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Abstract (250/250 words) 

Objectives: 

We sought to assess the performance of artificial intelligence (AI)-assisted quantification of 

pneumonia burden from chest computed tomography (CT) for predicting clinical deterioration 

or death in patients hospitalized with COVID-19 in comparison to semi-quantitative visual 

scoring systems. 

Methods: 

Total pneumonia burden was quantified using a deep-learning algorithm and semi-

quantitative pneumonia severity scores were visually estimated. The primary outcome was 



                               

clinical deterioration (intensive care unit admission, invasive mechanical ventilation, or 

vasopressor therapy) or in-hospital death. 

Results: 

The final population comprised 743 patients (mean age 65 ± 17 years, 55% men), of whom 

175 (23.5%) experienced clinical deterioration or death. The area under the receiver operating 

characteristic curve (AUC) for predicting the primary outcome was significantly higher for 

AI-assisted quantitative pneumonia burden (0.739, p=0.021) compared with the visual lobar 

severity score (0.711, p<0.001) and visual segmental severity score (0.722, p=0.042). AI-

assisted pneumonia assessment exhibited lower performance when applied for calculation of 

the lobar severity score (AUC of 0.723, p=0.021). Time taken for AI-assisted quantification 

of pneumonia burden was lower (38±10seconds) compared to that of visual lobar 

(328±54seconds, p<0.001) and segmental (698±147seconds, p<0.001) severity scores. 

Conclusions: 

AI-assisted quantification of pneumonia burden from chest CT improves prediction of clinical 

deterioration in COVID-19 patients over semi-quantitative severity scores, at a fraction of the 

analysis time.  

Advances in knowledge: 

Quantitative pneumonia burden assessed using AI demonstrated higher performance for 

predicting clinical deterioration compared to current semi-quantitative scoring systems. Such 

an AI system has the potential to be applied for image-based triage of COVID-19 patients in 

clinical practice.   
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Abstract (250/250 words) 

Objectives: 

We aimed to evaluate the effectiveness of utilizing artificial intelligence (AI) to quantify the 

extent of pneumonia from chest computed tomography (CT) scans, and to determine its 

ability to predict clinical deterioration or mortality in patients admitted to the hospital with 

COVID-19 in comparison to semi-quantitative visual scoring systems. 

Methods: 

A deep-learning algorithm was utilized to quantify the pneumonia burden, while semi-

quantitative pneumonia severity scores were estimated through visual means. The primary 

outcome was clinical deterioration, the composite endpoint including admission to the 

intensive care unit, need for invasive mechanical ventilation, or vasopressor therapy, as well 

as in-hospital death. 

Results: 

The final population comprised 743 patients (mean age 65 ± 17 years, 55% men), of whom 

175 (23.5%) experienced clinical deterioration or death. The area under the receiver operating 

characteristic curve (AUC) for predicting the primary outcome was significantly higher for 

AI-assisted quantitative pneumonia burden (0.739, p=0.021) compared with the visual lobar 

severity score (0.711, p<0.001) and visual segmental severity score (0.722, p=0.042). AI-

assisted pneumonia assessment exhibited lower performance when applied for calculation of 

the lobar severity score (AUC of 0.723, p=0.021). Time taken for AI-assisted quantification 

of pneumonia burden was lower (38±10seconds) compared to that of visual lobar 

(328±54seconds, p<0.001) and segmental (698±147seconds, p<0.001) severity scores. 

Conclusions: 
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Utilizing AI-assisted quantification of pneumonia burden from chest CT scans offers a more 

accurate prediction of clinical deterioration in patients with COVID-19 compared to semi-

quantitative severity scores, while requiring only a fraction of the analysis time. 

Advances in knowledge: 

Quantitative pneumonia burden assessed using AI demonstrated higher performance for 

predicting clinical deterioration compared to current semi-quantitative scoring systems. Such 

an AI system has the potential to be applied for image-based triage of COVID-19 patients in 

clinical practice.   
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1. Introduction 

Coronavirus disease 2019 (COVID-19) is a global pandemic and has caused public health crises 

of catastrophic proportions, with over 395 million confirmed cases worldwide as of February 

7, 2022. Although a reverse transcription-polymerase chain reaction (RT-PCR) test in 

respiratory tract specimens is necessary for diagnosing COVID-19, computed tomography (CT) 

remains the primary modality used to assess the extent of the disease and predict its 

progression.1,2 Several semi-quantitative scoring systems have been proposed to visually 

evaluate parenchymal opacifications associated with COVID-19, in which the final metric is 

obtained by summing the scores describing the extent of abnormalities in respective pulmonary 

lobes or segments.3,4 While conventional visual scoring of COVID-19 pneumonia extent 

correlates with clinical disease severity, its routine application is time-consuming and requires 

proficiency in cardiothoracic imaging.5 To aid radiologists and enhance their diagnostic 

accuracy, various artificial intelligence (AI) solutions have been developed.6 Deep learning 

algorithms, a form of AI, have demonstrated high performance in fully automated segmentation 

of lung lesions associated with COVID-19 and identifying patients at risk of experiencing 

adverse clinical outcomes.7,8 Whereas several studies have evaluated the diagnostic accuracy 

of AI-assisted and conventional pneumonia scoring systems, there is a paucity of data 

comparing the prognostic value of these approaches. In this retrospective analysis of a large, 

international, multicenter registry, our aim was to evaluate the effectiveness of using AI-

assisted quantitative pneumonia burden from chest CT scans to predict clinical deterioration or 

mortality in patients hospitalized with COVID-19. We compared this approach to semi-

quantitative visual scoring systems. 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



