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Abstract

Two main guidelines can be adopted to investigate a system and forecast its future
behavior. The first kind of strategy emphasizes the role of general principles, which
guide us in building models that embody the background knowledge available. The
second class of techniques refers to phenomena ruled by unknown laws and directly
probed by data-driven protocols. While the Scientific Method encodes the first kind
of procedure, Data Science embraces more inductive schemes. In the last twenty
years, many scholars have developed growing expectations about the impact of the
latter family of methods, and the role of inductivism seems to be re-evaluated. This
enthusiasm is - to some extent - justified. Despite the numerous successes achieved
by model-driven science, many systems seem to resist being understood through a
modeling approach. Conversely, valuable advances in performing practical tasks have
been obtained by adopting Machine Learning and Pattern Recognition techniques.
While a detailed analysis of these protocols’ performances is beyond the scope of
this discussion, some methodological aspects can be considered on a conceptual level,
keeping in the background the possibility of proceeding with formally rigorous argu-
ments. The comparison between modeling and automatic methods will allow for a
better framing of the role of intelligence in their respective fields of application.

Research Plan. This dissertation starts by examining the properties of a generic
database based on simple results from Dynamical Systems. The Analogs Method is
considered an archetypal case to illustrate the consequences of an inductivist ap-
proach from a broader viewpoint. In this regard, Statistical Learning theory will
provide some essential ingredients, allowing us to reformulate the Principle of Induc-
tion. This perspective will be elaborated more by using informational language. The
compression-generalization trade-off is adopted as a general paradigm, discussing the
effectiveness of Deep Learning protocols and drawing parallelisms with coarse-graining
procedures. The analysis proposed will naturally lead us to re-read causality as a tool
to manage information when some distribution shift comes into play. Moreover, some
formal ways of characterizing cause-effect relations will be critically examined, and
the potential connections that alternative frameworks may have will be explored to
establish a more unified viewpoint. As we critically discuss the challenges inherent in
inductive protocols, we aim to shed light on the following general questions. To what
extent is mathematical modeling still a necessary pursuit? What role could be played
by Artificial Intelligence in this regard?
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Sommario

Due linee guida principali possono essere adottate per investigare un sistema e preved-
erne il comportamento futuro. Il primo tipo di strategia enfatizza il ruolo dei principi
generali, guidandoci nella costruzione di modelli che incorporano le conoscenze di
base disponibili. La seconda classe di tecniche si riferisce a fenomeni regolati da leggi
non conosciute ed esplorati mediante protocolli basati su dati. Mentre il Metodo Sci-
entifico guida il primo tipo di procedura, la Scienza dei Dati abbraccia schemi più
induttivi. Negli ultimi vent’anni, molti studiosi hanno coltivato aspettative crescenti
sull’impatto di quest’ultima famiglia di metodi e il ruolo dell’induttivismo sembra
essere stato rivalutato. Questo entusiasmo è in parte giustificato. Nonostante i nu-
merosi successi ottenuti dalla scienza model-based, molti sistemi manifestano una par-
ticolare resistenza all’essere compresi mediante un approccio di modellizzazione. Al
contrario, sono stati ottenuti progressi significativi nell’esecuzione di compiti pratici
adottando tecniche di Apprendimento Automatico e Pattern Recognition. Mentre
un’analisi dettagliata delle performance di questi protocolli si pone al di là della pre-
sente discussione, analizzeremo alcuni aspetti metodologici ad un livello concettuale,
lasciando sullo sfondo la possibilità di procedere con argomentazioni formalmente
rigorose. Il confronto tra i metodi di modellizzazione e i metodi automatici permet-
terà di inquadrare meglio il ruolo dell’intelligenza nei rispettivi campi di applicazione.

Piano di ricerca. Questa dissertazione inizia esaminando le proprietà di un
database generico adoperando alcuni semplici risultati nell’ambito dei Sistemi Di-
namici. Il Metodo degli Analoghi viene considerato un caso archetipico per illustrare
le conseguenze di un approccio induttivo. A tal proposito, la teoria dello Statistical
Learning fornirà alcuni ingredienti essenziali, consentendoci di discutere una partico-
lare formulazione del Principio di Induzione. Questa prospettiva sarà elaborata ulte-
riormente utilizzando il linguaggio della Teoria dell’Informazione. Il compromesso tra
compressione e generalizzazione viene adottato come paradigma generale, discutendo
l’efficacia dei protocolli di Deep Learning e tracciando parallelismi con le procedure
di coarse-graining. L’analisi proposta ci porterà naturalmente a reinterpretare la
causalità come uno strumento per gestire l’informazione quando si verifica uno shift
distribuzionale. Inoltre, analizzeremo alcune caratterizzazioni formali per le relazioni
causa-effetto e ne esploreremo le potenziali connessioni. Attraverso una discussione
critica delle sfide intrinseche ai protocolli induttivi, ci proponiamo di fare luce sulle
seguenti domande generali. In che misura la modellizzazione matematica è ancora
necessaria? Quale ruolo potrebbe svolgere l’Intelligenza Artificiale a tal riguardo?
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This introduction aims at providing a comprehensive epistemological framework to
contextualize the analysis presented in the following pages. Some preliminary connec-
tions between prediction, information, and causation will be explored as we proceed.
Remarkably, the concept of compression will play a central role. Starting from the
discussion of how scientific practice can be conceived, the problems of forecasting and
learning will be reconsidered in light of some elementary results. An overall - albeit
preliminary - viewpoint on the notion of intelligence will follow with its consequent
effects in terms of the modeling-inductivism pair.

Part I

The overall picture
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1 Mathematical Models

From Galileo onwards, observations are employed to grasp general principles, select
relevant variables, and create models via mathematical equations to exhibit testable
forecasts. Modeling and its applications through the Scientific Method have enabled
breakthroughs that are difficult to overestimate, providing accurate predictions from
microphysics to the cosmological scale. Due to these achievements, the idea that
Physics can serve as a reference for other scientific disciplines has become increasingly
prevalent, with some consequences at least at two analysis levels.

• Pragmatically - in the hope of obtaining similar performances in terms of re-
liability and predictive power - many efforts have been made in establishing
an isomorphism principle between physical and non-physical entities to import
into other areas of study the techniques and results that have been developed
in Physics [13]. This perspective does not necessarily require any ontological
commitment and can be based on the correspondence between the formal struc-
tures used. Looking at the past century only, Social Physics provides an explicit
example of this approach, with further impacts spanning across disciplines from
Social Sciences to Linguistics [174][175][197][198].

• Theoretically, the reductionist program posits the possibility of explaining all
phenomena in terms of fundamental physical laws, thereby offering a unifying
perspective of great significance [153]. Paradigmatic examples in Physics include
the relationship between Thermodynamics and Statistical Mechanics [109][164]
or between Classical Mechanics and the theory of Relativity. More generally,
reductionist paradigms can be found in numerous disciplines - even in approach-
ing long-standing philosophical problems - from Economics [192][65][66] to Cog-
nitive Sciences [39][38]. Despite the practical difficulties in implementing this
viewpoint, its cultural influence remains robust in various fields of inquiry, some-
times assuming the status of dogma. As a corollary, the unity of nature should
have its counterpart in the unity of science, also in terms of the methodology
adopted. If there was no need to admit independent levels of reality, there
should be no independent theories but only more or less detailed descriptions.
Therefore, assuming that the more detailed level is well-founded, we should be
able to justify the techniques and the results at the higher ones hierarchically.

Models as Intelligent Representations

Both of the attitudes mentioned above are put into practice by employing mathe-
matical models as abstract and simplified representations, which provide the basis
for new conjectures to be submitted to additional investigations. In the first in-
stance, mathematical models can be seen as the result of intelligent agent processing,
through which observations and experimental outcomes are considered in light of for-
mal frameworks compatible with the model-maker cognitive bounds [84][85]. More
precisely, the model-maker solves a trade-off problem by providing enough accurate
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representations that are also sufficiently simple to be concretely useful with respect
to the task at hand [84][85][191]. Consequently, quantitative models can be avail-
able only if phenomena are weakly dependent on many microscale or context-specific
details. Moreover, the ability to distinguish relevant from irrelevant details in the ab-
sence of a predetermined recipe - i.e. trying to employ the limited cognitive resources
to achieve goals optimally - comes into play at least in two directions.

• Horizontally, different and independent research areas can communicate through
models, allowing for the establishment of analogies between seemingly disparate
phenomena. For example, concepts like energy, relaxation, or phase transi-
tion can admit analogous in neurophysiological studies, suggesting using simi-
lar models to characterize magnets and brain activity [4][17], thus omitting the
specific details that make the two scopes distinct. Consequently, progress in
one field of research can benefit the other, implying advantages in the face of
the progressive specialization in scientific research and establishing disciplinary
connections that contribute to frame strengths or possible limitations.

• Vertically, modeling via coarse-graining procedures makes the hierarchy of de-
scription levels a well-defined line of research [153][30]. In a nutshell, too detailed
models can be unproductive for forecasting or inefficient in representing a phe-
nomenon at a given spatiotemporal scale. For example, the Navier-Stokes equa-
tions emerge from complex underlying microscopic interactions. If the macro-
scopic fluid motion strongly depended on the shape of the constituent molecules
or their detailed behavior, compact continuum laws for Fluid Mechanics would
not be achievable. Contrarily, we can often move to a more compressed level
of description, considering a set of effective equations to employ regularities
that may not be explicit in the fine-grained representation: details negligible to
our purposes - as small fluctuations or fast-timescale changes - are removed via
some average or aggregation operation.

In a nutshell, relevance criteria are significant in selecting adequate analogies and
adopting coarse-graining procedures by eliminating details that are irrelevant to the
selected goals. Remarkably, this scenario immediately leads to methodological dif-
ficulties, as becomes clear when we try to formalize the role played by relevance in
scientific practice. To elaborate on this point further, we can briefly refer to two
conceptual issues that we will reconsider in the following discussion.

Moving across resolution scales. The Renormalization Group approach -
which underlies the work on critical phenomena and many other achievements in
Physics - studies how a system’s space is mapped onto itself through coarse-graining
procedures [30]. In this regard, the technique proposed by L. Kadanoff for spin lat-
tices offers a clear example [154]. In a nutshell, given a spin-lattice of dimension d,
the system is described at a progressively coarser resolution by considering blocks of
2d spins as basic units and computing the effective interactions between these spin-
blocks. This coarse-graining is then combined with a rescaling step, and the procedure
is repeated iteratively, providing a constructive way to integrate all the small-scale
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features into their increasingly large-scale results. Remarkably, the renormalization
operates at the level of models, expressing how a given model - i.e. a particular rep-
resentation at a fixed scale - has to be modified when the viewpoint on the system
changes. At any rate - although admitting several technical variants - the essence of
the Renormalization Group recipe lies precisely in choosing some degrees of freedom
among the others to compress the irrelevant ones up to an effective model. Nonethe-
less, these degrees of freedom need to be identified first, and this step can provide a
substantial barrier from a technical and conceptual point of view.

Employing causality. Causal models refers to an area of modeling traditionally
broader than Physics. They characterize the relevant relationships among the macro-
variables of interest in the Social Sciences and in all those cases where evaluating some
policy arises naturally [72][115][117], from Medicine [54] to Economics [66]. From an
epistemological point of view, two preliminary questions arise.

• First, it is not clear the degree to which causality is a crucial factor in our
comprehension of a particular research area and whether it can be reduced to
more fundamental levels [190][48]. This point emerges immediately by making
a rough distinction between theoretical and phenomenological sciences, as pro-
posed by N. Cartwright [28][29]. In the former, explanations in light of a set
of principles - within a functionalist scheme - should play a predominant role.
In the latter, causality should tend to be a productive concept in framing how
systems respond to external stimuli and manipulation.

• Second, The question arises as to under what conditions causation can be estab-
lished. In this regard, the Russo-Williamson Thesis states that a causal claim
can be established only if it can be established that there is a difference-making
relationship between the cause and the effect, and that there is a mechanism
linking the cause and the effect that is responsible for such a difference-making
relationship [141][72]. The implications of this perspective are debated in re-
lation to biomedical research [53][188] and Social Sciences [51]. Its normative
dimension reduces the possibility of bias that might lead to inferential mistakes
and helps researchers to establish more reliable causal claims.

Moreover - as we will discuss in the following pages - causal language presents concrete
limitations challenging to overcome, with impacts on our ability to identify cause-
effect relationships and also leading to oversimplification of complex phenomena.

Circumventing Models

In The Ethics of Artificial Intelligence, L. Floridi pointed out that Artificial Intel-
ligence research aspires to develop two different scientific programs [47]. The engi-
neering program aims to reproduce the results of intelligent biological behavior by
nonbiological means; on the other hand, the cognitive program aims to produce the
nonbiological equivalent of intelligence, that is, the origin of intelligent behavior.
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Moreover, L. Floridi claims that the engineering successes of Artificial Intelligence
follow from a clear separation with respect to the cognitive perspective:

Today, Artificial Intelligence splits effective problem-solving and proper
task execution from intelligent behavior, and it is because of this split that
it can relentlessly colonize the endless space of problems and tasks when-
ever these can be performed without understanding, awareness, acumen,
sensitivity, concerns, sensations, semantics, experience, bio-incorporation,
meaning, even wisdom, and any other ingredient of human intelligence.
Briefly, it is precisely when we stop trying to produce human intelligence
that we can successfully replace it in an increasing number of tasks [47].

An intriguing question arises as to whether this separation can also manifest itself
in the realm of mathematical modeling. At this point, it may be beneficial to delve
deeper into some drawbacks that frequently arise in modeling phenomena, thus moti-
vating the introduction of inductive methods as a valuable alternative. Three general
remarks can be considered as follows.

• First, many systems are difficult to model, and establishing well-defined laws
can be problematic. Although this issue already arises in Physics, it becomes
even more challenging in fields such as Biology, Economics, and Social Sci-
ences. In these contexts, determining the system dimension, identifying first
principles, selecting relevant variables, and controlling experimentation create
difficult-to-overcome complications. Moreover, the possibility for Physics to
adopt an analytical approach stems from the homogeneity, isotropy, and nature
of interactions, which remain constant over time [177]. This condition typically
allows us to write evolution equations and study their solutions analytically or
via numerical techniques. However, things can be fundamentally different in
other fields of inquiry. For example, the interactions between components may
change over time due to dynamics, and the system’s constituents may have an
internal state that significantly influences the overall behavior. Additionally,
isolating the system from the environment in which it is embedded may not be
possible, and this last point poses a challenge in determining initial or boundary
conditions [177].

• Second, the mechanisms by which expert researchers can develop effective mod-
els that incorporate the available background knowledge remain somewhat un-
clear. Consequently, significant obstacles exist when attempting to formalize
the analysis and discovery processes, as model construction is more akin to a
subtle art that demands substantial cognitive resources rather than a strictly
rigorous and replicable recipe [68]. To put it differently, building models en-
tails a creative ability that combines discernment, intuition, and the capacity to
synthesize heterogeneous data into a coherent, meaningful, and straightforward
structure, the efficacy of which is challenging to predict in advance. All these
elements provide strong constraints in developing automated modeling methods
to support researchers and decision-makers in managing and overcoming their
cognitive limitations.
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• Finally, how an intelligent agent performs an assigned task in a reasonable
amount of time can be challenging to represent effectively starting from a fixed
set of principles, and modeling limitations that emerge are more general than
those recognizable at the analytical level. In this regard, a system that dynam-
ically changes its internal structure can be considered a machine that updates
its internal state as it operates. This machine can be described as an algorithm
or a list of rules that prescribe how the system’s dynamics determine the in-
ternal state and interactions at the next step. However, these look-up-tables
procedures must face prohibitive computational costs, requiring a characteri-
zation for a huge number of possible instances. In this regard, the rule-based
and expert-knowledge framework led us to the Artificial Intelligence Winter in
modeling systems such as vision, language, and computationally costly games.
This last point suggests there may be contexts where modeling starting from
some background knowledge is not necessarily the cheapest or best-performing
solution, sometimes leading us down unproductive paths.

The Schortcut Perspective. The recognized obstacles may be arduous - or
even impossible - to overcome: the limitations in our cognitive faculties or the inher-
ent inefficacy of modeling may lead to a theoretical and practical progress plateau.
Additionally, exercising informed judgments and managing risks reasonably are cru-
cial tasks in contexts where timely decision-making is required despite the lack of a
comprehensive theoretical framework and suitable models. In each case, inductive
protocols may represent a possible shortcut to circumvent these difficulties and could
supplement the Scientific Method. More specifically, the question at hand pertains
to the efficacy of inductive protocols in overcoming the problem of working out an
effective phenomena representation in the absence of a priori guidance by means of
relevance criteria - e.g., without the need for integrations to facilitate coarse-graining
procedures and enable the application of causal knowledge. In recent years, this
perspective seems to find some confirmations. The increasing availability of large
databases has been joined by investing considerable resources in developing robust
and efficient inductive strategies to infer the input-output dependency from data. In
other words, Machine Learning and Pattern Recognition have come into play. Many
successful applications are developed using black-box protocols, from speech recogni-
tion [64] and natural-language processing to image classification [83][59] and playing
Go [161]. This widespread trend has also involved sectors in which mathematical
modeling has a well-established tradition [27][103], such as weather and climate fore-
casting where an interesting debate is in progress [33][90][150].

The Big-Data Scenario. One relevant point to frame the shortcut perspec-
tive concerns the role played by the data deluge and the specular data-centric ap-
proach [5][87]. Some preliminary considerations may be suggested focusing on Table
1, where a high-level viewpoint is summarized. With some degree of approximation,
the amount of data available is related to the corresponding availability of a theoret-
ical framework and the consequent ability to build suitable models. To clarify the
overall picture, let us proceed by points.
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Data Regime Background Scales Models Cognitive costs

Small-data
Few principles
Lots of theory

Single-scale ✓
Often
tractable

Intermediate
Some theory,
Phenomenology

Multi-scale ✓
Sometimes
tractable

Big-data Few Knowledge
Scaling
Cascade

?
Typically
prohibitive

Table 1: Three possible Data Scenarios - in terms of volume and variety - are schemat-
ically illustrated. Machine Learning and Pattern Recognition techniques are typically
employed for large databases in the absence of a satisfactory model.

• In a small-data scenario, we typically have access to a limited set of variables
and principles, which allows for a manageable cognitive cost in representing
phenomena and making inferences. Data are primarily used to provide bound-
ary conditions or determine the coefficients of a well-known differential equation
at the scale of interest. At this level, the hypothetico-deductive approach has
often proved promising, and the greater availability of observations can require
a progressive increase in model complexity.

• At the intermediate scenario - where multiscale phenomena can occur and some
parameter values or entire terms can be missed in modeling - procedures such as
coarse-graining may be necessary to bridge the gap between available data and
the underlying fundamental theory. Moreover, phenomenological considerations
can also be valuable in guiding the development of theories compatible with our
practical needs, and effective models consequently come into play.

• Finally, in the big-data scenario, recognizing the underlying mechanisms may
not be feasible due to the vast amount of available data. The cognitive cost of
developing models to explain such large datasets could be prohibitively high.
In this regime, Machine Learning techniques can identify patterns within the
data across multiple scales and climbing down the ladder of complexity without
necessarily requiring a comprehensive understanding of the underlying mecha-
nisms.

In the next chapter, the discussion will be mainly concentrate on Large-scale
learning, for which the big-data scenario is a natural prerequisite. Problems with a
large-dimensional, high-entropy input will be considered. On the other hand - in the
last part of this dissertation - causal structures will be re-read as tools for dealing
with cases for which massive databases are typically unavailable or even useless. In
this respect - on the other side - learning effective representations may be the central

11



goal, even given a small dataset. At this point, it might be helpful to make two
general comments to delimit the scope of the subsequent analysis.

• The overall framework mentioned above may appear strongly dependent on the
specific disciplinary context. In this regard, Physics-Informed Machine Learn-
ing is an exemplificative perspective: data-augmentation protocols adhering to
conservation laws, architectures incorporating symmetries, and cost functions
promoting convergence towards physically consistent solutions are employed
[78][134]. This approach addresses a specific issue: namely, to ascertain the ex-
tent to which Machine Learning techniques - when appropriately endowed with
internal constraints and principles of the particular discipline - may be applied
within the regime demarcated by the question mark in Table 1. Interesting as
it may be, we will not explore this point in what follows.

• On the other side, each research community develops strategies and guiding
principles inspired by the experience gained in addressing concrete problems,
so positioning at a higher analysis level may appear unproductive. Although
this concern is justified, Machine Learning and Pattern Recognition demand a
methodological reflection beyond the single discipline boundaries. As already
highlighted, this need becomes more pressing when considering these techniques’
potential pervasiveness - even in socially sensitive areas - where the availabil-
ity of automated procedures can introduce unexpected criticalities in decision-
making processes. Additionally, the belief that a paradigm shift in favor of
inductive protocols is needed cannot be underestimated if scientific practice as
a whole is considered. For these reasons, the following analysis will recall some
disciplinary contexts for illustrative purposes only.

Let us conclude this paragraph by briefly reconsidering the inductivist approach
from a general viewpoint, leaving the following section to discuss Machine Learn-
ing in some detail. Adapting the analysis proposed by W. Pietsch [130][131], a few
methodological guidelines in contrast with the hypothetical-deductive perspective can
characterize inductivism. First, scientific laws derive from observations and can be
highly probable when describing a narrow range of phenomena. In other words, there
is a natural aversion to general hypotheses, inherently preliminary and never entirely
established. Second, background knowledge and modeling assumptions play a mi-
nor role, as empirical data frequently justify them. Conversely, laws are obtained
by varying circumstances : knowledge improves by continually expanding the case
history recorded. Lastly, inductivism establishes a hierarchy of laws, starting with
simple observation statements combined to form low-level phenomenological laws and
gradually building towards laws of greater abstractness. The scientific agenda is then
conceived in terms of a bottom-up process.

In summary, inductivist protocols are data-inference, localized, context-dependent,
and bottom-up procedures, which prioritize predictions rather than providing phe-
nomena representations.
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2 Machine Learning Protocols

The field of Machine Learning refers to the wide range of tools that can deal with
data inference problems - including regression, classification, forecasting, and control
- providing an algorithm designed to select a rule into a class of possible functions by
adjusting a set of free parameters. Algorithms as meta-rules that solve learning tasks
based on semantically annotated data are said to operate in a supervised learning
mode [103][108]. Although the upcoming insights may apply to a broader range of
frameworks, the domain of supervised protocols is primarily considered in favor of a
more concise presentation. The starting point consists of an input-output database

D = {(x1, y1), (x2, y2), ..., (xn, yn)},

provided by an unknown - deterministic or stochastic - rule y = f(x) that we want to
reconstruct with some degree of approximation. Once learned, these rules are used to
classify documents or images [108][7][59], predict the price of a stock [168], diagnose
a disease based on a patient’s medical record [160]. To achieve this goal, a predefined
architecture

Aθ : x 7−→ y

is selected, with some free parameters θ ∈ Θ to be determined. The general recipe in
this respect consists of three steps. First of all, D is randomly partitioned into two
subsets - Dtrain and Dtest - whose data must be distributed according to the same
probability distribution. Secondly, the machine receives data from Dtrain and the
training phase consists of determining θ∗ ∈ Θ such that

θ∗ = argmin
θ∈Θ

C(θ;Dtrain), (1)

where C is a predefined cost function. In this regard - fixed the learning rate α and
the initialization θ0 - Gradient Descent

θt+1 ←− θt + αt∇θC(θt;Dtrain)

is a standard iterative algorithm to optimize C. Finally, the ability of Aθ∗ in gen-
eralizing outside of Dtrain is evaluated on the subset not employed in the training
phase, Dtest. The main goal - both on the theoretical and application levels - is
to ensure that the trained algorithm Aθ∗ with a small cost on Dtrain also admits a
small test error. In this regard, the over-fitting problem can come into play: if the
trained algorithm is too specialized on Dtrain, it may have learned the noise on the
data, thus degrading the predictive performance on Dtest. To contain this general
difficulty, additional steps can be taken between training and testing phases by pro-
ceeding with fine-tuning over some hyper-parameters, often making decisions based
on intuitions, previous experiences, and by surrogating tests on the cross-validation
set Dval ⊂ D, distributed in accordance with D [110]. A standard technique to avoid
θ too-specialized on Dtrain consist of equipping the cost function with a regularization
term [20][108], thus replacing (1) with

θ∗ = argmin
θ∈Θ

{
C(θ;Dtrain) + γ||θ||

}
, (2)
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where γ ≥ 0 and || · || denotes some norm. Choosing the hyperparameter γ is equiva-
lent to selecting an upper bound for ||θ||, thus introducing a penalty that effectively
constrains the magnitude of θ.

Postponing further details to the following pages, let us conclude this paragraph
with two remarks. First, the question of data preparation arises. Inputs x are typi-
cally stored as real-value vectors. This representation is straightforward whenever the
data consist of a set of homogeneous quantities, such as pixels in an image or word
frequencies in a document, so the information the labels y carry hopefully admits a
geometrical counterpart in the input space. In general, this representation may not
be natural: some encoding procedures become needed and the corresponding input-
space geometrical properties might not correlate well with labels. In what follows,
we will omit further details on this point, and only the first case will be considered.
Second, as briefly discussed above, the described Machine Learning procedure aligns
with classical inductivism. In this regard, A and C are considered instrumental aids
to effectively manage D without any assumptions about the phenomenon under inves-
tigation; a progressive database expansion via varying circumstances should enhance
generalization; the trained algorithm A is typically applied within the context and
for the purposes for which it was trained.

Deep Learning as a prominent example. Although there are some significant
variants, only the feed-forward and multi-layered settings will be considered [7][59].
Briefly, multiple hidden layers h1, h2, ..., hL are defined so that each node of hl has
incoming edges only from nodes in the previous layer and outgoing edges only to
nodes of the next one. Consequently, the model admits the functional form

y = hL ◦ hL−1 ◦ ... ◦ h1 ◦ h0(x),

h0 := id, hl := σ
(
Wlhl−1 + bl

)
,

where the matrices Wl and the vectors bl collect the weights, and σ is some non-
linear activation function. As recalled above, training the network consists of learning
Wl and bl via Gradient Descent and Back-propagation in minimizing the cost C.
Moreover, some specialized regularization techniques for Deep Learning come into
play. Instead of equipping the cost function with a regularization term as in (2), the
most commonly employed optimizer is Stochastic Gradient Descent. The stochasticity
introduced by the use of mini-batches helps in preventing overfitting and can also be
supported by techniques such as dropout, batch-normalization, and early stopping
[20][7][59]. At any rate, two comments are needed.

• Regarding the network’s representation power, a network with a single hidden
layer can theoretically compute every binary classifier and approximate any
real-valued function under rather general assumptions [45][67][193]. However,
the required size of the hidden layer grows exponentially in the input-space
dimension, and things do not necessarily improve for a multi-layer structure [7].
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• Conversely, it is still unclear how this type of protocol achieves so impressive
performance, as much empirical evidence has confirmed. For example, if the
classification dataset labels are randomly shuffled, the expressivity power can
still empower them with a near-zero training error [193]. More in general, Deep
Learning architectures are heavily over-parametrized, and the classical bias-
variance trade-off predicts that a good generalization should not be possible
[158][179][193]. This point will be discussed in some detail.

At this point, it is worth noting that Deep Learning protocols have generated high
expectations and subsequent disappointments due to various theoretical analyses put
forth over time. After the introduction of Perceptron [101] and its concrete imple-
mentation highlighting some relevant limitations [137], M. Minsky and S. Papert
argued formally that a multilayer structure would not have worked in the face of the
too-tricky cost-function [105], with no chances to generalize well. To delve into more
detail, the learning algorithms adopted can get stuck in local minima, i.e. suboptimal
solutions that are distant from the optimal one; the minima obtained for a partic-
ular training set may not generalize well to unseen data in the test set; identifying
high-quality minima may necessitate extremely long convergence times, which can be
impractical or inefficient. These kinds of arguments - although convincing - could not
at that time be supported by empirical evidence. In recent years, this perspective
has been completely reversed in practice: adequate computer performance, Stochastic
Gradient Descent, and enough data are sufficient in many applicative contexts. On
the other hand, a satisfactory theoretical understanding is not yet available [193][7].

Three general problems for ML

As part of a comparison with the modeling approach, it may be useful to recall some
epistemic downsides arising when we employ a Machine Learning protocol, as much
for fundamental research as for possible applications.

• The applicability problem concerns the difficulty of ensuring that Machine Learn-
ing algorithms are suitable for a specific task a priori. It is unclear how to predict
whether a specific problem can be studied using Machine Learning protocols.
The only truly effective way is through direct testing as well as a blind suc-
cession of attempts, and it can be challenging to understand how to intervene
when these protocols do not show satisfactory effectiveness [194][143]. In this
regard, it would be highly beneficial to have general criteria that can guide us
a priori on whether a given protocol is reasonable to expect to work effectively
for the problem at hand. Factors to consider in this decision should include the
algorithm, the amount and type of training data used, and some parameters
that characterized the phenomena observed.

• The opacity problem refers to the challenge of comprehending the inner workings
of Machine Learning algorithms. This difficulty extends to the semantic level,
as the algorithms’ nature and the enormous quantities of data they handle can
make it hard to pinpoint the exact factors that affect their decisions, leading
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to difficulties in interpreting their outputs and verifying their precision. This
problem is especially prominent in Deep Learning protocols, where we currently
do not have a widely accepted explanation for how they operate [142].

• The explainability problem pertains to the difficulty of offering transparent jus-
tifications for why Machine Learning algorithms produce a specific output [91].
In certain contexts, such as medical diagnoses [3], legal proceedings, or public
policies, this point may be particularly critical and strongly connected to the
responsibility problem [112][42]. Intuitively, making progress in this direction
seems to require integrating the adopted inductive protocol with some back-
ground knowledge, for example, by equipping the algorithm with a module that
employs an appropriate notion of causality [148].

The scholarly discourse surrounding inductivism is extensive. While we will not
delve into its various manifestations and admonitions, a reverse course will be con-
sidered by showing how specific challenges in formulating the Problem of Learning
have epistemological consequences. This, in turn, necessitates a process of concep-
tual design oriented towards properly framing the potential of inductive protocols.
The starting point consists of an observation recently advanced by H. Hosni and A.
Vulpiani on the problem of forecasting in the Dynamical Systems context [68][69][70].

Dynamical Systems and Predictability

Given a deterministic system, the future state is entirely determined by the current
one. However, additional conditions are necessary to ensure the practical possibility
of accurate forecasting, and some obstacles make it necessary to reconsider Laplace’s
approach to predictability [22]. The first limitation occurs when the evolution law is
perfectly known. Two key properties come into play: the stretching of infinitesimal
displacements and the wide variety of alternative orbits. Although these two aspects
may seem unrelated, they are tightly connected when formally characterized via Lya-
punov Exponent s and Sinai-Kolmogorov Entropy [22][32][80][113]. Tiny inaccuracies
about the initial state can result in significant future deviations within the time frame
of interest. Furthermore, every model can be seen as a compression-procedure out-
come, allowing for appropriate generalization. If the compression process provides
the optimal model, the previously mentioned limitation can be re-read in terms of
the initial condition incompressibility, in the sense of Algorithmic Complexity à la
Kolmogorov [22][35][70]. Moreover, if a lossy compression takes place by removing
relevant details, Perturbation Theory offers a dual viewpoint on the predictive ca-
pacity: slight model variations can result in significant phase-portrait changes, with
severe consequences for forecasting [32][80]. These limitations might suggest looking
at inductivism as an alternative.

A first limitation for inductivism. In the context of the ergodic systems, Kac
Lemma estimates the expected recurrence time [32][76][80]. Traditionally, this result
is invoked to provide a rigorous answer to the paradoxes that arise from a classic
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theorem due to H. Poincaré [132] and contributes to the Statistical Mechanics foun-
dation. On the other side - within the comparison between modeling and inductive
approach - Kac Lemma limits the ability to make predictions inductively. To clarify
this point, we consider the Analogs Method proposed by E.N. Lorenz [92][93][94][95].
Given the actual state z, we want to forecast its evolution after an amount of time t,
say ϕtz. Retrieved a past state a in our database D similar to z, we approximate ϕtz
with ϕta:

a ∼ z =⇒ ϕta ∼ ϕtz,

a, ϕta ∈ D.

