
Abstract
Floods cause fatalities and considerable economic damage to

infrastructures and settlements, besides impacting fluvial-geomor-
phic landforms. The increase in the frequency and magnitude of
flood events has contributed to inevitably gaining public concern
over the flood risk and awareness of the necessity to improve fore-
casting and monitoring streamflows. In this context, an efficient
and systematic procedure of post-event surveys that documents
the impacts of a flood event over the territory is often missing.
Flood areas delimitation, erosion-sediment variation, and riparian
vegetation change are often neglected. The present study shows
the field- and desk-based post-flood surveys conducted after an
extreme event occurred on June 12th, 2019, along the Pioverna tor-
rent in Valsassina (North Italy). The post-flood surveys consist in
collecting meteorological data and time-series satellite images to

detect the land cover change (identifying areas covered by water,
sediments, and vegetation), and in planning, a few weeks later, an
unmanned aerial vehicle (UAV)-based survey to observe the
riverbed and streambank change and the modifications in vegeta-
tion patterns through high-resolution derived-topographic data.
The results show accurate maps of a ground classification from
satellite-based elaboration and high-resolution digital elevation
models from UAV-based surveys that can support restoration
activities and the design of effective countermeasures. This prac-
tical application is appropriate and suitable as a river management
strategy regarding timing, resources, and economic costs. Thus,
standardising the procedure could be essential for creating a his-
torical database, useful to improve specific guidelines and post-
emergency management strategies. 

Introduction
Flooding represents one of the most significant natural disas-

ters and is responsible for fatalities and substantial economic dam-
ages to buildings and infrastructures (Paprotny et al., 2018). Such
dangerous events cause markable changes in fluvial-geomorphic
landforms and riparian plant community dynamics, playing a piv-
otal role in fluvial ecology at the riverscape scale.
Geomorphological changes are investigated, especially over
medium to long temporal scales (Hooke, 2008; Scorpio et al.,
2018) or after large floods (Chappell et al., 2003). Post-event sur-
veys play a crucial role in the post-flood phase gaining experience
and knowledge for detecting frequent localised problems (bank
erosion, streambank failure, sediments deposition, uprooting of
riparian vegetation, etc.) and for adapting traditional solutions or
exploring alternative countermeasures (e.g., soil and water bio-
engineering techniques). Nevertheless, collecting post-flood infor-
mation is not a simple procedure due to different data precision or
aggregation levels.

Moreover, the lack of systematic and comprehensive post-
event surveys over the watercourse remains an evident gap in
flood risk management and modelling (Borga et al., 2008).
Despite the technological advances in fluvial geomorphology and
the development of shared operating procedures (Molinari et al.,
2017; Taylor and Simeone, 2021), complete and effective docu-
mentation of a flood event remains a challenge for fluvial geomor-
phologists, river engineers, and managers that have to face lack or
scarcity of rainfall, streamflow and terrain data (Gaume and
Borga, 2008; Marchi et al., 2010; Borga et al., 2011). The unique
source of information is the historical orthophotos that provide
vegetation and channel patterns at a large temporal and spatial
scale. However, accurate data covering pre- and post-flood condi-
tions are usually missing, making the development of reliable
hydrological, hydraulic, and hydro-geomorphic models compli-
cated (Tamminga et al., 2015a). For these reasons, geomorpholog-
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ical surveys must be carried out immediately after the flood event
to identify high-water marks, flooded areas, and sediment supply,
especially in gravel-bed rivers. More time passes, and more such
signs can be cleaned up by restoration activities or further flood
events (Borga et al., 2008). 

In this context, with its recent advances, remote sensing is
essential to address the challenge of fluvial monitoring. Such
technology includes a wide range of techniques and sensors to
acquire information, such as digital- and video-cameras, ground-
penetrating radar, light detection and ranging (LiDAR), thermal,
infra-red, hyper-, and multi-spectral sensors mounted on the satel-
lite, airborne or unmanned aerial vehicle (UAV) (Carbonneau and
Piégay, 2012; Entwistle et al., 2018; Tomsett and Leyland, 2019). 