                               

 

2. Materials and methods 

2.1 Study design  

This prospective, international, multicenter registry included patients enrolled consecutively 

from: North America (Cedars Sinai Medical Center, Los Angeles, USA [n = 41]), Europe 

(Semmelweis University, Budapest Hungary [n = 579]; Centro Cardiologico Monzino [n = 75], 

and Istituto Auxologico Italiano [n = 17 both Milan, Italy), Asia (Showa University Hospital, 

Tokyo, Japan [n = 25]), and Australia (Monash Medical Centre, Victoria, Australia [n = 6]). 

All patients underwent baseline chest CT and had a positive RT-PCR test result for SARS-

CoV-2 during their index admission between January 10 and November 15, 2020 (Figure 1). 

For patients with serial chest CT imaging, we included only the results of their initial scan. The 

CT images from each patient and the clinical database were fully anonymized and transferred 

to Cedars-Sinai Medical Center for core lab analysis. The study was conducted with the 

approval of local institutional review boards (Cedars-Sinai Medical Center IRB# study 617), 

and written informed consent was waived for fully anonymized data analysis. 

2.2 Scan Protocol and Image Reconstruction 

Chest CT scans were conducted using various multi-slice CT systems, including the Aquilion 

ONE (Toshiba Medical Systems, Otawara, Japan), GE Revolution, GE Discovery CT750 HD, 

or LightSpeed VCT (GE Healthcare, Milwaukee, WI, USA), and Brilliance iCT and Incisive 

CT (Philips Healthcare, Cleveland, OH, USA). Scans without intravenous contrast utilized a 

peak x-ray tube voltage of 120 kV, automatic tube current modulation (300-500 mAs), and a 

slice thickness of 0.625 to 1.25 mm. The contrast-enhanced protocol consisted of a peak x-ray 

tube voltage of 120 kV, automatic tube current modulation (500-650 mAs), and a slice thickness 

of 0.625 to 1.0 mm. Iodinated contrast material (Iomeron 400 and 350, Bracco Imaging SpA, 

Milan, Italy; or Ominpaque 350, GE Healthcare, United States) totaling 80-100 ml was injected 
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intravenously at a rate of 5 ml/s and followed by 20-30ml of saline chaser at a flow rate of 4-5 

ml/s. Standard lung filters specific to each CT vendor were used to reconstruct the images. All 

scans were obtained while patients were in the supine position during an inspiratory breath-

hold. 

2.3 CT Image Analysis 

Images were analyzed at the Cedars-Sinai Medical Center core laboratory by two physicians 

(K.G. and A.L.) with 3 and 8 years of experience in chest CT, respectively, and who were 

blinded to clinical data. A standard lung window (width of 1500 Hounsfield units [HU] and 

level of −400 HU) was used (Figure 2A-B). 

At the core laboratory of Cedars-Sinai Medical Center, two physicians (K.G. and A.L.) with 3 

and 8 years of experience in chest CT, respectively, analyzed the images and were not provided 

with clinical data. The standard lung window with a width of 1500 Hounsfield units [HU] and 

a level of -400 HU was utilized (as shown in Figure 2A-B). 

For AI-assisted pneumonia burden quantification, deep-learning research software 

(LungQuant v.1.0, Cedars-Sinai Medical Center, Los Angeles, CA, USA) was used. First 

ground glass opacities (GGO) and high-opacities (comprising consolidation and pleural 

effusion) were segmented using convolutional Long Short-Term Memory (ConvLSTM) 

network (Figure 2C).8  ConvLSTM was utilized in our study as it operates directly on images, 

allowing for quick segmentation and precise 3D quantification of lung lesions involved in 

COVID-19 pneumonia from a stack of both contrast and non-contrast CT images. The 

ConvLSTM networks can preserve relevant features while dismissing irrelevant ones through 

the feedback loop, resulting in a memory-efficient approach for the comprehensive analysis of 

the images. 

Following the acquisition of lesion masks, they were modified using a semi-automated 

brush-like tool to distinguish consolidation from pleural effusion, with the boundaries delimited 
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by a region-growing algorithm. Adaptive thresholds were implemented, determined by a fixed 

window surrounding the attenuation of the clicked pixel by the operator. Lobe segmentation 

was performed using a deep convolutional neural network, an alternative type of neural network 

that models spatial and temporal correlation while reducing translational variance in signals. 

The size of input images is used to construct deep convolutional neural networks. The networks 

were trained with the Lung Tissue Research Consortium dataset.9 The right lung was divided 

into upper, middle and lower lobes by the horizontal and oblique fissures, and the left lung was 

divided into upper and lower lobes by the oblique fissure (Figure 2D). GGO was defined as 

hazy opacities that do not obscure the underlying bronchial or vascular structures, consolidation 

as opacification obscuring the underlying bronchial and vascular structures, and pleural effusion 

as a fluid collection in the pleural cavity.10 Chronic lung abnormalities such as emphysema or 

fibrosis were excluded from segmentation. Volumes of lesion components and total lesion 

volumes were automatically calculated by the software. Total pneumonia burden was calculated 

as total lesion volume / total lung volume x 100% (Figure 2E-F). AI calculations were 

performed on Nvidia Titan RTX 24GB graphics processing unit.  