Theoretically, the Analogs Method only requires a regularity assumption: if a system
behaves in a certain way, it will do so again. It seems to be a natural claim at least
for numerous practical tasks. Operationally, the algorithm that provides a forecast is
straightforward and admits advantages that will be discussed later. Contrarily, Kac
Lemma enables us to prove that the required time-series length L scales as

L ∼ 1

εd
,

where d is the system’s dimension and ε is the resolution at which nearby points are
identified [31][69]. Given the exponential law in d, the required D size becomes pro-
hibitive for moderately high dimensions. This limitation could temper the prospects
of a purely inductive approach to forecasting. While for modeling the most significant
constraints pertain to the chaotic nature of the system and the instability of the phase
portrait under small perturbations, the primary obstacle for the Analogs Method lies
in the system’s dimension. Remarkably - as we will discuss later - the dimension
involved can be also the effective one. However, it remains to be established to what
extent this limitation is relevant for Machine Learning. In this respect, two general
observations are significant:

• Although the Kac Lemma argument provides a dynamic justification for the
curse of dimensionality, this issue is practically overcome whenever an induc-
tive protocol achieves performances compatible with our desiderata. Conse-
quently, a genuine understanding of the limit mentioned above should include
a justification for which cases where the curse appears to dissolve.

• The Analogs Method is a simple memorization and search procedure, while the
generalization level is assigned a priori via the resolution ε. This observation
casts doubt on the relevance of what is derived from Kac Lemma for Machine
Learning, where very different techniques come into play to deal with the gen-
eralization problem.

We will examine these points in detail, also considering some objections based on the
distinction between enumerative and variational inductivism [130][131]. Let us take
a first step by reconsidering the problem of inductivism within the general framework
of Statistical Learning.
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Statistical Learning and Information

The classical Statistical Learning theory [184][183][181] allows us to formulate the
generalization problem in a mathematically precise way by returning a trade-off be-
tween the approximation accuracy provided by the algorithm A from a dataset D and
the complexity of the approximating function f , chosen from a functional space F
[106]. Intuitively, we expect that as the size of the dataset increases, the approxima-
tion selected by A will become more accurate. This perspective is supported by the
results of universal consistency. However, while universal consistency tells us that
everything can be learned within the limit of infinite data, it does not imply that
every problem is learnable from a finite dataset with a reasonable amount of data.
In practice, a consistent algorithm may not be preferred over a non-consistent one.
More in particular, the phenomenon of slow rates may come into play, and a No Free
Lunch Theorem states that for any learning algorithm, there are problems for which
the learning rates are arbitrarily slow. The problem of supervised learning allows us
to clarify this idea [183][108].

Let us consider a random generator of occurrences X distributed according to a
probability distribution PX ; a supervisor that returns an output Y according to a
distribution PY |X ; an algorithm that returns a function f ∈ F , selected to approx-
imate the supervisor’s response with the highest possible accuracy. Let us assume
that the distribution PX,Y is unknown. The algorithm takes as input a training set
D = {(x1, y1), · · · , (xn, yn)} consisting of n independently and identically distributed
instances sampled from PX,Y . The quality of the selected approximation f must be
evaluated on instances distributed as PX,Y , but not necessarily included in the train-
ing set. In other words, we want to ensure that f is not specialized to the available
dataset D, but captures the underlying regularity of the problem instead. For sim-
plicity, we will consider the case of binary classification: given an occurrence for X,
it is to be determined a rule that associates the correspondent label in Y = {0, 1}.
In other words, we seek to learn f : X → Y based on observations available. Given
a rule f and an occurrence (x, y), the corresponding error is defined via some metric
fixed a priori, say err[f(x), y]. In principle, we assume that the optimal rule should
minimize the expected error

R[f ] :=

∫
err[f(x), y]dP (x, y)

over the class of functions F . Since the distribution PX,Y is unknown, we can not
directly minimize the functional R[f ].

Induction Principle. To avoid the difficulty mentioned above, we consider in-
stead of PX,Y the empirical counterpart P̂ onD, which is the distribution concentrated
on the available data. Through this particular choice, the functional R[f ] is therefore
replaced by the empirical risk

R̂n[f ] :=
1

n

n∑
i=1

err[f(xi), yi],
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so that the algorithm A will proceed by minimizing R̂[f ]. However, this procedure
does not necessarily provide the necessary guarantees. To see this, it is sufficient to
consider the following problem: if we consider as F the entire space of binary func-
tions defined on the finite range as X of X, our algorithm could in principle select
one of the 2|X |−n possible rules for which R̂n[f ] = 0, without being able to establish a
priori which of these best generalizes on the new instances. In other words, by min-
imizing the empirical risk, we could select a function in the overfitting regime. The
classic strategy to overcome this difficulty consists of restricting the space of functions
F , controlling its element’s complexity.

Capacity measures. By introducing a measure of complexity for the functional
space adopted, it is possible to obtain a uniform control of the difference between
empirical risk and expected error, establishing a convergence rate that depends on
the size of the dataset. The main idea is to exploit the concentration in probability
for the empirical risk around the expected error due to the Chernoff-bound effect. If
F has finite cardinality, it is possible to demonstrate that the following inequality
holds for any f ∈ F , with probability 1− δ:

|R[f ]− R̂n[f ]| ≤
√

log(2|F|/δ)
2n

. (3)

This inequality establishes a relation between generalization-gap |R[f ] − R̂n[f ]| and
the function complexity measured by the capacity |F|, controlled by the dataset size
n. Suppose we find a sufficiently small set of functions F to achieve a small empirical
risk. In that case, we can guarantee - with high probability - that those functions will
also have small errors in future data from the same distribution. A non-trivial trade-
off ensues. On the one hand, we would like to work with a large class of functions
to allow for a small empirical risk. On the other hand, the functional class should
be small to control the generalization gap. Optimizing this trade-off is a well-defined
problem also for other capacity measures, e.g. when F is an infinite set. At any rate,
three remarks are essential in our views.

• First, the function space F has a central role. This set represents the background
knowledge a priori available and corresponds to some hypothesis of regularity
about the data. The capacity measure quantifies this aspect. However, it is not
necessarily the case that our knowledge of the problem is sufficient to select F
such that it is both relevant - i.e. containing the true function of the model -
and has a limited capacity. Methodologically, this object constitutes a spurious
element in a properly inductive scenario.

• Second - continuing along the line of the previous point - the inequality re-
ported above is independent of the probability distribution P . The particular
problem at hand has no role, giving us a worst-case result that does not exploit
possible distribution regularities. This perspective does not seem satisfactory:
we would like a bound that depends on the complexity of P , establishing some
classification that distinguishes tractable distributions from intractable ones.
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• Finally, on a theoretical level, the derived bound does not seem to be able to
explain the results obtained from recent developments in Machine learning. As
we have already said, Deep Learning models - despite the enormous number
of parameters and the consequent huge F -capacity - show that they can learn
complex problems with much less data than the bound would predict. In many
cases, the number of parameters exceeds the size of the dataset by orders of
magnitude, rendering the classical control over the generalization gap meaning-
less.

Given the aforementioned critical issues, Information Theory provides significant con-
ceptual tools for reformulating the accuracy-complexity trade-off. Traditionally, this
research area is associated with the problems of coding and communication through
a noisy channel [157][98]. Let us briefly focus on how information-theoretic tools are
valuable in the context of learning and the following implications, leaving the task of
presenting a comprehensive discussion to Part II of this dissertation.

Information bounds. Let us consider the binary classification problem for the
space X = X1 × X2 × ... × Xm of binary strings of length n. The set of the possible
classification rules f : X → Y has cardinality 2|X | = 22

m
. Identifying the correct rule

- without further assumptions - is clearly an intractable problem for large m. On
the other hand, the generalization gap inequality (3) discussed above is meaningless
since the right-hand term is of order O(1). Instead of considering a proper subset
of functions F ⊂ YX a priori as in the classical approach, replacing X with an
effective input space Xeff can provide a considerable simplification. Let us explore
this perspective by assuming PX factorized,

PX =
m∏
i=1

PXi
,

where PXi
refers to a single bit of X and PXj

= PXk
for all j and k. The normalized

sum of independent terms concentrates - for large n - around the mean:

− 1

m
log p(x1, x2, ..., xn) = −

1

m

m∑
i=1

log p(xi) ≈ H[Xk],

H[Xk] := −
∑

xk∈Xk

p(xk) log p(xk).

In other words, a typicality argument comes into play. When the input variable X
is a huge vector of independent and identically distributed components the Shannon
Entropy H[X] dominates the effective size of X , i.e.

|Xeff | ≈ 2mH[Xk] = 2H[X]

Moreover, the Asymptotic Equipartition Principle in the spirit of Statistical Physics
holds when only typical patterns are considered, each with probability 2−H[X]. Given
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these simple observations, the compression-generalization trade-off will be adopted as
a general paradigm in place of the capacity measures adopted in the classical Statis-
tical Learning approach. From a general viewpoint, more compressed representations
will allow us to control the generalization gap more robustly, as will be discussed in
the following three steps.

• First, we shall derive and examine a rigorous generalization-gap bound inde-
pendent of the function class F , but instead rely on the complexity of the input
variable X, as quantified by H[X]. This preliminary result will be based on
the characterization of the set of non-negligible patterns, providing a first in-
sight into to what extent a more compressed input-space representation Xε can
enhance the efficacy of the inductive protocol adopted.

• In the Large Scale Learning regime - where the number of training examples
and the protocol complexity are both huge - we will discuss a typical-case bound
obtained by restricting the probability distributions to a suitable class. This
result suggests a criterion for determining which problems can be effectively
treated using an inductive protocol.

• As highlighted by N. Tishby [179][158], this approach provides some insights
into explaining the functioning of Deep Learning protocols as procedures that
provide compression-in-representation, shedding light on the overfitting problem
and the benefits of adopting a layered structure [159]. Moreover, some points
of contact with modeling are considered, suggesting an analogy with coarse-
graining techniques in developing an effective model.

The role of compression. The analysis proposed will suggest the following gen-
eral picture. On the one hand - by adopting the Empirical risk minimization principle
- Machine Learning techniques are understood in terms of curve-fitting procedures.
In this respect, some quantitative guarantees about the control of the generalization
gap are provided as long as the hypothesis space is selected a priori. On the other
hand, Deep Learning protocols seem to respond to a partially different logic by auto-
matically implementing some coarse-graining procedure. More precisely, information
irrelevant to the assigned task is progressively compressed - layer by layer - to pro-
vide coarser and coarser representations. However, the compression-in-representation
implemented by Deep Learning protocols involves a procedure of compression-in-
resolution through which points in suitable ε-spheres are progressively identified.
Schematically, the learning apparatus can be represented as a Markov chain

Y ←→ X −→ Xε −→ Ŷ

where the compressed representation Xε - selected via the training phase to obtain
Ŷ as close as possible to the correct label Y - consists of a clusterized version of X.
More precisely, the Bottleneck Principle characterizes the optimal compression via
the variational problem

min
PXε|X

I(X : Xε)− βI(Xε : Y ),
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where mutual information I(X : Xε) and I(Xε : Y ) corresponds to compression and
accuracy respectively [178]. On the other side, whenever compression-in-resolution
has a central role, the ε-partitions involved in solving the variational problem must
satisfy certain general conditions to work correctly and generalize well. More in
particular:

• First, the ε-spheres that partition the input space X must be coarse enough
to admit a typicality argument and contain sufficient training instances. Con-
versely, suppose ε is too small. In that case, typicality does not work, and no
data are contained in too many partition elements. Consequently, the label
assigned to each empty ε-sphere is random, affecting the accuracy.

• At the same time, the partitions adopted must be fine enough to admit la-
bels that are as homogeneous as possible in Y for the elements of the training
set. This point requires an exponential increase in the number of the ε-spheres
needed, providing us with a limitation in the spirit of that suggested by Kac
Lemma. In this respect - as we will discuss later - the incompressibility of the
initial data will thus remain a robust constraint in the forecasting context.

While these observations pertain to whether guarantees can be offered regarding the
ability to generalize, the question arises as to within what terms the compression-in-
resolution is actually activated. This point - rather subtle - can be discussed at a
preliminary level by considering the role of regularization. In a nutshell, more robust
regularization is equivalent to lower resolution in determining the decision bound for a
binary classification problem. Classically, regularization of the cost function as in (2)
is achieved by manually fixing the corresponding hyperparameter γ and thus inserting
a spurious element into the inductive learning process [108]. As will be discussed in
Part II, Stochastic Gradient Descent could make this process component implicit and
automatic [16][167].

Compressing to learn and forecast. On the general level, the discussion pro-
posed is oriented to justify the correspondences represented in Figure 1, thus suggest-
ing a parallel between learning and forecasting, for which some kind of coarse-graining
procedure - as in modeling - is adopted. Forecasting and learning occur within a pro-
cessing infrastructure - the brain or the machine, via a suitable representation - that
is incapable of capturing all potentially relevant information. The external world can
be too complex, and information bottlenecks prevent the transmission of every detail.
In other words, although learning and forecasting could be implemented by finding
ways to encode the system observed efficiently, coarse-graining procedures come into
play and respond to the system’s complexity by discarding information via a lossy-
compression mechanism. This perspective could support the expectation that it is
in principle possible to reach through Machine Learning performance at least com-
parable with that achievable via modeling. Moreover - considering the three levels
schematically illustrated in Table 1 - the presence of a scales cascade could be han-
dled more effectively by a procedure capable of automatically compressing irrelevant
details without the aid of relevance criteria difficult to implement in modeling.
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Compressibility

Learnability Predictability

Figure 1: Compression as a common paradigm for Learning and Forecasting, thus
establishing a parallel with modeling via coarse-graining.

Some additional comments can provide a clearer understanding of Figure 1. First,
the relationship between compression and predictability can be interpreted as follows.
Compressing corresponds to selecting a specific system’s scale to determine a level
of resolution beyond which further refinement becomes irrelevant to the problem at
hand. Assuming we are dealing with a chaotic system - where even a slight error in
the initial condition leads to a rapid degradation of predictive capacity - it is possi-
ble that this chaotic behavior only pertains to certain scales, ideally those at higher
resolutions. In such cases, effective compression can provide a representation free
from chaos, wherein the predictability horizon assumes an entirely different regime.
To make this type of procedure feasible, there are at least two essential conditions:
the compression process must be capable of identifying the system’s scales and their
corresponding variables; it is crucial that the chaotic behavior of the system is indeed
confined to scales considered irrelevant for modeling the system behavior.

Second, compression also plays a central role with respect to learnability. Learning
a problem is a task that differs from memorization to the extent that its achievement
can rely on the protocol’s ability to forget. This point, although somewhat vague for
now, will assume a precise meaning in Part II, when the compression-generalization
trade-off is also discussed in terms of the Bottleneck Principle. By reformulating the
bound on the generalization gap presented in (3) in terms of information, the mutual
information I(X : X̂) between the initial input X and its compressed representation
X̂ will play a role similar to the cardinality of the hypothesis space. In fact, it will
determine the level of complexity of the problem and its degree of learnability.

Finally, the compression mechanism activated should be taken into consideration
in more detail. On the one hand, compression-in-resolution involves some limitations
that are difficult to circumvent, recognizable as much for the forecasting problem as for
the learning problem. On the other hand - from our point of view - the question arises
as to whether it is possible to equip Machine Learning protocols with compression-
in-representation procedures that do not pass through compression-in-resolution. This
solution might allow us to circumvent the limitations imposed by the scarcity of data,
providing a possible improvement in terms of applicability, opacity, and explainability.
Causality could be a useful tool in this direction.
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3 Causality

In the preceding section, we explored the task of extracting information from a
dataset, which can be regarded as a collection of observations that are both inde-
pendent and identically distributed. However, observations are not always enough:
our epistemological expectations can be more challenging, especially in social sci-
ences, for policy evaluation and engineering issues [72][54][6][140], where understand-
ing and managing concrete problems may depend on identifying causal-effect relations
[115][117]. Specifically, we are interested in determining how the system’s behavior
changes in the face of external interventions or in establishing to what extent a coun-
terfactual statement is true. This degree of knowledge shelters us from the deluge of
spurious correlations [26] and controversial conclusions such as the Simpson Paradox
[162] - which appear when only observational data are considered - can be correctly
interpreted [116].

The Machine Learning community shows a growing interest in causality, with ef-
forts to integrate causal structures into inductive protocols [151][146][152][129]. In
this regard, the most established Machine Learning techniques are primarily associa-
tive rather than causal. From a pragmatic standpoint, causal information is often
challenging to obtain, and the available datasets are typically observational. The-
oretically, while the i.i.d. assumption is considered the classical gold standard in
learning, estimating the system’s response - then moving beyond the observational
level - takes into consideration some distribution shift [115][129]. It is essential to re-
alize that the richer epistemic picture just sketched entails additional and not trivial
to overcome difficulties. Adopting a metaphor proposed by J. Pearl [117][10], more
profound questions force to climb the Ladder of Causality as represented in Table 2.

Level Typical Question Model Data ML Methods

3. Counterfactual
What would Y have been
if I had acted on X?

û := yj − f(xj)
xj := x̂
yx̂j := f(x̂) + û

No Data
No ML
methods

2. Interventional
How would acting on X
change Y?

xj := x̂
yj := f(x̂) + uj

(x̂, yi) ∼ Px̂

i.i.d
?

1. Observational
How would seeing X
change my belief on Y?

yj = f(xj) + uj
(xi, yi) ∼ P
i.i.d

Supervised/
Unsupervised
Learning

Table 2: The Ladder of Causality for the static-bivariate case. For simplicity, the
system is assumed to be governed by an additive-noise model Y := f(X) + U . The
symbol := should be read as an assignment, not a symmetric equation.
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Some preliminary remarks can be provided to enhance clarity in anticipation of a
more comprehensive examination in the subsequent pages. Let us proceed by points,
following the ladder from the step upwards for the bivariate case.

• How would seeing X change my belief in Y? On the first step, observational
data (xi, yi) are identically and independently distributed according to the a
priori probability P , and questions at this level admit answers as conditional
probabilities, say P (y|x). We assume that a functional mechanism f governs
the relationship between X and Y , excluding measurement errors, unmodelled
external factors, and additional stochasticity - all captured by the additive noise
U -. For simplicity, we can think of the Machine Learning protocol as aiming
to recognize f , for example, by adopting a regression procedure.

• How would acting on X change Y? Moving up to the next step, if we intervene
by manually fixing the value of X, data are generally no longer distributed as P .
The functional mechanism can be modified, and for each possible external inter-
vention, say X := x̂, data are distributed as the corresponding new distribution
Px̂, to be determined. Generally, observational data are insufficient to extrapo-
late the system’s cause-effect relations, and only a partial causal structure can
be uniquely determined. No matter how elaborate Machine Learning protocols
may be, the observational distribution and the set of independence relations
inferred from data are compatible with a non-trivial class of alternative causal
structures [115]. On the other side, causal inferences require causal assumptions:
some conditions under which it is possible to answer interventional questions
by examining observational data are available, but assuming a causal graph can
correctly capture the cause-effect relationships between variables involved.

• How would Y have been if I had acted on X? Finally - climbing the last step -
data are unavailable by definition at the counterfactual level, and no experiment
in the world will be sufficient to answer counterfactual questions. More precisely,
counterfactual inferences require assumptions about the mechanism underlying
the observed phenomenon: the model Y := f(X) + U is necessary to make
counterfactual conclusions. In a nutshell, the noise actual value û is determined
via the observational couple (xj, yj), providing û := yj − f(xj). Consequently,
the counterfactual quantity yx̂j is obtained by intervening with X := x̂ on the
modified equation y = f(x) + û [115][129].

The points above show how causality is essential for accessing information not
necessarily obtainable on the observational level, regardless of the size of the sys-
tem under consideration. Accordingly, the integration of causal structures within
inductive protocols bears the potential to enhance their expressive capacity. In this
regard, the cause-effect problem in the bivariate context may be considered both the
most fundamental from a conceptual point of view and the least realistic in modeling
concrete situations. Given only two observable and correlated variables - X and Y
- it is intended to establish in which of the two possible alternatives the eventual
causal link is directed [73][129]. Although we can not expect to describe a realistic
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system as a collection of bivariate relations, the scientific literature contains many
discussions about variables in pairs, particularly in social sciences: taxes and govern-
ment spending, education and income, armaments and aggression, inflation rate and
unemployment, social status and political preferences. Moreover - and beyond its
practical applications - the discussion of this elementary topic clarifies some general
features of causality, its role in making practical inferences, and its possible relations
with Machine Learning methods. For these reasons, a formal analysis of the static
model will be considered in some detail by expanding further the discussion briefly
summarized in Table 2. At this point - considering only the interventional level of the
ladder - Table 3 collects the two causal alternatives available when the confounder -
i.e. a third not-observed variable which causes both X and Y providing their non-zero
correlation - is excluded a priori [135].

Observational
Level

Causal
Structure

Post-Interventional
Level

Interventional
Distribution

X Y
X Y X Y

px̂(y) = p(y|x̂)
X Y X Y

px̂(y) = p(y)

Table 3: Cause-Effect Pairs. Whenever the presence of a confounder is ruled out, the
intervention X := x̂ makes it possible to distinguish which case the system belongs
to by comparing the interventional distribution Px̂ with the observational one.

Nonetheless - before this investigation - we wish to address a distinct yet infor-
mative perspective that concerns once again the comparison between modeling and
inductivism. Specifically, we aim to examine how the notion of causality could aid
in mitigating the limitations inherent in inductive protocols regarding applicability,
opacity, and explainability, as discussed in the previous section. Moreover, causality
could explain why Machine Learning methods are rather limited at some crucial feats
where natural intelligence excels. For example, the learning processes characteristic
of biological intelligence do not necessarily require exposure to huge amounts of data,
so the elimination of irrelevant details may not involve only a compression mecha-
nism in resolution. In this regard, let us consider some conceptual steps necessary for
properly framing causal language as an alternative to making compression. In what
follows, the bivariate case is abandoned in favor of the more general case, where m
variables and their dependence relations are considered.

Canonical Factorization. Transparency and explainability are difficult to de-
fine formally, although they are closely related to how a human being understands the
world. Constructing a representation compatible with the agent’s cognitive capacity
in terms of memory and computational resources calls into question the analyst’s
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ability to determine whether the model assumptions are sound or need additional
prescriptions, whether they are aligned with the available data, and to identify which
assumptions require improvement. In this regard, Graphical Models provide a com-
pact representation that is qualitatively compatible with how humans think about
relationships between variables, providing a valuable model for cognition [119]. In
a nutshell, the variables X1, X2, ..., Xm are ordered according to a directed acyclic
graph (DAG) G, and the probability distribution admits the correspondent canonical
factorization

PX =
m∏
i=1

PXi|Pai , (4)

where Pai denotes the set of parents of Xi in G, and can be interpreted as the set
of direct causes for Xi [82][115]. Originally, this formal apparatus was designed to
effectively represent the variables involved through the use of independence relations,
achieving benefits on the cognitive, computational, and statistical learning fronts
[82][118]. Remarkably, a given set of independence relations can be compatible with
alternative DAG structures. The causal graph G - in accordance with Occam’s razor-
type principle - could then be the one that represents in the most compressed way the
information available given a set of independencies. This insight will require the use
of a nonstatistical concept of information, such as Kolmogorov Complexity [74][129].

Modularity to generalize. When environmental conditions change, a ma-
chine trained in one environment cannot be expected to perform well unless localized
changes are identified. For example, in computer vision changes in the distribution
may come from aberrations, geometrical transformations and quality compression.
Problems of this nature can be addressed by employing data augmentation, pre-
training, and other techniques that employ some data bias. However, these fixes may
not be sufficient, and some structural knowledge about the system could be needed.
Artificial Intelligence researchers have recognized this problem and identified subtasks
such as domain adaptation, transfer learning, and life-long learning to alleviate the
general problem of robustness. In this regard, modularity plays a central role and
makes it possible to some levels of generalization [115][146]. More precisely, it is as-
sumed that starting from the canonical factorization (4) with respect to the graph
G, a single factor PXi|Pai can be modified by providing a new factor P̂Xj |Paj without
affecting the others, namely obtaining

PX :=
m∏
i=1

PXi|Pai −→ P̂X := P̂Xj |Paj ·
m∏
i ̸=j

PXi|Pai . (5)

More in particular, the distribution shift (5) formalizes the functional and seman-
tic independence of the mechanisms that characterize the system, then allowing for
the identification of the specific mechanism that is being modified, either due to
changes in external conditions or the application of a model to a similar but not pre-
cisely equivalent problem. Consequently, the generalization achieved is not from one
dataset to another - sampled from the same distribution - but from one problem to
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another. This out-of-distribution generalization is a central ability for natural intelli-
gence, which heavily employs interventions, domain shift, and temporal structure to
build a modular representation. In this regard, causal models can be a relevant step
toward a more transparent and robust Artificial Intelligence [121][117].

Explicit mechanisms. So far the following perspective has been adopted: a
causal model consists of a graph structure G that defines which variables Pai di-
rectly determine the values of the variable Xi, thus establishing a partial order on
X1, X2, ..., Xm. Moreover, modularity allows us to compute interventional distribu-
tion as in (5). For example, when a variable Xj is intervened upon by fixing its value
to x̂, we disconnect it from its parents Paj and fix

P̂Xj |Paj := δx̂,

that is, the Dirac distribution concentrated in x̂. However, the underlying mechanisms
that characterize the system at hand have remained implicit and are represented by
the probability distribution PXi|Pai . This approach is enough when we are interested
in answering a causal query in terms of a probabilistic one, placing us at the second
level of Table 2. In this regard, a causal graph can be considered an intermediate
description between mechanistic models as differential equations in Physics and sta-
tistical ones for which the i.i.d. hypothesis holds. A further step is to make the
nature of the underlying mechanisms more explicit by considering the language of
the Structural Equation Modeling (SEM) [115][151][146][152]. In place of the factor
PXi|Pai , the following rule is considered

Xi := fi(Pai, Ni),

to be read as an assignment from right to left - and not as a symmetric equation -
and for which Ni collects all the exogenous factors, i.e. a random noise on Xi. At
this level, the modularity assumption allows us to change fi - e.g. by fixing Xi to a
constant value - without changing fj. Thanks to this finer-grained representation, we
may be able to discuss intervention queries not representable in probabilistic terms
[61] and answer additional queries such as the counterfactual ones [115][61].

In our intentions, this further conceptual step makes possible a comparison with
other causal indices - including Granger Causality [60][66][62], Transfer Entropy
[149][25], and Linear Response [8][48] - contributing to developing a more unified
perspective. These points will be discussed in the last part of this dissertation by re-
considering the language of dynamical systems. Remarkably, we have so far adopted
the language of cause-and-effect relationships without stating that the cause must be
temporally antecedent to the effect. In the language of causal graphs, the presence
of time constitutes an element of simplification if it is assumed that cause-effect re-
lationships must necessarily satisfy the arrow of time. In the following, we will not
dwell on this aspect. Instead, we will present a more detailed analysis of the concept
of information flow. Although informational quantities are usually understood at the
observational level, we will show how causal semantics can also be employed in the
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case of Transfer Entropy. It will be done by considering the simplest possible case -
the linear case - establishing a comparison with the other indices already recalled.

Causal Pipeline. Having discussed some conceptual elements of causality, it
remains to consider its effectiveness with respect to Machine Learning methods. Al-
though causality brings the hope of significant improvements, new critical issues come
into play when trying to integrate causality into inductive protocols. On the general
level, understanding a system via causal language must necessarily pass through pro-
gressive procedural bottlenecks, each with theoretical and practical consequences.
The more one intends to climb the ladder of causality - firstly passing through the
interventional level and then accessing the counterfactual one - the more critical the
barriers become. Each jump involves new assumptions - some of which are unveri-
fiable - showing a significant trade-off between the power of the causal tool and its
range of applicability. This point will be discussed in the causal-pipeline section. At
this level, it may be useful to recall only two general points:

• Causal Discovery methods provide inductive procedures to recognize the causal
graph G, and can be analyzed via statistical learning theory [55][115]. Inferring
the system’s causal structure can be a particularly difficult task, both in terms
of computational resources and the amount of data required. More precisely,
conditional independence tests - which are central for many causal discovery
algorithms - require an exponential amount of data [195]. Computationally,
identifying the optimal causal structure is an NP-hard problem [82].

• Even assuming an infinite amount of data is available, multiple different causal
graphs may exist associated with the underlying distribution P . Consequently,
given a distribution P , there is a degree of uncertainty that limits our ability to
infer the correct system’s causal structure. The non-identifiability of a unique
causal structure provides a significant bottleneck on the ability to draw causal
inferences effectively [121][129].

The two points above will be reconsidered by presenting a section on state of the art
regarding available algorithms. At any rate - once a causal model is fixed - causal
inference allows us to draw conclusions on the effect of interventions, counterfactuals,
and potential outcomes. In this regard, J. Pearl has proposed Do-calculus - i.e. a
complete set of rules - that allows us to identify the interventional distribution start-
ing from G and P , also when G admits unobserved common causes [115][120][121][71].

The inferential conclusions can be checked a posteriori, given the data available
and the causal structure can be consequently updated. However, standard causal
model assumptions are rarely satisfied in real systems: the acyclicity condition im-
plies a strict hierarchy among the variables, and feedback mechanisms between them
are not permitted; in addition, the modularity condition requires that the mecha-
nisms can not communicate with each other and draw on completely disentangled
processes. More in general, the problem arises of determining under which conditions
an intervention on the system is - in principle - conceivable and what limitations
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arise in intervening. All these remarks can significantly limit this framework’s valid-
ity range. At any rate, the causalization of a system - describing it as admitting a
causal structure that satisfies the correspondent causal assumptions - can provide a
coarse-grained representation that maintains a good level of fidelity without encoding
all the system’s details. Even assuming the eliminativist perspective illustrated by B.
Russell [139][48], causality provides a compression-in-representation compatible with
a notion of intelligence embedded in the environment and that takes into account the
agent’s ability to intervene and generalize in the face of the distribution shift. From
a general viewpoint, Figure 1 can be updated by equipping it as in Figure 2, where
red links require to be explained. To argue for this perspective, we will discuss a pre-
liminary issue: the causal graph can be thought of as the most compressed of those
that are compatible with the probability distribution [129].

Causality

Learnability Predictability

Compressibility

Figure 2: Causation as compression-in-representation with benefits for predicting and
learning, also when the generalization problem involves a distribution shift.

To complete the picture offered so far, it would be necessary to identify a general
principle that - as for the bottleneck framework in the observational case - character-
izes the most appropriate causal representation. A proposal in this regard could take
the following form:

min
PX̂|X ,GX̂,Y

I(X : X̂)− βI(X̂ : Y ) + γK[X̂,GX̂,Y ],

where K[X̂,GX̂,Y ] is some information/complexity measure - e.g. Bayesian Informa-
tion Criterion as in [37] and Algorithmic Mutual Information [74] - and γ corresponds
to a complexity/accuracy trade-off parameter for the causal representation adopted.
By minimizing K, the optimal canonical representation should be causal, assuming
that the causal representation corresponds to the most economical one among those
compatible with the observations. This possibility will be explored - at a preliminary
and conceptual level - in Part III.
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This second part aims to discuss the problems of forecasting and learning, which can
be reread in terms of a compression procedure. The following discussion examines the
Method of Analogues as exemplifying procedures based on compression-in-resolution.
Beginning with some simple results from Statistical Learning theory, the trade-off
between compression and generalization is discussed for Machine Learning techniques.

Part II

Forecasting and Learning
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1 Predictability

Reliability and accuracy in making forecasts reflect the soundness of the scientific
knowledge acquired. Conversely, predictions incompatible with experimental evi-
dence challenge the theoretical framework adopted, leading to conceptual revisions
and - sometimes - paradigm shifts. Moreover, predicting the future starting from
the available information on the past informs our decisions in public and private
spheres, often resulting in significant benefits for applications. Thus it is essential
to consider - both from a theoretical and practical viewpoint - whether there are
general conditions that determine the legitimacy of our predictions, also focusing on
their inherent limitations. In what follows, this point will be briefly examined by
adopting the language of Dynamical Systems. In this regard, let us start with consid-
ering two commonly used indicators to measure the system predictability in relation
to the long-term evolution of a small uncertainty: the Lyapunov Exponent and the
Kolmogorov-Sinai Entropy. In what follows, these objects are recalled by adopting
[22][32][30][113] as the main references. The discussion carried out will allow us to
consider a perspective that calls into question the level of detail in the description of
phenomena. In this regard, the presence of different scales - as mentioned in Table 1
- will assume a positive role in terms of predictability.