Delimitation of flooded areas and vegetation patches can be
conducted using satellite images (Wang et al., 2002; Chignell et
al., 2015; Rahman and Di, 2017). Increasing satellite passes fre-
quency, satellite image resolution, and computational speed of
post-processing algorithms allow to map automatic and quasi-
real-time flood mapping (Notti et al., 2018). Despite this, satel-
lite-derived products can be affected by uncertainties and by a
lack of accurate validation (Lakshmi, 2017). Meantime, UAV-
based surveys can provide higher-resolution terrain data (up to a
few centimetres) and can identify different vegetation patterns and
sediment erosion-deposition areas (Fonstad and Marcus, 2010;
Perignon et al., 2013; Javernick et al., 2014; Micheletti et al.,
2015; Picco et al., 2017). UAV technology with photogrammetric
software reached a high degree of maturity, extending its applica-
tion in a broad spectrum of fields, including agriculture, forestry,
and landscape management (Torres-Sánchez et al., 2014; Seier et
al., 2017; Hashemi-Beni et al., 2018; Tarolli et al., 2020). In addi-
tion, UAV-based surveys guarantee flexibility, accuracy, high-spa-
tial-resolution, and low cost due to a broad market of experienced
professionals. Thus, the cost-effective photogrammetric platforms
provide rapid deployment of on-demand flood mapping. 

Although remote sensing offers many advantages, desk-based
analysis cannot replace the role of field-campaign. Therefore,
planning and standardising a combination of field- and desk-
based activities is necessary to balance the considerable consum-
ing resources (time of the high level of technical expertise) and
the accuracy of the flood events observations. 

In the present study, the primary purpose is to conduct a
remote sensing post-flood survey to detect: i) the geomorpholog-
ical changes, including streambank erosion, sediment deposition,
and the stream evolution; ii) the change in vegetation patterns that
strongly influence the fluvial geomorphological processes; and
iii) the flood-damaged areas including buildings and roads (help-
ful in estimating economic losses) and hydraulic structures (help-
ful in giving priority to the restoration works). In addition, a sim-
ple methodology has been proposed to balance time-consuming
and accurate topographical data, which can improve the forecast
of hydrological and hydraulic models and draw specific guide-
lines and post-emergency management plans.

Materials and methods

Study case
The Pioverna torrent is a gravel-bed torrent flowing from east

to west along the Valsassina valley into the Como Lake
(Lombardy, North Italy; Figure 1) in the proximity of the munici-
pality of Bellano (Lecco province), where the catchment area is

approximately 157 km2. Valsassina is a glacial valley charac-
terised by a U-shaped profile. A few stations monitored the mete-
orological observations inside the catchment, whereas no hydrom-
eter is located along the torrent. The nearest meteorological sta-
tion measured, on average, mean annual precipitation of around
1650 mm with peaks in late spring and autumn. 

The study case is a 2-km stretch located among the villages of
Cortenova and Primaluna, characterised by multiple channels and
delimited by well-vegetated streambanks. The riparian zone is
dominated by a high-dense forest (25 trees/100 m2) composed of
several tree species such as white willow (Salix alba L.), field elm
(Ulmus minor Mill.), common ash (Fraxinus excelsior L.), and
common alder (Alnus glutinosa (L.) Gartn.) and by shrubs such as
common dogwood (Cornus sanguinea L.), common hawthorn
(Crataegus monogyna Jacq.), and common hazel (Corylus avel-
lana L.). The riparian forest is mature (15-20 ages) with a dense
canopy cover (hereafter, ‘mature vegetation’). Conversely, the
streambanks are covered by a pioneer plant community (hereafter,
‘pioneer vegetation’) where the invasive alien species dispute the
empty space with the native species. Here, the black locust
(Robinia pseudoacacia L.), the butterfly bush (Buddleja davidii
Franch.), and the Himalayan balsam (Impatiens glandulifera
Royle) are the dominant invasive species. 