For lobar severity score, the extent of the parenchymal opacities involving GGO, and 

consolidations were visually assessed for each of the 5 pulmonary lobes and scores ranging 

from 0 to 5 were attributed accordingly: 0 for no involvement; 1 for involvement <0%;5%); 2 

for involvement <5%;25%); 3 for involvement <25%;50%); 4 for involvement <50%;75%); 

and 5 for involvement ≥75%. The total lobar severity score ranged between 0 and 25 points.3 

To compare the performance of the lobar severity score between expert reader and AI, 

lobar involvement of the opacifications calculated using a deep-learning algorithm was 

translated into semi-quantitative scores as described. 

For segmental severity score, the extent of the parenchymal opacities involving GGO 

and consolidations were visually assessed for each of the 20 pulmonary segments and scores 
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ranging from 0 to 2 were attributed accordingly: 0 for no involvement; 1 for involvement ≤50%; 

and 2 for involvement >50%. The total segmental severity score ranged between 0 and 40 

points.4 

All the cases were evaluated using each of the approaches. To limit the bias, images 

were first scored using a semi-quantitative approach. The minimal interval between the repeated 

evaluation of the case was 4 weeks. The time necessary to score the case using each of the three 

approaches was noted for all the patients.  

 

2.4 Statistical analysis 

Normal distribution  of the data was assessed using the Shapiro-Wilk test. Continuous variables 

were reported as mean ± standard deviation or median (interquartile range [IQR]), while 

categorical variables were expressed as absolute numbers (percentage). Student's t-test or 

nonparametric Mann-Whitney U-test was used to compare continuous variables as appropriate, 

while categorical variables were compared using the Chi-square test. Discriminatory 

performance of the scores was determined by the C-statistic, and compared using the method 

of DeLong et al.11 Optimal sensitivity and specificity were determined by the Youden index to 

facilitate selection of the cut-off values. Additionally, the scoring systems were divided into 

quartiles and the frequency of clinical deterioration was compared using the odds ratio. A 

reclassification table was constructed only for the comparison of pulmonary lobes evaluation 

since AI software does not provide per-segment quantification. A reclassification table was 

constructed only for the comparison of pulmonary lobes evaluation since AI software does not 

provide per-segment quantification. Reclassification table was constructed to visualize the 

directions (described as up- and down-reclassifications) and frequencies of reclassifications as 

performed by the AI algorithm in relation to the clinical standard being visual assessment. Net 

reclassification improvement (NRI) was calculated using the method described by Pencina et 
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al. to objectivize its frequency. 12 Agreement between AI-assisted and visual analysis of lobar 

involvement was evaluated with a weighted kappa statistic.13 The degree of agreement was 

considered excellent for kappa >0.80; substantial for kappa 0.61-0.80; moderate for kappa 0.41-

0.60; fair for kappa 0.21-0.40; and poor for kappa ≤0.20. Correlations between continuous 

variables were assessed using Spearman's rank correlation coefficient. All probability values 

were 2-tailed, and a p-value of <0.05 was considered statistically significant. Data were 

processed using the SPSS software, version 23 (IBM SPSS Statistics, Newer York, USA) and 

SAS 9.4 (SAS Institute, Cary, USA). 

3. Results 

3.1 Patient characteristics 

A total of 743 patients (age 65 ± 17 years; 55% male) with laboratory-confirmed COVID-19 

who underwent chest CT during their admission were included. The primary outcome occurred 

in 175 (23.5%) patients: 93 (53.2%) were admitted to ICU, 70 (40.0%) required mechanical 

ventilation, 64 (36.5%) required vasopressors, and 121 (69.1%) experienced in-hospital death. 

The chest CT was performed at a median time of 6 days (IQR 4-8 days) from self-reported 

onset of symptoms, and the median time from chest CT to occurrence of primary outcome was 

3 days (IQR 1-13 days). Of the total patients, 79 (10.6%) patients experienced clinical 

deterioration or died, while the remaining patients (n=568; 76.5%) did not require critical care 

or had been discharged alive at the time of data collection. Patients who experienced 

deterioration or died were older and had a higher number of comorbidities, as shown in Table 

1. 

3.2 Chest CT measurements 

Lung measurements from chest CT are summarized in Table 2 and Figure 3. Patients with 

deterioration or death had a higher total burden of COVID-19 pneumonia compared to patients 

that did not experience deterioration or death (16.0% [IQR, 4.5-39.3%] vs 3.7% [IQR, 0.3-
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10.3%], p<0.001). Similarly, patients who deteriorated or died were characterized with a higher 

visual lobar (10 [IQR, 6-15] vs 6 [IQR, 3-9], p<0.001) as well as segmental (18 [IQR, 10-27] 

vs 9 [IQR, 4-15], p<0.001) severity scores compared to patients who did not require critical 

care or were discharged alive. Data regarding the distribution of individual score components 

for lobar and segmental severity scores are presented in Supplementary Tables 1 and 2. Time 

required for calculation of AI-assisted pneumonia burden (38±10 sec) was significantly lower 

compared to both visual lobar (328±54 sec, p<0.001) and segmental (698±147 sec, p<0.001) 

severity scores.  