Preliminary concepts. A dynamical system can be defined as a pair (M,ϕt)
where the set M collects all the possible system’s states, and the function ϕt :M −→
M works as a transition rule from each state x ∈M to its temporal evolute after a time
t. Remarkably, (M,ϕt) is not a simple input-output machine: the input is given only
as an initial condition so that the system changes according to the evolution law ϕt.
The mathematical properties of these objects depend on the requirements that arise
in modeling. For example, given a continuous-time and deterministic process with
m degrees of freedom, M is naturally equipped with a smooth m-manifold structure,
requiring that {ϕt}t∈R is a one-parameter group of diffeomorphisms in t, so the group
properties

ϕ0 = idM , ϕt+s = ϕt ◦ ϕs

hold. In this case, ϕt is associated to a differential equation ẋ = v(x), where the
bijective correspondence between ϕt and v is locally determined via the relation

d

dt
ϕtx|t=0 = v(x).

In what follows, ϕt will also denote discrete-time maps, for which xt = ϕ1xt−1 = ... =
ϕtx0 and t ∈ Z. Moreover, other mathematical structures - in addition to differential
and topological ones - may come into play: a probability measure µ on M can be in-
troduced to represent the state uncertainty, or a metric structure compares two states
by measuring their distance. At any rate, one of the main remarks in this context
can be phrased as follows: while the dynamic rule ϕt may be relatively simple, its
iterated application can lead to behaviors prohibitive to forecast based solely on the
rule itself, as the following predictability indices quantified.
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The Lyapunov Exponent. Let us consider the separation between two trajec-
tories - say x(t) and x′(t) - which start from two close initial conditions, x(0) and
x′(0) = x(0) + δx(0) respectively. As long as δx(t) = x′(t)− x(t) remains sufficiently
small, it can be regarded as a tangent vector of M . Consequently - under rather
general hypothesis [22] - the tangent dynamics can be decomposed as

δx(t) =
m∑
i=1

civie
λit, (6)

where {vi}mi=1 is an orthonormal basis for the tangent space, the coefficients {ci}mi=1

can depend on the initial condition, and the exponents {λi}mi=1 are supposed to be
ordinated as

λ1 ≥ λ2 ≥ ... ≥ λm.

To visualize the role of the exponents λi, we can imagine centering a small sphere in
the initial state to consider its evolution. After a time t, this sphere is mapped to
an infinitesimal ellipsoid, and the ratio of its radius i to the initial radius will be of
the order eλit. In this regard, Osledec’s Multiplicative ergodic theorem ensures that
this picture does not depend on the initial state [113][32][80]. More in particular,
if the dynamical system has an ergodic invariant measure - i.e. an ergodic natural
measure on the system’s attractor considered - the spectrum {λi}mi=1 does not depend
on the initial condition almost surely, and the distance between the two trajectories
considered evolves - given the tangent approximation in (6) - as

||δx(t)|| ≈ ||δx(0)||eλ1t
{
1 +O(e−(λ1−λ2)t)

}
. (7)

From the perspective of the system predictability, the exponential amplification of the
initial error δx(0) comes into play whenever the largest Lyapunov Exponent λ := λ1
- called the system’s Lyapunov Exponent - is positive. In this case - given an initial
uncertainty δ0 := δx(0) - the system behavior is predictable within a tolerance ∆ only
up to a predictability-horizon

Tp ∼
1

λ
ln

(
∆

δ0

)
. (8)

This relation shows that Tp is basically determined by the Lyapunov Exponent λ,
while its dependence on δ0 and ∆ only logarithmically. In other words, λ gives quan-
titative information on how rapidly the ability to predict the evolution of a system
is lost. After a time enough larger than 1/λ, the system state may be found almost
everywhere. Remarkably, the Lyapunov Exponent is a global quantity that charac-
terizes the system’s fine-grained properties, namely about the generic trajectory for
a long time and infinitesimally small perturbation [22][30].

The Kolmogorov-Sinai Entropy. The stretching of infinitesimal displacements
- as quantified by the Lyapunov Exponent - is a well-established characterization
for the chaotic dynamics. Additionally, the unpredictable nature of chaotic systems
can be re-read in terms of the wide variety of alternative orbits, as pointed out by
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Kolmogorov in applying Shannon’s information characterization. In a nutshell, given
a finite partition U = {Ui}ui=1 of M , the entropy function

H(U) = −
u∑

i=1

µ(Ui) log µ(Ui) (9)

quantified the average information gains in knowing that the orbit belongs to one
of the elements of U . The general idea is simple: given the initial condition x with
some inaccuracy, we wish to measure how much additional information ϕ generates
in reducing the uncertainty on x. In other words, the information (9) can be refined
by taking into account the state evolution via iterated applications of ϕ, namely by
adopting the finer partition

Uk
ϕ := {Uk

i := Ui0 ∩ ϕ−1Ui1 ∩ ... ∩ ϕ−k−1(Uik−1
) : Uis ∈ U}

and considering H(Uk
ϕ) in place of (9). At this point the quantity

h(ϕ,U) := lim
k→∞

1

k
H(Uk

ϕ) (10)

can be regarded as the average information rate achieved - asymptotically - by con-
sidering the finer partition at stage k + 1 in place of the coarser one at stage k.
Remarkably, definition (10) depends on U and the Kolmogorov-Sinai Entropy of ϕ is
defined removing this dependence via the supremum operation

h(ϕ) := sup
U
h(ϕ,U). (11)

In view of the discussion that follows, we adopt a more constructive definition than
(11) by considering a compact phase space M equipped with a metric d. First, fixed
a resolution ε, two points of M distant less than ε are considered indistinguishable.
However - after a time k - their iterations could lie in two not-intersected ε-spheres
and then turn out to be distinguishable. In other words, orbits indistinguishable up
to an instant k may begin to be distinguishable, thus allowing us to access additional
information about the initial condition. To formalize this point, let us introduce a
new metric dk and its correspondent ε-spheres

dk(x, y) := sup
0≤r≤k−1

d(ϕrx, ϕry),

Bk
ε (x) := {y : dk(x, y) < ε}.

Remarkably, two distinct points in Bk
ε (x) result - by definition - indistinguishable at

resolution ε at least until k − 1 iterations, so that the chain of inclusions

B1
ε (x) ⊇ B2

ε (x) ⊇ ... ⊇ Bk
ε (x) ⊇ Bk+1

ε (x)

holds. This observation allows us to define a family of coverings in ε-spheres that
provides a filtration for M . First of all - for each k - we define the M -covering

Uk
ε := {Bk

ε (x) : x ∈M},
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so that Uk+1
ε is finer than Uk

ε : for every B
k
ε ∈ Uk

ε , there exists an ε-sphere B
k+1
ε ∈ Uk+1

ε

such that Bk+1
ε ⊆ Bk

ε . Moreover, given any other covering U , there exists a k for which
Uk
ε is finer than U . Considering the smallest finite sub-covering of Uk

ε and denoting
by Nk(ε) its cardinality, the quantity

hε(ϕ) := lim
k→∞

1

k
logNk(ε) (12)

measures the growth rate of ε-spheres needed to cover M , at a given resolution ε.
Remarkably, Nk(ε) can be interpreted as the minimal number of distinguishable k-
orbits {ϕtx}k−1

t=0 needed to represent all the possible k-orbits at the fixed resolution ε,
so that (12) is an index for the correspondent grow rate. The Topological Entropy is
then defined via a limit operation on the resolution:

htop(ϕ) := lim
ε→0

lim
k→∞

1

k
logNk(ε) (13)

However, Nk(ε) in (13) also takes into account orbits that are less and less probable
as k increases. By considering again the role played by the measure µ, our analysis
should be restricted to the typical orbits. At this point, it is sufficient to consider
the following observation: if µ is the natural measure on a chaotic attractor, for a
sufficiently k the only observable orbits are those that live on the attractor. The
substitution

Nk(ε) 7−→ N eff
k (ε)

in (13) - considering only the effective numberN eff
k (ε) for sufficiently large k - allow us

to re-obtain the Kolmogorov-Sinai Entropy [22] as in (11) by removing the dependence
on resolution ε through the limit operation

h(ϕ) = lim
ε→0

lim
k→∞

1

k
logN eff

k (ε). (14)

It can be shown that h(ϕ) ≤ htop(ϕ). On the one hand, if htop(ϕ) > 0, the system
may have non-chaotic attractors and a non-attracting chaotic invariant set. On the
other hand, the condition h(ϕ) > 0 tells us that at each sufficiently small ε scale - also
under the assumption of considering only typical orbits for sufficiently long times -
the number of ε-spheres needed to cover M grows exponentially with k. For systems
of this type, the elimination of details always produces a limit on the predictability
horizon, whatever resolution is chosen. This fact can also be interpreted as sensitive
dependence on the initial condition in the sense of chaotic dynamics - i.e. when the
Lyapunov Exponent is positive - although the divergence mechanism is combined to
a converging one due to the compactness of M .

Large-Scale Predictability. While the Lyapunov Exponent quantifies the sys-
tem’s unpredictability regarding the stretching of infinitesimal displacements, on the
other hand, Kolmogorov-Sinai Entropy measures the growth rate of the typical alter-
native orbits. Remarkably, the Pesin-Ruelle formula establishes a link between these
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two viewpoints [22][32]. In the simplest case,

h(ϕ) ≤
∑
λi>0

λi

so that for h(ϕ) > 0 the estimate (8) for the predictability-horizon come back into play.
However, Lyapunov Exponent and Kolmogorov-Sinai Entropy - as remarked above -
are fine-grained indices and quantify a global characterization of the dynamical system
at hand, considering all the system’s degrees of freedom. In this sense, they provide
a worst-case estimate about the system predictability, even under the assumption
of considering only typical orbits. The fine-grained representation does not take into
consideration the possible existence of different characteristic scales : no advantages of
restricting to a particular description level are employed by removing details irrelevant
to the predictions of our interest. From a general viewpoint, a dynamical system can
exhibit both chaotic behavior and simplifying tendencies, where certain degrees of
freedom dominate and constrain others. In other words - although forecasting can be
challenging when considering the most detailed description level - some fluctuations
can average out when we change the resolution scale, revealing a more regular behavior
for less detailed description levels so that the estimate (8) for the predictability-
horizon can result too pessimistic for many concrete problems. To clarify this point,
let us briefly consider an example proposed in [22][23][32], for which the following
three-dimensional coupled map is defined:{

x(t+ 1) = Rθx(t) + εf(y(t))

y(t+ 1) = 4y(t) · [1− y(t)]

where x ∈ R2, y ∈ R, Rθ is a rotation of angle θ, f(y) := (y, y) and ε ≥ 0. For
ε = 0 the system provides two decoupled maps: the rotational in x, for which the
Lyapunov Exponent is λx = 0; the chaotic map for y, that admits λy := ln 2. On the
other side, given a small coupling ε > 0, the correspondent three-dimensional map is
chaotic, and its largest Lyapunov Exponent is

λ = λy +O(ε).

Consequently, the predictability horizon for x would scale as 1/λy if the estimate (8)
were employed naively. This conclusion would conflict with the basic understanding
of the system. In this regard, we expect predictability for x to be unaffected by
the behavior of y, which is negligible for small ε. This incongruity derives from the
mistaken application of (8), as explained in [32][23]. While (8) is valid only for both
δ0 and ∆ infinitesimal - as soon as the error becomes large - the full nonlinear error
evolution has to be taken into account. More in particular, at the beginning both
||δx(t)|| and |δy(t)| grow exponentially according to the tangent-space dynamics in
(7). After a time O(1/λy), the evolution of |δy(t)| leads the saturation due to the
boundedness of the available phase space for y, i.e. |δy(t)| ∼ O(1). Consequently,
two y-subsystem realizations are completely uncorrelated and their difference δy acts
as noise on the equation for δx(t). As a consequence, the growth of ||δx(t)|| becomes
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diffusive: ||δx(t)|| ∼ εt1/2 and the predictability-horizon for x scales as

T x
p ∼

∆2

ε2
. (15)

What has just been discussed exemplifies a general mechanism in accounting for how
unpredictability and predictability can coexist when considering different scales. In
these situations, considering a too-accurate observation scale can be both unnecessary
and misleading. Conversely, large-scale predictability is achievable by moving across
resolution scales and removing small-scale details. In the example discussed, the
model delivers a representation that allows us to naturally distinguish which details
are irrelevant for forecasting. On the other side, recognizing the underlying mecha-
nisms may not be feasible, as illustrated in Table 1. In the realm of big data, Machine
Learning techniques may have the capability to uncover patterns across various scales
within the data, traversing the hierarchy of complexity without necessitating a com-
prehensive understanding to determine the relevant scales for the given task at hand.
In what follows, the shortcut via inductive procedure will be discussed in more detail.

2 The Analogs Method

Red sky at night, sailor’s delight. Red sky in the morning, sailor’s warning. Every
culture abounds with propositions of this nature, and grandmothers who have long
lived in the same place typically declare that they can predict the weather based
on what they have already observed. Nevertheless, no one should adopt the above
statement as having scientific validity. Although some epistemological considerations
typically come into play in this regard, some serious limitations emerge when consid-
ering a rigorous formulation of this inductive procedure. Let us start by formalizing
the grandmother’s approach via the Analogs Method, which has been used in me-
teorology since Lorenz’s work [92][93][94][95]. Given the actual state z of which we
want to forecast the evolution after an amount of time t, say ϕtz, we consider in our
database S a past state a similar to z, possibly the best one, and approximate ϕtz
with ϕta:

a ∼ z =⇒ ϕta ∼ ϕtz,

a, ϕta ∈ D.
The Analogs Method does not require the functional form of ϕt. Operationally, the
concrete algorithm that provides a forecast is straightforward and reduced to a search
and sorting procedure in the database D. Theoretically, the Analogs Method requires
an underlying regularity assumption. After all, it seems to be a natural claim that if
a system behaves in a certain way, it will do so again, at least for numerous practical
tasks. Moreover, in the conceptual scheme offered by the Ladder of Causality, it is
clear that Analogs Method is placed at the first level: interventions and counterfactu-
als have no role, while the data available are observational records of the underlying
process. On the other side, we have not yet speculated on the mechanism that gen-
erated our database D. In this regard, two major viewpoints of forecasting based
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on historical datasets are available. The first assumes that an observed time series
is a specific realization of a random process, where the randomness can be typically
amplified by the interaction between many degrees of freedom. The second states
that random behavior may be generated by deterministic systems also with a few
degrees of freedom but interacting non-linearly, emerging from a not infinitely precise
knowledge of the current state [24]. In our notation, ϕt stays for the deterministic
evolution law specified by the underlying system’s equations in the manner of the
Dynamical Systems theory.

Considering the statistical literature for classification tasks, Analgos Method shares
many characteristics with KNN. This protocol looks at the K points in the training
set that are nearest to the input x, counts how many members belong to each class,
and returns an estimation of the probability p(y|x) or an output y through a major-
ity vote [103][108]. In what follows, we will emphasize the role of some dynamical
ingredients, such as recurrence and ergodicity, leaving the parallelism above in the
background. Nevertheless, while KNN is considered one of the most simple Machine
Learning algorithms, Analogs Method represents an archetypal example among in-
ductive protocols for forecasting. Consequently, it deserves a more detailed analysis
to discuss its assumptions, strengths, and limitations.

Main Assumptions and Advantages

In the standard Analogs Method procedure only one single analog is used, although
slightly different variants employ theK best analogs, for example performing weighted
averages or random selections. However, all alternative protocols are based on at least
three shared assumptions.

A.1. Adequate feature space and measure of similarity δ are available.
This first assumption concerns our background knowledge. Generally, every system’s
state can be characterized through a D-dimensional vector, where each element cor-
responds to one observable. Determining the correct number D and identifying the
correspondent observables are not obvious tasks. Sometimes, practical considerations
can lead us to map the D-dimensional phase space into a lower d-dimensional feature
space. In this regard, a relevance criterion is adopted, and dimensional reduction pro-
cedures such as Principal Components Analysis are commonly used in data-oriented
applications [103][108]. On the other hand, if only a few variables are observed,
time-embeddings techniques are supported by Takens’ results: the attractor can be
identified through the delay reconstruction map, at least theoretically [176]. In short,
given a time series for a one observable f , say {ft}Tt=1, there is a finite integer d such
that the delay coordinate d-vector at time τ

xdτ = (fτ , fτ+1, ..., fτ−d+1)

can faithfully reconstruct the properties of the underlying dynamics. At any rate, the
adequate feature space is not enough. We will also assume that a measure of similar-
ity between states is introduced. The Analogs Method employs a notion of closeness,
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for which the Euclidean distance is a standard option, although other possibilities are
available in principle. For example, we can select a metric that gives more weight to
some features than others; again, the analogs similarity can be quantified via statisti-
cal quantities. This choice is typically motivated by considerations that are relevant
to the specific problem to be addressed. In what follows - for our conceptual analysis
- it will suffice to assume that the appropriate space M and metric δ are known.

A.2. Close analogs can produce good approximations. This second as-
sumption is about the system’s behavior. Given a generic dynamical system, we can
provide an a priori estimation of its orbits divergence. If δ0 is the distance between
two states at t = 0, as defined in A.1, the a priori estimate of its evolution after an
amount of time T is

δT ≈ δ0e
λT , (16)

where λ is the system’s Lyapunov Exponent [32][80]. As discussed above, if λ > 0,
the error will grow exponentially in time. Fixing the error tolerance δ∗ and the pre-
dictability time T of our interest, we consequently select an accuracy ε for which we
should take δ0 < ε to have sufficiently accurate previsions. Remarkably, the evalu-
ation of the error growth (16) provides - at least in principle - a way to empirically
determine λ starting from a long time series. More recently, also ML approaches
have been proposed for obtaining Lyapunov Exponent s from data, as in [114]. We
remark that the estimate (16) can be too pessimistic, and deterministic systems with-
out chaotic behavior admit the error growing polynomially in time. It is well known
how chaos constitutes a significant limitation to our ability to forecast, even for low-
dimensional systems. What we are interested in highlighting is how the pair (T, δ∗)
returns an estimate for ε, given the system properties quantified by λ.

A.3. Close analogs can be found examining the known history. This
third assumption is about data being concretely available. Every database is to some
extent representative of the system under study. More precisely, given the metric δ
provided by A.1, we can cover M with spheres of radius ε as defined in A.2. We
will say that the database explores all the space M at a resolution ε if it contains at
least one point for each sphere. At this stage, a counterintuitive property of high-
dimensional spaces comes into play. Suppose d increases, the relative measure of the
ε−spheres definitively decreases, and more data will be required to have M entirely
explored by the database in question. Quantitatively, the number N (ε) of ε−spheres
needed to cover M scales as 1/εd. The Analogs Method is based on the assump-
tion for which ε−similar points will produce comparable evolutions. However, D may
not be large enough to contain all the analogs needed, at least if d is sufficiently large.

Despite its simplicity, the Analogs Method has significant advantages both from the
practical and theoretical sides.

S.1. It does not require an underlying model. The Analogs Method has
a non-parametric nature and can reproduce nonlinear relationships requiring only a
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Figure 3: The Analogs Method illustrated. After the predictability time T the error
δt overcomes the tolerance δ∗. The a-priori trade-off between δ, T and ε is governed
by (16).

few meta-parameters to work, such as the choice of distance or the number of analogs
used at each iteration. In other terms, the background knowledge needed to implement
this procedure is more contained. Moreover, it is in principle capable of providing
realistic simulations without any simplifications about the underlying system.

S.2. It is computationally affordable and easily interpretable. Even when
a model is available, it is not necessarily tractable from a computational point of view,
given our finite resources and fixed constraints. Conversely, the Analogs Method is
supported by fast algorithms in researching suitable analogs in large databases, as-
sessing uncertainties by performing ensemble forecasts [88]. Moreover, the art of
building good models is very far from being clearly understood, and model-driven
approaches require many expertises and a high cognitive cost. On the other side, the
simple principles behind AM make it easily interpretable, both from an operational
and theoretical point of view.

Although the Analogs Method was initially proposed for weather predictions, forecast-
ing is primarily based on physical models combined with data assimilation techniques.
Nevertheless, the prominence of the modeling approach over the grandmother’s phi-
losophy is not due only to epistemological considerations. On the contrary, the main
obstacle for the latter concerns the properties of the available databases. More pre-
cisely, assumption A.3 seems falsified in many factual contexts. As Lorenz himself
realized [93][94], the main issue is to find suitable analogs, and this drawback arises
from the need for unmanageable massive data [182], regardless of the system’s chaotic
behaviour[31].
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Limitations

One of the main ingredients supporting AM is the pervasive role of recurrence in deter-
ministic systems [32][80]. In this regard, Poincaré proved the fundamental recurrence
theorem [132]: for every subset A of non-zero measure and every probability-preserving
transformation ϕ, almost every point of A will return to A, after a sufficiently long
but finite number of iterations of ϕ. In other terms, every orbit will come arbitrarily
close to a previous state, even for chaotic behaviors. At the same time, although this
existence theorem is good news, some limitations arise unavoidably.

L.1. A suitable analog can require a too-large database in many con-
crete situations. As stated above, Poincare’s result is an existence theorem and
does not provide a quantitative estimation of the recurrence time. A classical result
proved by Kac fills this gap, stating that the average recurrence time to a subset A
is the inverse of the probability of A [76]. This elementary fact produces a strong
limitation: the expected recurrence time increases exponentially with the system di-
mension d [31][69]. More precisely, given the resolution ε in searching analogs in the
past, the database size L scale as

L ∼ 1

εd
. (17)

In other terms reducing our resolution to a factor α leads to a factor αd for the
database size. When d is moderately big, the needed L can become unmanageably
large. The estimate (17) justifies in a dynamic context the a priori estimate for the
number nε of ε−spheres necessary to cover M , providing an argument for the curse
of dimensionality in the forecasting framework. It is important to emphasize that
the estimation above is an average result, while the waiting time can depend on the
system’s local properties [111]. Consequently, a high variability around the mean
value could justify why AM works in some regimes and does not in others.

L.2. A given database can not typically explore the feature space with
a satisfactory resolution. The problem of how long we must wait when searching
for adequate analogs can be replaced by a more applications-oriented one. Fixing the
dataset length L, we are interested in identifying the best analogs possible to evaluate
AM performance. Denoted as {ai}n1 the n best analogs of the actual state z, we define
the distance rk := δ(z, ak) assuming that ri < rj for i < j. The random variable Rk

associated to rk admits the following estimation for its expected value and variance:

⟨Rk⟩ ≈
(
k

L

)1/d

, (18)

σ2
Rk
≈ 1

d2L2/d
k

2−d
d . (19)

The relations above state that for very low dimension, say d < 2 the first distance R1

has a lower variability than Rk, while the variance is constant when d = 2. On the
other hand, the inverse phenomenon happens for higher dimensional systems. The
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successive analogs in the available catalog are progressively pushed far from the actual
state z with decreasing uncertainty. This distances concentration would justify why
a lower number of analogs is used in performing good forecasts in low-dimensional
space, while we expect that high values of k would not greatly impact the perfor-
mance in higher dimensions.

To obtain (18) and (19), let us evaluate how the best possible analogs are dis-
tributed, considering a dynamical system (M,ϕt, µ), where µ is a conserved probabil-
ity measure. We consider a database with L data points, corresponding to L random
variables X1, X2, ..., XL. Under the ergodic assumption and if we assume that enough
time passes between one measurement and another, it is natural to consider these
random variables as independent and identically distributed. Remarkably, the i.i.d.
hypothesis is shared with the standard ML framework. Let z ∈ M be the actual
system state, with δi := δ(z,Xi) for a given metric δ on M . Let R1 := mini{δi} be
the random variable that corresponds to the distance between the actual state z and
the best available analog. By definition, we have

Prob(R1 > r) = Prob(δ1, δ2, ..., δL > r)

=
L∏
i=1

Prob(δi > r)

= [1− µ(Bz,r)]
L ,

where Bz,r is the z-centered ball with radius r. It is well-known that if µ is ergodic
on a given attractor and the limit for r → 0 exists, then the effective dimension is
well-defined:

dz,r :=
ln(µ(Bz,r))

ln r

r→0−−→ d,

where d is independent from z and µ(Bz,r) = rd. Putting it all together, for L >> 1,
we have

Prob(R1 > r) =
[
1− rd

]L ≈ e−Lrd .

Given the cumulative function FR1(r) = 1−Prob(R1 > r), the probability distribution
calculation is straightforward:

pR1(r) = dLrd−1e−Lrd . (20)

This calculation is generalizable by considering the n best analogs a1, a2, ..., an, where
δ1 < δ2 < ... < δn and n < L. Let Rk be the random variable associated to the
distance δk := δ(z, ak), where ak is the k-th nearest analog. What follows aims at
determining the density distribution pRk

(r), with k ≤ n. For simplicity, we start with
k = 2, observing that

Prob(R2 > r) = Prob(a1 ∈ Bz,r; a2...aL ∈ Bc
z,r) + Prob(R1 > r)

=

(
L

1

)
(1− rd)L−1rd + (1− rd)L

≈ (1 + Lrd)e−Lrd ,
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where the last approximation holds for L >> 1. Given the equations as follows

Prob(Rk > r) = Prob(a1...ak−1 ∈ Bz,r; ak...aL ∈ Bc
z,r) + Prob(Rk−1 > r)

=

(
L

k − 1

)
(1− rd)L−k+1(rd)k−1 + Prob(Rx−1 > r),

and proceeding inductively, we obtain

Prob(Rk > r) =
k−1∑
i=0

(Lrd)i

i!
e−Lrd .

Consequently, (20) is generalized as

pRk
(r) =

dLkrdk−1

(k − 1)!
e−Lrd , (21)

with expected value and variance

⟨Rk⟩ =
1

L1/d

Γ(k + 1
d
)

Γ(k)
,

σ2
Rk

=
1

L2/d

[
Γ(k + 2

d
)

Γ(k)
−

Γ(k + 1
d
)2

Γ(k)2

]
,

where Γ(x) =
∫ +∞
0

tx−1e−tdt is the standard Gamma function. By adopting standard
approximation techniques, we obtain (18) and (19). The average value of Rk scales
as k1/d and the approximation will be increasingly valid as k grows when d > 2, with
Rk progressively concentrated around its maximum

R∗
k =

(
k − 1

d

L

)1/d

.

To summarize, it is well known that chaos is the main limiting factor to predictability
in deterministic systems when the evolution laws are known. This limitation can be
formalized by using Lyapunov exponents or through Kolmogorov-Sinai Entropy, for
which the notion of resolution plays an explicit role in the definition. On the other
side, the first bottleneck for a purely inductive strategy lies in Poincaré recurrences, so
good analogs are not available if the system’s effective dimension is moderately large.
The effective dimension can be understood in terms of the attractor’s dimension or
as the number of degrees of freedom that persist if we take advantage of the possible
multiscale structure. In the latter case, the relationship between T and ε can be poly-
nomial as in (15). However, for moderately large effective d, the size of the dataset
remains prohibitive in many applicative contexts. A similar limitation emerges in
considering the performance of a given dataset, and the probability distributions for
the best-analog distances are derived analytically as in (21). Moreover, other limi-
tations can come into play. For example, the method’s performance is compromised
when extreme events - typically rare - are considered: it is easy to imagine situations
in which Analogs Method is suboptimal. All these limitations naturally emerge in
a data-driven context where neither an explicit model nor other information on the
system’s causal structure is available.
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3 Interlude. The Relevance Objection.

It is a popular claim that Machine Learning methods are essentially inductivist, al-
though many details of such inductivism remain in the dark. Consequently - given
the algorithmic differences between the Analogs Method and Machine Learning pro-
tocols - it could be argued that the analysis proposed above is irrelevant in discussing
other inductive procedures and their possible limitations. A position of this type has
recently been supported by the epistemologist W. Pietsch:

A central problem with the argument based on Poincaré’s recurrence the-
orem and Kac’s lemma is that it presupposes a mistaken picture of how
Machine Learning algorithms reason inductively from data ([130], p. 58).

To properly frame how Machine Learning protocols work - as opposed to the Method
of Analogs - Pietsch distinguishes at least two categories of induction. On the one
hand, enumerative protocols such as Analogs Method would be based on the regularity
of recorded events; on the other, the variational approach should have its foundation
in changing circumstances. In the former case, pattern recognition would become
more robust as the number of observed co-occurrences and similarities increases. In
the latter, the ability to predict would be based on the numerous variations avail-
able and thus on the protocol’s capacity to recognize causal links. To make this last
point clear, let us go into a bit more detail by stating Variational Induction as pro-
posed in [130][131], where the methods of difference and agreement have a central role.

Mehods of difference and agreement. First of all, a general premise is nec-
essary. All the system variables are assumed to be known, and three objects are
considered: the observables X and Y , for which the causal relationship is investi-
gated; the set of background variables B1, B2, ..., Bn, that is to say, all other variables
in the system. Additionally, it is essential to highlight that the system’s causal struc-
ture is at the beginning unknown. At this point, we can proceed by introducing the
methods mentioned above.

Method of difference. Given the same background B, two instances are
observed. In the first, circumstance X is present and phenomenon Y is
present; in the second, circumstance X is absent and phenomenon Y is
absent. Then X is causally relevant to Y with respect to background B if
and only if B guarantees homogeneity.

Method of agreement. Given the same background B, two instances are
observed. In the first, circumstance X is present and phenomenon Y is
present; in the second, circumstance X is absent and phenomenon Y is still
present. Then X is causally irrelevant to Y with respect to background B
if and only if B guarantees homogeneity.

Both methods invoke the Homogeneity Condition, which captures the intuition that
all circumstances causally relevant to the phenomenon must be fixed, except those
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explicitly under examination. In the author’s intention, this condition allows one to
compare different instances and identify causal relationships between observables.

Homogeneity Condition. Context B guarantees homogeneity with respect
to the relationship between X and Y if and only if context B is thus defined
that only circumstances that are causally irrelevant to Y can change,
except for X and for circumstances that are causally relevant to Y in
virtue of X being causally relevant to Y.

The second exception allows changes for circumstances that lie on a causal path from
X to Y or effects of circumstances that lie on it. This remark will be discussed in the
last section of this paper. At any rate, the author’s main thesis states that the most
successful types of Machine Learning algorithms all implement Variational Induction
precisely because of its causal nature. In other words, while not giving us an explicit
model, some Machine Learning protocols would be able to capture causal relation-
ships between system variables, thus circumventing the limitations discussed in the
previous section.

Relevance Objection. By virtue of the elaboration schematically proposed in
the previous paragraph, W. Pietsch goes into the merits of the argument based on
Kac’s lemma.

Any estimate of the amount of data required for predictions based on
Kac’s lemma is misguided since this lemma takes into account the phase
space in its full dimensionality, mistakenly considering all circumstances
to be equally relevant ([130], p. 59).

This remark on the theoretical level is accompanied by a more applications-oriented
claim about the role of the system’s dimensionality:

Big data approaches have been successful not only for low-dimensional
problems but also for extremely high-dimensional problems, as in the case
of the prediction of skin cancer from images. In this example, a large num-
ber of pixels of these images were taken into account to predict, wherein
the number of pixels determines the order of magnitude of the dimension-
ality of the problem ([130], p. 58).

In what follows, we will argue in favor of a broader interpretation for the already
discussed limitations by adopting the informational language as a unifying framework,
also considering a comparison with Deep Learning protocols via a high-level analysis.
However, before proceeding further, it may be helpful to focus on some preliminary
misconceptions contained in the recalled quotations.

• First, there is a substantial difference between the number of pixels and the
number of features needed to classify a set of images correctly. The latter is
closer to dimensionality in the Dynamical Systems framework, where dimension
corresponds to the number of relevant variables or effective degrees of freedom.
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• Second, Kac’s lemma neither considers the full dimensionality of the phase space
nor assigns the same relevance to all possible circumstances. On the contrary,
the analysis proposed above is applicable when the system has some attractor
where the measure is concentrated or when the multiscale structure is exploited.

