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REVIEW

The role of short-chain fatty acids in the interplay between gut microbiota and 
diet in cardio-metabolic health
Ana Nogala, Ana M. Valdes a,b,c, and Cristina Menni*a

aDepartment of Twin Research, King’s College London, St Thomas’ Hospital Campus, London, UK; bSchool of Medicine, Nottingham City 
Hospital, Nottingham, UK; cNIHR Nottingham Biomedical Research Centre, Nottingham, UK

ABSTRACT
The gut microbiota plays an important role in cardio-metabolic diseases with diet being among the 
strongest modulators of gut microbiota composition and function. Resistant dietary carbohydrates 
are fermented to short-chain fatty acids (SCFAs) by the gut bacteria. Fiber and omega-3 rich diets 
increase SCFAs production and abundance of SCFA-producing bacteria. Likewise, SCFAs can 
improve gut barrier integrity, glucose, and lipid metabolism, regulate the immune system, the 
inflammatory response, and blood pressure. Therefore, targeting the gut microbiota with dietary 
strategies leading to increased SCFA production may benefit cardio-metabolic health. In this 
review, we provide an overview of the association between diet, SCFAs produced by the gut 
microbiota and cardio-metabolic diseases. We first discuss the association between the human 
gut microbiota and cardio-metabolic diseases, then investigate the role of SCFAs and finally explore 
the beneficial effects of specific dietary interventions that can improve cardio-metabolic outcomes 
through boosting the SCFA production.
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Introduction

Cardio-metabolic diseases (CMD) are the most 
common cause of morbidity and mortality world-
wide, representing a major public health 
challenge.1; 2 Indeed, 25% of the total population 
is estimated to have CMD, and approximately 30% 
of all the deaths are caused by CMDs.3

There are many well-established genetic and 
environmental risk factors associated to CMD 
including high blood pressure, high cholesterol, 
smoking, diabetes, abdominal obesity, insulin resis-
tance, glucose intolerance among others. Recent 
studies suggest that gut microbiota imbalance also 
plays an important role in the development and 
progression of CMDs,4–7 including type-2 diabetes 
(T2D), obesity, atherosclerosis, heart failure, myo-
cardial fibrosis, and atrial fibrillation. Moreover, the 
gut-brain axis has been implicated in neurogenic 
hypertension,8 which is particularly relevant for 
people suffering from obstructive sleep apnea,9 

and gut microbiome composition has been linked 
to sleep architecture in these patients.10 Given the 
strong link between inflammation and sleep apnea, 

it is likely that SCFAs/gut microbiome links relat-
ing to hypertension may also link to sleep apnea 
and other disorders.11

Gut microbiota can exert beneficial or detrimen-
tal effects in human health12 through the produc-
tion of metabolic products and signaling molecules, 
which influence diverse functions in different 
organs.13 Among these bacteria-derived metabo-
lites, short-chain fatty acids (SCFA) are gaining 
attention as a potential focus of CMD.14 SCFAs, 
namely acetate, propionate, and butyrate, are pro-
duced through bacterial fermentation of fibers (e.g., 
resistant starch, simple sugars, and 
polysaccharides),15 and present regulatory func-
tions in the lipids, cholesterol and glucose metabo-
lism, anti-inflammatory and immune response and 
gut barrier integrity.16 SCFAs might protect against 
CMD as they are able, for instance, to decrease 
plasma cholesterol and glucose levels and increase 
fatty acid oxidation.17 Likewise, the type of diet can 
modulate SCFA production and/or abundance of 
SCFA-producing bacteria. For instance, 
a Mediterranean diet, characterized by a high 
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consumption of fiber-rich food, or omega-3-rich 
diets, has been correlated with higher levels of 
SCFAs and SCFA-producing bacteria.18,19 

Previous reviews addressed SCFAs, CMD or, diet 
and their links to gut microbiome 
composition,20–25 however none of them has yet 
simultaneously covered the role of SCFAs in the 
interplay between diet, gut microbes, and CMD. 
Indeed, most of the previous reviews do not discuss 
in detail SCFAs23 nor their beneficial role in cardio- 
metabolic health,20 nor how different types of diet 
can increase SCFAs production to improve the 
health of patients suffering from CMDs.21,22,24,25 

In the present review, on the contrary, we specifi-
cally focus on the association between the human 
gut microbiota and CMDs, the metabolic routes 
involved in the SCFA production, the benefits 
exerted by SCFAs in cardio-metabolic health, and 
the involved mechanisms. Finally, we discuss 
a number of recent clinical studies supporting the 
beneficial effects of specific dietary interventions 
that can improve cardio-metabolic outcomes 
through boosting SCFAs production.