3.3 Predictive accuracy of pneumonia scoring systems 

For the prediction of the primary outcome, the area under the receiver operating characteristic 

curve (AUC) for AI-assisted pneumonia burden (0.739, p=0.021) was significantly higher than 

that of the visual lobar severity score (0.711, p < 0.001) and visual segmental severity score 

(0.722, p = 0.042; Figure 4). The sensitivities and specificities were: 68% and 70% for AI-

assisted pneumonia burden; 48% and 84% for lobar severity score; was 51% and 83% for 

segmental severity score. 

The frequency of clinical deterioration in each of the quartiles for respective scoring 

systems are presented in Table 3. For AI-assisted pneumonia burden, the odds of clinical 

deterioration were: 8.46 (95% CI: 4.85-14.73) for quartile 4 versus quartile 1, 5.70 (95% CI: 

3.46-9.40) for quartile 4 versus quartile 2, and 3.80 (95% CI: 2.40-6.00) for quartile 4 versus 3. 

For visual lobar severity score, the odds of clinical deterioration were: 6.50 (95% CI: 3.86-

10.93) for quartile 4 versus quartile 1, 5.90 (95% CI: 3.52-9.88) for quartile 4 versus quartile 2, 

and 3.40 (95% CI: 2.16-5.34) for quartile 4 versus 3. For visual segmental severity score, the 

odds of clinical deterioration were: 7.27 (95% CI: 4.31-12.26) for quartile 4 versus quartile 1, 

5.74 (95% CI: 3.54-9.31) for quartile 4 versus quartile 2, and 3.56 (95% CI: 2.27-5.58) for 

quartile 4 versus 3. 
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3.4 Agreement between visual and AI-assisted analysis 

To compare the performance of the lobar severity score between expert reader and AI, lobar 

involvement of the opacifications calculated using a deep-learning algorithm was translated 

into semi-quantitative scores as described. The agreement between visual and AI-assisted lobar 

severity scores was substantial (weighted kappa = 0.609). AI-derived lobar severity score 

achieved higher predictive accuracy for clinical deterioration than visual expert reading (AUC 

of 0.723 vs 0.711, p = 0.043; Figure 5A), but underperformed compared to the input pneumonia 

burden (AUC of 0.723 vs 0.739, p = 0.021). The estimation of pneumonia involvement for 

individual lobes showed an excellent level of agreement (weighted kappa = 0.862; Figure 5B). 

Out of 3715 lobes, discordant classification was noted in 387 (10.4%) of them. The NRI values 

were 0.3% and 0.4% in patients without and with clinical deterioration, respectively. Thus, the 

total NRI was -0.1% (p = 0.994, Table 4). 

3.5 Correlation of scoring systems with serum biomarkers 

Bivariate correlations between pneumonia scoring systems and serum biomarkers are presented 

in Table 5. Serum biomarkers were more strongly correlated with AI-assisted pneumonia 

burden than the semi-quantitative severity scores. The pneumonia scoring systems had a 

moderate correlation with lactate dehydrogenase and C-reactive protein levels, and weak 

correlations with lymphocytes, ferritin, D-dimer, and creatine kinase-MB.  
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4. Discussion 

In this international multicenter study of patients with COVID-19, we compared the accuracy 

of an AI-assisted pneumonia burden with conventional pneumonia severity scores derived from 

chest CT for predicting clinical deterioration. We demonstrate that quantitative pneumonia 

burden determined with an AI achieved higher predictability of clinical deterioration to the 

semi-quantitative visual scoring systems and significantly reduced the time required for 

pneumonia evaluation from chest CT.  

 Chest CT is presently recommended for COVID-19 patients who exhibit moderate or 

severe respiratory symptoms, have a high pretest probability of infection, or require urgent 

triage for other clinical scenarios..14-16 To facilitate the standardized evaluation of pulmonary 

involvement from CT, several different severity scores have been proposed.3,4,9 The semi-

quantitative scoring systems – developed originally to describe the idiopathic pulmonary 

fibrosis and adapted later for CT examination of patients recovering from severe acute 

respiratory syndrome – have been recently shown to associate with the clinical disease severity 

and adverse outcomes in COVID-19 patients.3,17,18 Although visual analysis of lung 

involvement is the only available approach to many of the institutions, its application remains 

limited to the staff proficient at cardiothoracic imaging. Moreover, the reproducibility of the 

measurements may be dependent on the experience of the individual reader, and the scoring 

was showed to differ significantly between radiologists and clinicians.7,19 

Alternatively, the extent of pneumonia can be characterized using quantitative 

measurements, which require segmentation of both lungs and parenchymal lesions.20 While the 

manual approach is prohibitively time-consuming and could not be employed in a routine 

clinical setting, the application of deep learning – a class of AI – has been demonstrated as a 

robust tool generating results with an accuracy similar to the experts.21 Previous studies have 
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proved AI to increase the performance of junior radiologists to the senior level as well as 

improve diagnostic accuracy in comparison to visual severity scores.7 

In spite of the central role of CT in prognostication, a paucity of data remains on the 

incremental value of AI-assisted pneumonia burden quantification in comparison to semi-

quantitative scores for prediction of clinical deterioration in COVID-19 patients admitted to the 

hospital. The superior performance of the AI in comparison to the expert reader was previously 

found by the Gieraerts et al. in a single-center study involving 250 COVID-19 patients, although 

they did not report a significant difference in prognostic accuracy between quantitative 

pneumonia burden (AUC of 0.878) and semi-quantitative (AUC of 0.888) measured with an 