Flood event
The flood event occurred on June 11th-12th, 2019, seriously hit

several municipalities in Valsassina (North Italy) (Figure 1). The
meteorological stations in the proximity of the study area began to
measure an increase in rainfall at 20:20 on June 11 (Figure 2A).
In particular, the storm was initially concentrated into an area
delimited by stations 9105, 2152, 14280, and 19335 and then
moved towards the northwest. Conversely, the second rainfall
peak was recorded by the stations in proximity of Como Lake
(stations 19365 and 10585) and then by stations 9105, 14280, and
19335. The meteorological stations measured a cumulative rain-
fall in 13 hours, ranging between 41.4 mm (station 8097) and 83.0
mm (station 9105), except for the station 19335, which recorded
209.2 mm (Figure 2B). The corresponding return periods, estimat-
ed through the moving-window procedure for detecting the max-
imum rainfall depth observed for each duration (Norbiato et al.,
2007) and then the Depth-Duration-Frequency curve (Folador et
al., 2021), were approximately 4 years, except for the observa-
tions of station 19335 that registered a 300-years return period
events. This fact was in accordance with the losses suffered (yel-
low dots in Figure 1). In fact, this meteorological event caused a
significant production of sediment transport from the right-bank
tributaries that overflew the banks, splitting over everywhere,
while the remaining part reached the junctions with the Pioverna
torrent.

Time-series satellite images analysis
Time-series satellite images analysis consists in detecting flu-

vial dynamics by classifying land cover types and comparing pre-
and post-flood images. The satellite images were captured by
PlanetScope, a constellation of approximately 130 satellites (able
to acquire daily collection imagery of 340 million km2 day–1).
PlanetScope images were orthorectified scenes, commonly used
for various applications. These products were corrected for surface
reflectance and delivered as a split frame with 4 spectral bands
(blue, green, red, and near-infrared) with a spatial resolution of 3
m. Table 1 summarises the main characteristics of the PlanetScope
acquisition system. 

                             Article
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Figure 2. A) Temporal distribution of rainfall intensity (mm h–1) for the 7 meteorological rain-gauges; and B) cumulative precipitation
(mm) during the flood event that occurred on June 11th-12th, 2019.

Figure 1. The study domain includes the 2-km surveyed stretch (red line) located along the Pioverna torrent (green line) and 7 mete-
orological stations (blue triangles). The 11-June flood event caused damage along the main watercourse and the right-bank tributaries
(yellow dots).
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Then, a supervised pixel classification algorithm was applied
to the time-series satellite images to extract the fluvial environ-
ment land cover features. This algorithm is the random forests
(RF), a non-parametric machine learning technique that combines
k-binary classification and regression trees (Breiman et al., 1984;
Breiman, 2001). RF exploits individual decision trees using boot-
strap aggregated sampling from ‘training areas’ (previously classi-
fied into desired specific groups, namely, in this case, water, sedi-
ments, pioneer, and mature vegetation) with the remaining
assigned as out-of-bag samples. A random set of predictor vari-
ables is tested at each decision tree node to aggregate sample data
into increasing homogeneous subsets. A response variable can be
predicted as a categorical classification among all decision trees.
Another dataset, the ‘test areas,’ was used to compute accuracies
and error rates averaged over all predictions through the Cohen’s
Kappa coefficient (Cohen, 1960), a chance-corrected measure of
nominal scale agreement among observations and RF predictions. 

Unmanned aerial vehicle-based survey
UAV-system consists of a DJI Mavic 2 Pro Quadcopter

equipped with a 20 Megapixel 1’ CMOS camera. The drone flight
time is approximately 30 minutes for battery charge in the best
condition (no wind and no functioning accessories), whereas with
the camera attached is about 20 minutes. The camera is charac-
terised by 10-mm lenses (28 mm for 35 mm equivalent) with aper-
tures ranging from f2.8 and f11. The flight plan was designed using
Pix4Dcapture, an Android free drone flight planning app
(https://www.pix4d.com/product/pix4dcapture). The survey cov-
ered an area of 0.18 km2, which corresponds to a 100 m-wide
buffer along the watercourse. Lateral and longitudinal overlaps
were set to 60% and 80%, respectively, with a flight altitude
between 60 and 70 m. For each survey, 28 ground control points
(GCPs) were uniformly spaced along the 2-km stretch at an aver-
age distance of 100 m from each other, alternating on the riverbank
and the riverbed. The GPCs consist of 0.40×0.40 m bicolour paint-
ed wood panels or symbols directly spray-painted onto the con-
crete. Their coordinates were measured using a real-time kinematic
RTK GPS (GRS1, TOPCON) with a vertical precision of 0.02 m.
Where possible, the same GCPs were used for the further survey.
However, the riverbed modification and the activation of new
channel forms prevented all GCPs positions were maintained.