Gut microbiota

The human intestine contains approximately 1014 

microorganisms, collectively known as the gut 
microbiota.26 The gene repertoire present in these 
microbes is 100-fold higher than the number of 
genes present in the human genome.27 In a healthy 
gut microbiota, the most predominant phyla are 
Firmicutes and Bacteroidetes (90% of the population), 
followed by Actinobacteria and Verrucomicrobia,28 

although inter-variability between individuals exists. 
Gut microbiota diversity, richness, and composition 
vary depending on multiple determinants, either 
endogenous such as sex, microbial interactions, and 
host genotype,26,29 or exogenous, such as diet, age, 
usage of antibiotics, exercise, smoking, and stress.30

Over the last years, advances in bioinformatics 
tools and next-generation sequencing have 
increased our knowledge on the relationship 
between microbiota organisms and humans,31 

allowing us to discover the benefits and detriments 
of the gut bacteria to human health. Bacteria- 
derived metabolites play important functions in 
the intestine (e.g., digestion, energy harvest, and 
barrier integrity)32 and even in other organs when 

they enter into the systemic circulation (e.g., glu-
cose circulation in the pancreas, lipid metabolism 
in the liver, and cognitive functions in the brain).13 

When there is an intestinal microbial ecosystem 
balance (eubiosis), the gut microbiota plays impor-
tant immunological, homeostatic, and metabolic 
functions that maintain the human host health.33 

On the other hand, the imbalance of the gut micro-
biota, known as dysbiosis, and reduction of bacter-
ial diversity can lead to a variety of metabolic 
abnormalities, such as inflammation and oxidative 
stress, impacting negatively on the host pathophy-
siologic and physiology conditions.34

Gut microbiota in cardio-metabolic health

The role of the gut microbiota has recently been 
implicated in the development and progression of 
CMD.35,36 Many studies have shown alterations in 
the composition and function of the gut bacteria 
in patients suffering from CMDs. Animal and 
human obesity has been associated with an 
increased Firmicutes/Bacteroidetes ratio.37 

Moreover, gut dysbiosis can reduce the gut barrier 
integrity, affecting glucose sensibility and absorp-
tion, leading to insulin resistance and T2D.38 

Another example is the lipopolysaccharides 
(LPS) present in the Gram-negative bacteria cell 
wall, which can trigger the immune system 
response and potentiate cardiovascular diseases 
(CVD) pathogenesis.39,40

Our body can functionally interact with bacteria 
metabolic products,16 and cardio-metabolic health 
(CMH) is associated with these metabolic products. 
Trimethylamine (TMA),41–45 bile acids46–49 are 
examples of metabolic products that have been 
negatively associated with CMD, whereas 
SCFAs,14 anthocyanins50 and indoleproprionic 
acid51 might influence positively the host health.

TMA is metabolized from choline-containing 
compounds (e.g., choline, betaine, and 
L-carnitine) present in human diet by the gut 
microbiota.52 Then, TMA enters to the portal cir-
culation, where is oxidized by liver enzymes to 
produce trimethylamine-N-oxide (TMAO).53 

TMAO pathway has been associated with athero-
sclerosis and thrombosis promotion in mouse,41–43 

and with CMD in humans such as obesity, chronic 
kidney disease, and T2D.44,45,54 Detailed 
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therapeutic potential and clinical prognostic of 
TMAO in CMD can be found in several 
reviews.55–57

Gut microbiota is responsible for the generation 
of unconjugated free bile acids and secondary bile 
acids through deconjugation and dihydroxylation 
reactions.58 Bile acids can act as signaling mole-
cules involved in inflammation, host metabolism, 
and energy expenditure, and thus, they might play 
a role in CMD.46–49 The role of bile acids in meta-
bolic disorders and CVD has been reviewed 
by.59,60

Anthocyanins are glycosyl-anthocyanidins pre-
sent in plant vacuoles. Gut bacteria can degrade 
anthocyanins, generating protocatechuic acid and 
free anthocyanidins.61 Protocatechuic acid can 
influence positively atherosclerosis and CVD, 
thanks to its anti-inflammatory and antioxidant 
properties.50

Indoleproprionic acid is a compound synthe-
tized from tryptophan by a reduced number of 
bacterial strains.62 Circulating levels of indolepro-
prionic acid are negatively correlated with different 
metabolic syndrome parameters,51 and higher 
levels of this compound have been also associated 
with a lower risk of developing T2D.63

SCFAs are the most well-studied gut bacteria- 
derived metabolites and they have been suggested 
as potential disease-mitigating factors and/or dis-
ease preventing in CMD, including T2D, obesity, 
and CVD, among others.14,64 SCFAs will be 
explained in detail in the below sections.

Hence, CMD development might be modulated 
via specific beneficial bacteria-derived metabolites. 
Likewise, dietary interventions can have a profound 
effect on their production,65,66 being very impor-
tant to investigate the role of these metabolites on 
human health and their modulation by different 
diets.

Short-chain fatty acids

Fatty acids are carboxylic acids with an aliphatic 
chain, which can be saturated or unsaturated.67 

Depending on the length of their aliphatic tails, 
fatty acids can be classified as short (<6 C), medium 
(6–12 C), or long (>12 C) chain fatty acids. SCFAs 
include formate (C1), acetate (C2), propionate 
(C3), butyrate (C4), and valerate (C5), and their 

chemical properties depend on the number of 
carbons.68

SCFAs are produced by anaerobic gut bacteria 
through saccharolytic fermentation of complex resis-
tant carbohydrates (e.g., fructo-oligosaccharides, 
sugar alcohols, resistant starch, inulin, and polysac-
charides from plant cell walls), which escape diges-
tion and absorption in the small intestine.69 As 
a result of the fermentative reactions, some gases, 
including hydrogen, methane, and carbon dioxide 
are generated.70 It is estimated that the fermentation 
of 50–60 g carbohydrates per day yields to the 
approximated production of 500–600 mmol of 
SCFAs in the gut.71 Amino acids can be also fermen-
ted to produce SCFAs.72 Although SCFAs are depen-
dent on diet and bacteria present in the gut, there are 
specific foods containing SCFAs, for instance, vine-
gar, sourdough bread, and some dairy products such 
as crème fraiche, butter, and cheese.73