AI.22 This could be associated with a relatively small number of events (n = 39) limiting their 

statistical power since such a high accuracy could not be achieved even by the model combining 

multiple quantitative lesion features in a landmark study by Zhang et al (AUC of 0.848).7 In a 

three-fold larger study involving real-life data from five continents, we report improved 

prognostication with AI-assisted pneumonia burden as compared to visual estimation, but also 

AI-derived semi-quantitative severity scores. Although the agreement between AI and visual 

estimation of pulmonary involvement in COVID-19 was excellent, the reclassification table for 

the comparison of pulmonary lobes evaluation showed the tendency of visual scoring to 

overestimate the disease burden in severe cases. While the NRI remained unaffected, the results 

confirm previously observed bias in the visual estimation of lung abnormalities, which may 

negatively affect the overall performance of the scoring.23 Further, observed decrease in the 

prognostic value of the AI-assisted measurements following the translation of pneumonia 

burden into the lobar severity score, suggests semi-quantitative scales being naturally limited 

by the categorization of the continuous data.24 

 Our results also showed the correlation of pneumonia severity scores with blood 

biomarkers related to systemic inflammation, thus underscoring the importance of lung 
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involvement as the key parameter in the overall prognostic implications. The strongest 

correlations were found for C-reactive protein and lactate dehydrogenase. The first indicates 

the association of lung injury with acute inflammation, and the latter – being the marker of liver 

function – may suggest its role in the pathogenesis of multi-organ failure.25-27 Although the 

relation between pulmonary inflammation in COVID-19 and the pathogenetic sequelae 

resulting in clinical deterioration is not fully understood, this may mechanistically explain the 

prognostic value of chest CT imaging.   

 There are several limitations to our study. Firstly, there may have been heterogeneity in 

COVID-19 pneumonia severity or in-hospital outcomes due to different patient profiles and 

treatment protocols across countries. Secondly, information on patients' respiratory status upon 

admission to the intensive care unit was not consistently available, but we included intubation 

and invasive ventilation as a hard endpoint. Finally, we did not investigate the impact of 

treatment on outcomes; however, supportive care remains the cornerstone of COVID-19 

therapy, and only a small number of patients received targeted interventions in our study. 

5. Conclusion 

We show that the AI-assisted quantitative pneumonia burden outperforms semi-quantitative 

severity scores for prediction of clinical deterioration in COVID-19 patients, which also 

validates the application of AI for lessening the workload in the radiology departments.28 The 

presented deep-learning algorithm requires little to no interaction, facilitating, therefore, the 

rapid risk assessment by clinicians with limited experience in cardiothoracic imaging. 

Quantification of the parenchymal opacification on chest CT might be applied for image-based 

triage to optimize the distribution of resources during the pandemic. 

In conclusion, AI-assisted pneumonia burden improves the prediction of clinical 

deterioration in COVID-19 patients as compared to semi-quantitative severity scores and may 

significantly expedite CT-based triage in the emergency environment.  
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Figures 

Figure 1. Study flowchart. 

Figure 2. Chest CT of a woman with COVID-19 pneumonia who died 7 days later. Lobar 

severity score was 15 and segmental severity score was 24 (A-B). AI-assisted quantification 

revealed pneumonia burden of 36.7% (C) involving all five pulmonary lobes (D). Three-

dimensional lung renderings depict distribution of disease consisting of both ground-glass 

opacities (blue) and consolidation (yellow) in (E) coronal and (F) axial planes.  

Figure 3. Comparison of pneumonia burden (A), lobar severity score (B) and segmental 

severity score in patients with and without clinical deterioration or death. Box plots demonstrate 

the median, interquartile range 25th-75th, and minimum and maximum values. 

Figure 4. Performance of different pneumonia scoring systems for prediction of clinical 

deterioration or death. 

Figure 5. Performance of lobar severity scores estimated visually and with AI (A). Agreement 

chart showed excellent agreement (weighted kappa = 0.862) between visual and AI-assisted 

evaluation of pneumonia involvement in per-lobe analysis (B).  
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Table 1. Clinical and laboratory characteristics of patients on admission 

 
 

 Clinical deterioration or death  

P value Yes 

(n = 175) 

No 
(n = 568) 

Clinical characteristics 

Age, years 72±14 62±17 <0.001 

Male sex 100 (57.2) 311 (54.8) 0.578 

Body mass index, kg/m2  27.6±6.1 28.8±6.4 0.312 

Hypertension 131 (74.9) 326 (57.4) <0.001 

Diabetes mellitus 54 (30.9) 135 (23.8) 0.052 

Hyperlipidemia 47 (26.9) 116 (20.4) 0.066 

Smoking status    

0.250 Former smoker 31 (17.7) 71 (12.5) 

Current smoker 17 (9.7) 51 (9.0) 

