)wc(ri)wtot,0(ri) w̃tot(ri) . (2.13)
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The shot noise contribution becomes

S0 = A−1
0

Nqso∑
i

w2
c(ri)wtot,0(ri) w̃tot(ri) + α2

s

Ns∑
i

wc(ri)wtot,0(ri) w̃tot(ri)

 . (2.14)

To compute the power spectrum estimator in eq. (2.11) we use a mesh of 5123 cells. The
quasars and the random objects are projected onto the mesh using a triangular shaped cloud
interpolation [52]. In this interpolation each quasar and random is weighted by both its
completeness and total weight and we assume Planck [53] as fiducial cosmology. The power
spectrum is estimated on a logarithmic grid from kmin = 3.75 × 10−3 (Mpc/h)−1 to kmax =
2.23× 10−1 (Mpc/h)−1 for NGC, and kmax = 2.78× 10−1 (Mpc/h)−1 for SGC.

A final remark about the normalization of the power spectrum estimator in eq. (2.11)
and the shot noise contribution in eq. (2.14). Since eq. (2.13) is just an approximation of the
exact definition in eq. (2.9), it has been pointed out that this could lead to biased constraints
on cosmological parameters [54]. We, therefore, decided to re-normalize the measured power
spectra by the limit, at small separation, of the monopole of the window function, Q0(0), see
section 2.4. The final estimator of the power spectrum is

P̂0(k) =
A0

Q0(0)

(
P̃0(k)− S0

)
. (2.15)

We note that we used, both for the linear and NN catalog, the value of Q0(0) computed
from the randoms of the linear catalog, since the two catalogs are expected to have the same
response at small scales.

In figure 3 we show the NGC and SGC (left and right columns) observed power spectra
of the linear and NN catalog (dots and squares). The three rows correspond to the different
weights used to estimate the P̂0(k), from top to bottom the rows correspond to the FKP
weights, the optimal weight with p = 1.0, and with p = 1.6. We also plotted the best fit
model for the linear (dashed line) and NN (dash-dotted line) catalogs (see section 4). The
best fit of the FKP weight case is for the model with p = 1.6. For the NN catalog power
spectra, the band powers have been shifted by 5% along the k-axis for better visualization of
the corresponding error bars. The observed power spectra estimated from the two catalogs
differ only in the first two bins. The NN catalog power spectra have less power in the first
bin than their linear counterparts. The excess of power in the linear catalog power spectra is
expected to be related to large scale systematic effects that the linear regression weights are
not able to correct. The solid horizontal line in each panel shows the amplitude of the power
spectrum at its peak, and it serves to guide the eye to the fact that the optimal weighted
measurements are larger than the corresponding FKP ones. This was expected because the
optimal weights upweight high redshift galaxies (see figure 2), which have a higher bias and
therefore a larger clustering amplitude.

2.4 Window functions

The window function, W (s), represents the footprint on the sky and the redshift selection
function of the survey. It is an essential ingredient to compare a power spectrum model with
the observed power spectrum.

In order to evaluate the model of the observed power spectrum we need the multipoles
of the window function (see section 3.2), defined as follows,

Qℓ(s) ≡ (2ℓ+ 1)

∫
dΩs

∫
d3s1W (s1)W (s+ s1)Lℓ(ŝ1 · ŝ) ≡

∫
ds1 s21Qℓ(s; s1) . (2.16)
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Figure 3. Observed power spectra and best fit model for the NGC (right column), and SGC (left
column), and for the three weighting scheme: FKP (top row), optimal weights with p = 1.0 (middle
row), and with p = 1.6 (bottom row). For the NGC (SGC) blue (green) dots and the dashed line
correspond to the linear catalog results, red (yellow) squares, and dash-dotted line to the NN catalog.
The horizontal gray line marks the turn-around point in the power spectrum. To better visualize the
power spectra error bars, the NN P (k) was shifted by 5%.