Structure from motion software and elaboration
Structure from motion (SfM) algorithms has been significantly

fostering photogrammetry, improving 3D-models generation by a
series of overlapping and convergent digital photographs. Such
methodology is now implemented into a broad spectrum of soft-
ware packages. In the present study, Agisoft Metashape
Professional Version 1.5 (Agisoft LLC, St. Petersburg, Russia) was
used to elaborate on the images collected by the UAV flight. The
software allows to calculate the internal camera orientations and
position, align the photographs, and calibrate the parameters relat-
ed to the characteristics of the camera lenses. The output is a 3D
point cloud, 3D mesh, digital surface model (DSM), and orthopho-

tos. In addition, georeferencing procedure improves the quality of
the SfM-based outputs minimising the difference with the coordi-
nates of the GCPs.

Furthermore, this software incorporates novel algorithms that
perform a dense point cloud classification. This step allows us to
identify the ground points automatically and extract the digital ele-
vation model (DEM) directly. The control automatic ground points
classification is a machine learning algorithm that depends on the
calibration of three parameters: i) max angle (degree) that sets the
maximum slope between the points classified as ground; ii) max
distance (m) that sets the maximum variation of the ground eleva-
tion; and iii) cell size (m2) that indicates the maximum size of an
area that does not contain any points classified as ground.

Sediment change assessment
The main output of SfM-elaboration is the difference of DEMs

(DoD), obtained cell-by-cell among successive topographic sur-
veys. DoD has been widely exploited in fluvial geomorphology,
especially for quantifying the volumetric change along the sur-
veyed stretches. Moreover, producing the DoD is necessary for
other purposes, such as: i) inferring bedload sediment transport
rate along the surveyed stretch; ii) interpreting processes such as
channel scour, fill, migration, and avulsion; iii) mapping the distur-
bances of ecological habitats; iv) estimating bed levels trends with
a certain degree of uncertainty; v) validating complex morpholog-
ical models; and vi) planning the sediment management over the
riverbed for different purposed, from the river restoration to gravel
extraction or replenishment schemes (Williams, 2012). 

In the UAV-photogrammetry, many factors can introduce
errors into the generation of DEM and DoD, such as survey point,
survey accuracy, sampling strategy, topographic roughness, and
interpolation methods (Lane et al., 1994; Wechsler and Kroll,
2006; Wise, 2007). Assessing the accuracy of generated DEMs
from a UAV-based survey could request a comparison with another
accurate surface model that is generally not available (Brasington
et al., 2003, 2000). Thus, the errors in DEM were estimated by
comparing the model elevations with those of GCPs (Lane et al.,
2003) and evaluating some performance indices as the mean error
(ME), the root mean square error (RMSE), the mean absolute error
(MAE), and the standard deviation of error (SDE). Such assess-
ment of DEM accuracy becomes more critical in those geomor-
phological studies that aim to calculate the sediment budget where
the priority step is to calculate the DoD subtracting successive
DEMs from each other (M.0 without correction, hereafter).
Especially, in this case, propagating the error at spatial scale can
help to distinguish false variation in elevation comparing DEMs
(Brasington et al., 2003). The simplest method consists in sum-
ming the raw volumetric change exclusively upon a critical thresh-
old error Uc also called Level of Detection (LoD). Such measure of
acceptable error can be fixed as the D84 value (M.1, hereafter;
Chappell et al., 2003; Fuller et al., 2003) or calculated as follows
(M.2, hereafter):

                                                            (1)

                             Article

Table 1. PlanetScope bands characteristics.