Hopefully, the previous sections should have clarified all these preliminary points.
At a general level, the argument based on Kac’s lemma concerns the number of
data required to explore a phase space of dimension d at a resolution ε. In this
sense, it corresponds to a rigorous formalization of the curse of dimensionality in the
context of forecasting. While Machine Learning protocols employ procedures that
are undoubtedly different from Analogs Mehod, the question arises as to what terms
ε-resolution plays a role in the context of learning. This point will be discussed in the
following pages. First, however, let us consider the constructive part of the argument
proposed by W. Pietsch.

Variational Induction

In this section, we turn to Pietsch’s theoretical proposal, for which the Variational
Induction framework justifies Machine Learning algorithms’ performances precisely
because of its causal nature. If this were the case, the epistemological picture offered
by the Ladder of Causality would have to be revised. We could say that an induc-
tive protocol that operates on observational data without making causal assumptions
works well precisely because it can recognize cause-effect relationships, a prerogative
of the ladder’s second rung. On the other side, the weakness of Pietsch’s proposal
lies in the role played by homogeneity. If Pietsch was right, then the Homogene-
ity Condition should be satisfiable when considering a protocol without the system’s
causal structure being known. On the contrary, homogeneity is satisfiable only if we
can a priori distinguish between variables placed along a chain from X to Y and vari-
ables that are not. In other words, Variational Induction could say something about
causality only if the causal graph was a priori known - at least partially - against
the argument that causality can instead be captured by Variational Induction. If the
system’s causal structure is unknown and we consider a purely observational level,
we can admit at most a weak homogeneity condition, thus modifying the methods
proposed.

Weak Homogeneity Condition. Context B guarantees homogeneity with
respect to the relationship between X and Y, iff context B is thus defined
that only circumstances that are causally irrelevant to Y can change,
except for X.

However, the weak homogeneity condition does not allow us to extract causal infor-
mation from observational data. Clearly, the whole discussion can be done in terms
of a causal graph, so we will say that X is causally relevant to Y if the underlying
causal graph admits a chain from X to Y . Adopting this perspective, it becomes
almost automatic to show the point via extremely simple examples.
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Method of difference. Let us consider a causal graph consisting of the nodes
X, Y,B = {B1, ..., Bn}, with unknown skeleton and arrows’ directions. Suppose we
fix the values of each individual variable in B, B1 = b1, ..., Bn = bn. We say that X is
causally relevant for Y if

∆X ̸= 0⇒ ∆Y ̸= 0. (22)

If we consider the purely observational level, the validity of the relation (22) can only
be investigated by studying the dependence between variables X and Y under the
assumption of conditioning on B. In other words, we must verify that the conditional
dependency condition is satisfied:

P (X, Y |B = b) ̸= P (X|B = b)P (Y |B = b), (23)

where B = b means B1 = b1, ..., Bn = bn. However, this type of condition is in-
sufficient to identify a causal relationship, as is easy to verify in low-dimensionality
cases. Two examples should be enough. The first one is about the causal direction.
If we consider the simplest case, assuming B = ∅, the Method of difference is in no
way effective in determining in which of the two directions the causal link is oriented.
The second one is known as selection bias. Suppose for simplicity that X and Y are
connected exclusively by a path which passes through a node Bi ∈ B. Let also Bi

be fixed to a specific value bi. It is possible to show that in the case where one has
a collider, the (23) may turn out to be true regardless of whether X actually plays a
causal role in determining the value of Y. Not only such a dependence turn out to be
undesirable in the framework described by Pietsch, but it emerges because one has
fixed the value of Bi.

Bi

X Y

Figure 4: Collider. Fixing Bi introduces a dependency beetween X and Y.

Method of agreement. Mirroring what was done above, we fix the values of
each individual variable in B, B1 = b1, ..., Bn = bn, saying that X is causally irrelevant
for Y if

∆X ̸= 0⇒ ∆Y = 0. (24)

As in the previous section, if we consider the purely observational level, the validity
of the relation (24) can only be investigated by studying the dependence between
variables X and Y under the assumption of conditioning on B. In other words, we
must verify that the conditional independence condition is satisfied:

P (X, Y |B = b) = P (X|B = b)P (Y |B = b). (25)
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where B = b means B1 = b1, ..., Bn = bn. However, this type of condition is insuffi-
cient to identify an existing causal relationship. All chains from X to Y containing
nodes B are blocked by conditioning on B. Let us consider the simplest case, where
a single node Bi blocks the chain from X to Y . Conditioning on Bi allows us to
conclude that X is causally irrelevant to Y , despite the existence of a causal chain.

X Bi Y

Figure 5: Mediator. Conditioning on Bi blocks the causal chain.

Locality. The topics presented so far involve elementary graphs. Someone might
argue that these low-dimensional examples are irrelevant: Machine Learning algo-
rithms typically deal with complex problems with many relevant variables. However,
this objection is incorrect. A simple observation can clarify this point. Given vari-
ables X and Y , all paths connecting them via at least two other nodes are blocked
once B is fixed. The only way to open a path with all nodes fixed is to have a collider
between X and Y. Once the collider is placed, any choice of remaining arrows blocks
the path.

X YB1 B2

Figure 6: Conditioning on B1, B2 blocks the path, whatever is the direction of the
edge between B2 and Y.

To summarize the discussion articulated so far, Machine Learning protocols repre-
sent an undeniable opportunity for scientific and technological progress, with signifi-
cant consequences for many aspects of our lives, for better or worse. In our view, the
conceptual framework provided by the modeling approach can help us correctly frame
these opportunities, also highlighting some of their potential limitations. The the-
ory of Dynamical Systems offers some indications, starting by analyzing a remarkably
naive inductive protocol, the Analogs Method. A significant bottleneck - under rather
general assumptions - lies in the unavailability of a sufficiently large database. The
limit recognized at this first level can be relevant in a broader sense, and this point
will be discussed in the following section. At any rate, taking Pietsch’s objections and
theoretical proposal into account, we have shown how a naive interpretation of the
causality role is insufficient to circumvent the difficulties highlighted, nor can it offer
a solid framework to justify on a methodological level the extraordinary functioning
of specific inductive procedures. Although the integration of causal relations - as will
be discussed in the last part of this dissertation - may help in improving Machine
Learning protocols, Variational Induction does not seem to be the right path in this
direction.
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4 Representation and Learning

At a high level of analysis, two key issues can be considered in the context of Machine
Learning methods. First, the representation problem involves determining whether
there exists a set of free parameters - within a given architecture - that allows us to
accomplish a specific task successfully. For example, given a complex input X we
ask whether it is possible to provide a simpler representation T = T (X) that allows
us to recognize the correct corresponding output Y . Second, the learning problem
consists of developing an automated procedure that can identify the representation
mentioned above from a finite dataset, assuming its existence. Reconsidering the ex-
ample above, we ask how to employ a given set of instances {x1, x2, ..., xn} to identify
the representation T with an appropriate level of accuracy.

Representation. In the classical theory of Statistical Learning, the role of rep-
resentation is played by a space of functions F defined a priori. Consequently, the
problem arises of establishing which among these functions in F best represents the
regularity of the assigned dataset. This approach presents some criticalities - both
conceptual and practical - as discussed in the Introduction of this dissertation. The
following is aimed at showing how it is possible to obtain a generalization-gap bound
that does not depend on the class of functions F selected a priori. This approach
involves a significant shift in perspective, arguing in favor of an analogy between
learning and coarse-graining rather than the idea for which learning is a fitting pro-
cedure. In this regard, informational quantities will play a central role.

For simplicity, only the binary classification problem will be considered: given the
i.i.d dataset D := {(xi, yi)}ni=1 and err[f(x), y] := I{f(x)̸=y}, the expected error and
empirical risk are defined as

R[f ] := Ep(x,y)[1{f(x)̸=y}],

R̂n[f ] :=
1

n

∑
D

1{f(xi )̸=yi},

where 1A is the charateristic function on set A. In a nutshell, the following para-
graphs are organized as follows. Starting from the classical bound for the |F|-finite
case, the covering argument for the |F|-infinite generalization suggests introducing
a covering on F by identifying functions that agree on an appropriate subset of X .
The result obtained is a first step toward the informational interpretation by adopt-
ing the compression-generalization trade-off as a general paradigm. To elaborate on
this point further, the notion of representation is explored, and the optimal case is
formally characterized. Finally, the typicality argument is adopted to discuss the
Large-scale Learning regime. This step will suggest drawing parallels with the pre-
dictability problem, for which an arbitrarily high-resolution description - at a too-fine
observation scale - may be not only unnecessary but also misleading [32].
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The classical bound. For the sake of clarity in view of the following steps, let us
briefly review the classic Probably Approximately Correct (PAC) learning framework
[106][155][181]. Fixed f ∈ 2X , the expected error is a deterministic quantity. On
the contrary, the empirical risk is random and depends on the sample realization D.
Thanks to the i.i.d assumption the identity

ED[R̂n[F ]] = R[f ]

holds and the empirical risk converges to a Gaussian variable centered in R[f ] with
a variance of order O(1/m), as the Central Limit theorem prescribes. Moreover, the
Chernoff-bound allows us to control the probability of the Gaussian tails - i.e. the
quantity to be minimized - via the inequality

probD(|R[f ]− R̂n[f ]| > ε) ≤ 2e−2nε2 . (26)

At this point, relation (26) can not directly provide a generalization gap bound.
Indeed, given the learning algorithm

A : D 7−→ fD ∈ F ,

the function fD is a random variable dependent on the dataset D. Therefore, a
uniform control in f ∈ F is needed. In this regard, the union-bound trick is a
standard tool in providing the following relations [106]:

probD(∃f ∗ ∈ F : |R[f ∗]− R̂n[f
∗]| > ε) ≤ probD

(⋃
f∈F

{f : |R[f ]− R̂n[f ]| > ε)}

)
≤
∑
f∈F

probD(|R[f ]− R̂n[f ]| > ε)

≤ 2|F|e−2nε2 .

Consequently - given the confidence threshold δ := 2|F|e−2nε2 with δ ∈ (0, 1) - if the
sample cardinality satisfies the inequality

n >
log |F|+ log 2

δ

2ε2
, (27)

the generalization gap is controlled by ε with probability 1 − δ and uniformly in
f ∈ F . Remarkably - this time as f varies in F - the empirical risk is expected to
be a more irregular function than the expected error, the former being dependent
on the specific dataset realization. In this regard, the uniform bound in f offers
assurance about controlling the overfitting problem in minimizing the empirical risk.
More precisely, when the cardinality |D| is sufficiently large with respect to log |F|,
the empirical risk becomes a good estimator for the expected error simultaneously for
all f ∈ F , as in (3). In other terms,

R[f ] ≤ R̂n[f ] +O

(√
log |F|
n

)
(28)
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and minimizing R̂n[f ] consequently becomes a good strategy to minimize R[f ].

The covering argument for |F| =∞. The union-bound trick provides a mean-
ingful result only if |F| < ∞ and the previous sample lower-bound is uninformative
when dealing with an infinite function class. Generalizing (27) to |F| =∞ is possible
by reducing the infinite case to the analysis of the finite one, adopting concepts as
the Rademacher complexity, grow function or VC-dimension [106][155]. In what fol-
lows, we will discuss only the covering argument [155], although all these alternative
approaches can be related to each other. As in the next paragraph, this perspective
will also help determine a F -independent bound. Let F be a compact space with
respect to the topology induced by the metric

∆(f1, f2) := probp(f1(x) ̸= f2(x)).

Therefore, the number of ε-spheres needed to cover F - denoted by N(ε) - is finite
and scales as 1/εd, where d is the dimension of F . Remarkably, the dimension d
can be related to the concepts of VC-dimension, Hausdorff dimension, or topological
dimension. In what follows, it will be thought of as related to the number of parame-
ters needed to characterize an element f in F . Moreover, for the binary classification
problem, we have

R[f ] = probp(f(x) ̸= y)

and the following relation holds

|R[f1]−R[f2]| ≤ probp(f1(x) ̸= f2(x)) = ∆(f1, f2). (29)

In other words, if two functions belong to the same ε-sphere then the expected error
of the former is approximated by the latter with an error at most ε. The same
relationship is true also for the empirical risk by considering the empirical distribution
p̂ instead of p. At this point - given the center of each ε-sphere - the learning algorithm
A : D 7−→ fD can be replaced by an approximate version

Aε : D 7−→ fε ∈ Fε,

where fε is the center of the ε-sphere in which fD lives and |Fε| <∞. Consequently,
the substitution

|F| −→ |Fε| := N(ε/2)

can be adopted in (27), obtaining a new lower-bound for n which depends linearly on
d. Again, the main idea is the empirical risk concentration around the expected error
via the Chernoff-bound. In this respect, the probability p comes into play only via
the metric ∆. On the other side - once ∆ is defined - the only object with a role is
F via its dimensionality. Moreover, for a given n the generalization gap is uniformly
controlled with probability 1− δ as follows

|R[f ]− R̂n[f ]| ≤

√
d log(2/ε) + log 2

δ

2n
, (30)
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which is meaningless in the Deep Learning context, for which d >> n. This latter
observation provides a relevant problem for Statistical Learning theory. Deep Learn-
ing models work with much fewer data than the classical bound would predict, also
when the number of parameters exceeds the dataset size by orders of magnitude.

F-independent bound via covering. The classical bounds (3), (27), (28)
and (30) as discussed above require a class of function F - or Fε - narrower than
2X . On the contrary, if F = 2X , the inequality (27) would require a number of
data on the order of all possible realizations of X. In that case, the generalization-
gap control is meaningless. More in general, the classical PAC approach provides
bounds that do not depend on the specific learning procedure adopted or sample
distribution, thus characterized by the worst-case behavior. Remarkably, the previous
paragraph offers a useful tool to rediscuss this point, with the difference that we
assume |X | < ∞ to obtain a bound independent of F , and taking into account the
properties of the probability distribution p. More in detail, a covering argument will
be adopted by constructing an effective partition on 2X by identifying functions that
agree on appropriate sets. Let us proceed step by step. Firstly, the following objects
are defined as represented in Figure 7:

Figure 7: Non-negligible patterns Xσ and quotient on F . The procedure is schemati-
cally illustrated. For clarity, the above functions are continuous with R-values.

Xσ := {x ∈ X : p(x) > σ} with σ ∈ (0, 1),

Fσ := {fσ : f ∈ 2X},
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fσ(x) :=

{
f(x) if x ∈ Xσ

0 o.w.
.

In other words, the set of non-negligible patterns Xσ is introduced by setting a thresh-
old σ on the probability of each pattern. Moreover, the functions that agree on Xσ

are identified by renouncing in characterizing them for negligible patterns: hopefully,
this choice enables the adjustment of worst-case behavior, characteristic of the PAC
approach. Secondly, the generalization gap is decomposed into three pieces as an
immediate consequence of the triangular inequality and the union-bound trick:

probD(|R[f ]− R̂n[f ]| > ε) ≤ probD

(
|R[f ]−R[fσ]| >

ε

3

)
+ probD

(
|R[fσ]− R̂n[fσ]| >

ε

3

)
+ probD

(
|R̂n[fσ]− R̂n[f ]| >

ε

3

)
At this point, the three terms reported above can be separately considered. The
general idea is to determine the threshold σ to set the first term to zero and simulta-
neously control the other two. Let us consider the first term by employing (29) and
the Markov inequality as follows:

|R[f ]−R[fσ]| ≤ probp(f(x) ̸= fσ(x)) = probp(x ̸∈ Xσ)

= probp

(
− log p(x) > log

1

σ

)
≤ Ep[− log p(x)]

log 1
σ

=
H[X]

log 1
σ

,

where the Shannon Entropy H[X] is assumed to be finite. Consequently, by defining

H[X]

log 1
σ

:= ε′

and choosing σ such that ε
3
≥ ε′,

probD

(
|R[f ]−R[fσ]| >

ε

3

)
= 0.

The second term includes only fσ ∈ Fσ. Consequently, the classical bound holds.
More precisely - observing that |Xσ| ≤ 1/σ and adopting σ as above - the cardinality
|Fσ| is controlled as follows

|Fσ| = 2|Xσ | ≤ 2
1
σ ≤ 22

H[X]
ε′

and then
probD

(
|R[fσ]− R̂n[fσ]| >

ε

3

)
≤ 2|Fσ|e−2nε′2

≤ 22
H[X]
ε′ +1e−2nε′2 .
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For the third term, the inequality (29) with the empirical distribution p̂ allows us to
use the standard Chernoff-bound again. More precisely - as already done for p - we
have

|R̂n[f ]− R̂n[fσ]| ≤ probp̂(f(x) ̸= fσ(x)) = probp̂(p̂(x) < σ).

Consequently,

probD

(
|R̂n[fσ]− R̂n[f ]| >

ε

3

)
≤ probD

(
probp̂(p̂(x) < σ) >

ε

3

)
≤ probD

(
probp̂(p̂(x) < σ)− µ > ε

3
− µ

)
≤ e−2n( ε

3
−µ)2 ,

where µ is defined as

µ := ED[probp̂(p̂(x) < σ)] = probp(x ̸∈ Xσ).

Remarkably, µ ≤ ε′ ≤ ε
3
. Therefore - choosing σ such that ε′ = ε/6 and putting

it all together - the generalization gap is controlled by ε with probability 1 − δ and
uniformly in f ∈ 2X if n scales - unless a multiplicative constant - as

n >
2

6H[X]
ε + log 2

δ

ε2
(31)

The relation (31) is independent of the function class F , i.e. a spurious element in
a properly inductive scenario. Remarkably, log |F| can be interpreted as the number
of bits needed to represent F so that bounds (3), (27) and (30) can consequently be
interpreted in terms of the Occam’s Razor principle. On the other side, (31) requires
two general remarks.

• First, this outcome shall provide a first insight into how a more compressed
representation Xeff of X can enhance the efficacy of the inductive protocol
adopted: reducing H[X] exponentially decreases the number of data required
to achieve the desired control on the generalization gap. In what follows, this
point will be clarified further.

• On the other hand, the exponential dependence on 1/ε in (31) introduces a
significant difficulty: for small ε the dataset size n required for learning becomes
unreasonably large, regardless of how small the entropy H[X] is. Remarkably,
factor 1/ε appears by construction from the definition of the threshold σ, used
to define the set Xσ of non-negligible patterns.

To elaborate on this point further, it will be necessary to consider Information The-
ory as a valuable tool. In this regard, the following paragraph collects some standard
definitions and elementary relationships, and the main references can be found in
[157][98][43]. After concluding the following parenthesis, we will reconsider the role
of representation and rediscuss the results presented above.

54



Elements of Information Theory. Let X be a random variable with discrete
range X and probability distribution p(x). Except for a multiplicative constant,
h(x) := − log p(x) can be interpreted as a measure of the information content asso-
ciated with the occurrence x ∈ X . Averaging over X , the Shannon entropy H[X] is
then defined as

H[X] := −
∑
x∈X

p(x) log p(x). (32)

Remarkably, H[X] can be axiomatically derived by defining three reasonable proper-
ties of uncertainty measures. More precisely, H[X] is the only function that satisfies
the continuity, additivity, and monotonicity requirements [157][43]. Entropy can also
be read as the minimum description length of X: it corresponds to the minimal num-
ber of bits or binary questions needed - on average - to determine the value of X.
In this respect, H[X] is a concave function in p that reaches its maximum log |X |
when p is uniform on X , and the outcome of a random experiment is guaranteed to
be the most informative as possible. Conversely, H[X] = 0 when X is deterministic.
Moreover, (32) can be extended to the joint and conditional cases via

H[X, Y ] := −
∑

x∈X ,y∈Y

p(x, y) log p(x, y),

H[X|Y ] :=
∑
y∈Y

p(y)H[X|Y = y] := −
∑
y∈Y

p(y)
∑
x∈X

p(x|y) log p(x|y),

which admit analogous interpretations. By adopting the definitions mentioned above,
the next relationships follow immediately and lead back to the information additivity
when X and Y are independent:

H[X, Y ] = H[X] +H[Y |X] = H[Y ] +H[X|Y ].

Clearly, conditioning allows us to isolate the information shared by X and Y . In
operational terms, given a particular input-output couple - i.e. X and Y - a measure
of how much information the output Y conveys about the input X is desired. In this
respect, mutual information I(X : Y ) is defined as

I(X : Y ) := H[X]−H[X|Y ] = H[Y ]−H[Y |X],

and can be interpreted as the mean information attributed to a realization of X
given complete knowledge of Y , or vice versa. Remarkably, mutual information is
a useful index for measuring statistical dependence between variables and can be
derived axiomatically [43]. Let us dwell on this point, also giving some definitions
useful for what follows. First of all, the equality I(X : Y ) = H[X] +H[Y ]−H[X, Y ]
provides us with the more explicit formula that follows

I(X : Y ) =
∑

x∈X ,y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
, (33)

to be read as a special case of the Kullback-Leibler divergence. More precisely, suppose
we have a priori a distribution p for X and consider the distribution q in place of p,
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given a certain set of experimental measures. Under the assumption that q(x) = 0
implies p(x) = 0, we can define the KL divergence

D[p||q] :=
∑
x∈X

p(x) log
p(x)

q(x)
,

to be interpreted as the information gap determined - on average - by using q instead
of p. In the case in which p(x) = q(x) for some x, then it will not contribute to D[p||q].
By employing Jensen’s inequality for convex functions, Gibbs’ inequality immediately
follows [98]:

D[p||q] ≥ 0,

where the equality holds if and only if p ≡ q. As a corollary - as mentioned just
above - I(X : Y ) = 0 if and only if X and Y are independent. Moreover, p and q are
similar when they have a low KL divergence, while a high KL divergence indicates
dissimilarity. In this regard, Pinsker’s inequality is a standard tool and implies that
the KL divergence upper bounds the L1-distance between distributions [43]:

||p− q||21 ≤
1

2 ln 2
D[p||q]. (34)

Consequently - although KL divergence is not a metric because it is not symmetric
and the triangle inequality does not hold - it is still useful to think of D[p||q] as a
natural distance between p and q. We conclude these recalls by mentioning the data
processing inequality for mutual information [43], which implies that the information
about X contained in Y cannot be increased by processing Y . Formally, X, Y , and
Z form a Markov chain

X −→ Y −→ Z

if their joint distribution can be decomposed as p(x, y, z) = p(z|y)p(y, x), so that Z is
a function of Y , and independent of X given Y . Then, the data processing inequality
states that

I(X : Z) ≤ I(X : Y ). (35)

Remarkably, mutual information is a fundamental quantity within communication
theory, allowing us to define the concept of channel capacity, characterizing the ex-
pected maximal number of bits that can be reliably sent in a discrete memoryless
channel with a probability transition p(y|x) [43][98]. On the other side, it remains
invariant under bijective transformations [43]: given two bijections ϕ1 and ϕ2,

I(ϕ1(X), ϕ2(Y )) = I(X : Y ).

Consequently, mutual information might seem an unsuitable indicator for a given
representation in the context of learning. Instead - in what follows - mutual informa-
tion will enable us to give a rigorous index for the compression and accuracy levels -
respectively I(X : T ) and I(T : Y ) - of a given representation T .
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Compression-in-representation. Machine learning protocols rely on internal
input-based representations to enhance their performance [18][59][7]. While determin-
ing an appropriate representation can be essential for numerous practical domains, the
precise criteria for establishing a satisfactory representation - as well as the relation-
ship between representation and the learning process - continues to pose significant
challenges [146]. From a general viewpoint, representation learning refers to recog-
nizing data structures by transforming the high-dimensional input space X into a
lower-dimensional one T , more effectively achieving the desired accuracy for the task
at hand. In this regard, most of the input’s entropy H[X] turns out to be irrelevant,
and the main challenge consists of extracting the relevant features to construct T .
Schematically, the learning apparatus can be seen as a Markov chain

Y ←→ X −→ T −→ Ŷ , (36)

where the representation T is selected via the training phase to obtain the assigned
label Ŷ as close as possible to the correct label Y . Remarkably, two different and
separate components can be considered in this regard, although these may occur
interdependently during the training phase:

• First, the feature extraction component corresponds to the encoding procedure
represented by the chain arrow X −→ T , for which the encoder p(t|x) must
be determined. In this regard, the mutual information I(X : T ) quantifies the
level of information shared between representations X and T , reducing to H[T ]
when T is characterized deterministically by X.

• Second, the label estimation component corresponds to the decoding procedure
represented by the chain arrow T −→ Ŷ , for which the decoder p(y|t) should
be as close as possible to the optimal decoder

popt(y|t) :=
∑
x∈X

p(y|x)p(x|t). (37)

The discussion so far has been concerned only with this second stage, without
considering an effective representation and assuming the available one X to be
independent of the particular training set employed.

Let us start by assuming that the representation T is fixed, i.e. the encoder p(t|x) is
assigned. The mutual information I(Y : T ) can be interpreted as an accuracy index.
To make this point clear, it is sufficient to consider the following relations, which are
obtained by using Pinsker’s inequality (34) and considering the optimality condition
(37):

Ep(x,t)

[
||p(y|x)− p(y|t)||21

]
≤ 1

2 ln 2
Ep(x,t)

[
D[p(y|x)||p(y|t)]

]
=

1

2 ln 2

{
I(X : Y )− I(Y : T )

}
,

where mutual information for the problem distribution p(x, y) - i.e I(X : Y ) - does
not depend on the particular learning procedure. Consequently, to obtain an optimal
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decoder p(y|t) nearer to the original distribution p(y|x), I(Y : T ) should increase
regardless of the learning protocol adopted. On the other hand, to clarify how different
representations can intervene in improving (31), let us consider T as a partition of X
for which a homogeneity condition hold: all instances x ∈ X contained in the same
t ∈ T share the same label y. Assuming the optimality condition (37), the expected
error and empirical risk can be re-written as

R[f ] =

∫
err[f(x), y]p(x, y)dxdy =

∫
err[f(x), y]

∫
p(x, y, t)dxdydt

=

∫
err[f(t), y]

{∫
p(y|x)p(x|t)dx

}
p(t)dydt

=

∫
err[f(t), y]p(t, y)dtdy,

R̂n[f ] =
1

n

∑
D

err[f(xi), yi] =
1

n

∑
D

err[f(ti), yi].

At this point, the argument presented above to obtain the F -independent bound can
be directly applied by replacing H[X] 7−→ H[T ] in (31). However, observing that Y is
independent of T given X and weakening the homogeneity condition by introducing
a soft partition via a non-deterministic p(t|x) - we expect that bound (31) can be
re-written as

n ∼
2

6I(X:T )
ε + log 2

δ

ε2
, (38)

so concluding that this sample cardinality should be sufficient to control the general-
ization gap via ε. The estimate (38) suggest that - fixed a desired level of accuracy
I(Y : T ) - we expect that a more compressed representation T - as quantified by the
mutual information I(X : T ) - improves the learning performance. At this point, two
comments are needed.

• Although estimate (38) has not been rigorously proved, we will find a similar
result when considering the typicality argument. Again, we will assume the T
representation fixed and neglect non-typical patterns instead of negligible ones.

• The informational quantities considered so far are computable only if the dis-
tribution p(x, y, t) is available. On the other hand, assuming only the empirical
distribution p̂(x, y) and the encoder p(t|x) are available - similarly to what was
done for the theoretical distribution - it is possible to show that

Ep̂(x,t)

[
||p̂(y|x)− p(y|t)||21

]
≤ 1

2 ln 2
Ep̂(x,t)

[
D[p̂(y|x)||p(y|t)]

]
=

1

2 ln 2

{
I(X : Y )− Î(Y : T )

}
,

where the empirical quantity Î(Y : T ) plays the role of the empirical risk in the
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classical PAC bounds setting via [156][179]

I(Y : T ) ≤ Î(Y : T ) +O

(√
2I(X:T )

n

)
. (39)

If (28) is considered, the analogy with the relation above is clear, and selecting
the decoder p(y|t) to minimize the empirical quantity Î(Y : T ) consequently
becomes a good strategy to minimize I(Y : T ). Remarkably, whereas control in
(28) improves only logarithmically in |F|, a reduction in I(X : T ) provides an
exponential improvement in (39).

Remarkably, the compression index I(X : T ) can always be reduced by ignoring
further details in X . An essential point in this regard is precisely to establish a link
between compression and effects in terms of accuracy. Therefore, if the encoder p(t|x)
is not provided a priori but also the representation learning question is introduced,
additional constraints on T are needed. The following paragraph will discuss this
point by adopting the Information Bottleneck Principle perspective [178].

Information Bottleneck Principle. Let T be a random variable to be consid-
ered as in the learning apparatus (36). The encoder p(t|x) induces a soft partition
of X , for which each value x ∈ X is associated with all t ∈ T via p(t|x). In our in-
tentions, T should be a compressed representation of X so that |T | ≤ |X | and p(t|x)
results appropriately concentrated. In this regard, I(T : X) provides a compactness
index for the representation T , although additional prescriptions are needed to eval-
uate the representation adequacy. In this regard, the rate-distortion theory offers a
first type of relevance criteria by providing a metric

∆ : X × T −→ R+,

assuming that smaller values of ∆(x, t) imply a better representation T [43][32]. Let
us briefly consider this approach, preparatory to the following discussion. In a nut-
shell, the partition of X induced by the encoder p(t|x) corresponds to an expected
distortion Ep(x,t)[∆(x, y)] and a trade-off with the representation compactness is nat-
urally established via the constrained optimization of I(X : T ), so that

R(D) := min
{p(t|x):Ep(x,t)[∆(x,y)]≤D}

I(X : T ).

This problem can be re-formulated by introducing the Lagrange multiplier β and
minimizing the Lagrangian functional

L[p(t|x)] := I(X : T ) + βEp(x,t)[∆(x, y)] (40)

under the additional constraint
∑

t p(t|x) = 1 for all x ∈ X . The variational problem
δL

δp(t|x) = 0 admits the implicit solution
pβ(t|x) =

pβ(t)

Z(x, β)
e−β∆(x,t)

pβ(t) =
∑
x∈X

pβ(t|x)p(x)
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where Z(x, β) is a normalization function and β ≥ 0 satisfies

β = − δR
δD

.

Clearly, R(D) is defined with respect to a fixed set of representatives T : given dif-
ferent values of |T |, different distortion matrices [∆(x, t)]x,t are consequently defined,
changing R(D). Remarkably, the rate-distortion R(D) provides a monotonic convex
curve with slope −β in the (D, I)-plane [43], to be determined numerically by choos-
ing different values of β and applying the iterative Blahut-Arimoto procedure [165].
Theoretically, when β increases, minimizing the expected distortion becomes more
and more relevant in (40), up to Ep(x,t)[∆(x, y)] = 0 when I(T : X) = H[X]. On the
other hand, the compression level matters more and more when β decreases, up to
I(T : X) = 0 for a certain value of the distortion onward. At this level, two general
comments are relevant to our discussion.

• First of all, the curve obtained provides two regions in the (D, I)-plane, estab-
lishing a limitation result. The region above the curve corresponds to all the
achievable distortion-compression pairs, while the region below is in principle
not achievable. In other words, given a distortion-compression pair (D∗, I∗),
there exists an encoder p(t|x) for which I(X : T ) = I∗ and Ep(x,t)[∆(x, y)] = D∗

if and only if (D∗, I∗) is above the curve, on which the optimal encoder is placed.

• Secondly, the characterization of R(D) relies on the spurious element ∆, which
introduces an arbitrary and difficult-to-justify choice. In this regard - for a
given p(x) - different choices of ∆ will yield different results and alternative
rate-distortion curves so that selecting the appropriate one is far from trivial
in many practical applications. In other words, the main drawback of the rate-
distortion approach consists of considering ∆ as a part of the problem.

The Information Bottleneck Principle [178][166][52] provides an alternative approach
to overcome the abovementioned difficulties. Instead of considering only p(x), the
joint distribution p(x, y) comes into play. Consequently, the following strategy can
be introduced: determining a compressed representation of X that preserves the
information on Y as high as possible. Formally, the optimal encoder is characterized
by the problem

min
p(t|x)

I(X : T )− βI(T : Y ), (41)

where β corresponds to a resolution parameter that controls the compression level
provided by T : small β implies more compression at the expense of informativeness,
while bigger β corresponds to finer granularity in representation. The variational
problem (41) admits the implicit solution

pβ(t|x) =
p(t)

Z(x, β)
e−βD[p(y|x)||pβ(y||t)]

pβ(t) =
∑
x∈X

pβ(t|x)p(x)

pβ(y|t) =
∑
x∈X

p(y|x)pβ(x|t)
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where the KL-divergenceD[p(y|x)||p(y||t)] naturally assumes the role of the distortion
measure [63] and

β =
δI(X : T )

δI(T : Y )
.