History of lung disease 35 (20.0) 83 (14.6) 0.085 

History of heart failure 34 (19.4) 74 (13.0) <0.001 

History of coronary artery disease 32 (23.4) 44 (7.7) <0.001 

Chronic kidney disease  34 (19.4) 59 (10.4) <0.001 

Immunodeficiency 41 (23.4) 76 (13.4) <0.001 

Symptoms   

Fever 77 (44.0) 282 (49.6) 0.191 

Chills 3 (1.7) 31 (5.5) 0.038 

Fatigue 50 (28.6) 219 (38.6) 0.016 

Dyspnea 93 (53.1) 226 (39.8) 0.002 

Dry cough 64 (36.6) 245 (43.1) 0.124 

Sputum production 18 (10.3) 62 (10.9) 0.814 

Hemoptysis 0 (0.0) 6 (1.1) 0.172 

Sore throat 3 (1.7) 30 (5.3) 0.045 

Loss of smell 4 (2.3) 52 (9.2) 0.003 

Loss of taste 7 (4.0) 51 (9.0) 0.032 

Muscle/joint pain 19 (10.9) 107 (18.8) 0.014 

Headache 10 (5.7) 50 (8.8) 0.196 

Nausea or vomiting 18 (10.3) 61 (10.7) 0.865 

Diarrhea 22 (12.6) 51 (9.0) 0.163 

Blood biomarkers 

Lymphocytes (%) 12.5 (7.7 – 18.7), 150 19.3 (13.2 – 27.0), 540 <0.001 

Lactate dehydrogenase (U/L)  438±222, 138 256±133, 356 <0.001 

C-reactive protein (mg/L)  128.5 (69.1 – 205.8), 136 40.9 (10.8 – 94.4), 434 <0.001 

Ferritin (ng/mL)  819 (382 – 1286), 111 421 (221 – 773), 345 <0.001 

Prothrombin time (s)  9.2 (8.7 – 10.4), 111  9.0 (8.5 – 9.8), 320 0.022 

D-dimer (ng/mL)  2.24 (0.95 – 4.3), 104 0.9 (0.5 – 1.9), 310 <0.001 

Troponin (pg /mL) 40.0 (19.0 – 78.5), 101 13.0 (6.0 – 30.0), 299 <0.001 

Creatine phosphokinase (U/L)  112.0 (41.2 – 279.0), 90 67.5 (34.8 – 147.5), 274 <0.001 

     Data are n (%), median (IQR), or mean±SD, n if fewer patients had laboratory results available than the total 

 study population. 
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Table 2. Classification and quantitative measures of lung lesions on chest CT in COVID-19 pneumonia 
 
 
 Clinical deterioration or death  

P value Yes 

(n = 175) 
No 

(n = 568) 

Lung abnormality  

Only ground-glass opacities 18 (10.3) 132 (23.2) <0.001 

Only consolidation 2 (1.1) 1 (0.2) 0.077 

Ground-glass opacities and consolidation 144 (82.3) 323 (56.9) <0.001 

Pleural effusion 42 (24.0) 64 (11.3) <0.001 

Emphysema 19 (10.9) 27 (4.8) 0.003 

Fibrosis 13 (7.4) 19 (3.3) 0.020 

None 11 (6.3) 112 (19.7) <0.001 

AI-assisted burden (%)    

Total 16.0 (4.5 – 39.3) 3.7 (0.3 – 10.3) <0.001 

Ground-glass opacities 12.1 (3.5 – 34.6) 3.3 (0.2 – 9.0)  <0.001 

Consolidation  0.7 (0.1 – 3.7)   0.2 (0.0 – 0.4) <0.001 

Pleural effusion 0.0 (0.0 – 0.7) 0.0 (0.0 – 0.0) <0.001 

Lobar severity score* 10 (6 – 15) 6 (3 – 9) <0.001 

Segmental severity score* 18 (10 – 27) 9 (4 – 15) <0.001 

 
 
 
Data are n (%), median (IQR) 
For detailed distribution of individual score components refer to Supplementary Table 1 and 2 
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Table 3. Risk score stratification across quartiles 

 
 Quartile 1 Quartile 2 Quartile 3 Quartile 4 p Value 

Range of AI-assisted pneumonia burden (0-0.6%) <0.6%-5.1%) <5.1%-15.4%) <15.4%-100%)  

Rate of clinical deterioration in AI-assisted pneumonia burden quartiles 10.2% (19/185) 14.5% (27/186) 20.3% (38/187) 49.2% (91/185) <0.001 

Range of lobar severity score 0-3 4-6 7-10 11-25  

Rate of clinical deterioration in lobar severity score quartiles 12.5% (24/191) 13.7% (25/183) 21.5% (42/195) 48.2% (84/174) <0.001 

Range of segmental severity score 0-5 6-11 12-17 18-40  

Rate of clinical deterioration in segmental severity score quartiles 11.8% (23/194) 14.5% (30/206) 19.8% (32/161) 49.5% (90/182) <0.001 
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Table 4. Reclassification table using the artificial intelligence for lobar severity scores. 