– 9 –



To compute the window function multipoles we use the pair counting approach introduced in
ref. [55]. First, with nbodykit we calculate the weighted pair counts of the random catalogs
as a function of the three-dimensional separation and the cosine of the line-of-sight angle,
RRw(s, µ). That is done by cross-correlating the random catalog weighted by wc w̃tot, and
the random catalog weighted by wc wtot, 0. Second, we compute its multipoles,

RRw
ℓ (s) = (2ℓ+ 1)

∫
dµRRw(s, µ)Lℓ(µ) . (2.17)

Finally, in order to obtain the window function multipoles the quantity above needs to be
normalized to take into account the width of the shell over which the pair counting is per-
formed and the density of the random catalog in comparison to the data catalog. The window
function multipole ℓ is finally defined as

Qℓ(s) =
RRw

ℓ (s)

4π s3 d ln s

(
∑qso wc)

2 −∑qso w2
c

(
∑s wc)

2 −∑s w2
c

, (2.18)

with d ln s = sn+1−sn
s , where s is the center of the n-th separation bin. We stress that each

set of optimal weights requires its own multipoles of the window function Qℓ(s).
To reduce the computational time of the pair counting algorithm we divided the random

catalogs into five subsets and computed RRw(s, µ) for each of them. These subsets are 10
times denser than the data catalog. We calculated the window function multipoles of each
random subset using eq. (2.18), with the caveat that the sum over the random

∑s is now
over the subset. The final Qℓ(s) is the mean of the five subsets.

3 Analysis Methods

3.1 The Power spectrum Model

To model the quasar power spectrum in redshift-space we use linear theory. Linear theory is
enough to make the prediction for two reasons: first, the local fNL signal is at low k, where
structures are still growing with a linear regime. Second, the smaller scales of this sample are
dominated by redshift errors, which dominate over the non-linearities. We write the power
spectrum model as follows [56],

Pqso(k, µ; z) = G(k, µ;σFoG)
2
[
btot(k; z) + f(z)µ2

]2
Pm(k; z) +N , (3.1)

where Pm is the matter power spectrum in real-space, N is the residual shot noise free
parameter, and f(z) is the growth rate. The total quasar bias includes the PNG [9, 35],

btot(k; z) = b1 +∆b = b1 + fNL (b1 − p) α̃(k; z) , (3.2)

where b1 is the quasar linear bias, and α̃(k; z) is

α̃(k; z) =
3ΩmH2

0 δc
c2 k2 T (k)D(z)

. (3.3)

In eq. (3.3), δc = 1.686 is the critical density in the spherical collapse in an Einstein-De Sitter
Universe, Ωm is the matter density parameter, and H0 the Hubble parameter, both at z = 0,
and c is the speed of light. Then, T (k) is the matter transfer function normalized to 1 at
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low-k, and D(z) is the growth factor normalized to (1 + z)−1 in the matter dominated era.
Finally, the damping of the power spectrum due to nonlinear redshift-space distortions is
included with a Lorentzian function,

G(k, µ;σFoG) =

[
1 +

(k µσFoG)
2

2

]−1

, (3.4)

where σFoG accounts for both the typical velocity dispersion of QSOs, as well as their redshift
error, which is estimated to be σz = 300 km s−1 for DR16Q, with no significant dependence
on the redshift [31].

The quasar power spectrum multipoles are then easily computed

Pℓ, qso(k; z) =
2ℓ+ 1

2

∫ 1

−1
dµPqso(k, µ; z)Lℓ(µ) . (3.5)

To evaluate the cosmological quantities in eq. (3.1) and eq. (3.3) we assume a Planck fiducial
cosmology [53], and fix the redshift to an effective value. In the following section, we discuss
how the effective redshift is defined and computed. We calculate the cosmological functions
with classy, the Python wrapper of the CLASS CMB Boltzmann solver [57].

3.2 Convolution with the window function and the effective redshift

The ensemble average of the power spectrum estimator in eq. (2.8) is [55, 58]

⟨P̂0(k)⟩ =
∑
ℓ, L

(
ℓ L 0
0 0 0

)2 ∫
ds s2j0(ks)

∫
ds1 s21 ξℓ(s; s1(z))QL(s; s1(z)) , (3.6)

where QL(s; s1) is defined in eq. (2.16), ξℓ(s; s1) is the multipole ℓ of the QSO correlation
function, jA(ks) is the spherical Bessel function of order A, and

(
ℓ L 0
0 0 0

)
is a Wigner 3-j

symbol.
In eq. (3.6) the redshift evolution of the signal is taken into account by s1(z) in ξℓ(s; s1),

which should be integrated against the QL(s; s1) for a proper model comparison. This could
be a time consuming step if repeated for every point in the parameter space exploration,
and it is therefore often approximated. Noticing that in most applications the correlation
function is factorizable in time and space, ξ(s, z) ∼ g(s)h(z), a possible way to speed up the
computation of the theoretical model is to separate the integrals over s and s1. An even more
useful approximation is to assume that the model can be evaluated only at some effective
redshift, zeff , defined by the radial selection function. The expression for the power spectrum
then simplifies to

P0(k; zeff) =
∑
ℓ, L

(
ℓ L 0
0 0 0

)2 ∫
ds s2 j0(ks) ξℓ(s; zeff)QL(s) , (3.7)

with the multipole of the correlation function of the random catalog QL(s) defined in eq. (2.16).
The final integral is a simple Hankel Transform that can be computed quite efficiently [55].