The major SCFAs formed by the gut bacteria are 
acetate, propionate, and butyrate which account for 
approximately 80% of all SCFAs and will be the focus 
of this review. In order to comprehensively under-
stand the effect of these metabolites on human 
health, it is essential to consider the production site 
and the gradient along different cells and tissues 
(Figure 1). Fermentation takes place in the large 
intestine, mainly at the right side, and the SCFA 
absorption occurs rapidly from the human colon.74 

Changes in pH vary depending on the SCFA 
concentration.75 In the cecum, the pH is more acidic 
and the SCFA concentrations are higher than in the 
sigmoid/rectum, where the pH is higher. In the colon 
and stool, butyrate, propionate, and acetate are 
found in an approximate molar ratio of 20:20:60, 
respectively,76 although these values vary depending 
on the microbiota composition, SCFA substrates, 
and gut transit time.77 Additionally, a strong gradi-
ent from the gut lumen to the periphery exists, lead-
ing to different cell SCFA exposure.78 Most SCFAs 
are utilized by colonocytes as an energy source.71 

The SCFAs that are not used by these cells can be 
transported toward the hepatic portal vein. Acetate, 
propionate, and butyrate concentrations in portal 
blood (375 µmol/l) are almost 5 times greater than 
peripheral venous blood (79 µmol/l), suggesting that 
the gut is a principal SCFA source, whereas SCFA 
concentrations in the hepatic vein SCFA (148 µmol/ 
l) are 39% of those found in portal blood.76
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Metabolic routes to produce SCFA and 
SCFA-producing bacteria

The pathways involved in the SCFA production have 
been recently described in detail.79 In addition, meta-
genomic analyses have allowed the characterization of 
the major SCFA-producing bacteria21 (Figure 2).

Acetate formation

Acetate can be synthesized through two different 
pathways. Firstly, acetyl-CoA can be produced by 

decarboxylation of pyruvate, then, acetyl-CoA is 
hydrolyzed to acetate by an acetyl-CoA hydrolase.80 

Most of the acetate is produced by enteric bacteria, 
including Prevotella spp., Ruminococcus spp., 
Bifidobacterium spp., Bacteroides spp., Clostridium 
spp., Streptococcus spp., A. muciniphila, and 
B. hydrogenotrophica, using this pathway.81 

Secondly, the Wood-Ljungdahl pathway can be also 
used by acetogenic bacteria to form acetate from 
acetyl-CoA. Here, the reduction of carbon dioxide 
generates carbon monoxide, which reacts with 
a coenzyme A molecule and a methyl group to 

a

b

Figure 1. Overview of the production and absorption sites, and transport of acetate, propionate and butyrate (SCFAs). (A) Most 
undigested carbohydrates are fermented in the cecum and ascending colon, whereas the SCFA absorption takes place along the whole 
colon. A negative correlation between the SCFA concentrations and pH exists. The highest SCFA concentration levels are in the cecum 
and ascending colon, where the pH is approximately 5.6, whereas in the sigmoid and rectum, the pH is higher (approximately 6.6) and 
the SCFA concentrations are lower. (B) In the colon, acetate, propionate, and butyrate are found in an approximate molar ratio of 3:1:1, 
respectively. Most SCFAs are utilized by colonocytes as an energy source. The SCFAs that are not used by these cells can be transported 
toward the hepatic portal vein, where the SCFA concentrations are 375 µmol/l, and the hepatic vein, where the SCFA concentrations 
are 39% of those found in portal blood. MR, molar ratio. SCFAs, short-chain fatty acids. Created with BioRender.com
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produce acetyl-CoA. At the same time, acetyl-CoA is 
the substrate to obtain acetate.82

Propionate formation

Although propionate-producers are distributed 
across several phyla, only a few bacterial genera 
are able to form propionate, and unlike acetate, 
the utilized propionate pathways are more con-
served and substrate specific.83

Propionate can be synthesized through three 
different biochemical pathways, namely succinate, 
acrylate, and propanediol pathway.83 In the succi-
nate pathway, the primitive electron transfer chain 
using phosphoenolpyruvate (PEP) can be utilized 
to generate propionate.84 Specifically, PEP is car-
boxylated to oxalacetate, and then oxalacetate is 

sequentially converted into malate and fumarate. 
The latter accepts electrons from NADH using 
a fumarate reductase and a NADH dehydrogenase, 
which form a simple electron-transfer chain. The 
NADH dehydrogenase transport protons across the 
cell membrane. These protons are utilized for che-
miosmotic ATP synthesis. Likewise, succinate is 
generated as a result of the fumarate reductase. 
When the carbon dioxide partial pressure is low, 
succinate is transformed to methylmalonate, which 
leads to propionate and carbon dioxide. The latter 
can be recycled for the PEP carboxylation, repeat-
ing the process. Bacteroidetes85 and several 
Firmicutes belonging to the Negativicutes class86 

use this pathway for the propionate formation. 
Besides, acrylate pathway can be used to reduce 
lactate to propionate by a lactoyl-CoA 