 
Visual  Artificial Intelligence      Reclassification NRI P Value for NRI 
 0% <0%;5%) <5%;25%) <25%;50%) <50%;75%) >75% Total Up Down   

No clinical deterioration        5.1% 4.8% -0.1% 0.994 

0% 768 131 0 0 0 0 899     
<0%;5%) 5 884 3 0 0 0 833     
<5%;25%) 24 46 642 11 0 0 723     

<25%;50%) 7 12 22 208 1 0 250     
<50%;75%) 1 2 2 7 45 0 57     
>75% 1 0 3 2 2 11 19     
Total 806 1075 672 228 48 11 2840     
            
Clinical deterioration        6.2% 5.8%   

0% 113 25 2 1 1 0 142     

<0%;5%) 2 179 5 1 0 0 187     

<5%;25%) 0 15 192 6 1 0 214     
<25%;50%) 0 1 9 139 9 0 158     

<50%;75%) 0 0 2 19 109 3 133     

>75% 0 0 0 0 3 38 41     

Total 115 220 210 166 123 41 875     
 
 

NRI = net reclassification improvement; 

NRI = [P(Up|Positive)- P(Down|Positive)]-[ P(Up|Negative)- P(Down| Negative)] 

Patients were reclassified by artificial intelligence and were compared to visual scoring.  
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Table 5. Correlation matrix between investigated variables. 
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Lobar severity score 0.933**          

Segmental severity score 0.910** 0.972**         

Lymphocytes  -0.299** -0.306** -0.302**        

Lactate dehydrogenase  0.567** 0.542** 0.516** -0.268**       

C-reactive protein 0.507** 0.486** 0.467** -0.426** 0.460**      

Ferritin 0.399** 0.394** 0.409** -0.231** 0.454** 0.417**     

Prothrombin time -0.001 -0.003 0.26 -0.020 -0.011 -0.193** 0.078    

D-dimer 0.205** 0.196** 0.197** -0.332** 0.264** 0.292** 0.204** 0.125*   

Troponin -0.025 -0.048 -0.053 -0.282** 0.128** 0.244** 0.055 0.076 0.311**  

Creatine phosphokinase  0.191** 0.172** 0.143** -0.093* 0.340** 0.163** 0.139** -0.074 0.151** 0.109

* 

 
 
*Correlation is significant at the 0.01 level.   
**Correlation is significant at the 0.05 level.  
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Figure 1



                               

Figure 2



                               

Figure 3



                               

Figure 4



                               

Figure 5



                               

Table 1. Clinical and laboratory characteristics of patients on admission 

Data are n (%), median (IQR), or mean±SD, n if fewer patients had laboratory results available than 

the total study population. 

 

 Clinical deterioration or death  

P value Yes 

(n = 175) 

No 

(n = 568) 

Clinical characteristics 

Age, years 72±14 62±17 <0.001 

Male sex 100 311 0.578 

Body mass index, kg/m2  27.6±6.1 28.8±6.4 0.312 

Hypertension 131 (74.9) 326 (57.4) <0.001 

Diabetes mellitus 54 (30.9) 135 (23.8) 0.052 

Hyperlipidemia 47 (26.9) 116 (20.4) 0.066 

Smoking status    

0.250 Former smoker 31 (17.7) 71 (12.5) 

Current smoker 17 (9.7) 51 (9.0) 

History of lung disease 35 (20.0) 83 (14.6) 0.085 

History of heart failure 34 (19.4) 74 (13.0) <0.001 

History of coronary artery disease 32 (23.4) 44 (7.7) <0.001 

Chronic kidney disease  34 (19.4) 59 (10.4) <0.001 

Immunodeficiency 41 (23.4) 76 (13.4) <0.001 

Symptoms   

Fever 77 (44.0) 282 (49.6) 0.191 

Chills 3 (1.7) 31 (5.5) 0.038 

Fatigue 50 (28.6) 219 (38.6) 0.016 

Dyspnea 93 (53.1) 226 (39.8) 0.002 

Dry cough 64 (36.6) 245 (43.1) 0.124 

Sputum production 18 (10.3) 62 (10.9) 0.814 

Hemoptysis 0 (0.0) 6 (1.1) 0.172 

Sore throat 3 (1.7) 30 (5.3) 0.045 

Loss of smell 4 (2.3) 52 (9.2) 0.003 

Loss of taste 7 (4.0) 51 (9.0) 0.032 

Muscle/joint pain 19 (10.9) 107 (18.8) 0.014 

Headache 10 (5.7) 50 (8.8) 0.196 

Nausea or vomiting 18 (10.3) 61 (10.7) 0.865 

Diarrhea 22 (12.6) 51 (9.0) 0.163 

Blood biomarkers 

Lymphocytes (%) 12.5 (7.7 – 18.7), 150 19.3 (13.2 – 27.0), 540 <0.001 

Lactate dehydrogenase (U/L)  438±222, 138 256±133, 356 <0.001 

C-reactive protein (mg/L)  128.5 (69.1 – 205.8), 136 40.9 (10.8 – 94.4), 434 <0.001 

Ferritin (ng/mL)  819 (382 – 1286), 111 421 (221 – 773), 345 <0.001 

Prothrombin time (s)  9.2 (8.7 – 10.4), 111  9.0 (8.5 – 9.8), 320 0.022 

D-dimer (ng/mL)  2.24 (0.95 – 4.3), 104 0.9 (0.5 – 1.9), 310 <0.001 

Troponin (pg /mL) 40.0 (19.0 – 78.5), 101 13.0 (6.0 – 30.0), 299 <0.001 

Creatine phosphokinase (U/L)  112.0 (41.2 – 279.0), 90 67.5 (34.8 – 147.5), 274 <0.001 