The question becomes, then, what is the most accurate definition of zeff . The estimator
of the power spectrum in eq. (2.8), and therefore the multiples of the window functions as well,
contains two powers of the radial selection function, which suggests the following definition
of zeff for a sample with given n(z) and weights w(z),

zeff =

∫
dz n(z)2 [χ(z)2/H(z)]w(z)2 z∫
dz n(z)2 [χ(z)2/H(z)]w(z)2

, (3.8)
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Figure 4. The accuracy of the effective redshift approximation. In red, and for two different values
of fNL, the plot shows the ratio between the theoretical model integrated over the full radial selection
function of the DR16Q sample and the same model evaluated at a zeff defined in eq. (3.9), see table 1.
The accuracy of the other most common definition of zeff in the literature is shown with blue lines.
The black points correspond to the effective wavenumbers of the measurements of the QSO power
spectrum.

FKP p = 1.0 p = 1.6

NGC 1.49 1.65 1.76
SGC 1.50 1.66 1.76

Table 1. The effective redshift for the different weights and the two sky regions. The optimal weights
increase the zeff of the sample for p = 1.0 and p = 1.6.

where χ(z) is the comoving distance and H(z) is the Hubble parameter. In practice, the
integral above can be estimated via Monte-Carlo methods as

zeff =

∑qso z n(z)w2
c wFKP(z)

2 w̃(z)w0(z)∑qso n(z)w2
c wFKP(z)2 w̃(z)w0(z)

, (3.9)

or with the analogous expression written in terms of the random catalog. The values of zeff
for the samples used in this work are shown in table 1. We see that the optimal weighting
scheme increases zeff , since it up weights high redshift objects, which have a higher response
to the presence of PNG.

The accuracy of our definition of zeff is presented in figure 4, with the blue lines showing
the ratio between the power spectrum model fully integrated over redshift and the monopole
evaluated at zeff . The dashed line corresponds to fNL = 10, while the continuous one to
fNL = −30, with p = 1.6 in both cases. The black points on the horizontal axis show the
effective values of the wavenumbers of the measurements. We find that our approximation
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is sub-percent accurate at high-k, and better than 2.5% accurate on very large scales, thus
much smaller than the sample variance of the measurements.

On the other hand, the DR16Q analysis of ref. [21] adopts a definition of zeff with one
less power of n(z) than eq. (3.9).3 This choice produces the red set of curves in figure 4,
which we find are more than a percent off at high-k, a number that could become significant
over many data points, and more than 10% inaccurate at large scales. In particular, ref. [21]
reports zeff = 1.83 for the weights optimized with p = 1.6, a number significantly higher than
our zeff = 1.76. At fixed value of fNL, the product bϕ fNL is 10% larger at z = 1.83 than at
z = 1.76. This suggests that the authors of [21] would have at least gotten a 10% weaker
constraint on fNL, had they used the more accurate definition of zeff in eq. (3.8).

Finally, we write the convolution of the window function in the more convenient form

P0(k; zeff) =
∑
ℓ, L

iℓ
(
ℓ L 0
0 0 0

)2 ∫ dq
2π2

q2 Pℓ, qso(q; zeff)

∫
ds s2j0(ks) jℓ(qs)QL(s) (3.10)

=
∑
ℓ, L

iℓ
(
ℓ L 0
0 0 0

)2 ∫ dq
2π2

q2 Pℓ, qso(q; zeff)Qℓ, L(k, q) , (3.11)

where we defined
Qℓ, L(k, q) =

∫
ds s2j0(ks) jℓ(qs)QL(s) . (3.12)

The integral in eq. (3.11) is then evaluated as a simple matrix multiplication. This choice
allows us to never compute the correlation function multipoles, which are formally divergent
in the presence of local PNG.