Figure 2. SCFA biosynthesis pathways from the dietary carbohydrate fermentation and the major SCFA-producing bacteria for each 
pathway. Acetate can be formed by the Wood-Ljungdahl pathway and from pyruvate via acetyl-CoA. Acetyl-CoA can be also produced 
from lactate by lactate-utilizing bacteria. Three pathways exist for the propionate formation, namely acrylate, succinate, and 
propanediol pathways. The two first use PEP and the latter utilizes deoxy sugars such as rhamnose and fucose. Butyrate can be 
formed through the classical pathway from the condensation of two acetyl-CoA molecules or by the butyryl-CoA: acetate CoA- 
transferase route, in which butyryl-CoA is converted into butyrate and acetyl-CoA using exogenously derived acetate. DHAP, 
dihydroxyacetone phosphate; PEP, phosphoenolpyruvate. Created with BioRender.com
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dehydratase.80 This pathway is only present in 
a very reduced number of gut bacteria, including 
Coprococcus catus.83 Lastly, 1,2-propanediol can be 
formed from deoxy sugars such as rhamnose and 
fucose in the propanediol pathway. Likewise, 
1,2-propanediol is sequentially converted into pro-
pionaldehyde and propionyl-CoA, which leads to 
the propionate formation.87 Salmonella enterica 
serovar Typhimurium88 and R. inulinivorans89 are 
bacteria utilizing this pathway, just as Akkermansia 
municiphilla which appears to be the major propio-
nate-producing species.90

Butyrate formation

Butyrate production, like propionate, is more con-
served and substrate specific.83 Resistant starch fer-
mentation highly contributes to the formation of 
butyrate in the colon, with Ruminococcus bromii the 
main producer as its absence has been associated with 
a reduction in the resistant starch fermentation.91

To form butyrate, first, two acetyl-CoA molecules 
must be condensed to obtain acetoacetyl-CoA, 
which is subsequently reduced to β-hydroxybutyryl- 
CoA, crotonyl-CoA and lastly to butyryl-CoA. In the 
case of lactate-utilizing bacteria, acetyl-CoA can be 
produced from lactate.92 From butyryl-CoA, buty-
rate can be synthesized following two different path-
ways. In the pathway referred to as classical, 
phosphotransbutyrylase and butyrate kinase 
enzymes are responsible for such a conversion.93 In 
the second pathway, butyryl-CoA: acetate CoA- 
transferase converts butyryl-CoA into butyrate and 
acetyl-CoA using exogenously derived acetate. The 
latter pathway seems to be preferred by the human 
gut microbiota rather than the classical pathway,94 

which is limited to some Coprococcus species.79 

F. prausnitzii, E. rectale, E. hallii, and R. bromii pre-
sent this pathway and appear to be the major buty-
rate producers.95

Beneficial roles of SCFA in cardio-metabolic 
health and involved mechanisms

SCFAs act as signaling molecules on both the 
gut cells and other tissue cells. This is possible 
due to six receptors to which SCFAs can bind, 
triggering intracellular signaling cascades: free 
fatty acid receptor 3 (FFAR3 or GPR41), FFAR2 

(also known as GRP43), G-protein coupled 
receptor 109a (GPR109a or HCAR2), olfactory 
receptor-78 (Olfr78 in mice or OR51E2 in 
humans), GPR42 and OR51E1, being the four 
first the most well-studied.16 Olfr78 mainly 
binds acetate and propionate, leading to an 
increase of cyclic adenosine monophosphate 
(cAMP) and renin release96 and is expressed 
in the vascular smooth muscle cells in the per-
ipheral vasculature and renal afferent 
arteriole.97 FFAR3, FFAR2, and GPR109a are 
expressed by different organs and cells: small 
intestine, colon, liver, spleen, heart, skeletal 
muscle, neurons, immune cells, and adipose 
tissues.98 Additionally, depending on the length 
of their aliphatic tails, the receptors present 
different affinities for SCFAs. FFAR2 prefers 
binding to acetate and propionate, whereas 
FFAR3 binds propionate, butyrate, and acetate 
with a lower affinity,99 and GPR109a mainly 
binds butyrate.100 Moreover, butyrate and pro-
pionate play an important role in transcrip-
tional regulations and post-translational 
modifications, as they appear to strongly inhibit 
lysine and histone deacetylase (K/HDAC) 
activity.16,101 Such an inhibition leads to his-
tone hyperacetylation, which turns in a higher 
accessibility of transcription factors to the pro-
moter regions of different genes.102 Likewise, 
butyrate is a ligand of two transcription factors: 
peroxisome proliferator-activated receptor γ 
(PPARγ)103 and aryl hydrocarbon receptor.104 

Thanks to these and direct mechanisms, 
SCFAs can play beneficial roles in human 
health, such as improvement of gut barrier 
integrity, regulation of the blood pressure and 
energy intake and energy use, modulation of 
glucose and lipid metabolism, and mediation 
of the immune system and anti-inflammatory 
response (Figure 3).