Table 1



                               

Table 2. Classification and quantitative measures of lung lesions on chest CT in COVID-19 pneumonia 
 
 

 
Data are n (%), median (IQR) 
*For detailed distribution of individual score components refer to Supplementary Table 1 and 2 
 

 
 
 
 
 
 
 
 
 
 

 Clinical deterioration or death  

P value Yes 

(n = 175) 
No 

(n = 568) 

Lung abnormality  

Only ground-glass opacities 18 (10.3) 132 (23.2) <0.001 

Only consolidation 2 (1.1) 1 (0.2) 0.077 

Ground-glass opacities and consolidation 144 (82.3) 323 (56.9) <0.001 

Pleural effusion 42 (24.0) 64 (11.3) <0.001 

Emphysema 19 (10.9) 27 (4.8) 0.003 

Fibrosis 13 (7.4) 19 (3.3) 0.020 

None 11 (6.3) 112 (19.7) <0.001 

AI-assisted burden (%)    

Total 16.0 (4.5 – 39.3) 3.7 (0.3 – 10.3) <0.001 

Ground-glass opacities 12.1 (3.5 – 34.6) 3.3 (0.2 – 9.0)  <0.001 

Consolidation  0.7 (0.1 – 3.7)   0.2 (0.0 – 0.4) <0.001 

Pleural effusion 0.0 (0.0 – 0.7) 0.0 (0.0 – 0.0) <0.001 

Lobar severity score* 10 (6 – 15) 6 (3 – 9) <0.001 

Segmental severity score* 9 (4 – 15) 18 (10 – 27) <0.001 

Table 2



                               

Table 3. Risk score stratification across quartiles 

 

 Quartile 1 Quartile 2 Quartile 3 Quartile 4 p Value 

Range of AI-assisted pneumonia burden (0-0.6%) <0.6%-5.1%) <5.1%-15.4%) <15.4%-100%)  

Rate of clinical deterioration in AI-assisted pneumonia burden quartiles 10.2% (19/185) 14.5% (27/186) 20.3% (38/187) 49.2% (91/185) <0.001 

Range of lobar severity score 0-3 4-6 7-10 11-25  

Rate of clinical deterioration in lobar severity score quartiles 12.5% (24/191) 13.7% (25/183) 21.5% (42/195) 48.2% (84/174) <0.001 

Range of segmental severity score 0-5 6-11 12-17 18-40  

Rate of clinical deterioration in segmental severity score quartiles 11.8% (23/194) 14.5% (30/206) 19.8% (32/161) 49.5% (90/182) <0.001 

Table 3



                               

Table 4. Reclassification table using the artificial intelligence for lobar severity scores. 

 

 
 

NRI = net reclassification improvement; 

NRI = [P(Up|Positive)- P(Down|Positive)]-[ P(Up|Negative)- P(Down| Negative)] 

Patients were reclassified by artificial intelligence and were compared to visual scoring.  

 

Visual  Artificial Intelligence      Reclassification NRI P Value for NRI 
 0% <0%;5%) <5%;25%) <25%;50%) <50%;75%) >75% Total Up Down   

No clinical deterioration        5.1% 4.8% -0.1% 0.994 

0% 768 131 0 0 0 0 899     
<0%;5%) 5 884 3 0 0 0 833     
<5%;25%) 24 46 642 11 0 0 723     

<25%;50%) 7 12 22 208 1 0 250     
<50%;75%) 1 2 2 7 45 0 57     
>75% 1 0 3 2 2 11 19     
Total 806 1075 672 228 48 11 2840     
            
Clinical deterioration        6.2% 5.8%   

0% 113 25 2 1 1 0 142     

<0%;5%) 2 179 5 1 0 0 187     

<5%;25%) 0 15 192 6 1 0 214     
<25%;50%) 0 1 9 139 9 0 158     

<50%;75%) 0 0 2 19 109 3 133     

>75% 0 0 0 0 3 38 41     

Total 115 220 210 166 123 41 875     

Table 4



                               

 Table 5. Correlation matrix between investigated variables. 

 

 

 

 

*Correlation is significant at the 0.01 level.   

**Correlation is significant at the 0.05 level.  
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Lobar severity score 0.933**          

Segmental severity score 0.910** 0.972**         

Lymphocytes  -0.299** -0.306** -0.302**        

Lactate dehydrogenase  0.567** 0.542** 0.516** -0.268**       

C-reactive protein 0.507** 0.486** 0.467** -0.426** 0.460**      

Ferritin 0.399** 0.394** 0.409** -0.231** 0.454** 0.417**     

Prothrombin time -0.001 -0.003 0.26 -0.020 -0.011 -0.193** 0.078    

D-dimer 0.205** 0.196** 0.197** -0.332** 0.264** 0.292** 0.204** 0.125*   

Troponin -0.025 -0.048 -0.053 -0.282** 0.128** 0.244** 0.055 0.076 0.311**  

Creatine phosphokinase  0.191** 0.172** 0.143** -0.093* 0.340** 0.163** 0.139** -0.074 0.151** 0.109* 
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