Similarly to the case of distortion - assuming that p(x, y) is known - the three relations
above determine self-consistently the optimal solution, and the alternating iterations
of the implicit formula above converge to a local solution [165]. In contrast to rate
distortion theory - where the representative selection is a separate problem - the opti-
mization is also over the cluster representatives p(y|t). If the decoder pβ(y|t) is suffi-
ciently near to p(y|x), the encoder pβ(t|x) is concentrated around the good t. In this
regard, we have a complete correspondence with a clustering problem [108][165][166].

Figure 8: Information Bottleneck curve in the Information Plane. As β varies, a
monotonic concave curve is provided. Only the region below the curve is achievable.
Fixing the representation cardinality |T | provides sub-optimal curves. The optimal
representation T for p(x, y) is characterized by the compression-accuracy couple, re-
gardless of the learning procedure adopted.

Recalling and mimicking what has already been discussed for R(D), the Informa-
tion Bottleneck curve is obtained by solving (41) as β ≥ 0 varies and plotting the
mutual information pair (Iβ(X : T ), Iβ(Y : T )) given the optimal encoder pβ(t|x).
This curve in the Information Plane - i.e. the plane with I(X : T ) and I(Y : T )
as the x-axis and y-axis respectively [178][179][158] - is concave and monotonically
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increasing, as shown in Figure 8. On the theoretical level - in contrast with the rate-
distortion approach - the Information Bottleneck method is based purely on p(x, y).
Once the distribution p(x, y) is available, the theoretical framework is completed.
The optimal representation T is completely determined via a general principle with-
out introducing additional spurious elements such as the distortion measure. In other
words, the relevance criterion needed to encode X - i.e. to extract the relevant fea-
tures - is assigned implicitly by the problem formulation through the second variable
Y . Remarkably, the explicit calculation of the solution is generally prohibitive. In
this regard, the Gaussian case is a significant exception, and its solution is strongly
related to the Correlated Component Analysis [34][56].

Expanding on the observation above, the minimization as in (41) does not per-
tain to a particular learning procedure but refers to the possibility of an appropriate
representation in general, in style inaugurated with Shannon’s work with respect to
the coding-decoding process for the transmission in a noisy channel. Moreover, this
high-level principle can be central in characterizing intelligence in a broader sense
[191], assuming the availability of an effective representation for carrying out a pre-
determined task as an essential point for intelligent behavior. Similarly, it is also
adopted as a general tool to characterize the forecasting problem, compressing away
information about the past not useful for predicting the future [44].

The discussion considered so far requires that the distribution p(x, y) is available.
Conversely, whenever only a finite sample D is given, the information curve previously
introduced exhibits a different behavior, as shown in Figure 9. More precisely:

• If I(X : T ) is too small, over-compression comes into play, and a too much
coarse representation compromises the accuracy I(T : Y ). In classical Statistical
Learning terms, this situation would correspond to the underfitting case: a too-
high compression level for T produces the same effect as selecting a too-limited
class of function F to fit D adequately.

• Conversely, if I(X : T ) is too near to H[X], under-compression takes place,
for which a too-detailed representation coexists with the sparsity of data, again
compromising the accuracy level. In classical Statistical Learning terms - as
when a too-large class F is selected - the overfitting problem occurs.

Between the two cases mentioned above, there exists an optimal level of compression
for which the highest possible level of accuracy is achievable in the finite-data regime.
In this regard, the estimate (39) provides an indication of how both dataset size m
and compression level can intervene in controlling the generalization gap. Having
clarified in what terms it is possible to characterize the concept of effective represen-
tation by adopting the compression-generalization trade-off as a general paradigm, let
us now return to the learning problem by taking a Large-scale perspective, where the
number of training examples and the input dimension are both huge. As highlighted
by N. Tishby [179][158][159], this approach provides some insights into explaining the
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Figure 9: Information Bottleneck curve in the finite-data regime, adapted from [179].
Only encoders living in the yellow area can be learned from the finite dataset D.
Remarkably, the over-compression and under-compression regimes correspond - in
the classical Statistical Learning language - to underfitting and overfitting conditions
respectively.

functioning of Deep Learning protocols as procedures that provide compression-in-
representation, shedding light on the overfitting problem and the benefits of adopting
a layered structure. Moreover, some points of contact with modeling are consid-
ered, suggesting an analogy with coarse-graining techniques in developing an effective
model.

Bound via typicality for Large-Scale Learning. The need to introduce
the class of functions F is so far circumvented by introducing an effective partition
Fσ constructed by identifying functions that agree on the non-negligible patterns
Xσ. In this regard, σ is the negligibility threshold related to the control parameter
ε, and by adjusting the σ parameter appropriately an enough accurate partition is
provided to have a generalization gap controlled by ε. This procedure - for which the
assigned encoder p(t|x) is a priori given - makes a factor 1/ε appear at the exponent
by construction. In this paragraph, a different perspective is considered, for which
the notion of information plays a more essential role. N. Tishby has proposed the
following argument to justify Deep Learning’s ability to generalize [179][158][159]. If
the Large Scale Learning regime - where the number of training examples and the
input dimension are both huge - is considered it is possible to introduce a typical-case
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bound obtained by restricting the probability distributions to a suitable class and
abandoning the worst-case perspective. Let us start by considering the simplest case,
for which the probability distribution PX is factorized as

PX =
m∏
i=1

PXi
,

where PXi
refers to a single bit of X and PXj

= PXk
for all j and k. Defining the set

of ε-tipycal input of size m, i.e.

Λm
ε [X ] :=

{
x ∈ X :

∣∣∣∣ 1m log
1

p(x)
−H[X]

∣∣∣∣ < ε

}
the Chernoff-type inequality

prob

(∣∣∣∣ 1m log
1

p(x)
−H[X]

∣∣∣∣ ≥ ε

)
< e−2mε2

ensures that nontypical patterns are negligible in probability for m → ∞. Conse-
quently, considering Λm

ε [X ] instead of X is justified. In other words, the Asymptotic
Equipartition Principle holds. In this regard, some comments are needed.

• First of all, the equipartition hols only in a weak sense. Typical patterns are
similar in probability only because their values of − log p(x) are within 2mε of
each other. As ε is decreased, m must grow as 1/ε2. If we write

ε ∼ 1√
m
,

then the most probable string in the typical set will be of order 2C
√
m times

greater than the least probable one, for some fixed C. On the other side, the
typical set introduces a considerable simplification. Its elements have almost
identical probability 2mH[Xk], and the whole set has a probability of almost 1.
Consequently, we have roughly 2mH[Xk] elements, and the other ones have no
relevant role in probability.

• Secondly, the i.i.d assumption on X = (X1, X2, ..., Xm) can be relaxed by re-
quiring that a Markov field structure is satisfied. The general idea is based on
the assumption that if the distribution PX is factorized into many components,
the Asymptotic Equipartition Principle holds. In this regard, let us assume that
the probability measure PX is factorized as

PX =
m∏
i=1

PXi|Pai ,

where Pai denotes the X-components adjacent to Xi, for which the following
independence condition holds

Xi ⊥⊥ ¬Pai|Pai.
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If this Markov random field is ergodic, the Shannon-McMillan-Breiman the-
orem comes into play, and typical patterns approximate the entire patterns
space X with high probability [43][81]. Remarkably, this factorization hypothe-
sis seems reasonable in many application contexts - e.g. in image processing and
speech recognition - where patterns comprise many local and weakly-dependent
patches.

As previously discussed, the main idea in the classical PAC framework is to exploit
the concentration in probability for the empirical risk around the expected error
due to the Chernoff-bound effect. Instead - at this point - the typicality condition
provides a new concentration in probability naturally applicable to representation.
Let T be a mapping of X, as in the learning apparatus (36). Ignoring the not-typical
patterns, only 2H[X] realizations of X can be considered. Moreover - on average -
2H[X|T ] typical realizations of X are mapped to the same value of T . Mimicking the
classic argument to justify the noisy channel coding theorem [98], the cardinality of
the typical realizations of T can be estimated as

2H[X]

2H[X|T ]
= 2I(X:T ).

Consequently - with some approximation - it is sufficient to consider the classification
rules f defined for the representation of typical patterns, i.e. restricting ourselves to
a proper subset FT ⊂ 2X . In other words, the substitution

|F| 7−→ |FT | = 22
I(X:T )

can be adopted in (27) obtaining a new lower-bound for the dataset cardinality to
have the desired generalization control ε with probability 1− δ:

n >
2I(X:T ) + log 2

δ

2ε2
. (42)

At this level, two comments are needed.

• The bound (42) indicates that a more compressed representation exponentially
reduces the amount of data needed to control the generalization gap via ε.
However, it is necessary to keep in mind that the Information Bottleneck curve
controls this scenario. If I(Y : T ) is small, many possible representations with
the same I(X : T ) are in principle available: the main point is to have an infor-
mative representation T on Y , and the estimate (42) is consequently significant
when I(Y : T ) is sufficiently large.

• Reconsidering the expression (28) and introducing the set of effective functions
FT ⊂ 2X obtained via the representation T , the following relation follows

R[f ] ≤ R̂n[f ] +O

(√
2I(X:T )

n

)
,

becoming significant when I(X : T ) is smaller then O(log n), and in this case
k bits of compression are equivalent to an exponential factor of 2k training
examples.
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At any rate, it remains to be clarified how a learning protocol can provide an appro-
priately compressed representation T starting with a finite dataset. In the following
paragraph, this point is briefly discussed by considering Deep Learning protocols, for
which the stochastic gradient descent plays a central role.

Figure 10: An example of feedforward Deep Neural Network with L hidden layers as
represented in [179]. Each layer hk corresponds to a compressed version of the input
X and is theoretically determined via the minimization problem (41).

Deep Learning as compression-in-representation. With previous para-
graphs, the role of a compressed representation has been discussed considering the
abstract learning apparatus (36). A concrete implementation of this general view is
offered by Deep Learning protocols - as highlighted by N. Tishby [158][179][159] - for
which the dynamic in the informational plane associated to the training phase is ex-
amined. In a nutshell, the layered structure can be represented via a Markov chain -
as in Figure 10 - where each layer hk corresponds to an intermediate representation of
X. Layer by layer, the encoder p(hk|x) and decoder p(y|hk) are considered, while the
correspondent mutual information I(X : hk) and I(hk : Y ) characterize the learning
problem completely. Through training, each layer hk is determined via weights ad-
justment trying to maximize I(Y : hk) and minimize I(X : hk), as stipulated by (41).
Remarkably, by applying inequality (35) to the Markovian structure X → hk → hl,
I(X : hk) > I(X : hl) holds: neural networks provide a cascade of representations
progressively more compressed. As represented by Figure 11, two phases can be em-
pirically observed during learning via stochastic gradient descent [158][159][56][49][2],
given an appropriate procedure in estimating mutual information [57]:
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Figure 11: Fitting and compression phases in DL, as discussed in [179][158]. The
fitting phase starts in A so that I(X : T ) and I(T : Y ) progressively increase. The
compression phase begins in C, when I(X : T ) starts to decrease.

• First, the fitting phase enables the network to specialize increasingly in carrying
out the task at hand, given a gradually larger and larger subset of the training
set. During this first quick phase, I(Y : hk) grows rapidly. Moreover, a high
signal-to-noise ratio for the stochastic gradient is found, i.e. the gradient means
are much larger than the standard deviations. In other terms, the gradient
drops into a flat minimum via a drift process.

• Second, the compression phase comes into play: the generalization component
becomes dominant, and the network learns to ignore the irrelevant information
while staying informative about Y . During this second phase, I(X : hk) de-
creases slowly, and a small signal-to-noise ratio for the stochastic gradient is
found. In this case, the gradient seems to explore the reached flat minimum to
irrelevant directions - i.e. without appreciably changing in cost function - via a
diffusive process.

In other terms, the network adjusts as if trying to incorporate all information from
the input required for well estimating the target but no more. The learning pro-
cedure that comes into play is different and richer than the classical curve-fitting
perspective [117][21]. The compression phase has a central role: the representation
compression is strongly connected to the generalization performance as prescribed
in (38). The Empirical risk minimization is not enough, and interpolation would be
insufficient to explain why the state-of-the-art algorithms exhibit so impressive per-
formances in generalizing [9]. On the other side, the trained hidden layers tend to
live near the Information Bottleneck theoretical bound in the information plane, so
the corresponding encoder-decoder couple should satisfy the self-consistent equations
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for (41). Moreover, the layered structure provides a computational benefit [159][2]. If
generalization is obtained via compression, the Markovian structure allows each layer
to compress the information already compressed in the previous one: all details com-
pressed away in a lower layer are lost to the higher one so that each layer compresses
independently of the others. This type of mechanism seems particularly suitable for
applications such as image classification, where the relevant information seems highly
distributed and available at different levels of abstraction. Consequently, it is rea-
sonable that many redundancies for the specific classification task are typical so that
Deep Learning can provide us with a representation with a smaller effective dimension.

Compression-in-resolution as a general constraint. The analysis proposed
so far suggests the following general picture. On the one hand - by adopting the Em-
pirical risk minimization principle - Machine Learning techniques are understood in
terms of curve-fitting procedures. In this respect, some quantitative guarantees about
the generalization gap control are provided by selecting a priori the hypothesis class
F . On the other hand, Deep Learning protocols seem to obey a partially different
logic by automatically implementing a coarse-graining procedure: information irrel-
evant to the assigned task is progressively compressed - layer by layer - to provide
coarser and coarser representations. As discussed above, this perspective works in
the Large-scale Learning regime, for which the typicality argument comes into play
whenever the factorization hypothesis on the probability distribution p holds. In that
case, the generalization gap control can be explainable in terms of the informational
quantities examined without introducing the class F . This perspective suggests a
parallel with the coarse-graining approach adopted in modeling, thus supporting the
expectation that it is in principle possible to achieve performance at least compara-
ble with that achievable through mathematical models. However, it is necessary to
discuss in what terms coarse-graining is achievable from a dataset and what some
inherent difficulties may be.

To better frame this point, let us briefly reconsider the Analogs Method, keeping
in mind the problem of weather forecasting as an example. Given today’s weather
conditions, we would like to determine whether it will rain on a certain day thereafter,
once again requiring an output in Y = {0, 1}. The procedure is simple. Given the
atmospheric configuration on a target day - say x∗ - similar states xi are identified in
D together with their corresponding predictand observation yi. Then, the estimation
of the predictand on the target day - say y∗ - corresponds to the local observations
that occurred on the closest analog atmospheric configuration. In formal terms:

y∗ = yk,

k = argmin
i

{
δ(xi, x

∗) : (xi, yi) ∈ D
}
,

where we assume that δ < ε. Clearly, the Analogs Method is a simple memorization
and search procedure: the generalization level is assigned a priori via the resolution
ε, and it does not generalize outside the regime of the existing historical records. At
this level, two observations are needed.
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• The Analogs Method prescribes the theoretical compression threshold through
the parameter ε, identifying all the points in every single ε-sphere. A higher ε
value corresponds to a lower resolution and a more significant compression. Our
expectations in performing adequate forecasting require a fixed predictability
time t and the error tolerance δ∗, which can be interpreted as a measure of
the generalization capacity. Fixed t and δ∗, the system responds by providing
the maximal admissible compression level ε, given the predictability properties
quantified by the maximal Lyapunov Exponent λ as in (16), or employing the
multiscale structure as in (15).

• If the available database does not explore the feature space with resolution
ε, it will be inadequate to capture the system behavior and provide accurate
forecasts. In this regard, compression-in-representation has no role: raw data
are used directly, and the information concretely used has a local nature. At
the same time, no global patterns are taken into consideration.

These few remarks are enough to show how the Deep Learning compression mech-
anism works differently compared to the Analogs Method procedure. Nevertheless,
there are good reasons to say that the limitations of the latter are also relevant in a
broader sense than also providing a more precise answer to the relevance objection
made by W. Pietsch. Let us proceed step by step, reconsidering the points discussed
so far and introducing some additional elements. First, it is possible to propose a gen-
eral argument by considering the compression procedure adopted. The compression-
in-representation implemented by Deep Learning protocols involves a procedure of
compression-in-resolution through which data points in suitable ε-spheres are pro-
gressively identified. Schematically, given the learning apparatus

Y ←→ X −→ Xε −→ Ŷ ,

the compressed representationXε - selected via the training phase to obtain Ŷ as close
as possible to the correct label Y - consists of a clusterized version of X. From a gen-
eral viewpoint, whenever compression-in-resolution has a central role, the ε-partitions
injected by each layer must satisfy certain general conditions to work correctly and
generalize well. More in particular:

• The ε-spheres that partition the input space X must be coarse enough to admit
a typicality argument and contain sufficient training instances. Conversely,
suppose ε is too small. In that case, typicality does not work, and no data are
contained in too many partition elements. Consequently, the label assigned to
each empty ε-sphere is random, affecting the accuracy.

• At the same time, the partitions adopted must be fine enough to admit la-
bels that are as homogeneous as possible in Y for the elements of the training
set. This point requires an exponential increase in the number of the ε-spheres
needed, providing us with a limitation in the spirit of that suggested by Kac
Lemma. In this respect, the incompressibility of the initial data will thus remain
a robust constraint in the forecasting context.
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These remarks fit within the framework set by the argument of the typicality of input
in the large-scale context. If typicality did not apply, we would not have the guaran-
tees on the ability to generalize discussed above. However, the role of compression-
in-resolution can also be considered from a somewhat different point of view, putting
aside for a moment the problem of the guarantees offered by controlling the general-
ization gap. From a general perspective, the problem arises of justifying the fact that
Deep Learning protocols necessarily involve some form of compression-in-resolution,
thereby encountering the limitations already discussed for the Analogs Method. Let
us briefly discuss how regularization plays a role in this regard.

Compression-in-resolution and regularization. To understand how com-
pression in resolution works, the phenomenon of regularization is considered. As
we have already mentioned, compression-in-resolution in a data-driven context cor-
responds to a partitioning process where all points belonging to a specific class are
represented by a single realization, i.e. the centroid of ε-sphere. In this regard, two
general options are available. On the one hand, Deep Learning protocols can undergo
a hard partition - similar to the one described for the Analogs Method - at any point
during the training process. However, this would not seem to be the case. The output
typically exhibits a continuous and smooth function of the input - e.g. sigmoid of a
sum of sigmoid - while a hard partition would involve discrete jumps when crossing
the boundaries between partitioned classes. Alternatively, Deep Learning protocols
could induce a process of compression-in-resolution through a soft partition. In this
case, such a partition should be characterized by a characteristic resolution induced
by regularization terms. In this respect, even when they are not explicitly included
in the cost function as in (2), Stochastic Gradient Descent could introduce implicit
regularization with similar consequences [16][167].

First of all, regularization and protocol’s characteristic resolution are closely re-
lated. Both these concepts intervene in defining the effective hypothesis space, thus
making the learning problem well-posed. Let us start by considering how resolution
comes into play in terms of the decision boundary for a binary classification problem.
Intuitively, one must look at the curvature of the boundary. Assuming to cover the
space X via ε-spheres, there is a maximum radius ε that allows the ε-spheres to de-
limit the decision boundary effectively. Smaller radii would require a larger number
of spheres to cover X effectively, demanding more data to learn the problem. On
the other hand, larger radii would result in a loss of precision due to excessive com-
pression. This trade-off is illustrated in Figure 12. At this level, a general problem
arises naturally: how is a suitable resolution determined to learn a specific problem
in the Deep Learning context effectively? Is it possible for the model to automati-
cally adapt the resolution, allowing the hypothesis space to adjust during training?
Preliminarily, we observe that the regularization term rewards small values for free
parameters in the cost function. Consequently, regularizing will imply a decision
boundary progressively closer to the linear behavior, with a corresponding decrease
in the required resolution. In other terms, stronger regularization leads to a lower
resolution in learning.
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Figure 12: Visual depiction of the relationship between the curvature of the decision
boundary and the radius of the covering spheres, directly related to the degree of
compression-in-resolution applied to the prediction model. spheres that are too small
can in principle maintain high accuracy but require a larger amount of data than
necessary, otherwise inducing overfitting phenomena. spheres that are too large suffer
from the opposite problem, not allowing sufficient expressive capacity of the model
and causing underfitting.

On the one hand, explicit regularization as in (2) allows us to solve the problem
empirically: different values for the hyperparameter γ are tried to choose the one
that a posteriori has a better performance. On the other hand, implicit regularization
could manage this process automatically. In a nutshell, the employing of Stochastic
Gradient Descent in minimizing the cost function C corresponds to equipping C with
the regularization terms as in the formula

E(CSGD(θ;D)) = C(θ;D) +
α

4
∥∇θC(θ;D)∥2 +

(n− b)
(n− 1)

α

4b
Γ(θ;D), (43)

Γ(θ;D) := 1

k

k∑
i=1

||∇θC(θ;Di)−∇θC(θ;D)||2,

where α is the learning rate, n is the training set cardinality, b is the size chosen
for mini-batches Di ⊂ D, and the expected value in (43) corresponds to an average
operation on all the possible choices for the mini-batches of size b.

The first term in (43) is due to the fact that the Gradient Descent update rule

θt+1 = θt − α∇θC(θ;D) (44)
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follows a trajectory of discrete steps that only approximately aligns with the ideal
Gradient Flow curve defined via the differential equation

θ̇ = −∇θC(θ;D).
Due to discretization error, for finite stepsize α, the discrete path may not lie exactly
where the continuous one lies. Errors accumulate over time, making the paths more
and more different.Backward error analysis comes into play in this regard: it aims
at finding a differential equation θ̇ = −∇θC̃(θ;D) such that its solution follows the
approximate discrete path obtained from Euler’s method via 44. In other words,
the goal is to reverse engineer the problem in order to find a modified C such that
the discrete iteration can be well-modelled by a differential equation. For Gradient
descent, we have C̃ = CGD, that is

CGD(θ;D) = C(θ;D) +
α

4
∥∇θC(θ;D)∥2. (45)

Geometrically, it penalizes narrower and steeper cost function minima, thus general-
izing better. The contribution of the second term in (45) is shown in Figure 13.

Figure 13: The tighter the minimum, i.e., the steeper its walls are, the more significant
the regularization contribution in Equation 45 becomes, to the point of even reversing
the sign of the cost function gradient, creating barriers around the minimum.

The second term in equation (43) is more interesting in our discussion, as it per-
tains specifically to Stochastic Gradient Descent and depends on the selected mini-
batch size. Its importance is highest when mini-batches are small, potentially con-
sisting of just a single example from the dataset. However, as we transition to using
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the entire dataset as the mini-batch, which corresponds to standard Gradient De-
scent, this term gradually vanishes. This term plays a crucial role in evaluating the
stability of minima within the optimization problem defined by C across different
mini-batches. If a minimum remains consistent and is located in the same region
across all mini-batches, it is likely to reflect a genuine characteristic of the system.
On the other hand, if its position in the θ space varies significantly, it suggests statis-
tical fluctuations in the dataset and indicates a lack of generalization capability. To
help in visualizing this phenomenon, refer to Figure 14: it is worth noting that even
though the minimum of the cost function may remain the same in principle, its basin
of attraction - i.e. the set of starting points from which the dynamics converge to the
minimum - significantly narrows. In other words, the barriers prevent the Gradient
Descent trajectory from stopping within the minimum.

Figure 14: As the costs of different mini-batches become more spread near the mini-
mum of C, the significance of the SGD regularization term Γ(θ) increases.

The variation of the cost function on mini-batches reflects a variation in the in-
stances that compose them. We can consider the mini-batches as realizations of
independent datasets from the same distribution with a size that is only a fraction of
the original dataset. From this perspective, mini-batches exhibit convergence proper-
ties in line with what is predicted by the bounds of statistical learning theory, one of
which is (30). The bound provides an estimate of the variability of the cost function
in the form of

|Ĉi(θ)− Ĉ(θ)| ≈
√
k|Ĉ(θ)− C(θ)|,
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where k is the number of parts in which the dataset is divided into mini-batches of size
n/k. We observe that the term on the right-hand side is not computable explicitly, as
it requires C(θ), the true distribution, thus an infinite amount of data. In this sense,
this relationship can be interpreted as an inference tool. Additionally, we consider
the role of model resolution with respect to the properties of the cost function and
the relationship between the costs of individual mini-batches. Intuitively, reasoning
in terms of coverings of ε-spheres, the higher the resolution, the greater the variabil-
ity between mini-batches, for example, considering the occupation numbers of each
individual sphere. Conversely, the coarser the description, the more similar the mini-
batches will be to each other. In light of these considerations, the role of the second
regularization term in SGD takes on a clearer meaning: if the model resolution is too
high and requires an incompatible amount of data compared to what is available, the
cost functions of the mini-batches will tend to be different from each other, inducing
a stronger regularization as shown in the lower images of Figure 14. Conversely, if the
amount of data is sufficient compared to the selected resolution, the mini-batches will
exhibit more similar behaviors, not requiring the intervention of the regularization
term. In other words, resolution compression and regularization are to some extent
dual and address the same problem under complementary conditions.

Compression-in-resolution and locality. The role played by compression-in-
resolution can involve limitations inherent in the problem at hand. Conceptually,
two opposite extremes can be considered. On the one hand, inductive protocols such
as Analogs Method exclusively employ local information. On the other, there are
inductive procedures capable in principle of constructing high levels representations
through lossy compression protocols recognizing relevant distributed patterns. While
the recognized limits for Analogs Method follow directly from its local nature, a
different inductive procedure could conversely employ distributed information and
recognize global patterns in performing the assigned task. The information-plane
framework for Deep Learning provides a high-level picture in this regard, showing
how the compression procedure does not necessarily proceed by using locally con-
centrated information. However, a general bottleneck seems unavoidable: the more
local information is relevant for the task selected, the more limitations attributable to
compression-in-resolution can affect the performance. The system’s properties play
a role at this level, telling us the extent to which locally concentrated information
is relevant and giving us the consequent applicability criteria. If, on the one hand,
it may be reasonable to have a sufficiently large database for the classification of a
particular type of image - as in the case of lung cancer diagnosis - contrarily, the
consequences due to compression-in-resolution could be much more limiting for other
tasks, such as weather forecasting. Generally, an inductive protocol might at best
be able to determine a quantitative law that fits well the data available and whose
recognition by a human specialist is cognitively prohibitive. This task can be inter-
preted as a data-compression procedure. Still, it is incorrect to conclude that the law
obtained corresponds to a compressed version of all the behaviors observed [35][70].
Indeed, the exponential divergence of orbits implies the failure in compressing the
time evolution effectively, also assuming that a good model is explicitly known. As
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discussed above for the Analogs Method, the initial data compression corresponds to
identifying a sphere of points in the phase space, forgetting some details, and thus
removing a certain amount of information. Suppose it is assumed that a component
of the local information can not be reconstructed by considering the one available in
other regions of the phase space. In that case, its removal undermines the serviceabil-
ity of any inductive protocol in that particular regime. In this sense, the limitation
highlighted with the analysis of the Analogs Method becomes relevant again.
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This third part aims to discuss the role of causality as a tool to manage information
when some distribution shift comes into play. Some formal ways of characterizing
cause-effect relations will be critically examined, and the potential connections that
alternative frameworks may have will be explored to establish a more unified view-
point. The following discussion is oriented toward justifying how causalization can
be seen as a compression-in-representation procedure, thus complementing the epis-
temological picture already presented in the previous parts.

Part III

Causality
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1 Mathematical Framework

By employing cause-effect relations, an intelligent agent elaborates a more economi-
cal representation of observational data than the purely associational one. Moreover,
causality provides an inferential framework suitable for predicting the system’s re-
sponse in the face of external stimuli. In this regard, the language of Bayesian Net-
works offers valuable tools to formalize the two points above [82][115][170][187]. Let
us delve into these matters by progressively introducing the key concepts, bearing in
mind that the role of Machine Learning will be examined from two perspectives. On
the one hand, automatic methods could help in approaching some typical problems
about causality, such as Causal Discovery and Causal Inference. On the other hand,
the possibility of enhancing inductive methods by adopting a causal framework will
be explored, discussing whether causality can inform how Machine Learning should
be done, at least in principle.

From a more general perspective, causality has played a central role in philosophy,
originating many alternative theoretical proposals. Recently, P. Illary and F. Russo
have insisted on a pluralistic conception of causality [72], for which the accounts de-
veloped in the literature are the tiles that can be used in building the causal mosaic
needed to handle the problems of explanation, prediction, control, inference and rea-
soning. This approach opens up numerous metaphysical, epistemological, semantic
and pragmatic questions, to some extent also dependent on the disciplinary context
under consideration. On the other side - with no ontological commitment - a more
restrictive viewpoint will be adopted in what follows. In our view, causality provides
a compression-in-representation compatible with a notion of embedded intelligence
that takes into account the agent’s ability to intervene in the environment and gen-
eralize well, thanks to a modular picture of the external world. In this regard - to
ensure their survival - organisms must effectively acquire information from their en-
vironment, then process and organize it into suitable representations. Moreover, the
acquired information needs to be appropriately integrated with existing background
knowledge, which is structured and ordered in a way that facilitates effective inter-
actions with the environment by minimizing the resources required to accomplish
significant tasks. In other words, processing infrastructure may respond to the en-
vironmental complexity, building up accordingly [86][163][100]. These considerations
can also inspire the integration of inductive methods with causal language - where
the notion of intervention has a central role - in order to achieve better-performing
learning protocols [146]. Let us start with an introductory example to explore this
setting step by step.

A trivial remark. Let X be a set of m binary random variables Xi. The
joint probability distribution PX can be represented through a table in which each
row corresponds to a possible realization x ∈ X , with the probability p(x) attached.
In the absence of any additional assumptions, this tabular representation requires
2m − 1 rows, with intractable costs from the cognitive and computational viewpoints
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as m increases. However, independence relations among variables can come into play
allowing us to represent PX more compactly. In general, the probability chain rule
holds for every choice in indexes in X:

PX = PX1 · PX2|X1 · ... · PXn|X1,...,Xm−1 =
m∏
i=1

PXi|Xj<i
.

In simple cases, a preferred total order is available: each variable depends only on
the one immediately preceding. Given the Markov chain

X1 −→ X2 −→ ... −→ Xm,

the Markov Condition PXi|Xj<i
= PXi|Xi−1

holds, and only 2m − 1 rows are needed
for the tabular representation. The number of parameters required to represent PX

changes from scaling exponentially to scaling linearly in m. This example is general-
izable to partial orders by considering more complex hierarchies represented by a Di-
rected Acyclic Graph (DAG) G, where variables in X correspond to nodes in G. This
approach follows from a simple observation: the conditional independence relation
satisfies the graphoid axioms [122][123], and the independence statement X ⊥⊥ Y |Z
can be read graphically as follows: all paths from node X to Y are intercepted by a
subset Z of nodes in G [115].

Graph representation. Let us start with some terminological elements [115].
Given a node Xk ∈ G, we say that the nodes from which incoming links depart into
Xk are its parents, denoted by PaGk . Moreover, nodes receiving an outgoing link from
Xk are its children, Ch

G
k . Similarly - adopting this intuitive genealogical language - we

have the ancestors AnG
k , and the descendants DeGk . In what follows, the superscript

in G may be omitted if the graph is clear from the context. On the general level,
the Markov property is a well-established assumption in graphical modeling: when a
distribution P is Markov with respect to G, independencies are encoded in G and can
be exploited for efficient computation and data storage. More particularly, the graph
G is said PX-compatible if the Local Markov Condition holds, assuming each variable
to be independent of its ancestors given its parents:

PXi|¬Dei,Pai = PXi|Pai . (46)

The Local Markov Condition as in (46) can be equivalently expressed in terms of
the canonical factorization with respect to G, so that the joint distribution can be
re-written as

PX =
m∏
i=1

PXi|Pai . (47)

Moreover, the PX-compatibility condition - as captured by (46) and (47) - also
admits a characterization in terms of d-separation relations [115][129]. Given three
sets of nodes A, B, C in G, A and B are d-separated by C, say A ⊥⊥G B|C, if - for
every couple Ai ∈ A and Bj ∈ B, and for every path γ in G which connects Ai with
Bj - at least one of the following conditions holds.
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• There is a chain blocked by C, that is to say, we have → Ck → or ← Ck ← in
γ, with Ck ∈ C.