Blood pressure

Several recent studies have analyzed the association 
between SCFAs and blood pressure. The results 
seem contradictory, as some studies have reported 
that SCFAs can cause hypertension,105,106 and 
others have shown that SCFAs can decrease blood 
pressure.107,108 For instance, studies with Olfr78 
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Figure 3. Beneficial roles of SCFA in cardio-metabolic health and the indirect mechanisms involved. (A) Undigested carbohydrates 
reach the intestine, where they are fermented by the SCFA-producing bacteria generating acetate, propionate, and butyrate. SCFAs can 
act using two different mechanisms: 1) direct action on the enterocytes, maintaining the gut barrier integrity or 2) indirect action 
regulating the inflammatory and immune response, blood pressure, energy intake and use, and lipid and glucose homeostasis, through 
the mechanisms illustrated in (B). (B) 1) Inhibition of K/HDAC leads to histone hyperacetylation, which turns in a higher accessibility of 
transcription factors to the promoter regions of different genes; 2) signaling transduction activation (in the small intestine, colon, liver, 
spleen, heart, skeletal muscle, neurons, immune cells, and adipose tissues), and GLP-1 and PYY secretion (in intestinal enteroendocrine
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null mice present lower blood pressure compared 
with the wild-type mice.106 On the other hand, 
FFAR3 KO mice are hypertensive.107 The potential 
dual effect of both receptors in the regulation of 
blood pressure has been analyzed by Pluznick et al. 
(2013).97 In this study, blood pressure was measure 
in Olfr78 null mice and wild-type mice before and 
after an antibiotic treatment. After the treatment, 
the SCFA levels decreased. Moreover, the wild-type 
mice presented a slight increase in blood pressure 
due to the decreased SCFA levels, whereas the 
Olfr78 null mice had a higher blood pressure 
increase. Thus, the signaling of both receptors in 
the wild-type mice can better balance the blood 
response even with lower SCFA levels, whereas 
Olfr78 null mice presents only the FFAR3 signaling, 
which results in a higher blood pressure response. 
Besides, it is important to note that the ligand 
affinity of Olfr78 for SCFAs is lower than the one 
presented in FFAR3.109 Taken together, the SCFA 
receptors Olfr78 and FFAR3 might play an oppos-
ing role in the regulation of blood pressure, balan-
cing each other to have a healthy blood pressure.97 

Moreover, using a Mendelian Randomization 
approach, Sun and coworkers110 reported T2D 
may causally affect hypertension and particularly 
higher systolic blood pressure. On the other hand, 
the relationship from hypertension to T2D is unli-
kely to be causal, highlighting the importance of 
keeping an optimal glycemic profile in general 
populations. Therefore, SCFAs might also be ben-
eficial in hypertension by improving glucose 
homeostasis.111,112

Gut barrier integrity

It is well recognized that SCFAs are necessary sub-
strates for the colonic epithelium maintenance, with 
butyrate being the preferred oxidative fuel by 

colonocytes.113 Butyrate can induce proliferation in 
normal colonocytes, but also terminal differentiation 
and apoptosis in neoplastic cells. This dual role is 
known as the “butyrate paradox” or “Warburg 
effect”.101,114 Additionally, intestinal epithelial cells 
(IEC) are connected by transmembrane proteins, 
namely, tight-junctions, adherent junctions, and des-
mosomes. SCFAs, in particular butyrate, seem to 
improve the epithelial barrier integrity by regulating 
the tight-junction integrity. Several in vitro and 
experimental animal studies have examined the 
impact of SCFAs on tight junctions. A study using 
differentiated IEC observed that butyrate improved 
the gut barrier integrity through the expression 
increase of the tight-junctions claudin-1.115 An 
increased expression of other tight-junctions, includ-
ing claudin-7, ZO-1, ZO-2, occluding and junctional 
adhesion molecule A (JAMA), was associated with 
SCFA production in a mice model study.116 Butyrate 
also influences the epithelial O2 consumption, con-
tributing to the stabilization of transcription factor 
hypoxia-inducible factor (HIF), which coordinates 
the gut barrier protection.117 A proper gut barrier 
integrity is essential to avoid some pathogenic bac-
teria (e.g., C. pneumoniae, H. pylori, 
A. actinomycetemcomitans, and P. gingivalis) enter-
ing into the bloodstream and reaching different tis-
sues, in which they can promote CMD through 
immune system elicitation, host metabolic and 
inflammatory response regulation.118–120 A correct 
modulation of the mucus layer thickness is also 
important for the epithelial barrier function. 
Butyrate can increase the production of MUC2, 
a predominant mucin glycoprotein secreted by gob-
let cells.121,122 Finally, SCFAs can promote the anti-
microbial peptide secretion by the IEC. For instance, 
SCFAs promote the RegIIIγ and defensins produc-
tion by activating mTOR and STAT3, and thus reg-
ulating the epithelial barrier functions.123