Band number                       Description                                             Wavelength ( m)                                             Resolution (m)

Band 1                                                       Blue                                                                           0.455-0.515                                                                                   3
Band 2                                                      Green                                                                         0.500-0.590                                                                                   3
Band 3                                                        Red                                                                           0.590-0.670                                                                                   3
Band 4                                               Near-infrared                                                                  0.780-0.860                                                                                   3

[page 120]                                           [Journal of Agricultural Engineering 2022; LIII:1312]                                                             

Non
-co

mmerc
ial

 us
e o

nly



Where the subscripts indicate the two successive raw DEMs
assuming a Gaussian distribution of errors, whereas the t value rep-
resents the critical t values at the selected confidence level. For
example, the value of t can be set at t≥1 (1σ) with a confidence
limit of 68% (Lane et al., 2003) or t≥1.96 (2σ) with a confidence
limit of 95% (Brasington et al., 2003). 

Due to the significant sources of uncertainty, it is largely
known that the error is spatially variable and tends to be greater at
breaks of the slope where there the local topographic variability is
more accentuated as near bars and edges (Heritage et al., 2009).
Indeed, considering a uniform error metric across the DEM, the
results seem to be over-conservative. Milan et al. (2011) proposed
a robust procedure to produce a spatially distributed LoD (M.3,
hereafter) to solve this problem. The main steps are: i) generating
a new standard deviation 0.1-m grid calculated in a 1-m radius-
moving window over the two successive raw point clouds. If there
are not at least eight data points inside the moving window, a zero
value is set to the cell; ii) for each control point and each topo-
graphic survey, extracting the standard deviation of elevation error
and the difference between modelled and observed elevations, and
fitting these variables through a linear regression; iii) the linear
regression equations were applied to the standard deviation grids
to produce spatial error grids for each survey; and iv) Eq. (1) was
applied to obtain spatial error grids and then subtracted from the
raw DoD grids. 

Results

Time-series satellite images analysis
Satellite images were captured one time a day. The selection

was conducted, excluding all images with more than 25% cloudi-
ness (those acquired during the flood event). For consistency, the
pre- and post-flood images were taken on the same days as the
UAV-based surveys. Thus, two satellite images were analysed by
RF technique for detecting the pre- and post-flood event land
cover. The Cohen’s Kappa coefficient was calculated over the RF
results over the ‘training areas’ and ‘test areas,’ showing excellent
values of performance indices. In ‘training areas,’ the Kappa coef-
ficient was 0.992 and 0.980, whereas in ‘test areas,’ 0.852 and
0.842 for pre- and post-flood images, respectively. 

Riparian vegetation change assessment
Figure 3 provides overviews of the study area’s spatial-tempo-

ral distribution of water, sediment, and vegetation. In particular,
the vegetation largely covers the flood plain and the streambanks,
approximately two-thirds of the entire area. The flood events main-
ly caused a 5% reduction in the vegetated area and a 7.5% increase
in sediment deposits (Figure 4). Bars and channel layout has clear-
ly changed in the middle and downstream part of the study area,
significantly reducing the vegetated area. The riparian vegetation
particularly covered the left streamside, forming closed canopies
that remained unaltered after the flood. Despite the minor differ-

                             Article

Figure 4. Ground classification through the random forests pro-
cedure over two PlanetScope satellite images of the study area.
The classification categorises the ground points into water, sedi-
ments, pioneer, and mature vegetation.

Figure 3. RGB orthophotos surveyed by PlanetScope and RF
elaborated imageries of the study area: A) and B) in pre-flood and
C) and D) in post-flood condition.
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ence in land coverage (–2%) between pre- and post-flood events,
the pioneer vegetation colonised the streambanks, especially in the
upstream portion. The vegetated patches, predominantly composed
of Himalayan balsam, quickly appeared on the fine sediment
deposits in just a few weeks. 

Structure from motion-based output
Two UAV flights were performed pre- and post-flood events to

produce detailed DEMs. UAV collected 870 and 703 photos over
the study area at the end of each survey. The image processing pro-
duced point clouds with a density of 3125 and 2607 points m-2,

respectively. The higher precision of the GCPs guarantees a basis
for improving the SfM approach. In fact, using the 28 GCPs as ref-
erence points, the photogrammetric algorithms vastly improved
the accuracy of the topography generating lower errors, as shown
in Table 2. For the planar coordinates of GCPs, the differences are
lower than 0.02 m, whereas the elevation errors are at most 0.08 m. 