• There is a fork blocked by C, that is to say, we have← Ck → in γ, with Ck ∈ C;

• There is a collider not fixed by C, that is to say, we have → W ← in γ, with
W and DeW with a null intersection with C.

Given the terminology above, it is possible to show that G is PX-compatible if and
only if the following Global Markov Condition holds:

A ⊥⊥G B|C ⇒ A ⊥⊥P B|C, (48)

where A ⊥⊥P B|C stays for PA,B|C = PA|CPB|C [115]. Remarkably, we would an
algorithm that - taking as input PX or a dataset distributed as PX - returns a graph
G capable of representing all and only the independence relations of PX . In other
words, the Faithfulness Assumption is typically required:

A ⊥⊥G B|C ⇔ A ⊥⊥P B|C. (49)

In summary, while the Markov condition (48) enables us to read off independence
relations from the graph structure, the Faithfulness assumption (49) allows us to in-
fer dependencies starting from the graph. Although the PX-compatible DAG G is a
compact way to represent the set of independence relations provided by PX , it does
not necessarily correspond to the system causal structure. This point becomes clear
by realizing that the set of PX-compatible graphs is not necessarily a singleton, as
discussed below.

Markov Equivalence Class. Givenm variablesX1, ..., Xm, the number of possi-
ble DAGs grows super-exponentially as m increases: the length of the numbers grows
faster than any linear term in m [129]. On the other side, the independence rela-
tions provided by PX introduce some constraints and reduces the number of DAGs of
interest: the subset of PX-compatible DAGs is called the Markov Equivalence Class
(MEC) for PX . This class can be completely characterized by introducing two other
definitions. First - given a DAG G - the G-skeleton is the graph G ′ obtained by
replacing all directed links in G with undirected ones. Second, given three nodes
X, Y, Z ∈ G, with X → Z and Y → Z in G and no link between X and Y , the
pattern X → Z ← Y is called a v-structure of G. At this point, the following result
provides the desired characterization.

Theorem 1 [185]. Two DAGs are in the same MEC if and only if they share the
same skeleton and the same set of v-structures.

Significantly, MECP is graphically represented through a Partially Directed Acyclic
Graph (PDAG) GP , obtainable via three simple steps:

• We start with only nodes without any edge.
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• The skeleton of GP is the same as any DAG in MECP : the required undirected
edges are added to the graph.

• If an edge of GP has the same direction for all the DAGs in MECP , this edge
is directed in that direction.

The new graph GP is referred to the Completed Partially DAG (CPDAG) of PX .
We can think of MECP as the set of alternative causal structures with which the
probability distribution PX can be generated. These structures can be represented
simultaneously by GP , whose oriented arrows correspond to the common cause-effect
relations. Informally, every directed edge Xi → Xj in G means that Xi directly
influences Xj, so that intervening on Xi changes the probability distribution of Xj

when all other variables are held constant. At this point, the concept of intervention
- and the distribution shift that consequently occurs - requires to be formalized. In
this regard, the language of Structural Equations provides us with a valuable tool to
clarify the semantics of intervention.

Structural Equations. First of all, we distinguish the endogenous variables
X of the system, i.e. those actually observable, from the exogenous ones N , that
we can not observe. At this level, the Causal Sufficiency Principle is assumed. Each
exogenous Nk variable influences one and only one observable Xk so that the following
independence properties hold:

Pak ⊥⊥ Nk, Ni ⊥⊥ Nj

for all i ̸= j and i, j, k = 1, ...,m. The graph G can be consequently extended with
the unexplained nodes Nk, adding all the directed edges Nk → Xk. The extended
graph tells us that Pak and Nk produce the observable value of Xk through an un-
derlying mechanism. Structural equations make explicit this mechanism by providing
a deterministic function fk such that

Xk := fk(Pak, Nk). (50)

It is important to emphasize that (50) must be interpreted as an asymmetric assign-
ment - from right to left - and not as a standard symmetric equation. Given the
distribution PN , the functional assignments fk allow us to compute the joint distri-
bution PX , which has properties inherited from the G’s topology. Intuitively, we can
think of N as a source of information that spreads through the graph G. Given the
factorization (47), each factor PXk|Pak is interpreted as produced by the mechanism
represented by the deterministic function fk and the marginal distribution PNk

. On
the other side, Nk admits different interpretations.

• First of all, Nk might reflect the presence of a measurement error on Xk.

• Secondly, other variables that influence Xk besides Pak - not observed - might
be described by Nk.
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• Alternatively, Nk represents some indeterminacy in the functional relationship
between Xk and Pak, which is about the underlying mechanism.

• Finally, also a combination of all previous interpretations can not be excluded.

In any case, the individual values ofNk are assumed not to be directly measured, while
Xk and Pak can be - in principle - observed. In other words, causal relationships are
expressed in terms of deterministic models while probabilities are introduced through
some unobserved variables. This framework is compatible with Laplace’s idea of nat-
ural phenomena. Nature’s laws are deterministic, while randomness is a consequence
of the observer’s ignorance about boundary conditions. Traditionally - particularly in
the natural sciences - we expect that relationships such as (50) occur over time and
are governed by a set of coupled differential equations. Under certain conditions, it
is possible to derive structural equations that prescribe how a system at equilibrium
responds to an external stimulus [107]. However - in our following discussion - (50)
is considered the primitive object for introducing the interventional semantics.

Interventional semantics. Adopting the above-mentioned mathematical frame-
work, the external intervention do(Xl = x̂) takes place when the system’s structural
equation Xl := fl(Pal, Nl) is replaced by the assignment Xl := x̂. As far as the graph
level is concerned, the correspondent G is modified in Ĝ by removing all the arrows
incoming in Xl, and setting Xl distributed as a delta-function δx̂(x) concentrated in
x̂. Consequently, the observational PX shifts to a new distribution PX|do(Xl=x̂), which

admits the canonical factorization with respect to the new graph Ĝ,

PX|do(Xl=x̂) :=
m∏
i=1

P
Xi|PaĜi

= δx̂,xl

m∏
i ̸=l

PXi|PaGi
(51)

The construction above can be generalized considering a more general shift as in (5).
At any rate, two implicit invariance assumptions are required. First, the mechanism
fk is independent of Pak-distribution: each structural equation (50) is invariant un-
der interventions on independent variables Pak. Second, a modularity principle is
satisfied: the functions {fk}mk=1 are independent of each other, that is to say, every fi
is invariant under changes of fj for all i ̸= j. Remarkably, PX|do(Xl:=x̂) is characterized
by (51) only if G is known and Causal Sufficiency holds, and unobserved confounders
are not allowed. On a general level, determining PX|do(Xl:=x̂) can be an arduous task.
In this regard, J. Pearl has proposed a complete set of rules [71] - known as Do-
Calculus - to infer the interventional distribution starting from the observational one,
when the causal graph also admits unobserved common causes [115][120][121]. Two
comments may be valuable at this point.

• The mathematical constructs introduced thus far enable the formalization of
an initial concept of embedded representation in the external world. While
structural equations can be regarded as a model for a data-generating process -
both with and without interventions - it is essential to consider that the accurate
representation of the system via structural equations should provide the correct
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observational distribution PX , and all interventional distributions PX|do(Xl=x̂) -
and more generally PX|do(Xl∼PX̂) as in (5) - should correspond to distributions
obtained through randomized experiments [46][115].

• Structural equations are more expressive than the observational and interven-
tional plan. Indeed, it is possible to show how two systems of structural equa-
tions can agree on these two levels while showing differences on the counterfac-
tual plane. Remarkably, counterfactual statements lack an evident correspon-
dence in the external world, which consequently renders them not falsifiable.
However, humans often think in counterfactual terms, and counterfactuals can
have a role in organizing the background knowledge available and in making
better decisions [115][61]. This point lies beyond this dissertation.

2 Causal Pipeline

Understanding a system via causal language must necessarily pass through progres-
sive procedural bottlenecks, each with theoretical and practical consequences. Gen-
erally speaking, the more one intends to climb the Ladder of Causality as represented
in Table 2 - firstly passing through the interventional level and then accessing the
counterfactual one - the more critical the barriers become [117][15]. A preliminary
indication of this typical scenario emerges considering the cause-effect problem in the
bivariate context [129][73]. Beyond its practical applications, a detailed discussion of
this elementary topic can clarify some general features of causality, its role in mak-
ing practical inferences, and its possible relations with Machine Learning methods.
Postponing the details to the next section, the following scenario arises.

• The relation between cause and effect is asymmetric. As opposed to mere
statistical correlation, causation has directionality. Consequently, we say that
an adequate theory of causality must explain this asymmetry, which we should
recognize at some level when we try to extract causal information from statistical
dependencies.

• However, given the observational joint distribution PX,Y without any additional
prescriptions, the asymmetry between cause and effect can not be established.
More precisely, for every PX,Y a functional model ΦX→Y exists, that is Y :=
f(X,N) for some deterministic function f and a noise N such that N ⊥⊥ X.
On the other hand, also a functional model ΦY→X is available.

• The symmetry recognized above concerns the theoretical distribution and does
not depend in any way on the amount of available data. This observation marks
an important difference from the observational level, where incremental gains
in accuracy are achievable by adding more training data.

• Remarkably, as we will elaborate on later, the functional models ΦX→Y and
ΦY→X generally exhibit different mathematical structures. As a result, the
asymmetry between cause and effect can be established by imposing specific
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conditions on the class Φ of admissible functional models, thereby incorporating
relevant background knowledge regarding the bivariate system.

• Alternatively, a measure of complexity can be introduced to distinguish the two
available options, and an Occam’s Razor argument comes into play. At any rate,
in each of the two options, some background knowledge or additional assump-
tions seem unavoidable to breaking the symmetry without using interventional
data.

It is important to emphasize that other problems emerge immediately in the face of
a slightly deeper analysis. In concrete scenarios, the dependency between X and Y
can manifest in different ways. For instance, the observed random variables can be
conditioned on unobserved variables, leading to the occurrence of a selection bias.
Moreover, X and Y can follow a physical law, inheriting a time dependence that
does not correspond to a causal relation. At any rate, problems and limitations that
occur in the bivariate case can be more challenging in the multivariate context. The
structures involved become richer and more complex, while further limitations also
arise at the computational level. Therefore - before returning to consider the bivariate
problem - a causal pipeline for the multivariate case will be discussed by considering
well-separated modules, keeping in mind two general goals. On the one hand, this
description aims at providing a broad and high-level look at the scientific practice
involved in causality. On the other, it will be clarifying in characterizing the specific
assumptions and bottlenecks that arise step by step.

Handling Data

The first problem to be addressed - which extends far beyond the realm of causality
- concerns the limited availability of data. Although many inductive methods are
asymptotically consistent - that is to say, better and better approximating an ideal
operating condition as the number of available data increases - consistency does not
always induce the expected practical advantage, and some problems due to the finite
data regime are often simply unavoidable.

Independence tests. Suppose we want to investigate a system involving mul-
tiple variables, and we are interested in determining whether there is conditional
independence between X and Y given the set of variables S. To test this, we rely on
a statistical procedure that examines a subset of the available data. Specifically, it
verifies the validity of independence for each possible realization S = s. When con-
sidering binary variables for simplicity, the number of possible realizations becomes
2|S|. Consequently, each test only has access to a fraction of the complete dataset,
approximately 1/2|S|. As a direct consequence, in order to maintain the efficacy of
statistical independence tests, we would need to exponentially increase the amount of
data available for analysis. This rapid increase makes the procedure practically infea-
sible. The reasoning can be directly extended to non-binary discrete variables. When
one considers continuous data, the problem often gets worse. First of all, many of
the most popular independence tests, such as G-test, Fisher-test, and Entropy-based
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tests, involve a binning procedure, i.e., a block discretization of the continuous distri-
bution, thus ending up with the problems analyzed before. As an additional problem,
the choice of the bins’ size can significantly affect the result, introducing an extra de-
gree of uncertainty and arbitrariness [196]. As a last remark, finite data causes some
algorithms-specific problems, even of theoretical nature. For example, among the al-
gorithms that will be analyzed later, in this regime pc becomes order-dependent [40],
while ges loses the guarantee of finding the absolute optimum w.r.t its score [37].

From Data to Graphs

Let’s now put aside the finite data problem and shift our attention to the subsequent
steps in the process. Assuming we have access to a probability distribution P (O),
our goal is to examine the observed variables in the system and uncover information
about their causal relationships. However, we encounter an immediate challenge: the
causal model we are trying to infer could encompass a larger set of variables, denoted
as V, than those currently available to us. Since V is unknown, there are an infinite
number of models that could potentially fit the given distribution. Each model may
involve distinct ”hidden” variables and establish different causal connections among
the observed variables. As a result, without placing any restrictions on the types of
models considered, the scientist is unable to make meaningful assertions about the
underlying structure that governs the phenomena. Following the principle of Occam’s
razor, it is reasonable to rule out any theory for which we find a simpler, less elaborate
theory that is equally consistent with the data. Theories that survive this selection
process are called minimal [115].

However, it is important to recognize that Occam’s razor serves as a heuristic prin-
ciple and does not guarantee that the chosen model perfectly represents the actual
underlying mechanism being studied. Therefore, its application, while reasonable,
inherently involves making arbitrary assumptions. In fact, an excessive reliance on
Occam’s razor can sometimes lead us towards overly simplistic models rather than
genuinely simple ones. For instance, let’s consider the assumption of ”Causal Suffi-
ciency.” By imposing V = O, we assume the simplest possible scenario by eliminating
any potential latent variables. However, this assumption comes at a considerable cost.
In the vast majority of cases, it yields models that are not only simplistic but also
highly unrealistic, contradicting the fundamental rationale behind applying Occam’s
razor – that the simplest solution is likely to be the correct one.

Along the same lines, let us consider the assumption of Causal Faithfulness, quickly
introducing a classic counterexample. Consider a DAG G represented in Figure 15
and defined through the linear equations

X1 := ε1

X2 := αX1 + ε2

X3 := X1 + βX2 + ε3.

(52)
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Figure 15: A simple DAG. When αβ = −1, faithfulness is broken. In this case X1’s
effect over X3 is cancelled.

Setting αβ = −1, the two causal paths of G from X1 to X3 cancel each other, in-
ducing the relationshipX1 ⊥⊥P X3 over the probability P generated by the graph, even
if X1 ̸⊥⊥G X3. Actually, the simpler DAG X1 → X2 ← X3 would be P-compatible.

Causal Faithfulness excludes the possibility that causal paths on the graph cancel
each other out through unlikely coincidences, hiding from independence tests. In this
sense, the guiding principle is analogous to Occam’s razor. Typically, this assumption
is considered not particularly relevant, arguing that non-faithful configurations occupy
a null measure in parameter space in probabilistic terms. However, recent results show
how, in the finite data regime and with a permissible range of error on statistical tests,
Causal Faithfulness could be much more problematic than we think [180].

Functional Assumptions

As a final step, let us assume that we have passed the first two steps described
above unscathed, obtaining the causal graph up to its MEC. To infer the direction
of remaining undirected edges is necessary to narrow the class of assumptions even
further by making additional assumptions. Let us consider a specific node of the
graph, say Xj. Using the language of structural equations, we can represent the
causal mechanism that determines Xj through the equation

Xj := fj(Pa
G(Xj), Nj). (53)

In the previous stage, we concentrated on investigating the topological properties
of G, exploiting its set of independencies induced by the d-separation criterion. We
did not impose any constraint on the form of fj, except by determining its parame-
ters Pa(Xj). To further determine the DAG, we must make assumptions about fj’s
properties, restricting ourselves to a more specific set of admissible functions. If the
assumed Functional Causal Model is too restrictive to be able to approximate the true
data-generating process, the causal discovery results may be misleading. Therefore,
if the specific knowledge about the generating mechanism is not available, to make it
useful in practice, the assumed causal model should be general enough, such that it
can reveal the data generating processes approximately [55].
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A natural question then arises: How can we be able a priori to assess the rea-
sonableness of the assumptions we make on fj without having access to any ground
truth on the model’s interventional data? As an additional remark, determining the
form of f would automatically give us access to the counterfactual plane, which is
not even accessible a priori. From this point of view, albeit partially implicitly, the
strength of the assumptions is shown not so much by the theoretical consequences
they imply but by the abnormality of the causal information they give us access to.

In addition, causal discovery methods based on Functional Causal Models cover a
broad spectrum of different hypotheses: Invertibility of f , linearity or non-linearity,
Gaussian noise or not, additive, multiplicative, and many combinations of these con-
cepts. In conclusion, while qualitative knowledge of the system can provide a great
deal of information on the structure of the underlying DAG, the blind application of
FCMs to models of which little or nothing is known would, in all likelihood, provide
little more valid conclusions than choosing the direction of the arrows in a random
fashion.

3 Cause-Effect Pairs

This section discusses a specific problem that may be considered both the most fun-
damental from a conceptual point of view and the least realistic in modeling concrete
situations: the cause-effect problem in the bivariate context [73][129]. Given only two
observable and correlated variables - X and Y - it is intended to establish in which
of the two possible alternatives the eventual causal link is directed. More precisely,
the scenario of interest stays in the following terms.

Given n independent and identically distributed observations drawn from
some distribution PX,Y - say (x1, y1), (x2, y2), ..., (xn, yn) - infer whether
X causes Y or Y causes X, considering the premise that precisely one of
these alternatives holds true.

A formal analysis of this binary classification problem is considered in some detail by
expanding further the analysis briefly summarized in Table 2 and reconsidering the
concepts already introduced so far. Remarkably, X → Y and X ← Y belong to the
same MEC, as guaranteed by the Theorem 1. Consequently, the required inference
will require assumptions additional to the observational level. It will be a matter of
discussing in what terms these assumptions can be considered general and whether a
theoretical characterization is available for the correct direction. Although we can not
expect to describe a realistic system as a collection of bivariate relations, the scientific
literature contains many discussions about variables in pairs. Moreover - and beyond
its practical applications - a detailed discussion of this elementary topic clarifies some
general features of causality, its role in making practical inferences, and its possible
relations with Machine Learning methods. Starting with the Reichenbach’s Principle
[135][129], a set of principles useful in framing the notion of causality is discussed.
Secondly, we will discuss some conditions under which the symmetry between X and
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Y is broken, and requirements helpful in identifying direct causation will be examined,
excluding the existence of a not observed confounder. The preliminary formal results
suggest some considerations about using the information and algorithmic complexity
as technical tools in characterizing the difference between cause and effect [74][129].
The role of Occam’s Razor is considered in light of this discussion, providing us with
an epistemological motivation.

Causal Principles

As previously mentioned, causal representation involves the utilization of a proba-
bilistic model but necessitates additional information beyond what the observational
level provides. Therefore, learning causal structures and reasoning in causal terms
are more challenging objectives compared to their statistical counterparts. This sec-
tion aims to delve deeper into the relationship between causal and statistical planes,
presenting a collection of general principles that will be further examined in their
respective application domains. While statistical properties alone are inadequate for
determining the underlying causal structure, it is plausible to hypothesize that we
can infer the presence of causal connections based on statistical dependencies. This
assumption is the content of Reichenbach’s Principle [135][129].

Principle 1 Assuming that the random variables X and Y are statistically dependent,
a third variable Z causally influences both.

As a particular case for Principle 1, Z may coincide either with X or Y . In other
words, if X and Y are correlated, there are at least three elementary alternatives:
X causes Y , Y causes X, or there is a not observed confounder. In graphical terms
X → Y , X ← Y or X ↔ Y . Moreover, two other combinations are in principle
available: the confounder case can be further equipped with an arrow between X
and Y . In interventional terms, the three elementary alternatives mentioned above
correspond to the following distributions:

X → Y : PY |do(X=x̂) = PY |X=x̂ PX|do(Y=ŷ) = PX ,

X ← Y : PY |do(X=x̂) = PY PX|do(Y=ŷ) = PX|Y=ŷ,

X ↔ Y : PY |do(X=x̂) = PY PX|do(Y=ŷ) = PX .

On the other side, the confounder cases equipped with an arrow between X and Y
do not imply differences with respect to the first two cases above. Consequently, they
are not falsifiable and can be omitted in our analysis. At this point, three remarks
can be valuable.

• First, if X precedes Y in time, the case X ← Y can be excluded and only the
other two alternatives remain available. Although time may involve simplifica-
tion, only the static case is considered in this section, while the dynamic one
will be examined later in some detail.

• Second, given only the joint observational distribution PX,Y - independently of
the amount of available data - in many concrete situations it is not possible to
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construct an interventional procedure that allows us to establish which of the
three elementary options is the actual one.

• Third - excluding the possibility of direct interventions on the system - it is a
mathematical problem to find other conditions that can be helpful in identifying
the correct causal link, adopting in some sense a background knowledge about
the system.

In the face of the last remark mentioned above, the language of structural equations
provides us with a system representation that can be used to introduce additional
assumptions. The following principle is then motivated.

Principle 2 Assuming that there is a causal link from X to Y, a function f and a
noise variable N exist such that Y:=f(X,N).

On the one hand, the noise N in Principle 2 can interpret the influence of a not ob-
served external environment or errors in measuring. On the other hand, the function
f may be thought of as a physical mechanism that relates the variables involved. Cru-
cially, the function f should be read as an assignment rather than as a mathematical
equation. This subtle difference is essential in justifying the interventional framework:
if we set Y to a fixed value ŷ and N takes the value n̂, the assignment Y := f(X,N)
does not imply that X assumes a the value that the equation Y = f(X,N) would
prescribe. More succinctly, the interventions on X and Y involve the following rela-
tions:

X := x̂ 7−→ Y = f(x̂, N),

Y := ŷ 7−→ X ∼ PX

It is important to emphasize that while Principle 2 admits an ontological interpreta-
tion, Principle 1 should be read as a methodological insight. In concrete situations,
the dependency between X and Y may also arise in different terms. For example, the
random variables we observe are conditioned on others that we can not observe, pro-
ducing a selection bias; random variables could only appear to be dependent through
a failable test; our two random variables follow a simple physical law, inheriting a
time dependence that does not correspond to a causal relation.

Rethinking modularity. Returning to the joint distribution PX,Y , two possi-
ble decompositions in terms of conditional probabilities are available: PY |XPX and
PX|Y PY . These two alternatives in decomposing PX,Y can correspond to the two pos-
sible causal links. If X causes Y , then the first decomposition is preferred and can
be read productively. First, it is in principle possible to perform a localized interven-
tion on X, changing PX without altering PY |X . Second, PX and PY |X correspond to
two not necessarily related objects. These facts directly follow Principle 2 whenever
we assume that the conditional probability PY |X is the probabilistic counterpart of
an underlying mechanism f that does not depend on PX . On the other side, this
propriety is not obvious: we can imagine a system where selecting a particular x-
range produces a correspondent regime in the Y ’s response so that the underlying
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mechanism required by Principle 2 may depend on X. This discussion motivates the
introduction of a modularity principle as a simplification in representation.

Principle 3 Every causal bivariate process is composed of two independent modules
- represented by probabilities Pcause and Peffect|cause - that do not influence each other.
Furthermore, it is in principle possible to intervene on a particular module without
perturbing the other.

The above principle means that while one module’s output may influence another
module’s input, the modules themselves are independent of each other. The notion
of independence invoked has no statistical content but can be explained as follows.
In principle, we can transport the module Peffect|cause in a context where the input is

provided by a module P̂cause different from Pcause. In other words, this modularity
principle allows localized interventions and corresponds to the belief that there is no
meta-mechanisms connecting different modules. Similarly, assuming this principle,
we can expect that every module tends to remain invariant for changes stemming
outside the system.

Causality as compression-in-representation. Principle 3 also admits an in-
formational interpretation - not in statistical terms - based on the Kolmogorov Com-
plexity K [89]. Given a Universal Turing Machine T and a binary string s, the
Kolmogorov Complexity of s with respect to T is defined as

KT (s) := |s∗|,

where |s∗| denotes the length of the shortest program s∗ for which T outputs s and
stops. Remarkably, s∗ can be regarded as the most concise compression of s that
encompasses all the necessary information for executing the decompression process
and producing the output s. Moreover, in what follows, subscripts in T will be
omitted, and the Turing Machine T will be considered fixed once and for all. Similar
to what was done for information in Shannon’s sense, it is possible to define the
conditional quantity K(s|t) to be interpreted as the length of the shortest program
that generates the output s from the input t and then stops. Therefore, algorithmic
mutual information is defined as

I(s : t) := K(s)−K(s|t∗).

Moreover, it is possible to show that

I(s : t)
+
= K(s) +K(t)−K(s, t),

where
+
= indicates that equation only holds up to a constant. Having defined these

objects, let us now consider the variables X and Y assuming for a moment that
X → Y is the correct causal link. Intuitively, X can be interpreted as a program that
produces the output x. Similarly, the noise N selects the mechanism fN provided
by Principle 2, which corresponds to a program that takes x as input and produces
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outputs y. If Principle 3 holds, then the program corresponding to X contains no
information about the program that produces Y given the input x. In other terms,
we can consider p(x) and p(y|x) as two programs that produce the correspondent
probability distribution for every input x and y, to be considered as finite length
strings. This interpretation can be formalized in terms of algorithmic independence
[74], that is,

I(Pcause : Peffect|cause)
+
= 0. (54)

In other words - whenever (54) holds - the description of Pcause does not get shorter
when Peffect|cause is known, and vice versa. Moreover, condition (54) implies [129]

K(Pcause) +K(Peffect|cause)
+
= K(Pcause|effect)
+

≤ K(Peffect) +K(Pcause|effect),

and this relation says that the causal factorization of P is a more compressed repre-
sentation than the anti-causal one. Remarkably, condition (54) considers the sum of
marginal and conditional complexities and can not be substituted by a relation that
compares only the conditional distribution, i.e.

K(Peffect|cause)
+

≤ K(Pcause|effect),

that in general does not hold. In other words, Occam’s Razor-type principle intervenes
at the level of the available representation and not at the level of the mechanism
generating the joint distribution, where the complexity of the mechanism for the
conditional distribution could be offset for the mechanism generating the marginal
one. At this point, two further remarks are valuable to complete the picture.

• Principle 3 holds also under a more weakened hypothesis. Let us add a nodeM
that represents one part of the mechanism that connects X and Y , for which
modularity could not hold. Graphically, we have three nodes with X → Y and
the chain X → M → Y . However, Principle 3 applies to the extended graph.
This remark makes it clear that Principle 3 has a dual nature. First, it encapsu-
lates a physical statement about the relations between the observable variables.
Second, it has a methodological content forcing the selection of variables and
mechanisms that make possible localized interventions.

• Principle 3 is also applicable in considering a dynamic system. Let s be the
initial state, ϕts its evolution after a time t. Typically, we assume that the initial
state s has no interactions with the underlying dynamics ϕt. This assumption
is coherent with Principle 3 whenever we consider a fully concentrated measure
in s and the time evolution as a functional mechanism, taking for granted that
the system is isolated. If the system was not isolated, the external environment
could produce a dependence between s and ϕt.

At a less fundamental level, given the framework provided by Principle 2, an oc-
currence of N can be interpreted as a selection of a deterministic mechanism that
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produces the Y ’s outcome starting from the input X. If X and N were dependent,
the occurrence of N would contain a piece of information about the occurrence of X.
Consequently, Principle 3 would be violated. This remark motivates the introduction
of a principle to make Principle 2 compatible with 3:

Principle 4 Given the functional mechanism provided by Principle 2, the noise vari-
able N and the observational variable X must be independent.

The above discussion can be adapted for a multivariate system. The general frame-
work is intuitive if we start from a graph-driven approach with the above principles
opportunely extended. Let X be a set of observables modeled as random variables
associated with the nodes of a directed acyclic graph G. The directed edge from Xi to
Xj in G means that Xi influences Xj directly: intervening on Xi changes the distribu-
tion of Xj if we consider the other variables fixed. We can extend the causal G with
the unexplained nodes Nk, adding all the directed edges from Nk to Xk. Let PAk

be the set of all variables in G for which there exists an arrow to Xk. The extended
graph tells us that PAk and Nk produce the observable value of Xk through an un-
derlying mechanism. Structural equations make explicit this mechanism by providing
a deterministic function fk, such that Xk := fk(PAk, Nk) under the assumptions for
which PAk and Nk are statistically independent. Reconsidering Principle 3 and de-
noting with G the underlying causal graph, the G-factorization satisfies the following
condition:

K[G] := K(
m∏
i=1

PXi|PaGi
)

+

≤ K(
m∏
i=1

P
Xi|PaG

′
i
), for every G ′ ̸= G.

Finally, an additional principle is necessary:

Principle 5 Given the functional mechanism provided by Principle 2, the noise vari-
ables Ni and Nj must be independent.

In other words, we assume that no hidden variables influence more than one of our
observables in X. Given the distribution of N, the functional assignments allow us
to compute the joint distribution of X, which has properties inherited from the G’s
topology: the density function of PX admits a canonical factorization compatible with
the modularity principle and a causal interpretation. More precisely, this construction
has two assumptions of independence: each mechanism fk is independent of PAk

distribution; secondly, an additional modularity principle is satisfied, that is, each fk
is independent of the others.

Causal Direction

Causal modeling techniques raise several methodological issues that are of interest
both to philosophers and pragmatic users. Generally speaking, identifying and quan-
tifying causal relations could be among the most relevant scientific goals since causal-
ity provides the theoretic foundation for operative knowledge in many contexts, also
making possible reasonable human decisions. In what follows, we will deal with two
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particular questions, both of interest from an epistemological perspective. Can causal
conclusions be derived just from statistical information? If not, what additional back-
ground knowledge is required? In other words, given a bivariate distribution PX,Y ,
we will discuss in some detail what formal conditions must be satisfied to have a
well-defined causal relationship between X and Y .

A Symmetry result. It is commonly held that the relation between cause
and effect is asymmetric. As opposed to mere statistical correlation, causation has
directionality. Consequently, we say that an adequate theory of causality must explain
this asymmetry, which we should recognize at some level when we try to extract causal
information from statistical dependencies. In what follows, we will consider a formal
argument to prove that the previous definition in terms of the functional model is not
sufficient to recognize this fundamental asymmetry, as discussed in [127]. Let X and
Y be two random variables with a joint probability distribution PX,Y . Given x ∈ X ,
we consider the cumulative distribution function of Y conditioned by X = x,

Fx(y) := Prob(Y ≤ y|X = x).

Fx is a monotone function from Y to [0, 1]. If we take the inf-value on each interval
where F ′

x ≡ 0, the inverse function is well-defined. We define f(x, n) := F−1
x (n) and

Z := f(X,N), where n ∈ [0, 1] and N is an undefined random variable on [0, 1].
Fixed y ∈ Y , we have

Prob(Z ≤ y) = Prob(f(X,N) ≤ y)

=

∫
Prob(f(X,N) ≤ y|X = x)pX(x)dx

=

∫
Prob(f(x,N) ≤ y)pX(x)dx

=

∫
Prob(F−1

x (N) ≤ y)pX(x)dx

=

∫
Prob(N ≤ Fx(y))pX(x)dx.

If we choose N ∼ U [0, 1], then Prob(N ≤ Fx(y)) = Fx(y) and we have

Prob(Z ≤ y) =

∫
Fx(y)pX(x)dx =

∫
Prob(Y ≤ y|X = x)pX(x)dx

=

∫
Prob(Y ≤ y,X = x)dx

= Prob(Y ≤ y),

concluding that Y = f(X,N), with X ⊥⊥ N , i.e. exists a functional model ΦX→Y .
This construction can be repeated by swapping X and Y , with a deterministic func-
tion g and noise M such that X = g(Y,M) and Y ⊥⊥ M , i.e. exists a functional
model ΦY→X . In other words, we have the following symmetry result:
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Theorem 2 Let PX,Y be the observational joint distribution for X and Y . Without
any additional prescriptions, we can not establish the asymmetry between cause and
effect.