L-cells) caused by the binding of SCFAs to the G protein-coupled receptors, and increase of cAMP levels by the binding of propionate 
or acetate to the receptor Olfr78/OR51E2 (in vascular smooth muscle cells in the peripheral vasculature and renal afferent arteriole). 
GLP-1 and PYY enter into the systematic circulation exerting benefits in different tissues and cells; 3) butyrate working as a ligand of 
the AHR and PPARγ, leading to the expression of genes dependent on these two transcription factors. AMPK, AMP-activated protein 
kinase; AHR, aryl hydrocarbon receptor; BP, blood pressure; cAMP, cyclic adenosine monophosphate; FFAR, free fatty acid receptor; 
GLP-1, glucagon-like peptide-1; GPR109a, G-protein coupled receptor-109a; IL, interleukins; K/HDAC, lysine/histone deacetylase; LPS, 
lipopolysaccharides; NF-κB, nuclear factor kappa β; Olfr78, olfactory receptor-78; PYY: peptide YY; SCFA, short-chain fatty acid; TF, 
transcription factor. Created with BioRender.com
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Energy intake and energy use

SCFAs might present positive effects on body 
weight control by regulating the energy intake and 
energy expenditure. Some insights have been 
obtained into the mechanisms by which SCFAs 
regulate appetite. A potential mechanism might be 
the stimulation of secretion of gut-derived satiety 
hormones, such as peptide YY (PYY) and gluca-
gon-like peptide 1 (GLP-1), by SCFAs binding to 
the free fatty acid receptor FFAR2 and FFAR3.124 

Both hormones, which are secreted by intestinal 
enteroendocrine L-cells,125 influence appetite by 
activating proopiomelanocortin (POMC) neurons 
in the hypothalamic arcuate nucleus, suppressing 
neuropeptide Y (NPY), and delaying or inhibiting 
gastric emptying.126–128 Expression of genes encod-
ing PYY is also regulated by receptor-independent 
pathways. Indeed, the inhibitory activity of HDAC 
by butyrate leads to an increased PYY expression in 
human L-cells.129 Besides, a study using in vivo-
11C-acetate and PET-CT acetate demonstrated that 
acetate can cross the blood-brain barrier and is 
taken up by the hypothalamus, causing an appetite 
decrease and increase of γ-aminobutyric acid and 
lactate.130 The secretion of leptin, which is often 
referred to as the “satiety hormone”, might be also 
stimulated by SCFAs, resulting in a decreased 
appetite.131,132 For instance, human adipocytes 
incubated with a high concentration of propionate 
appeared to increase the leptin mRNA expression 
and leptin secretion.133

Glucose homeostasis and insulin resistance

Several studies have suggested that SCFAs can 
improve glucose homeostasis in vivo by controlling 
blood glucose levels and increasing glucose uptake 
mediated by FFAR2 and FFAR3 activation.111,112,134 

Although the mechanisms are not completely clear, 
such effects might happen directly via an AMP- 
activated protein kinase (AMPK)-dependent co- 
regulated pathway or indirectly via the PPY and 
GLP-1 hormones. Indeed, Li et al. (2019)135 have 
reported that butanoate can affect glucose metabo-
lism through the up-regulation of AMPK-dependent 
gene expression. Another study has shown that pro-
pionate declines hepatic gluconeogenesis via the 
same mechanism.136 Furthermore, apart from the 

previously commented functions of PYY and GLP- 
1, PYY can also contribute to the glucose clearance in 
adipose tissue and muscle, and GLP-1 can increase 
insulin secretion and decrease glucagon secretion by 
the pancreas, regulating blood glucose levels.137 At 
the same time, it seems that SCFAs can exert anti- 
diabetic effects in the host. Propionate presents ben-
efits on pancreatic β-cell function in vivo, and 
enhances glucose-stimulated insulin release via 
FFAR2 activation and increases β-cell mass.134 

Besides, the binding of SCFAs to the FFAR2 receptor 
might ameliorate insulin resistance by promoting 
autophagy of skeletal muscle cells.138

Lipid metabolism

SCFAs can regulate lipolysis and adipogenesis. 
Acetate and propionate may inhibit endogenous 
lipolysis, whereas propionate can regulate extracel-
lular lipolysis mediated by an increase of lipopro-
tein lipase expression, both cases resulting in 
a decrease of the circulating lipid plasma levels 
and body weight.132,139 As well, SCFAs might play 
an important role in adipogenic differentiation. 
Indeed, preadipocytes treated with propionate, 
and acetate promoted adipocyte differentiation, 
via an overexpression of FFAR2 and PPARγ.140,141 

Finally, acetate, propionate, and butyrate seem to 
enhance hepatic uptake of cholesterol from the 
blood, decreasing plasma cholesterol in model ani-
mal studies.142,143 Besides, propionate is a potent 
inhibitor of cholesterol synthesis.144