The first products of the SfM procedure are the orthophotos
with a resolution of 4.04 and 3.35 cm pixel–1, respectively, for pre-
and post-survey (Figure 5A and B). Furthermore, DSMs were gen-
erated with a high resolution of 2.02 and 1.67 cm pixel–1, respec-
tively, and DEMs were extracted, detecting the ground points
through the application of the machine learning techniques imple-
mented in the SfM software. Finally, this procedure requests the
calibration of three parameters using additional GCPs on the veg-

etated streambanks. In this case, the highest accuracy was obtained
by setting the max angle 10°, the max distance 1 m, and the cell
size 8 m.

Sediment change assessment
The spatial distribution of elevation change reveals a complex

geomorphological behaviour, characterised by an alternation of
erosion and deposition areas, especially in the middle of the sur-
veyed stretch. In detail, in the upstream part, the dominant geomor-
phological process is the sediment deposition interrupted by signif-
icant streambank erosion/failure points. In contrast, in the down-
stream part, the flood slightly disrupts the sediment balance
(Figure 5C). Geomorphic change and sediment transport increased
the sediment budget between 2026.72 m3 (M.3) and 2121.94 m3

(M.1). Table 3 shows the sediment change volume in function of
the four applied procedures (M.0, M.1, M.2, and M.3; see Section
2.6). The spatial differences in sediment budget change are more
evident when analysing several representatives and equidistant
cross-sections (Figure 5C). The riverbed showed a marked tenden-
cy to deposition along the surveyed area, except for cross-section
3 (Figure 6). In more detail, cross-sections 1 and 2 revealed the
most significant volume of deposition (+8.26 m3 m–1 and +12.58
m3 m–1, respectively), covering more than 70% of the total width.
The erosion was concentrated on the right bank in both cross-sec-
tions, even if with different intensities (–0.43 m3 m–1 and –7.74 m3

                             Article

Figure 5. Orthophotos produced by unmanned aerial vehicle (UAV)-based surveys of the study area in A) pre-flood and B) post-flood
conditions. The subpanel C) shows the difference between DEMs (DoD) and the positions of the most representative cross-sections. 
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m–1, respectively). Conversely, in cross-section 3, the sediment
accumulation was concentrated on the left bank (+2.43 m3 m–1)
with a moderate tendency to erosion on the riverbed (–4.61 m3 m–1).
Lastly, cross-section 4 showed a significant modification of the
transversal shape through the reactivation of secondary channels.
In fact, the streambank erosion significantly involved the left bank

of the cross-section (–1.93 m3 m–1), whereas a substantial deposi-
tion was evident in the remaining part (+4.14 m3 m–1). The remark-
able spatial differences revealed, even more, the high sediment
dynamics of the study area exacerbated by the high sediment con-
nectivity from the right-side tributaries and the considerable bed-
load sediment transport.

                             Article

Figure 6. Difference of elevations of 4 representative cross-sections. The red line indicates the pre-flood condition, whereas the blue line
the post-flood condition. 

Table 2. Digital surface model errors use different performance indices: ME is the mean error, MAE is the mean absolute error, RMSE
is the root mean square error, and SDE is the standard deviation error. The subscript ‘xy’ indicates that the performance index is referred
to the planar coordinates, whereas ‘z’ refers to the elevations.

                        MExy (m)           MAExy (m)          RMSExy (m)          SDExy (m)       MEz (m)          MAEz(m)         RMSEz (m)       SDEz (m)

Pre-flood                    0.002                           0.013                             0.018                            0.017                    0.007                        0.055                         0.078                       0.071
Post-flood                 –0.001                          0.014                             0.021                            0.018                   –0.002                      0.041                         0.056                       0.050

Table 3. Estimating deposition-erosion in the function of different procedures for sediment change assessment.

Procedure                                Deposition                                              Erosion                                                                     Balance

M.0                                                              8961.96                                                                   –6852.4                                                                                            2109.56
M.1                                                              7049.39                                                                  –4927.45                                                                                           2121.94
M.2                                                              8627.78                                                                  –6534.63                                                                                           2093.15
M.3                                                              8552.24                                                                  –6525.52                                                                                           2026.72
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Discussion

Remote sensing for fluvial investigations
Remote sensing technology has been becoming an essential

tool for conducting temporal analysis on river processes, conse-
quences of extreme natural events, and natural inheritance to
increase the knowledge of conditions, sensitivity, and resilience of
the fluvial environment (Gurnell et al., 2016) and for supporting or
designing activities of river management and restoration

(Grabowski et al., 2014). Remote sensing includes satellite prod-
ucts and UAV-based surveys now commonly adopted by techni-
cians and researchers. 