It is well known that if X is a continuous random variable with a cumulative distri-
bution function FX , then FX(X) has a uniform distribution on [0, 1]. Consequently,
given a noise N and its cumulative distribution function FN , we can construct a
functional model Y = f̂(X,N) using the argument presented above, by defining
f̂(X,N) := f(X,FN(N)) with f(x, n) := F−1

x (n) and n ∈ [0, 1]. In other words, the
statement of Theorem 2 is true also when the noise distribution is a priori fixed.

Example 1 Let PX,Y be a Gaussian bivariate distribution given by the functional
model Y = αX + N , where α ̸= 0, PX ∼ N(0, σ2

X) and PN ∼ N(0, σ2
N). We can

construct the backward model X = βY +M . We define

M := X − βY

and determine β ∈ R such that Y ⊥⊥M . Stochastic independence and zero correlation
are equivalent conditions for Gaussian variables, so we impose cov(Y,M) = 0. Then
we have

0 = cov(Y,M) = cov(Y,X − βY ) = cov(Y,X)− βσ2
Y

= cov(αX +N,X)− βσ2
Y = ασ2

X − βσ2
Y

= ασ2
X − β(α2σ2

X + σ2
N).

Then we have the backward model X =
ασ2

X

α2σ2
X+σ2

N
Y +M .

The Example 1 is coherent with the symmetry result presented above, although it
tells us something more. The functional models ΦX→Y and ΦY→X have the same
structure, linear with additive Gaussian noise. Let’s try to remove the Gaussian
hypothesis on PX,Y , only assuming that exist the functional linear models ΦX→Y and
ΦY→X :

Y = αX +N, X ⊥⊥ N, α ̸= 0,

X = βY +M, Y ⊥⊥M, β ̸= 0,

so that 
Y = αX +N,

M = (1− αβ)X − βN,
Y ⊥⊥M.

(55)

For αβ = 1 we conclude that αX+N ⊥⊥ N , which is absurd if σ2
N ̸= 0.1 So 1−αβ ̸= 0

and from the relation (55) we conclude that X and N are normal distributed2. In
other words, we have shown the following lemma:

1If X + Y ⊥⊥ Y and X ⊥⊥ Y , then cov(X + Y, Y ) = cov(Y, Y ) = σ2
Y , while zero-covariance is a

necessary condition for independence.
2The following lemma is well known. Let Z1 and Z2 be two independent variables such that

Z1 = a1X + b1Y and Z2 = a2X + b2Y , with a1, a2, b1, b2 ̸= 0, Z1 ⊥⊥ Z2. Then X and Y are normally
distributed.
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Lemma 1 Let PX,Y the observational distribution and let ΦX→Y be a functional lin-
ear model for PX,Y , with additive noise. Exists ΦY→X linear with additive noise if
and only if PX,Y is Gaussian.

This Lemma suggests that by assigning some structural prescriptions on the functional
model Φ, we could establish the cause-effect asymmetry. In the next section, we will
explore this idea by studying two Φ-classes, with additive and multiplicative noise
respectively.

Breaking the Symmetry

Let PX,Y be the observational joint distribution for which density p(x, y) generally ad-
mits two factorizations, p(y|x)p(x) and p(x|y)p(y). Without additional requirements,
p(y|x) and p(x|y) correspond to two different functional relationships, Y = f(X,N)
and X = g(Y,M) respectively, so that f and g can not admit a causal interpretation.
However, if our background knowledge about the underlying mechanisms introduces
some formal constraints on f and g, then the symmetry between X and Y results be
broken.

Additive Noise

Let AΦ be the class of functional models with additive noise. Given the observational
distribution PX,Y , we assume that ΦX→Y ∈ AΦ, that is to say exists (f,N) such
that Y = f(X) +N , equipped with the independence condition X ⊥⊥ N . Under the
additivity hypothesis, a fitting procedure is enough. Given

f̂Y (x) := E[Y |X = x],

we can conclude that ΦX→Y ∈ AΦ is the correct causal model whenever the regression
residual Y − f̂Y (X) is independent of X, provided that the regression residual in
the opposite direction is not independent of Y . This circumstance can be verified
empirically by plotting the pairs (xi, ni) - where (xi, yi) are the observed data with
ni = yi − f̂Y (xi) - to check for correlation. Theoretically - this time in informational
terms - additive noise allows the following characterization to be formulated:

H[X]−H[Y − f̂Y (X)] ≤ H[Y ]−H[X − f̂X(Y )]

Reconsidering the level of structural equations, an asymmetry result can be obtained
via the following reasoning. First of all, additivity implies

p(x, y) = pX(x)pN(y − f(x)).

If p(x, y) is strictly positive, we define the self-information h(x, y) := ln p(x, y) and
compute its derivatives:

h(x, y) = ln pX(x) + ln pN(y − f(x))

=: φ(x) + γ(y − f(x)),
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∂2yh = γ′′, ∂x∂yh = −f ′γ′′.

Given Ω := {(x, y) : f ′γ′′ ̸= 0}, h satisfies the following equation on Ω:

∂y

{
∂2yh

∂x∂yh

}
= 0. (56)

Assuming that exists ΦY→X ∈ AΦ, we have

X = g(Y ) +M, Y ⊥⊥M

and
p(x, y) = pY (y)pM(x− g(y)).

Consequently, h = ψ + δ with ψ(y) := ln py(y), δ(x − g(y)) := ln pM(x − g(y)).
Replacing h = ψ + δ in (56) and assuming δ′′g′ ̸= 0, we obtain the differential
equation

{ψ′′′ − δ′′′(g′)3 + 3δ′′g′g′′ − δ′g′′′}{δ′′g′}+
+{−δ′′′(g′)2 + δ′′g′′}{ψ′′ + δ′′(g′)2 − δ′g′′} = 0,

which could admit local solution around y0, fixed g(y0), g
′(y0), g

′′(y0) and given py
and pM . This fact could follow directly from the Cauchy theorem for differential
equations like g′′′ = G(g, g′, g′′), with some regularity assumption for G. However,
our construction requires a global solution g, well defined on the real axis because of
the positivity condition on pY . Generically, a global solution g does not exist. To
prove this fact, we can reason as follows. Using the argument just presented and
starting from h = ψ + δ we obtain the (56)-type condition

∂x

{
∂2xh

∂x∂yh

}
= 0.

We use h = φ + γ directly in the previous relationship and obtain the following
differential equation on Ω, where y is a parameter:

φ′′′(x) = A(x, y)φ′′(x) +B(x, y), (57)

with

A(x, y) :=
γ′′′(f ′)2 − γ′′f ′′

γ′′f ′ ,

B(x, y) :=
{γ′′′(f ′)2 − γ′′f ′′}{γ′′(f ′)2 − γ′f ′′}

γ′′f ′ +

+γ′′′(f ′)3 − 3γ′′f ′f ′′ + γ′f ′′′.

In other words, the linear differential equation (57) produces a strong constraint
on φ. Under the assumption that exists the backward functional model in AΦ, PX

necessarily lives in the 3-dimensional flat space

S+ :=

{
pX > 0 :

∫
pXdx = 1, φ′′′ = Aφ′′ +B on Ω

}
,
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while the observational distribution PX,Y has in general the density p(x, y) = pX(x)pN(y−
f(x)) with pX(x) in some infinite dimensional space, for example L1(R) ∩ L2(R). In
other words, we have shown the following theorem:

Theorem 3 Let PX,Y be the observational joint distribution, with strectly positive
density. If exists a functional model ΦX→Y ∈ AΦ, generically does not exist a backward
model ΦY→X ∈ AΦ.

Example 2 Let PX,Y be the joint observational distribution, with Y = αX + N ,
X ⊥⊥ N and N Gaussian. Then f ′′ = 0, pN(n) = C1 exp{C2n

2}, γ(n) = lnC1+C2n
2,

for some constants C1 and C2. The equation (57) becomes φ′′′ = 0, so that pX is
required to be Gaussian coherently with Lemma 1.

Example 3 If f(x) = αx2 and N is Gaussian, then the equation (57) becomes φ′′′ =
C1

1
x
φ′′ +C2

1
x
+C3x, for some constants C1, C2 and C3. If it was C1 = C2 = C3 = 1,

then φ(x) = x4

12
+Ax3− x2

2
+Bx2 +C and pX(x) = lnφ(x) would not be a probability

distribution because the cofficient of x4 is positive. In this particular circumstance,
no px would be compatible with the existence of the backward model.

Remark 1 Given px and pN , the equation (57) provides a constraint on f so that
the backward model exists. If X and N are normal distributed, then φ′′′ ≡ γ′′′ ≡ 0,
so that the equation (57) becomes

C1f
′f ′′ + C2

f ′′

f ′ − γ
′
{
f ′′′ +

(f ′′)2

f ′

}
= 0,

where C1, C2 are some constants and f ′ ̸= 0. Obviously, f ′′ ≡ 0 is a solution, so
linearity is compatible with the backward model’s existence. We can prove that the
null function is the only solution well-defined on the real axis. Let Ω be the open set
{x : f ′′ ̸= 0} × R, so that the previous equation becomes

C1f
′ + C2

1

f ′ − γ
′
{
f ′′′

f ′′ +
f ′′

f ′

}
= 0

on Ω. Defined Ω1 := {(x, y) : y = f(x)}, γ′ ≡ 0 on Ω1 so that f ′ = C3 on Ω ∩ Ω1,
which is abasurd. In conclusion, the backward model’s existence with pX and pN
normal distributed is compatible only with linear models.

Extending the Asymmetry Class

We are in the following situation. If we only consider the additive class AΦ we have
an asymmetry result; on the other hand, no prescriptions on Φ mean a complete
symmetry between X and Y . We can gradually extend the asymmetry class AΦ by
considering other functional prescriptions. Let MΦ be the class of functional models
with multiplicative noise, that is to say, ΦX→Y ∈MΦ if and only if has the structure
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Y = f(X) ·N , with X ⊥⊥ N . Let PX,Y a observational distribution such that admits
ΦX→Y ,ΦY→X ∈MΦ. Consequently:

X = g(Y ) ·M, Y ⊥⊥M, g ̸= 0,

p(x, y) = pY (y)pM

(
x

g(y)

)
,

h(x, y) = ln p(x, y) = ln pY (y) + ln pM

(
x

g(y)

)
=: ψ(y) + δ

(
x

g(y)

)
∂2xh = δ′′

1

g2
, ∂x∂yh = −δ′′x g

′

g3
− δ′ g

′

g2
.

Similarly to what was done in the previous section, we obtain the following condition
on h

∂x

{
∂x(x∂xh)

∂x∂yh

}
= 0. (58)

Given φ(x) := ln px(x), condition (58) produces a new differential equation φ′′′ =
F (φ, φ′′, φ′′′, x; y), by proceeding as follows. The distribution PX,Y admits ΦX→Y ∈
MΦ, so that

Y = f(X) ·N, X ⊥⊥ N, f ̸= 0,

h(x, y) = ln pX(x) + ln pN

(
y

f(x)

)
=: φ(x) + γ

(
y

f(x)

)
.

Given h = φ+ γ and k := f ′/f 2, we have:

∂xh = φ′ − ykγ′,

∂2xh = φ′′ − yk′γ′ + y2k2γ′′,

∂x∂yh = −kγ′ − yk 1
f
γ′′.

If we consider the equation (58) on the open set

Ω := {(x, y) : x ̸= 0, kγ′ + yk
1

f
γ′′ ̸= 0},

we obtain

xφ′′′ + 2φ′′ + x(y3k3γ′′′ − y2kk′γ′′ − yk′′γ′) =

= {xφ′′ + φ′ − x(y2k2γ′′ + yk′γ′ +
1

x
kγ′)}

{
k′

k
− ky

y 1
f
γ′′′ + 2γ′′

y 1
f
γ′′ + γ′

}
.

The last equation can be written in a normal form for φ, that is to say,

φ′′′(x) = A(x, y)φ′′(x) +B(x, y)φ′′(x) + C(x, y)
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for some functions A,B and C. This linear differential equation produces a strong
constraint on φ: under the assumption that exists the backward functional model in
MΦ, PX necessarily lives in the 3-dimensional flat space

S× :=

{
pX > 0 :

∫
pXdx = 1, φ′′′ = Aφ′′ +Bφ′ + C on Ω

}
,

while the distribution PX,Y has in general the density p(x, y) = pX(x)pN(
y

f(x)
) with

pX(x) in some infinite dimensional space, for example L1(R)∩L2(R). In other words,
we have shown the following theorem:

Theorem 4 Let PX,Y be the observational joint distribution, with strictly positive
density. If exists a functional model ΦX→Y ∈ MΦ, generically does not exist a back-
ward model ΦY→X ∈MΦ.

With the same technique, we can also discuss mixed cases. For example, assuming
that ΦX→Y ∈ AΦ we ask ourselves whether exists ΦY→X ∈ MΦ. If existed ΦY→X ∈
MΦ, then the equation (58) would hold. Because of the existence of ΦX→Y ∈ AΦ, we
could substitute h(x, y) = φ(x) + γ(y − f(x)) in (58) obtaining a constraint for φ as
in the previous sections. In other words, given NΦ := AΦ ∪MΦ we can prove that if
exists a functional model ΦX→Y ∈ NΦ, generically does not exist a backward model
ΦY→X ∈ NΦ.

4 State of the Art

The first part of this section is devoted to Causal Discovery, and three significant
algorithms from this research area will be examined below. On the other side, the
last subsection will consider ida, a Causal Inference protocol that starts from obser-
vational data. These four algorithms do not exhaust the fields of study in which they
arise, and providing a comprehensive overview in this regard would be prohibitive
here. However, they represent the simplest and most archetypal examples of the
majority of the approaches adopted, providing a fairly comprehensive overall under-
standing.

Before going into more detail, some general considerations may be useful. First,
Causal Discovery aims to extract causal relations starting from the statistical proper-
ties of observational data, typically by providing us with the DAG G that best agrees
with the underlying distribution P . Second, in this regard, an adequacy criterion
is to be specified: the most used methods can be categorized into two sub-classes,
score-based and constraint-based, so that both approaches will be considered, trying
to clarify working hypotheses and relevant differences. Third, Causal Inference meth-
ods typically assume prior knowledge about the system’s causal structure. From this
point of view, ida tries to combine the estimation of the equivalence class of DAGs
with causal inference methods that can be used when the DAG is known. This com-
bination tries to respond to a need that has already emerged in previous sections: it
is often unrealistic to assume that the graph structure among the variables of interest
is a priori known.
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The PC Algorithm

Let us start with the first and simplest causal discovery algorithm, pc, proposed by
P. Spirtes and C. Glymour [169]. The main merit of this method lies in exhibiting
an efficient strategy in employing independence relations among variables. To make
this point clear, suppose we have an oracle that can provide us with a “yes” or a “no”
w.r.t. any conditional (in)dependence question. Even assuming we have this oracle,
the total number of possible independence questions grows exponentially with the
number of variables. Consequently, a naive brute-force approach is to be ruled out,
and a more intelligent procedure in asking questions of the oracle must necessarily
be adopted. The following procedure is computationally efficient under assumptions
that will become explicit shortly.

First phase - Finding the skeleton.

• Construct a complete undirected graph G between all nodes in X.

• Given A,B connected in G, delete A−B if it exists C ⊆ Adj(A) or C ⊆ Adj(B)
with size S (initially equal to 0) s.t. A ⊥⊥ B|C. When found, memorize
C(A,B)3.

• Add 1 to S and repeat step 2 until S > MaxDegree(G).

Second phase - Exploiting the v-structures.

• Given A,B not connected in G, define V := (Adj(A) ∩ Adj(B))−C(A,B).

• For every node V ∈ V, direct A→ V ← B.

Third phase - Apply Orientation Rules as in Figure 16.

Two important remarks should be noted. First, the computational complexity of the
algorithm primarily depends on the maximum degree, denoted as MaxDegree(G),
of the underlying graph G. In the worst-case scenario, i.e., for a complete DAG,
it becomes necessary to conduct all possible independence tests. The efficiency of
the algorithm is ensured when MaxDegree grows at most logarithmically with the
number of variables, denoted as N . Second, it is crucial to understand that not all
edges will be reliably directed at the conclusion of the procedure. The output of the
algorithm will generally be a completed partially directed acyclic graph (CPDAG),
representing a specific Markov equivalence class (MEC). This implies that the re-
sulting graph captures the essential conditional independence relationships among
variables but may still have undirected edges, indicating unresolvable ambiguities in
the underlying causal structure.

3It is easy to show that in any DAG, given any two non-adjacent nodes A and B, there is
always a set C contained either in Adj(A) or in Adj(B) d-separating them. A demonstration sketch
follows: Consider the partial order of nodes induced by the DAG, where X > Y if and only if there
exists a direct path from X to Y . If neither A > B nor A < B, it is sufficient to take the set
C = {C ∈ Adj(A)|C > A}. If on the other hand A > B, C = {C ∈ Adj(A)|C > A ∨A > C > B}.
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Figure 16: Orientation Rules defined in [102].

It is important to specify how pc can only be applied under the assumption of
causal sufficiency, and why it is not able to detect the presence and/or identify latent
confounders. Applying pc to a system in which latent confounders actually exist, one
could come across a situation in which, due to the orientation of certain arcs, these
predict contradictory results with respect to the set of possible independence tests on
the set of variables. In short, there may not even be a DAG defined on the observed
variables alone capable of perfectly representing the conditional independences. To
solve this problem, it is then necessary to extend the space of graphical representations
by introducing new semantics on the arcs.

The FCI Algorithm

The assumption of Causal Sufficiency is often exaggerated and should be interpreted
more as a form of approximation than as a true attainable condition. To think that
one is in possession of literally all the variables of the system, in a nutshell, is always
a stretch. This approximation is not always acceptable and, particularly when one is
interested in the interventional and counterfactual levels, it may be necessary to do
without it [144]. fci [171, 170] departs from pc in exactly this respect, extending the
expressive capacity of the graph representation of the system and adding the possi-
bility of detecting latent confounders.

An edge between A and B in CPDAGs resulting from pc could be of three types:
A → B (A ”causes” B), A ← B (B ”causes” A), A − B (A ”causes” B XOR B
”causes” A). It was precisely Causal Sufficiency that ruled out the absence of a direct
causal relationship, always excluding the confounder between A and B. fci extends
the representation by adding circles to the extremes of the edge, which stays for the
uncertainty about the two possible concrete states, i.e. the presence or the absence
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V

YX ZW

The underlying DAG to be found. Note that V is hidden.

YX ZW

The initial DAG skeleton found using fci.

YX ZW

The result of fci after the orienting phase.

Figure 17: Intuition of how fci works. Y ↔ W is produced by ”testing” both the
v-structures X → Y ← W and Y → W ← Z. pc would only find one of them, not
testing the other one.

of the arrow. For example, A◦−◦B indicates a totally agnostic condition and may
saturate in any of the pc states (A → B, A ← B, A − B), but also in the new
states A ↔ B (there is a confounder between A and B). Similarly, the partially
saturated states A◦→B is agnostic with respect to the choice between the identified
arrow A→ B and the confounder A↔ B. By means of this extended set of symbols,
we can hope to extract additional information. Figure 17 shows intuitively how the
algorithm works.

fci follows a more complex procedure than pc and only partially shares its tech-
niques. In general, it is not sufficient to modify pc by replacing the normal − edges
with ◦−◦ in the skeleton, proceeding with similar orientation rules. One of the most
important problems when one has to consider latent confounders is the following:
Consider a DAG G = {V, E} of which only a subset of the nodes O ⊂ V is observed.
G is faithful to the probability P (V), however the accessible one is its marginal

P (O) =

∫
L

P (v)dl =

∫
L

P (O|l)P (l)dl, L := V −O. (59)

Considering the graph G ′ obtained by applying pc to P (O), it is possible that new
dependencies are introduced with respect to the original ones in G. In general, it
holds that if O ⊂ V is not causally sufficient, then it is not the case that, given
any two nodes X, Y ∈ O, conditional dependence on every subset of O − {X, Y }
implies:

1. X is a direct cause of Y, or
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A B C

D

(a) the underlying DAG G. D is a latent
confounder.

A B C

(b) The resulting graph G′ after applying
standard pc.

Figure 18: d-separation relations are not preserved marginalizing over hidden vari-
ables. Figure inspired by [170].

2. Y is a direct cause of X, or

3. there is a common cause Z ∈ V s.t. X ← Z → Y .

To see this fact, consider Figure 18: the presence of a single latent confounder causes
all tests of conditional independence between A and C to fail, making the two nodes
adjacent in the graph obtained by applying pc. Note that in the original graph, A
and C are not adjacent and have no common causes.

The FCI algorithm can be described through the following steps:

• Finding the skeleton, following the same procedure as PC.

• Orienting all edges as ◦−◦.

• Exploiting the v-structures (as in PC).

• For every edge in the skeleton from A to B, finding the sets PossibleDSep(A,B)
and PossibleDsep(B,A) (not necessarily parents of either A or B as in PC)
and removing edges for which a d-separation set is found [170].

• Exploiting the v-structures again.

• Applying Orientation Rules.

In general, FCI has a higher computational complexity compared to PC and is
capable of recovering less causal information about the system, in line with the fact
that its underlying assumptions are weaker. In causal discovery, the tradeoff between
the strength of assumptions and the inferential capacity of the results is particularly
clear, remaining constant across the spectrum of existing methods.

The GES Algorithm

ges [37] (Greedy Equivalence Search) is a score-based algorithm that implements a
greedy search in the space of MECs. The algorithm is based on certain theoretical
results, which we will quickly describe.
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Let G and H be two DAGs. H is an independence map of G iff any independence
implied by the structure of H is also implied by the structure of G. We use G ≤ H to
denote that H is an independence map of G. The symbol “≤” is meant to express the
fact that if G ≤ H then H contains more edges than G. The following result holds.

Theorem 5 ([36]) Let G and H be two DAGs s.t. G ≤ H. Then there exists a
finite sequence of edge additions and edge reversals that can be applied to G with the
following properties:

• After each edge change, G is a DAG and H remains an independence map of
G.

• After all edge changes G = H.

A special case is when G is the graph with no edge, for which always holds G ≤ H.
Starting from the “empty” graph, it is always possible to reach any DAG through a
finite sequence of elementary steps. Moreover, all intermediate DAGs G ′ on the path
satisfy G ′ ≤ H.

The idea of ges is to reach a specific H in the space of DAGs, which is intuitively
the most simple DAG model capable of reproducing the input probability distribution.
Identifying H can be done by greedy searching for a DAG model that fits a set of ob-
served data D well, maximizing some scoring criterion S(G;D). Let D be a collection
of m i.i.d. samples from the probability distribution P . A scoring criterion S(G;D)
is consistent if, in the limit as m goes to infinity, the following two properties hold:

• If H can reproduce P exactly while G can’t, then S(G;D) < S(H;D).

• If both G and H can reproduce P , and H contains more parameters than G,
then S(G;D) > S(H;D).

The original algorithm chooses a specific scoring criterion, BIC (Bayesian Infor-
mation Criterion), defined through the formula

SB(G;D) = logP (G) + logP (D|G),

and well approximated using Laplace’s method in the m≫ 1 regime by

ŜB(G;D) = logP (D|G, θ̂)− |θ|
2

logm,

where θ̂ denotes the maximum-likelihood values for the model parameters, |θ| denotes
the number of free parameters of G, and m is the number records in D.

Moreover, BIC is decomposable into independent modules, one for each condi-
tional probability P (Xi|Pa(Xi)). Exploiting this property, BIC is also locally consis-
tent, i.e. Given two DAGs G and G ′ resulting from adding a single edge Xi → Xj to
G,
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• if Xi ⊥⊥ Xj|PaG(Xj), then SB(G;D) > SB(G ′;D),

• else SB(G;D) < SB(G ′;D).

These properties are sufficient to prove the optimality of ges, characterized by
two successive phases. Starting from the graph with no edge, the single arrow that
locally maximizes SB is added step by step. When there are no more arrows to be
added that can increase the overall score, the first phase is terminated. Exploiting
the definition of consistency, it is possible to show that the graph obtained after the
first stage is definitely able to reproduce the probability P , given as input to the
algorithm. Starting from the graph obtained, arrows that once removed increase SB
are eliminated one by one. Having completed this second stage, the graph preserves
the ability to reproduce P and, at the same time, is “as simple as possible”.

It is useful to add a few observations. First, ges, like the Causal Discovery
algorithms seen above, is not able to discern between graphs of the same MEC. In
fact, it is easy to show that, given any two G ≡ H, SB(G;D) = SB(H;D). The DAG
obtained by executing ges is only one representative of its MEC, “selected” randomly
from those in the class. Second, the optimality of the algorithm is only guaranteed
assuming perfect knowledge of the probability P , i.e. in the regime of infinite data.
ges is therefore asymptotically consistent. As a final point, ges assumes causal
sufficiency.

The IDA Algorithm

ida (Intervention-calculus when the DAG is Absent) [97, 96, 77] is a method that
allows the estimation of causal effects under the condition of partial uncertainty,
knowing the MEC but not the “true” underlying DAG. Its relevance is evident, con-
sidering that this condition is the typical one encountered after applying common
Causal Discovery methods. ida requires causal sufficiency i.e., the absence of latent
confounders, taking as input the CPDAGs resulting from, for example, pc.

To describe how the method works, it is best to observe it in practice: Consider
the CPDAG in figure 19. pc identified a v-structure in the graph, saturating the
directions X4 → Y and X3 → Y . The three undirected edges can be oriented in
either direction, admitting in principle 23 = 8 different DAGs belonging to the MEC.
Some of these, however, would introduce new v-structures, creating colliders on X2

or X1, and must therefore be discarded. The DAGs actually in the MEC are four in
total, depicted in figure 20. Each of these induces a different set of causal relationships
between variables. The basic idea of ida is to estimate the causal effects for each
DAG and report each result in a tensor Θ, in which the element Θk

ij can be described
as the causal effect of the i-th variable on the j-th, in the k-th DAG of the MEC 4.

4In [97], the authors assume that the system’s variables are jointly gaussian, which guarantees
the independence of the average causal effect between two variables w.r.t. the specific value they
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X2 X3
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Figure 19: The initial CPDAG.

It is useful at this point to introduce the pivotal tool of the method, namely the
use of the valid adjustment set.

Valid Adjustment Set. Consider a DAG G and two variables X, Y ∈ N(G).
We say that a set Z ⊆ N(G) is a valid adjustment set relative to (X, Y ) if it holds
that

P (y|do(x)) =
∫
Z

P (y|x, z)P (z)dz. (60)

There can generally be several valid adjustment sets. In particular, ida uses Pa(X),
since it also possesses the desirable property of being extremely local. Given a spe-
cific DAG, once identified its Pa(X), it is therefore immediate to calculate the causal
effect of X on Y , by applying (60). In general, the number of different causal effects
obtainable is determined by the different ways of choosing Pa(X) in the MEC. It
is reasonable to expect therefore, especially for graphs with many variables, many
’repeated’ causal effects.

Let us focus now on the causal effect of X1 over Y evaluating ΘX1Y . We can
immediately see that among the four DAGs of figure 20, two of them have the same
set of parents for X1, thus resulting in the exact same value for ΘX1,Y .

The first version of the proposed method in [97], called Global ida or Population
Version, lists each DAG in the MEC, computing its causal effect and storing the
result obtained in the multiset

ΘX1,Y = {Θ1
X1,Y

, ...,Θk
X1,Y

, ...,ΘD
X1,Y
},

where D stands for the total number of DAGs in the MEC. It is possible to consider
equivalently a set of unique causal effects, defined as Θ̂X1,Y , associating each

causal effect Θ̂k
X1,Y

with its multiplicity M(Θ̂k
X1,Y

) i.e., the number of DAGs in which
it occurs. Formally, we map

Θ 7→ {Θ̂,M(Θ̂)}.

assume. In a nutshell, if in the general case Θk
ij would be a function of xi, with this assumption we

are reduced to a single scalar. This step is not obligatory and only serves as a function of conceptual
and computational simplification. For the purposes of understanding the method, we will keep this
clarification in the background, without elaborating on it.
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Figure 20: The four different DAGS of the MEC.

The main problem of this approach lies in the exponentially growth of the MEC’s
cardinality w.r.t. the number of covariates. Hence, according to [97], the method
becomes computationally unfeasible when the number of covariates is greater than
twelve.

To overcome this limitation, the second version of the algorithm, Local ida, by-
passes the DAG enumeration phase through the following result:

Theorem 6 Consider the CPDAG G and let S ⊆ Sib(X) in G. GS→X is locally valid
(i.e., it has no new v-structure with X as collider) if and only if there is a DAG Gk
in the equivalence class of G such that Pa(X)G = Pa(X)G ∪ S.

Exploiting the theorem, the search for all the unique causal effects in Θ̂X1,Y is
greatly simplified. It is sufficient to list all the possible S ⊆ Sib(X1) and check
which ones are locally valid. As a major drawback, the information concerning the
multiplicity M(Θ̂X1Y ) cannot be retrieved via this route and is completely lost. Local
ida can therefore be useful for estimating lower and upper bounds of the causal effect
of interest, but is not suitable in the study of quantities that require knowledge of its
statistics, such as its mean and variance.

5 Causality with time

With this section we consider a change of perspective, delving into the link between
causality and predictability depicted in Figure 2. When considering a system in
evolution, it is natural to expect that identifying causal links can improve the ability
to exhibit robust predictions. Moreover, causal reasoning involving variables across
different time instances is comparatively more straightforward than causal reasoning
lacking a temporal structure whenever it is assumed that the cause must precede the
effect in time [129]. Yet, the problem of giving a formal definition for causality that
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is sufficiently comprehensive and suitable to be tested empirically remains open. In
what follows, we propose a preliminary discussion of the Dynamical System context
by considering three distinct approaches: Granger Causality, Transfer Entropy, and
Fluctuation-Dissipation relations. Equivalent characterizations for the existence of
causal relations in the linear case are obtained formally, leaving the epistemological
frame of reference in the background. A detailed analysis of the concept of information
flow will be presented. Although informational quantities are usually understood at
the observational level, we will show how causal semantics can also be employed in
the case of Transfer Entropy, at least by considering the linear case.

Granger Causality

From the point of view of time series analysis, the first significant contribution is due
to C. Granger [60]. Assuming that a cause must temporally precede the corresponding
effect and assuming that the former contains information about the latter, it is stated
that the process Y causes the process X if the future values of X can be better
predicted provided the past values of X and Y are known, than if only the past
values of X are known. This idea can be formalized for a linear regression model,

Xt = a0 +

lX∑
k=1

aXk Xt−k +

lY∑
k=1

aYk Yt−k + µt, (61)

where the hypothesis in which Y does not cause X corresponds to the requirement
of aYk = 0 for k = 1, 2, ..., lY , giving us the equation

Xt = a0 +

lX∑
k=1

aXk Xt−k + νt. (62)

Having made a choice for lX and lY , the parameters a0, a
X
k , and a

Y
k are selected to

minimize the error. Given the covariance matrices for the noises µt and νt respectively
Σµ and Σν , we can quantify causality in the Granger sense via

GY→X := log
|Σν |
|Σµ|

, (63)

where | · | denotes the determinant for the corresponding matrix. We interpret the
eventuality that GY→X ̸= 0 as evidence that knowledge of Y improves the predictive
ability about X, delivering us a reduction in error, being |Σµ| < |Σν |. We will then
say that in the hypothesis that GY→X ̸= 0 exists a causal link Y → X, quantified
precisely by the value assumed by GY→X . Other theoretical proposals set in the
context of information theory followed. Among these, Transfer Entropy offers an
equivalent characterization for the case of Gaussian processes [14]. Reconsidering the
discussion carried out for the static case, Granger Causality can be characterized by
the following separation relation:

Yt ̸⊥⊥ Xpast(t)|Ypast(t).
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Figure 21: Violation of Causal Sufficiency. Due to the hidden common cause C,
Granger Causality erroneously infers a causal link from X to Y .

Remarkably, Figure 21 shows how any purely informational index can infer incor-
rect causation in the case where a confounder is present. In what follows, we will
present a more detailed analysis of the concept of information flow by readapting
the Transfer Entropy index via causal semantics. It will be done by considering the
simplest possible case - the linear case - establishing a link with the Granger index
and linear response.