Immune function and anti-inflammatory response

SCFAs play a role in the immune system regulation. 
Of note, it has been shown that butyrate can inhibit 
HDAC and the activation of nuclear factor kappa β 
(NF-κB) in macrophages.145,146 Both, HDAC and 
NF-κB, contribute to the immune and inflamma-
tory response.147 SCFAs are also involved in anti- 
inflammatory response by up-regulating anti- 
inflammatory cytokines and downregulating pro- 
inflammatory ones. For example, SCFAs binding to 
FFAR2 and GPR109A in IEC stimulates K+ efflux 
and hyperpolarization, leading to the inflamma-
some-activating protein NLRP3 activation, and 
thus, inducing the IL-18 release, which helps in 
the maintenance of integrity, repair, and intestinal 
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homeostasis.148,149 Increased protein acetylation 
and production of TGFβ1 in IEC by butyrate lead 
to a decrease of IL-8 production in IEC150 and 
a promotion of anti-inflammatory regulatory 
T cells (Treg),151 respectively. In human mature 
dendritic cells, butyrate and propionate appear to 
reduce the release of pro-inflammatory chemo-
kines, such as CXCL11, CXCL10, CXCL9, CCL5, 
CCL4, and CCL3, just as inhibiting the expression 
of LPS-induced cytokines, including IL-6 and IL- 
12p40.152 Apart from the cytokine production reg-
ulation, the luminal pH reduction by SCFA inhibits 
the growth of pathogenic bacteria.153 Lastly, 
SCFAs, specifically butyrate, can contribute to 
host defense by inducing the antimicrobial protein 
cathelicidin IL-37154,155 and increase the levels of 
T regulatory cells in the gut.156

Taking all this together, we can deduce that 
SCFAs can exert benefits in CMD, which are char-
acterized by a deregulation of the blood pressure, 
glucose, and lipid metabolism, inflammation 
response, and/or gut barrier integrity. Indeed, sev-
eral studies have demonstrated the benefits exerted 
by SCFAs in CMD. Table 1 shows some of these 
studies.

Table 1. Summary of studies reporting beneficial 
effects of SCFAs in cardio-metabolic health 
through different traits.

Interplay between diet, gut microbial SCFAs, 
and CMD

Diets rich in fiber and omega-3 exert beneficial 
effects in CMD167,168 lowering the risk of CVD by 
about 30%, for example, in the Mediterranean 
diet.168 The risk decrease is due to the capability 
of these diets to reduce risk factors associated with 
CMH, such as blood pressure, cholesterol, body 
weight, and systematic inflammation.65,108,169,170 

Moreover, short- and long-term diets can induce 
shifts in gut microbiota activity and composition, 
and thus, in the SCFA synthesis profile.171–173 The 
interplay between diet, gut bacteria-derived meta-
bolites, specifically SCFAs, and CMD has only been 
reported recently. Table 2 depicts some studies in 
which this interplay is shown. As some authors 
have suggested,65,108,186 dietary interventions are 
a low-risk and cheap strategy to modulate the gut 
microbiota composition, particularly toward an 

augmented SCFA production providing benefits 
to CMH.

The modulation of SCFA-producing bacteria 
and/or SCFA levels by three different diets, namely, 
fiber-rich diets, omega-3 rich diets, and dairy pro-
ducts fermented/supplemented with beneficial bac-
teria, just as the exerted benefits in CMH are 
discussed below.

Fiber-rich diets

Inulin, resistant starch, fructo-oligosaccharides, 
and polysaccharides, among others, present the 
food label of fiber in the US.187 It has been sug-
gested that fiber-rich diets, such as the 
Mediterranean and vegetarian diets, can protect 
against the development of CMD, including CVD, 
obesity, and T2D, by modulating the gut 
microbiota.188

Many studies have shown that SCFA concentra-
tions and/or SCFA producing-bacteria can be 
enhanced by fiber-rich diets. Indeed, a transversal 
study with 31 healthy individuals showed that the 
individuals following a 6-month Mediterranean 
diet presented higher propionate and butyrate con-
centration in feces, and higher levels of 
Bifidobacterium and Faecalibacterium compared 
to those having a lower fiber intake.179 Another 
study comparing the fecal microbiota between chil-
dren from a rural African village with European 
children observed that African children, who have 
fiber-rich diets, presented significantly more SCFAs 
and bacteria belonging to the Bacteroidetes 
phylum.178 More studies in which fiber-rich diets 
positively influence SCFA production can be found 
in the review conducted by Dreher (2017).189

Other human and murine studies have reported 
that dietary fiber can improve the risk factors asso-
ciated with CMD by modulating the SCFA- 
producing gut bacteria. For instance, after follow-
ing a 3-month fiber-rich diet, patients with T2D 
showed an increase of the SCFA producing- 
bacteria F. prausnitzii and A. muciniphila, as well 
as a decrease in glucose, total and LDL cholesterol, 
free fatty acids and hemoglobin A1c (HbA1c),65 

suggesting that a long-term adherence to a high- 
fiber diet might improve dyslipidemia, glycemic 
control, and inflammation by increasing SCFA- 
producing bacteria. In another study, a vegetarian 
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diet assigned to patients with ischemic heart disease 
caused an increase of the families Ruminococcaceae, 
Lachnospiraceae, and Akkermansiaceae, and 
a decrease of LDL and total cholesterol and body 
weight compared to the patients following a meat 
diet.169 Therefore, it was suggested that the 
improvement of these cardiometabolic risk factors 
might be caused by the capability of these bacterial 
families to produce SCFAs. Finally, a murine model 
study showed that Roseburia (butyrate-producing 
bacterial genus) can interact with dietary plant 
polysaccharides, promoting fatty acid utilization 
and reducing systematic inflammation, which 
turns in the amelioration of atherosclerosis 
development.174