The multipoles of the window function corresponding to the optimal weights with p = 1.0
are shown in figure 5, left panel. In our model we use only the even multipoles up to ℓ = 4,
and neglect possible odd ones [58].4

3.3 The Integral Constraint

The final step to model the observed power spectrum is to correct the convolved power
spectrum with the integral constraint effects. Integral constraint effects arise when the survey
selection function is estimated from the data themselves [44]. Fluctuations over the whole
survey average to zero when the observed galaxy mean density is used as the true cosmological
mean. This causes a suppression of power at large scales, which we call Global Integral
Constraint [GIC; 55, 62]. On the other hand, an additional radial integral constraint is
produced when the radial n(z) is inferred from the data [44]. That is the case for eBOSS
data, where the random catalog redshift distribution is obtained by shuffling the data redshift
distribution. The RIC causes a suppression of the large scale fluctuations along the line-of-
sight.

The global integral constraint depends on the Hankel transform, |W̃ℓ(k)|2, of the window
function multipole Qℓ(s). The Hankel transforms are normalized so that |W̃0(0)|2 = 1 [55].
To correct for the RIC we need to estimate the effect that the shuffling of the random produces
on the measured power spectrum. To do so we used both the complete and shuffled EZmocks.

3The published version of ref. [21] contains the following definition of the effective redshift, right below
their eq. (11), zeff =

∑
i zi wtot/

∑
i wtot, where w2

tot = w2
FKP w2

c |w̃ w0|. This is a typo, as the analysis of
ref. [21] actually used zeff =

∑
i zi w

2
tot/

∑
i w

2
tot, corresponding to the red set of curves in fig. 4. We thank

Eva-Maria Mueller for the correspondence about this point.
4Wide angle effects and other projection effects are negligible for the DR16Q volume [58–61].
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Figure 5. Left: multipoles of the window function in configuration space. The blue solid line,
red dashed, and dotted green respectively are the monopole, quadrupole, and hexadecapole of the
window function. Right : the effect of the different components of the observed power spectrum model
compared to the mean power spectrum of the EZmock realistic catalogs (black circles with error bars).
The blue dashed line is the monopole of the best fit model, the dotted red line is the best fit model
convolved with the window function, and the dash-dotted green line is the observed power spectrum
corrected with the integral constraint as in eq. (3.14).

First, we compute the mean of the power spectra of the complete EZmocks, P̄c(k), and the
mean of the power spectra of the shuffled EZmock, P̄r(k). Then, the radial integral constraint
correction is defined via

WRIC(k) =
P̄c(k)− P̄r(k)

P̄c(k)
. (3.13)

Given |W (k)|2 and WRIC(k) the final expression for the power spectrum is [21, 55]

P IC
0 (k) = P0(k)− P0(0) |W (k)|2 − P0(k)WRIC(k) , (3.14)

where we dropped the dependence on the effective redshift for brevity. In figure 5 we present
the effect of the different components of the observed power spectrum model and compare
it with the mean power spectrum of the EZmock realistic catalogs. First, the plot shows
the importance of the window convolution (dotted red line), which removes power at k ≲
5× 10−2 (Mpc/h)−1. Second, the integral constraint correction (dash-dotted green line) only
affects the first bin, but it is well within the 68% error bars.

3.4 Parameter estimation

To estimate the posterior distribution of the parameters θ of our model, T(θ), given our data
vector D, we assume a multi-variate Gaussian likelihood,

L(D|θ,Σ) ∝ exp

−1

2

∑
ij

(Di − Ti(θ)) Σ
−1
ij (Dj − Tj(θ))

 . (3.15)

The model parameters θ are three for each field of view: σFoG, b1 and N (see section 3.1), and
fNL. The rest of the cosmology is fixed to the Planck best fit values [53]. Therefore, when
fitting the data of one sky patch (single field analysis) the total number of free parameters
is four, and when fitting the two fields of view data (joint analysis) the free parameters are
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seven. In the case of the joint analysis fNL is common for the two fields, while the other three
parameters of the model are unique for each field of view, for a total of six parameters. We
assume a uniform prior distribution for all the parameters, with the following bounds

fNL ∈ [−500, 500] ,

b1 ∈ [0.1, 6] ,

σFoG ∈ [0, 20] ,

N ∈ [−5000, 5000] .