Image-based elaboration on time-series satellite products
allows generating land cover change, detecting areas occupied by
water, sediments, pioneer, and mature vegetation and, where pos-
sible, the flooded areas. In more detail, the difference among time-
series satellite images highlights erosion and deposition of land-
forms and changes in the vegetated area. These outputs can support
the design of requalification and restoration activities and the
delineation of the prone-flood zone. 

                             Article

Figure 7. Unmanned aerial vehicle-captured images of A) marked river change, B) activation of secondary channels, C) deposition of
fine material along a secondary channel, D) streambank failure causing the cycle path destruction, E) ramp blocks damages, F) in-chan-
nel significant wood deposition, G) uprooted tree after the flood, H) spatial distribution of pioneer and mature vegetation over sedi-
ment deposition, and I) a vertical photo of 1 m2 useful for conducting grain size measurements.
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UAV-based surveys are a flexible, accurate, and efficient
approach for high-resolution topographic monitoring (Tamminga
et al., 2015a, 2015b) and for collecting spatial data useful as input
for 2D/3D hydraulic modelling. The benefits have increased with
recent technological advances, especially feature-based image
matching algorithms within SfM software. 

Results of SfM elaboration can be of high quality, taking some
foresight: i) setting the UAV-equipped camera for acquiring large
image overlaps (around 60%-80%) to guarantee highly accurate
point clouds (Cucchiaro et al., 2018); ii) fixing GPCs along the
river on hydraulic structures inside and outside the riverbed as
checkpoints (Tamminga et al., 2015a); iii) performing UAV-based
survey during low-flow river condition (Lane, 2000); iv) avoiding
over predictions of elevations in submerged areas through optical-
empirical bathymetric correction or linear relationship between
transformed watercolour and water depth (Legleiter et al., 2009);
v) reducing errors in DEM where the canopies broadly cover the
terrain through a sufficient number of GPCs on the streambank and
over the floodplain; and vi) ensuring an adequate area for take-off
and landing of the UAV, and for pilot-in-command operating.

In river research and practice, collecting and sharing UAV pho-
togrammetric surveys could be a milestone for river designers and
engineers to improve the safety and efficiency of hydraulic inter-
ventions, reduce the cost, and plan the operations of river manage-
ment. The products of UAV-based and remote sensing-based sur-
veys allow detecting several changes in river configuration quickly
and accurately:

- The geomorphological changes include riverbank erosion,
sediment deposition, and the stream evolution of braided channels.
In the study case, the flood event activated the whole bed surface
up to the lateral levees and generated an essential mobilisation of
bed and streambank materials. Figure 7A shows how the hydraulic
processes caused a significant bed erosion involving the discharge
into the main flow channel with a marked elevation change and
increasing the size of the bed armoring layer. Conversely, in other
parts of the study case, the flood dynamics simultaneously
involved transient secondary channels. For example, Figure 7B
shows the marked activation of two secondary channels in the mid-
dle and the proximity of the right bank, whereas Figure 7C shows
a conspicuous deposition of fine materials along a narrow sec-
ondary channel. In general, the tendency to create multi-channel
river configuration could be a clear indicator for the river restora-
tion projects: for example, the river managers could design, where
there is still enough space, in this case, within the riparian forest,
artificial excavated secondary channels to increase the hydrologi-
cal connectivity, and provide more suitable habitat for other
macrophytes, macroinvertebrates, fishes and wading-birds (e.g.,
Simons et al., 2001). 

- The flood-damaged areas, including buildings, infrastruc-
tures, and hydraulic structures inside the stream, are just useful for
estimating economic loss. For example, in this study case, Figure
7D shows the streambank failure that destroyed 85 m-cycle path,
whereas Figure 7E reveals the damages of a block ramp, restoring
with a dozen of 3 m3 blocks. 