Omega-3 rich diets

Omega-3 rich diets have been also associated with 
an increase of SCFA-producing bacteria. Indeed, in 
a randomized trial, 2-month of treatment with 
omega-3 polyunsaturated fatty acids (PUFA) cap-
sules or drinks was given to 22 healthy middle-aged 
subjects to analyze the effect of omega-3 PUFA on 
the human gut microbiota.66 An increased abun-
dance of SCFA-producing bacteria belonging to the 
Lachnospira, Roseburia, Lactobacillus, and 
Bifidobacterium genus was reported in the subjects 
taken one or both formulations (capsules and 
drinks). Noriega et colleagues (2016)182 showed 
a significant increase of the butyrate-producing 
bacteria Eubacterium, Roseburia, Anaerostipes, 
Coprococcus, Subdoligranulum, and 
Pseudobutyrivibrio after 2 weeks of an omega-3 
rich diet.

Other studies have also reported this association 
and suggested the potential beneficial role of this 
type of diet in CMD. For instance, a recent human 
study showed a significant increase in Coprococcus 
spp. and Bacteroides spp., and in isobutyrate and 
isovalerate levels after a daily supplementation of 
500 mg of omega-3 fatty acid for 6 weeks.190 

Likewise, Coprococcus was positively associated 
with the branched-chain fatty acid isobutyric acid 
and negatively associated with the triglyceride-rich 
lipoproteins VLDL and VLDL-TG, suggesting that 
dietary omega-3 influences the gut microbiota 
composition and its benefits in CVD might be 
mediated by gut fermentation products.190 In 

another study, three different diets were fed to 
female mice, namely control, n-3 PUFA supple-
mented and n-3 PUFA deficient, during gestation, 
and then, the male offspring continued with the 
same diet for 3 months.170 Deficiency of n3-PUFA 
in diet reduced the levels of acetate and butyrate in 
feces, and the Clostridiaceae family, which can pro-
duce SCFAs, was not detected in this group. 
Likewise, the metabolic results revealed an increase 
of cecal metabolites involved in energy metabolism 
in n-3 PUFA supplemented mice. Thus, it was 
suggested that the observed impairment of SCFA 
production might disrupt the metabolism home-
ostasis and thus, having an impact on metabolic 
diseases. In a study conducted by Balfegó and 
coworkers,181 gut bacterial species were determined 
in drug-naïve patients with T2D before and after 
following either a standard diet (control) or the 
same diet but enriched with sardines for 6 months. 
Individuals following the latter diet presented an 
increase of Bacteroides and Prevotella (acetate- 
producing bacteria) in comparison with the base-
line. It was indicated that this diet might present 
benefits for cardiovascular risk.

Dairy products fermented or supplemented with 
beneficial bacteria

A few studies have reported the capability of dairy 
products fermented or supplemented with benefi-
cial bacteria to increase SCFA-producing bacteria. 
Bifidobacterium animalis subsp. lactis fermented 
milk product resulted in an increase of butyrate- 
producing bacteria and cecal SCFA in a mouse 
model, and an inflammation reduction.183 This 
statement was further validated in humans, where 
the same fermented milk product potentiated colo-
nic SCFA production and increased two previously 
uncharacterized butyrate producers, namely 
MGS126 and MGS203.184 Another study reported 
that skimmed milk supplemented with 
Lactobacillus paracasei subsp. Paracasei caused in 
healthy young adults a significant increase in 
Lactobacillus, Bifidobacterium, and Roseburia and 
in the acetic acid and butyrate acid levels, compared 
with the control (only skimmed milk).185

However, more research is required in the CMD 
field as no study has focused on investigating the 
effect of these dairy products in these diseases yet.
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Table 2. Studies reporting the modulation by 
diets of SCFA-producing bacteria, SCFA levels, 
and risk factors associated with cardio-metabolic 
health.

Conclusions and future directions

The composition, diversity, and activity of the 
gut microbiota can be easily modified by dietary 
patterns or specific nutritional components. 
Indeed, several studies have demonstrated that 
certain diet types can increase the abundance of 
SCFA-producing bacteria, leading to an aug-
mented SCFA level. Likewise, SCFAs have 
shown promising results in the modulation of 
CMD, as they can improve different risk factors 
associated to these diseases, such as dyslipide-
mia, cholesterol, insulin resistance, hyperglyce-
mia, and inflammation, thanks mainly to their 
capability to inhibit HDAC and activate the 
different FFAR receptors. However, long-term 
human intervention studies analyzing the effect 
of different diets in the SCFA production and 
the benefits exerted in patients suffering from 
CMD are clearly needed. These types of studies 
would contribute to deeply understand the 
interplay between diet, SCFAs, and CMD, 
enabling us to design dietary strategies that 
prevent/improve the CMD development by 
enhancing the SCFA production. Thus, the 
major public health challenge that CMD repre-
sents might be addressed with these low-risk 
and cheap strategies. Additionally, a limitation 
of some human studies is the lack of consis-
tency in their results due to the variability in 
the baseline microbiota of the participants. 
Therefore, future work will focus on how to 
create personalized dietary strategies based on 
the microbiota of each individual. As well it 
would be interesting to determine the synergic 
effect of different diets (e.g., a diet rich in 
omega-3 and fiber) in the gut microbiota and 
CMH.
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