(3.16)

In eq. (3.15), Σ−1 is the inverse of the covariance matrix estimated with the EZmock realistic
catalogs (see section 2.2). As a finite number of mocks, Nm = 1000, is used to estimate the
covariance matrix, its inverse, the precision matrix, is biased [63]. This bias is corrected by
re-scaling the covariance matrix with the inverse of the Hartlap factor,

Σ′ =
Nm − 1

Nm −Nb − 2
Σ , (3.17)

where Nb is the number of k-bins in the observed power spectrum. This correction is ∼ 5%
for the NGC and ∼ 6% for the SGC.

The MonteCarlo Markov Chain (MCMC) algorithm employed in this analysis is the
Hamiltonian MonteCarlo [HMC; 64–66]. HMC is a sampling technique that combines princi-
ples from Hamiltonian mechanics and MCMC methods to efficiently explore high-dimensional
parameter spaces. Unlike traditional methods, HMC employs a dynamic integration of the
target probability distribution. By introducing auxiliary momentum variables, HMC maps
the trajectory of the walkers, which explore the posterior distribution, into a Hamiltonian
system, whose potential energy is defined by the product of the likelihood and the prior dis-
tribution. Then, HMC exploits the gradients of the distribution to follow the Hamiltonian
trajectories and efficiently sample the posterior even in a high-dimensional space. In this
work we use the No-U-Turn Sampler [NUTS; 67, 68] implementation of HMC, which is able
to automatically adapt critical parameters like the step size and the trajectory length. By
setting the acceptance rate to 0.9, the chains quickly converge, within a few thousand steps,
to R− 1 ≲ 10−3, where R is the Gelman-Rubin statistics [69].

4 Constraints and Discussion

In this section we present and discuss the constraints on fNL we obtained with the analyses
of DR16Q. Figure 3 shows the measured data points and error bars of the monopole of the
power spectrum with the best fit model of the joint analyses. The plots are presented for
the two sky regions, NGC (left column) and SGC (right column), and the three weighting
schemes, the standard FKP with a model assuming p = 1.6 (top row), the optimal weights
for p = 1.0 (middle row) and p = 1.6 (bottom row).

Figures 6 and 7 show the two-dimensional posterior of the joint analyses for the linear and
NN catalog, respectively. Both figures are organized as follows: the left column corresponds
to the analysis of the power spectrum monopoles measured with the standard FKP weights
and the right column to the analysis of the optimally weighted power spectrum; the top row
presents the results for p = 1.0, and the bottom row to p = 1.6. In the plots, we show
three of the seven fit parameters: fNL, and the linear bias b1 of the two sky caps. In all
the analyses there is almost no correlation between the biases of the two sky regions, which
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Figure 6. Two-dimensional posterior distributions for fNL and the quasar bias, b1, of NGC and SGC
from the joint analysis of the linear catalog. The plots on the top correspond to p = 1.0, and the
bottom plots to p = 1.6. On the left are the results for the FKP weighting scheme and on the right
for the optimal weights.

was expected as they correspond to independent fields of view. Moreover, the linear biases
of the two Galactic caps are always consistent with each other, and the bias estimated with
the optimal weights is larger than the bias estimated using the standard FKP weights. The
reason behind the latter behavior is the higher effective redshift of the sample when using the
optimal weighting scheme, as discussed in section 2.3. Another effect visible in figures 6 and 7
is how the correlation between the linear bias and fNL changes between the FKP weights and
the optimal weights. Even though this effect is present for both p values it is more evident
in the case with p = 1.6. The optimal weights reduce the correlation between fNL and the
linear bias. We observe this same behavior for the other fit parameters.
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Figure 7. Same as figure 6, but for the NN catalog.

Figure 8 presents the comparison of the one-dimensional fNL posterior distributions
obtained with the joint analyses of the linear catalogs. The left panel corresponds to the
case with p = 1.0 and the right panel to p = 1.6. In both panels, the red dashed line
is the fNL posterior of the FKP analysis and the dotted blue line represents the posterior
of the optimal weight analysis. The corresponding vertical lines mark the 95% constraints.
For both values of p the 95% constraints estimated with the standard FKP weights do not
contain fNL = 0. Given that CMB, which measures fNL = 0.8 ± 5, and LSS probe the
primordial power spectrum over the same range of scales, the results suggest the presence of
residual contamination in the FKP catalog produced with the linear systematic weights. The
optimal weights shift the posterior to values more consistent with fNL = 0. Serendipitously,
this suggests that higher redshifts QSOs in the samples might be less affected by systematic
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Figure 8. One dimensional posterior distribution for fNL for the joint analysis of the linear catalog.
The dashed red curve is the posterior distribution obtained with the FKP weight analysis and the
dotted blue curve with the optimal weights analysis. The vertical lines mark the corresponding 95%
constraints. On the left, the results for p = 1.0, and on the right for p = 1.6.