- The in-channel wood debris accumulated over the bed sur-
face and against the bridge abutments, including coarse and large
woody debris. Figure 7F shows an area of around 235 m2 covered
by dead plant materials and an in-channel large wood volume of
around 21.5 m3 over the pile caps. Figure 7G shows an uprooted
tree that fell in the active channel. All these materials, especially
those obstructing the space among the piers, must be usually land-
filled at an expensive cost.

- The spatial flow roughness for 2D and 3D hydraulic mod-
elling includes pioneer vegetation (Figure 7H) and grain size
change of sediment bed (Figure 7I). In fact, a UAV-based survey
can provide ortho-mosaics composed of 1.5 cm pixel–1 vertical
photo of 1 m2 useful for conducting grain size measurements of
fluvial gravel following robust developed procedures (Carbonneau
et al., 2004; Cislaghi et al., 2016; Detert et al., 2018), especially
determining spatially D50 and D84. Moreover, combining high-res-
olution orthophotos and DoD can detect the dynamic evolution of
riparian vegetation (bare soil, pioneer plant colonisation, and
established mature plant community).

Post-flood survey campaign
This study is part of a field survey campaign conducted to

analyse the geomorphological consequences along a 2-km stretch
of Pioverna torrent after the flood event on June 12th, 2019, in
Valsassina (Lombardy, Italy). As outlined in the study of Gaume
and Borga (2008), post-event analysis consists in collecting mete-
orological data and pre-event digital photogrammetric observa-
tions, finding field evidence such as high-water marks, detecting
evident signs of geomorphologic and vegetation changes, delimit-
ing flood areas and reconstructing peak discharge also through
eyewitnesses and local authorities’ documents. Rainfall and topo-
graphic data can be found immediately after the flood event,
whereas the other activities are conducted a few weeks after, at the
end of the emergency operations. Meantime, satellite images can
be acquired as soon as the cloudiness disappears and can be used
to extract the land cover map (and the post-flood differences).
Furthermore, a UAV-based survey can be carried out to calculate
the geomorphic and elevation change by building the DoD using
the permanent GCPs as checkpoints. In addition, phytosociological
relevés can be conducted on the riparian vegetation communities
along several transects of the stream from the riverbank to the
active riverbed to detect which are the pioneer species and the eco-
logical succession. Such analysis supports and improves the river-
ine ecosystem management (Fogliata et al., 2021). Such procedure
of post-flood surveys has strategic importance for a broad spec-
trum of multidisciplinary aspects, from the ecology to the
hydraulics, and offers an example of how different tools and activ-
ities can be efficiently combined to obtain a faithful reconstruction
of the flood event. Moreover, a systematisation and standardisation
of post-flood surveys and, as a consequence, their observations,
rapidly obtained after the event, can support the design and the
choice of specific activities of the post-emergency management
that involves the repair of hydraulic structures, the restoration of
hydraulic semi-natural fluvial dynamics, the removal of in-channel
coarse and large wood if it obstructs the streamflow, and the vege-
tation control for protecting the native species. 

Conclusions
Watercourses naturally adjust and self-organise the geomor-

phologic function as a response to all the disturbances (e.g., flood
events, riverbed degradation, narrowing, control works), altering
sediment and water transfer, exacerbating bank erosion processes
and streambank failures, and exposing bare sediment that pioneer
species can subsequently colonize. River management has to
address fluvial dynamics by planning sustainable practices/techni-
cal measures with the aim to combine hydraulic safety, river func-
tionality, and ecological/environmental quality. These actions
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require monitoring the geomorphological changes (from the active
riverbank to the closer floodplains) over time, especially after
extreme flood events. Thus, remote sensing technology that com-
bines machine learning algorithms applied to time-series satellite
images and SfM software to UAV-captured photographs offers a
viable monitoring approach for decision-making support. In fact,
this study clearly showed the evolution/dynamics of vegetated and
non-vegetated bars and islands as a consequence of a natural dis-
turbance as a flood event and the quantification of erosion-deposi-
tion change along a 2-km stretch of a mountainous torrent.
Moreover, the study described a practical application for river
managers to identify fluvial dynamics and design appropriate and
sustainable countermeasures.
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