effects. Nevertheless, the most important difference between the standard FKP and optimal
weights is that the optimal weights give tighter constraints. For p = 1.0 the optimal weights
improve the 95% constraint of about 10%, for p = 1.6 this improvement is a little less than
30%. The comparison between the optimally weighted and the unweighted constraints is
difficult, due to the large systematic effects still present in the FKP catalogs, especially the
NGC ones. At 95% c.l. the joint analysis for p = 1.0 does not contain fNL = 0 for the linear
catalogs, and it barely contains it at the 68% c.l. for the NN ones, see table 2. Nevertheless,
the larger improvements with p = 1.6 than with p = 1.0 point in the direction of bϕ ∼ b1−1.6.

The 68% and 95% constraints on fNL are written down in table 2, where we also make
a comparison with the results of ref. [20] on the eBOSS DR14Q data. We always get tighter
constraints with the linear catalogs rather than with the NN catalogs. The improvement in
the constraints using the optimal weights in comparison to the standard FKP ones is the
same for the two Galactic caps. On the other hand, the improvements with respect to the
eBOSS DR14Q analysis are between 10% and 20% for the two catalogs and are smaller than
the one expected by the doubling of the survey volume. This can be attributed to large scale
systematic effects that are still present in the sample. In particular, the constraints from the
single field analyses show smaller improvements with respect to the eBOSS DR14Q sample
than the joint analysis. In the case of SGC, the constraints are even worse than in the older
ones. Nevertheless, the single field analyses give posterior distributions consistent with each
other and their combination in the joint analysis produces the tightest bounds. The best
constraints of this work are from the joint analysis of the linear catalog with the optimal
weights. The 95% constraints for p = 1.0 are −18 < fNL < 42 corresponding to σfNL ∼ 15
and for p = 1.6 they are −43 < fNL < 44 with σfNL ∼ 22.

We also repeated the parameters estimation assuming a value of p = 3.0. In this case,
we expect a worse constraint on fNL from both the FKP and the optimal analysis compared
to the cases discussed above. However, as discussed in section 1, we can use these constraints
to show how the optimal analysis can provide a data-driven estimate of the value of p. If the
value of p used in the optimal weights is not close to the true one, then the optimal analysis
will not improve over the standard case or will improve less than an analysis with a value of
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p C.L. Linear NN eBOSS DR14Q

joint

1.0
FKP 68% 19 < fNL < 53 0 < fNL < 36

95% 4 < fNL < 71 −16 < fNL < 54 −39 < fNL < 41

Optimal 68% −4 < fNL < 27 −14 < fNL < 19

95% −18 < fNL < 42 −30 < fNL < 34 −51 < fNL < 21

1.6
FKP 68% 34 < fNL < 97 0 < fNL < 66

95% 6 < fNL < 129 −32 < fNL < 98 −74 < fNL < 81

Optimal 68% −23 < fNL < 21 −33 < fNL < 15

95% −43 < fNL < 44 −54 < fNL < 40 −81 < fNL < 26

NGC

1.0
FKP 68% 26 < fNL < 67 1 < fNL < 44

95% 6 < fNL < 87 −23 < fNL < 63 −34 < fNL < 61

Optimal 68% −6 < fNL < 34 −20 < fNL < 21

95% −27 < fNL < 52 −42 < fNL < 41 −56 < fNL < 38

1.6
FKP 68% 49 < fNL < 125 −2 < fNL < 78

95% 10 < fNL < 159 −38 < fNL < 121 −67 < fNL < 112

Optimal 68% −39 < fNL < 28 −53 < fNL < 17

95% −80 < fNL < 54 −95 < fNL < 47 −87 < fNL < 42

SGC

1.0
FKP 68% −15 < fNL < 41 −17 < fNL < 45

95% −36 < fNL < 72 −43 < fNL < 78 −64 < fNL < 31

Optimal 68% −17 < fNL < 29 −21 < fNL < 32

95% −35 < fNL < 55 −40 < fNL < 63 −61 < fNL < 26

1.6
FKP 68% −22 < fNL < 78 −34 < fNL < 81

95% −61 < fNL < 135 −82 < fNL < 146 −122 < fNL < 63

Optimal 68% −28 < fNL < 36 −37 < fNL < 40

95% −51 < fNL < 74 −66 < fNL < 84 −92 < fNL < 42

Table 2. Summary of the fNL 68% and 95% constraints of this work. The results for NGC, SGC
and the joint analysis are presented, and compared with the eBOSS DR14Q constraints [20].

w̃ ∼ bϕ closer to the actual response. Note that this approach assumes that the local PNG
signal we are looking for is non-zero. In the case of p = 3.0, the NGC analysis always shows
evidence for non-zero fNL at the 95% c.l., thus we focus on SGC. For the linear catalog, the
constraints are −140 < fNL < 81 for the FKP weights and −129 < fNL < 76 for the optimal
analysis. This improvement by 8% should be compared to the 20% and 56% reduction of the
error bar for p = 1.0 and p = 1.6 respectively in the SGC analysis. This implies that larger
values of p ≳ 3 are disfavored for this sample.

– 19 –



5 Conclusions

In this work, we presented the most stringent constraint on the amplitude of local Primordial
Non-Gaussianities with Large Scale Structure data, in particular with the eBOSS DR16Q
data set. Assuming the QSOs response to fNL is proportional to b1− p, where b1 is the linear
bias, our strongest bounds read

−4 < fNL < 27 , for p = 1.0 ,

−23 < fNL < 21 , for p = 1.6 ,
(5.1)

at 68% c.l..
Our goal was to show that the optimal signal weighting reduces the error bars on fNL

compared to standard analysis, and we robustly find improvement between 10-30% depending
on the analysis setup. While our optimal constraints are always consistent with no local PNG,
the comparison with previous eBOSS data releases does not allow us to exclude the presence
of residual systematic effects in the data. Nevertheless, the DR16Q catalog and the analysis
presented here represent an important step forward in the direction of robust and optimal
analysis of PNG with LSS data. We have also shown how optimal weights could provide a
data-driven prior on the largely unknown value of p, and we were able to exclude p ≳ 3.

This work can be extended in several directions. First, we have not attempted an
optimal noise weighting of the power spectrum data. This could be done using optimal
quadratic estimators [34], for which new algorithms have been recently presented [70]. A
fully optimal analysis will allow us to get closer to the full Fisher information contained in
the power spectrum. Secondly, it is well known that the Bispectrum is the most sensitive
probe to local PNG. A careful study of the optimal weights for higher-point statistics is still
missing and could revolutionize the way we constrain fNL. We intend to return to these
interesting problems in future work.
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Figure 9. Two dimensional posterior distributions for bϕ fNL and and the quasar linear bias, b1, from
the SGC linear catalog analysis. The posterior distribution of the analysis with the FKP weighting
scheme, the optimal weights with p = 1.0, and p = 1.6 are shown respectively on the top left, top
right and bottom panel.
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C.L. Linear NN

NGC

FKP 68% 131 < bϕ fNL < 310 2 < bϕ fNL < 192

95% 35 < bϕ fNL < 394 −102 < bϕ fNL < 280

Optimal
p = 1.0

68% −27 < bϕ fNL < 200 −115 < bϕ fNL < 123

95% −174 < bϕ fNL < 288 −255 < bϕ fNL < 227

Optimal
p = 1.6

68% −176 < bϕ fNL < 121 −222 < bϕ fNL < 76

95% −371 < bϕ fNL < 234 −409 < bϕ fNL < 192

SGC

FKP 68% −48 < bϕ fNL < 198 −83 < bϕ fNL < 188

95% −162 < bϕ fNL < 322 −207 < bϕ fNL < 323

Optimal
p = 1.0

68% −93 < bϕ fNL < 175 −129 < bϕ fNL < 174

95% −202 < bϕ fNL < 317 −230 < bϕ fNL < 349

Optimal
p = 1.6

68% −121 < bϕ fNL < 165 −144 < bϕ fNL < 182

95% −237 < bϕ fNL < 311 −265 < bϕ fNL < 354

Table 3. Summary on the 68% and 95% constraints on bϕ fNL for the NGC and SGC.
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