Causality in models: an elementary case

From a different point of view, the problem arises of defining causality within the
framework offered by the dynamic systems theory, assuming an explicit model is
available. To illustrate this point, we begin by considering an elementary case. The
paradox of chocolate [104] effectively illustrates the difference between correlation
and causation. The available data gives us the following situation: there is a strong
correlation between the consumption of chocolate in a state, quantified by the variable
y, and the number z of Nobel laureates of the corresponding nationality. To explain
this fact, one can resort to a third variable x, capable of quantifying the well-being of
a community and thus justifying both the consumption of chocolate and the level of
education of its citizens. In other words, we are in a situation of the type y ← x→ z,
where the correlation between y and z is a consequence of the causal links x→ y and
x→ z, without a causal relation between y and z. We can formalize this circumstance
via a minimal model, 

xt = axxt−1 + σ1wx

yt = bxxt−1 + byyt−1 + σ2wy

zt = cxxt−1 + czzt−1 + σ3wz

, (64)

109



where wx, wy, wz are normalised and mutually independent Gaussian variables, xt,
yt, zt are Gaussian processes with zero mean, ax, bx, cx, by, cz are appropriate positive
constants. Considering the invariant distribution for the process, obtained for t→∞,
we obtain the correlation ⟨yz⟩ ≠ 0. It is natural to expect that the presence of a causal
link for the system (64) is interpreted by the coefficients bx and cz, respectively, for
the causal relations x → y e x → z. Similarly, modifying the system (64) via a
feedback of y on x, i.e. writing

xt = axxt−1 + ϵyt + σ1wx

yt = bxxt−1 + byyt−1 + σ2wy

zt = cxxt−1 + czzt−1 + σ3wz

, (65)

we expect the positive parameter ϵ to interpret the relation y → x, reflecting on the
evolution of z and producing a causal link of the type y → x. From here on, we have
in mind the toy models (64) and (65).

Transfer

In order to define a reasonable notion of causality, time dependence must be in-
troduced for the variables involved, assuming that causes must temporally precede
effects. Let two discrete-time stochastic processes be given, X := Xt and Y := Yt. Un-
der the assumption that X and Y are of Markovian type, we admit that an occurrence
of Xt is somehow determined by the history of X, i.e. by the occurrence of Xt−1, as
well as by the action of Y on X, e.g. via the past state Yt−1 alone. These assumptions
can be generalized, considering a history of length k for X, say (Xt−1, Xt−2, ..., Xt−k),
as well as an action at l times exerted by Y , via (Yt−1, Yt−2, ..., Yt−l). We start with
the simplest case, with k = l = 1. In order to capture a causal link of the type
Y → X, we employ conditioning to remove the information due to the history of X,
isolating the contribution of the action of Yt−1 on Xt. Following T. Schreiber [149],
we recall the definition of transfer entropy TY→X at time t:

Definition 1 Let X = {Xt} and Y = {Yt} be markovian stochastic processes. We
define the transfer entropy from Y to X at time t

TY→X(t− 1, t) := I(Xt : Yt−1|Xt−1). (66)

The Definition 1 can be made more transparent by writing

H[Xt|Xt−1] = H[Xt|Xt−1, Yt−1] + TY→X(t− 1, t).

In other words, the information associated with the occurrence ofXt, given the history
Xt−1, is equal to the sum of the contribution of the process X alone, H[Xt|Xt−1, Yt−1],
with the contribution transferred from Y to X. We note that the conditioning intro-
duces an asymmetry, absent for the mutual information I(Xt : Yt−1) alone, allowing
us to distinguish TY→X from TX→Y . Assuming that TY→X ̸= 0, we will say that there
is a causal link Y → X, quantified precisely by the value assumed by TY→X .
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Remark 2 We can highlight the role played by the probability, joint and conditional
distributions by making the definition more explicit. We obtain

TY→X(t− 1, t) =
∑

xt−1∈RXt−1

∑
xt∈RXt ,yt−1∈RYt−1

p(xt−1)p(xt, yt−1|xt−1)·

· log p(xt, yt−1|xt−1)

p(xt|xt−1)p(yt−1|xt−1)

=
∑

xt−1∈RXt−1

∑
xt∈RXt ,yt−1∈RYt−1

p(xt, yt−1, xt−1) log
p(xt|xt−1, yt−1)

p(xt|xt−1)
.

Clearly, if p(xt, yt−1|xt−1) = p(xt|xt−1)p(yt−1|xt−1), i.e., if Xt e Yt−1 are conditionally
independent w.r.t. Xt−1, then TY→X(t− 1, t) = 0.

Remark 3 In general, we are interested in the case of systems with dimensionality
d ≥ 2, i.e., the interdependence between different degrees of freedom, each correspond-
ing to a stochastic process Xk, with k = 1, 2, ..., d. To characterize the information
transfer for d > 2, we start by giving a more transparent interpretation for d = 2, via
a simple manipulation of the definition of TX2→X1. Adding H[X1

t ] into both members
of (66), it is straightforward to derive the equality

H[X1
t ] = AX1(t) + TX2→X1(t− 1, t) +H[X1

t |X1
t−1, X

2
t−1], (67)

where AX1(t) := H[X1
t ] − H[X1

t |X1
t−1]. Put differently, the information associated

with X1
t is equal to the sum of three components: the self-information AX1 contained

in the process X(1), the information transferred from X2 to X1, TX2→X1, a higher-
order term taking into account the conditioning on both processes, H[X1

t |X1
t−1, X

2
t−1].

If we consider a third process X3, from (67) we immediately obtain

H[X1
t ] = AX1(t) + TX2→X1(t− 1, t) + TX3→X1|X2(t− 1, t)+

+H[X1
t |X1

t−1, X
2
t−1, X

3
t−1],

where

TX3→X1|X2(t− 1, t) := H[X1
t |X1

t−1, X
2
t−1]−H[X1

t |X1
t−1, X

2
t−1, X

3
t−1],

i.e. the information transferred by X3 minus the contribution already allocated by X2.
Retracing the steps just performed, taking care to reverse the roles of X2 and X3, it
is immediate to verify that

TX2→X1 + TX3→X1|X2 = TX3→X1 + TX2→X1|X3 ,

so that the definition of TX3,X2→X1 is well placed. The reasoning can be reiterated to
include other variables, defining at each step k the transfer TXk,...,X2→X1 and gradually
reducing the size of the residual information term H[X1

t |X1
t−1, X

2
t−1, ..., X

k
t−1], so that

the result is{
H[X1

t ] = AX1(t) + TX2,X3,...,Xk→X1(t− 1, t) +H[X1
t |X1

t−1, X
2
t−1, ..., X

k
t−1]

TX2,X3,...,Xk→X1 := TX2→X1 + TX3→X1|X2 + ...+ TXk→X1|X1,...,Xk−1
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Remark 4 For the case k, l ̸= 0, we introduce the notation X
(k)
t−1 := (Xt−1, Xt−2, ..., Xt−k),

Y
(l)
t−1 := (Yt−1, Yt−2, ..., Yt−l), so that we can give a definition for the transfer entropy

of order (k, l),

T
(k,l)
Y→X(t− 1, t) := I(Xt : Y

(l)
t−1|X

(k)
t−1),

which can be written explicitly, in full analogy with what has already been done in
Observation 2.1. In particular:

T
(k,l)
Y→X(t− 1, t) =

∑
xt,x

(k)
t−1,y

(l)
t−1

p(x
(k)
t−1)p(xt, y

(l)
t−1|x

(k)
t−1)·

· log
p(xt, y

(l)
t−1|x

(k)
t−1)

p(xt|x(k)t−1)p(y
(l)
t−1|x

(k)
t−1)

=
∑

xt,x
(k)
t−1,y

(l)
t−1

p(xt, y
(l)
t−1, x

(k)
t−1) log

p(xt|x(k)t−1, y
(l)
t−1)

p(xt|x(k)t−1)
.

In concrete applications, we have the time series xkt and ylt, to be thought of as realiza-
tions for appropriate stochastic processes. At least in principle, making appropriate
assumptions about the memory of the processes involved and the time of influence, it is
possible to estimate from the available data the probabilities involved in the definition
of transfer, allowing us to offer a quantification for the causal links.

Dynamical Systems

We can think of xkt as a set of values assumed by the observables of an underlying
dynamical system, which we assume to be known. In this scenario, we propose a
definition of transfer inspired by the one discussed above, explicitly interpreting con-
ditioning. We consider the case of a discrete-time dynamical system via an equation
of the type

zt = F (zt−1) + σw, (68)

where zt = (z1t, z2t, ..., znt) ∈ Rn, F : Rn → Rn, σ = (σ1, σ2, ..., σn) ∈ Rn
+, w =

(w1, w2, ..., wn) a vector of independent gaussian variables N(0, 1), so that σw :=
(σ1w1, σ2w2, ..., σnwn), interpreting the presence of noise for the system. With the
aim of identifying causal links between the different {zi}i=1,...,n, equation (68) can be
rewritten by decomposing z into the tuple (x, y) ∈ Rp × Rq, with p + q = n. We
obtain {

xt = Fp(xt−1, yt−1) + σpwp,

yt = Fq(xt−1, yt−1) + σqwq,
(69)

where Fp : Rn → Rp and Fq : Rn → Rq are respectively the projections of F on
the subspaces of x = (z1, z2, ..., zp) and of y = (zp+1, zp+2, ..., zn), while Given σp =
(σ1, σ2, ..., σp), σq = (σp+1, σp+2, ..., σn), wp = (w1, w2, ..., wp), wq = (wp+1, wp+2, ..., wn),
the terms σpwp and σqwq are defined as above. The chocolate paradox models fall
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into this class. Assigned the initial data z0 via a certain probability distribution ρz0 ,
this will evolve due to the dynamics defined by (69), delivering us the distributions
ρzt as t varies, as well as the marginal distributions ρxt and ρyt . Therefore, it is possi-
ble to calculate the corresponding entropies, henceforth denoted H[ρ], where ρ is the
probability distribution considered.

The basic idea is simple: to characterize a causal link of the type y → x, we introduce
a constraint in the evolution of y, and then quantify the resulting information gap.
Let us go into some details. Instead of the system (69), we consider the constrained
system {

xt = Fp(xt−1, ŷ) + σpwp,

yt = yt−1 = ŷ,
(70)

where the evolution of yt is fixed at the constant value ŷ. Given the same distribution
of initial data ρz0 already introduced for system (69), the dynamics of system (70)
will give us a distribution ρ̂zt as t varies, as well as the marginal ρ̂xt and ρ̂yt , so that
we can compute the corresponding entropies H[ρ̂].

The dynamical system (68) gives us a Markovian type process, whereby the state
at time t is completely determined by that at step t− 1. By analogy with the case of
time series, we can quantify the information transfer y → x by conditioning x w.r.t.
its history to isolate the information contribution of y alone. It is therefore natural to
consider the conditional distributions ρxt|xt−1 and ρ̂xt|xt−1 , establishing the following
correspondence: 

H[Xt]←→ H[ρxt ]

H[Xt|Xt−1]←→ H[ρxt|xt−1 ]

H[Xt|Xt−1, Yt−1]←→ H[ρ̂xt|xt−1 ]

.

Having said all this, we can reformulate the definition of transfer, adapting it to the
case of a dynamic system.

Definition 2 Given a dynamic system of type (69), the information transfer Ty→x

at time t is defined as

Ty→x(t− 1, t) := H[ρxt|xt−1 ]−H[ρ̂xt|xt−1 ],

where ρxt|xt−1 and ρ̂xt|xt−1 are respectively the conditional distributions for xt, in the
case where yt is free or constrained.

As before, the Definition 2 can be made more transparent by writing H[ρxt|xt−1 ] =
H[ρ̂xt|xt−1 ] + Ty→x(t− 1, t). The information associated with the distribution ρxt|xt−1 ,
is equal to the sum of two contributions: that due to x alone, isolated by constraining
y, with that transferred from y to x. Again in analogy with what we discussed for
the time series case, some simple formal properties for the transfer hold:

Lemma 2 Given a dynamical system of type (69) and defined the transfer entropy
with Ty→x(t− 1, t) as in Definition 2, then:
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i. If ρxt|xt−1 = ρ̂xt|xt−1, i.e. if the dynamics of y do not condition the dynamics of
x, then Ty→x(t− 1, t) = 0.

ii. Let A[ρxt ] := H[ρxt ]−H[ρxt|xt−1 ] be the information associated with the evolution
of ρxt alone, it results that

H[ρxt ] = A[ρxt ] + Ty→x(t− 1, t) +H[ρ̂xt|xt−1 ],

so that the information associated with the distribution ρxt is equal to the sum
of three contributions: the self-information A[ρxt ], the component in the absence
of y and the information transferred from y to x.

iii. In general, it holds that

Ty1,yz ,...,yq→x = Ty1→x + Ty2→x|y1 + ...+ Tyq→x|y1,...,yq−1 ,

where conditioning with respect to yi is interpreted by fixing its value.

Linear Systems

To test Definition 2, let us consider the linear case in detail. In place of (68), we
consider the system

zt = Azt−1 + σw, (71)

zt = (xt, yt) ∈ Rp × Rq,

A =

(
Ap Apq

Aqp Aq

)
∈Mn(R),{

xt = Apxt−1 + Apqyt−1 + σpwp

yt = Aqpxt−1 + Aqyt−1 + σqwq

, (72)

where Ap ∈ Mp(R), Aq ∈ Mq(R), Apq ∈ Mp,q(R), Aqp ∈ Mq,p(R). The initial datum
z0 is assigned via a Gaussian distribution ρz0 , with covariance matrix Σ0 and null
mean,

ρz0(z) =
1

πn/2|Σ0|1/2
exp

{
−1

2
z · Σ−1

0 z

}
.

With the aim of determining the entropies H[ρxt|xt−1 ] and H[ρ̂xt|xt−1 ], we recall some
elementary facts for Gaussian processes, collected in the following lemmas.

Lemma 3 Under the action of the linear system (71), the Gaussian ρzt−1 with co-
variance matrix Σt−1 gives us a Gaussian ρzt, with covariance matrix

Σt = AΣt−1A
T + σ2I.

Lemma 4 Given a Gaussian distribution ρ with a covariance matrix Σ, the entropy
H[ρ] depends on the Σ alone, via the relation

H[ρ] =
1

2
ln {(2πe)n|Σ|} .
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Lemma 5 If z = (x, y) ∈ Rp×Rq, with p+q = n, is a gaussian vector with covariance
matrix Σ,

Σ =

(
Σp Σpq

Σqp Σq

)
∈Mn(R), (73)

where Σp = ⟨xixj⟩ ∈ Mp(R), Σq = ⟨yiyj⟩ ∈ Mq(R), Σqp = ΣT
pq = ⟨xiyj⟩ ∈ Mp,q(R).

Then x is a Gaussian vector with covariance matrix Σp and y is a Gaussian vector
with covariance matrix Σq.

Lemma 6 If z = (x, y) ∈ Rp × Rq, with p + q = n, is a gaussian vector with
covariance matrix Σ decomposed as in 73, then conditioning ρx|y is a Gaussian vector
with covariance matrix Σp|q given by the relation

Σp|q = Σp − ΣpqΣ
−1
q Σqp (74)

At this point, we have all the elements to calculate the covariance matrices asso-
ciated with the distributions ρxt|xt−1 and ρ̂xt|xt−1 . We consider the Gaussian vector
(xt, xt−1) ∈ Rp × Rp, with covariance matrix

Σ :=

(
Σp′ Σp′p

Σpp′ Σp

)
,

Σp := ⟨xi,t−1xj,t−1⟩,

Σpp′ = ΣT
p′p := ⟨xi,t−1xj,t⟩,

Σp′ := ⟨xi,txj,t⟩.

In general, we adopt a simple convention: primed indices correspond to objects defined
at time t, and non-primed indices to objects defined at time t − 1. For the sake
of simplicity, without compromising the generality of the argument, let us set all
parameters σi to σ. Applying the Lemma 6, it turns out that ρxt|xt−1 has a covariance
matrix

Σp′|p = Σp′ − Σp′pΣ
−1
p Σpp′ , (75)
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for which it is necessary to calculate the matrices Σp′ and Σpp′ , remembering that
xt = Apxt−1 + Apqyt−1 + σpwp. In matrix notation, this results in:5{

Σp′ = ApΣpA
T
p + ApΣpqA

T
pq + ApqΣqpA

T
p + ApqΣqA

T
pq + σ2Ip

Σpp′ = ApqΣqp + ApΣp

(76)

so by replacing 76 in 75, we obtain

Σp′|p = Apq(Σq − ΣqpΣ
−1
p Σpq)A

T
pq + σ2Ip.

From Lemma 4, we obtain H[ρxt|xt−1 ]. Similarly, if we repeat the account just per-
formed, this time for the constrained system,{

xt = Apxt−1 + Apqŷ + σpwp

yt = yt−1 = ŷ
,

we derive that the associated covariance matrix Σ̂p′|p. It is immediate to observe that
xt−1 and ŷ, do not affect the writing for the covariance matrix, so that

Σ̂p′|p = σ2Ip

From Lemma 4, we obtain H[ρ̂xt|xt−1 ]. We then proved the following result.

Theorem 7 Given a linear system of the type (72), the transfer entropy Ty→x is of
the form

Ty→x(t− 1, t) =
1

2
ln |Apq(Σq − ΣqpΣ

−1
p Σpq)A

T
pq + σ2Ip| −

1

2
ln |σ2Ip|.

Corollary 1 Under the same assumptions as the 7, it turns out that Ty→x(t−1, t) = 0
if Apq = 0, i.e. if in the equations for x the coefficients for y are all null.

5It is sufficient to explicitly write down the quantities in question:

(Σp′)ij := ⟨x
′
ix

′
j⟩ =

= ⟨
{
(Ap)

k
i xk + (Apq)

l
iyl + σpiwpi

}
·
{
(Ap)

s
jxs + (Apq)

t
iyt + σpjwpj

}
⟩ =

(Ap)
k
i ⟨xkxs⟩(Ap)

s
j + (Ap)

k
i ⟨xkyt⟩(Apq)

t
j+

+(Apq)
l
i⟨ylxs⟩(Ap)

s
j + (Apq)

l
i⟨ylyt⟩(Apq)

t
j + σ2δij ,

and similarly
(Σp′p)ij := ⟨x

′
ixj⟩ =

= ⟨
{
(Ap)

k
i xk + (Apq)

lyl + σiwi

}
xj⟩ =

= (Ap)
k
i ⟨xkxj⟩+ (Apq)

l
i⟨xlxi⟩.
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Remark 5 We observe that from the proposed definitions and the Lemma 4, the
result due to L. Bernett et al., concerning the Granger-causality-transfer equivalence
for the case of Gaussian processes, immediately follows. Reconsidering the notation
proposed for the linear regression model, it is easy to realise that, for example in the
case of a single time step, Σxt|xt−1 and Σmu = Σxt|xt−1,yt−1, so that:

Ty→x =
1

2
Gy→x.

Remark 6 We can specify the reasoning made for the case where we want to quan-
tify the transfer from a subset of the variables y, say (y1, ..., yc), to a subset of
x, say (x1, ..., xa). With a little abuse of notation, we decompose the vector z as
(xa, xb, yc, yd), where a + b = p and c + d = q, denoting by xa, xb, yc, yd also the
corresponding vectors. We rewrite the linear system:

xa,t = Aaxa,t−1 + Aabxb,t−1 + Aacyc,t−1 + Aadyd,t−1 + σawa

xb,t = Abaxa,t−1 + Abxb,t−1 + Abcyc,t−1 + Abdyd,t−1 + σbwb

yc,t = Acaxa,t−1 + Acbxb,t−1 + Acyc,t−1 + Acdyd,t−1 + σcwc

yd,t = Adaxa,t−1 + Adbxb,t−1 + Adcyc,t−1 + Adyd,t−1 + σdwd

, (77)

where

A =


Aa Aab Aac Aad

Aba Ab Abc Abd

Aca Aab Ac Acd

Ada Adb Adc Ad

 ,

Adopting the same conventions as before, let us consider the gaussian vector (xa,t, xa,t−1) ∈
Ra, so that ρxa,t|xa,t−1 is a gaussian with covariance matrix

Σa′|a = Σa − Σa′aΣ
−1
a Σaa′ ,

to be calculated explicitly using the relations in 77. It results:

Σa′ = AaΣaA
T
a + AaΣabA

T
ab + AaΣacA

T
ac + AaΣadA

T
ad+

+AabΣbaA
T
a + AabΣbA

T
ab + AabΣbcA

T
ac + AabΣbdA

T
ad+

+AacΣcaA
T
a + AacΣcbA

T
ab + AacΣcA

T
ac + AacΣcdA

T
ad+

+AadΣdaA
T
a + AadΣdbA

T
ab + AadΣdcA

T
ac + AadΣdA

T
ad+

+σ2Ia,

Σa′a = AaΣa + AabΣba + AacΣca + AadΣda,

so that we obtain
Σa′|a = Aab

(
Σb − ΣbaΣ

−1
a Σab

)
AT

ab+

+Aac

(
Σcb − ΣcaΣ

−1
a Σab

)
AT

ab+

+Aad

(
Σdb − ΣdaΣ

−1
a Σab

)
AT

ab+
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+Aab

(
Σbc − ΣbaΣ

−1
a Σac

)
AT

ac+

+Aac

(
Σc − ΣcaΣ

−1
a Σac

)
AT

ac+

+Aad

(
Σdc − ΣdaΣ

−1
a Σac

)
AT

ac+

+Aab

(
Σbd − ΣbaΣ

−1
a Σad

)
AT

ad+

+Aac

(
Σcd − ΣcaΣ

−1
a Σad

)
AT

ad+

+Aad

(
Σd − ΣdaΣ

−1
a Σad

)
AT

ad+

+σ2Ia.

Given q := (b, c, d), we can rewrite the conditional covariance matrix in compact form:

Σa′|a = Aaq

(
Σq − ΣqaΣ

−1
a Σaq

)
AT

aq + σ2Ia.

If, instead of the 77, we consider the corresponding constrained system, fixing yc =
haty, we obtain

Σ̂a′|a = Aaq̂

(
Σq̂ − Σq̂aΣ

−1
a Σaq̂

)
AT

aq̂ + σ2Ia,

where q̂ := (b, d). We have thus proved the following theorem and the consequent
corollaries.

Theorem 8 Given a linear system of type 77, the transfer entropy Tyc→xa is of the
form

Tyc→xa(t− 1, t) =
1

2
ln |Aaq

(
Σq − ΣqaΣ

−1
a Σaq

)
AT

aq + σ2Ia|+

−1

2
ln |Aaq̂

(
Σq̂ − Σq̂aΣ

−1
a Σaq̂

)
AT

aq̂ + σ2Ia|,

where we defined q := (b, c, d) e q̂ = (b, d).

Corollary 2 Under the same assumptions as in Theorem 8, it turns out that Tyc→xa(t−
1, t) = 0 if Aac = 0, i.e. if in the equations for xa the coefficients in front of yc are
all null.

Corollary 3 With the same hypotesis of 8,fixed a = c = 1, xa = zj and yc = xi, it
follows that Tzi→zj(t− 1, t) = 0 if and only if Aji = 0.

Remark 7 If we reconsider the minimal model for the chocolate paradox 64, the
Corollary 3 assures us that Tx→y(t − 1, t) ̸= 0, Tx→z(t − 1, t) ̸= 0, Ty→z(t − 1, t) =
Tz→y(t − 1, t) = 0, in agreement with our expectations. The definition of transfer
entropy, at least when applied to the particular case of linear systems with a gaussian
distribution, captures the existence of causal connections. To quantify the connections
x → y and x → z, we compute Tx→y(0, 1) and Tx→z(0, 1) under the assumption that
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the gaussian distribution for the initial datum has covariance matrix Σ0 = σ2
0I. It

holds that6:

A2q = (bx, 0), q := (1, 3), A2q̂ = 0, q̂ := (3)

Σq2 = (0, 0)T , Σ∗
q = Σq − Σq2Σ

−1
2 Σ2q = σ2

0I,

A3q = (cx, 0), q := (1, 2), A3q̂ = 0, q̂ := (1)

Σq3 = (0, 0)T , Σ∗
q = Σq − Σq3Σ

−1
2 Σ3q = σ2

0I,

so that it is immediate to obtain

Tx→y(0, 1) =
1

2
ln

(
1 + b2x

σ2
0

σ2

)
,

Tx→z(0, 1) =
1

2
ln

(
1 + c2x

σ2
0

σ2

)
.

We observe that the transfer does not depend on the sign of the coefficient bx and that
it is negligible if σ0

<
< 1, i.e. if the noise is significantly larger than the uncertainty

on the initial datum.

Remark 8 If we consider the modified model 65, the condition Ty→z(t − 1, t) = 0
tells us that the transfer is null, despite the feedback y → x, with ϵ ̸= 0. We expect a
non-zero transfer y → z provided we consider two time steps. It is therefore natural
to propose the following generalisation of Definition 2, for k time steps:

Definition 3 Given a dynamic system of type 69, the information transfer Ty→x, at
time t and after k instants, is defined as

Ty→x(t− k, t) := H[ρxt|xt−k
]−H[ρ̂xt|xt−k

],

where ρxt|xt−k
and ρ̂xt|xt−k

are the conditional distributions for xt, respectively, in the
case where yt is free or constrained.

If we consider a linear system as in 71, it is immediate to write zt in dependence on
zt−k, i.e.

zt = Akzt−k +
k−1∑
l=0

Alσw = Akzt−k + σ′w.

Going over the above arguments, we can obtain the same results as for the one-time
entropy transfer by replacing A with its power Ak:

6To perform the calculation easily, it suffices to recall that, in the proposed notation, A2q must
be understood as the object made up of the second row of A and all columns included in the index
q. Similarly Σq2 is the object made by the second column of Σ and all the rows comprised in the
index q.

119



Theorem 9 Given a linear system of the type 72, the transfer entropy Ty→x, at time
t and after k instants, is of the form

Ty→x(t− k, t) =
1

2
ln |Ak

pq(Σq − ΣqpΣ
−1
p Σpq)A

k
pq

T
+ σ′2Ip| −

1

2
ln |σ′2Ip|.

It turns out that Ty→x(t − k, t) = 0 if Ak
pq = 0, i.e. if in the equations for x the

coefficients for y are all zero.

Theorem 10 Given a linear system of the type 77, the transfer entropy Tyc→xa, at
time t and after k instants, is of the form

Tyc→xa(t− k, t) =
1

2
ln |Ak

aq

(
Σq − ΣqaΣ

−1
a Σaq

)
Ak

aq

T
+ σ′2Ia|+

−1

2
ln |Ak

aq̂

(
Σq̂ − Σq̂aΣ

−1
a Σaq̂

)
Ak

aq̂

T
+ σ′2Ia|,

where we have defined q := (b, c, d) and q̂ = (b, d). In particular, it turns out that
Tyc→xa = 0 if Ak

ac = 0, i.e. if in the equations for xa the coefficients in front of yc are
all zero.

Corollary 4 Under the same assumptions of Theorem 10, given a = c = 1, xa = xj
e yc = xi, it results that Tzi→zj(t− k, t) = 0 iff Ak

ji = 0.

Remark 9 We can compute the transfers at k times for the model 64 and for the
model 65, again assuming that the initial datum is assigned with covariance matrix
σ2
0I. Let us start with the model 64:7

Tx→y(0, k) =
1

2
ln

(
1 + b̂2x

σ2
0

σ′2

)
, b̂x := bx

k−1∑
l=0

alxb
k−1−l
y ,

Tx→z(0, k) =
1

2
ln

(
1 + ĉ2x

σ2
0

σ′2

)
, ĉx := cx

k−1∑
l=0

alxc
k−1−l
z ,

Ty→z(0, k) = 0.

For the 65 model, let us simply consider the two-stage transfer, starting with the
structure of the matrix

A2 =

 a2x + ϵbx ϵax + ϵby
axbx + bxby ϵbx + b2y
axcx + cxcz ϵcx c2z

 .

7It is sufficient to observe that the matrix Ak has the same structure as the matrix A:

Ak =

 akx
bx
∑k−1

l=0 alxb
k−1−l
y bky

cx
∑k−1

l=0 alxc
k−1−l
z ckz

 (78)
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Wanting to quantify the causal link y → x, null for the model 64, the result is

A3q = (axcx + cxcz, ϵcx), q := (1, 2), A3q̂ = (axcx + cxcz), q̂ := (1),

Σq3 = (0, 0)T , Σ∗
q = Σq − Σq3Σ

−1
3 Σ3q = σ2

0I, Σ∗
q̂ = σ2

0,

so that it is immediate to obtain

Ty→z(0, 2) =
1

2
ln

(
1 + ϵ2

σ2
0c

2
x

σ2
0c

2
x(ax + cz)2 + σ′2

)
,

obtaining a similar expression for the transfer to those found previously, this time
depending on the y size of the feedback y on x.

Remark 10 Having defined the quantities Tzi→zj(t− k, t) as k varies, we can intro-
duce an index that measures causal links cumulatively over time. Imagining that we
assign an initial condition for t = 0, via a covariance matrix Σ0 = σ2

0I, to compute
the transfers (t−k, k) we must take into account the evolution of the matrix according
to the Lemma 3. Imagining to perform these calculations, we could consider

Tzi→zj(t) :=
t∑

k=1

Tzi→zj(t− k, t), (79)

Tzi→zj := lim
t→∞

Tzi→zj(t). (80)

We expect that if the spectral radius of A is less than 1, then Tzi→zj is a finite quantity.
In the next section, we will introduce the cumulative index Dzi→zj , so that the problem
of establishing a comparison between the two will arise.

Remark 11 We can generalise the results obtained to the case where the state of the
system at time t, zt, depends on the s prceding states, zt−1, zt−2, ..., zt−s. Reconsidering
the notation adopted earlier, we write

zt = F (zt−1, zt−2, ..., zt−s) + σw,{
xt = Fp(xt−1, yt−1, xt−2, yt−2, ..., xt−s, yt−s) + σpwp

yt = Fq(xt−1, yt−1, xt−2, yt−2, ..., xt−s, yt−s) + σqwq

,

considering transfer entropy

T s
y→x(t− 1, t) := H[ρxt|xt−1...xt−s ]−H[ρ̂xt|xt−1...xt−s ],

where ρ̂ is the distribution for the constrained system, obtained by posing yt = yt−1 =
... = yt−s = ŷ. For the linear case, we have the system{

xt = Ap1xt−1 + Ap1q1yt−1 + ...+ Apsxt−s + Apsqsyt−s

yt = Aq1p1xt−1 + Aq1yt−1 + ...+ Aqspsxt−s + Aqsyt−s

. (81)
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To calculate the transfer entropy, the probability distribution must be determined for
the free and the constrained system. It is therefore sufficient to proceed, taking care to
reorder the notation correctly. Let us consider the Gaussian vector (xt, xt−1, ..., xt−s),
adopting the following convention: the prime indices refer to the objects at time t,
those with the subscript k to the objects at time t− k. By adopting the objects

Σ =


Σp′ Σp′p1 ... Σp′ps

Σp1p′ Σp1 ... Σp1ps

... ... ... ...
Σpsp′ Σpsp1 ... Σps

 ,

Σp′|p = Σp′ − Σp′pΣ
−1
p Σpp′ ,

Σp′p =
(
Σp′p1 Σp′p2 ... Σp′ps

)
Σp =


Σp1 Σp1p2 ... Σp1ps

Σp2p1 Σp2 ... Σp2ps

... ... ... ...
Σpsp1 Σpsp2 ... Σps

 ,

Apq =
(
Ap1q1 Ap2q2 ... Apsqs

)
,

Σq =


Σq1 Σq1q2 ... Σq1qs

Σq2q1 Σq2 ... Σq2qs

... ... ... ...
Σqsq1 Σqsq2 ... Σqs

 ,

Σpq =


Σp1q1 Σp1q2 ... Σp1qs

Σp2q1 Σp2q2 ... Σp2qs

... ... ... ...
Σpsq1 Σpsq2 ... Σpsqs

 ,

we obtain the following theorem:

Theorem 11 Given a linear system of the type 81, the transfer entropy Ty→x is of
the form

T s
y→x(t− 1, t) =

1

2
ln |Apq(Σq − ΣqpΣ

−1
p Σpq)A

T
pq + σ2Ip| −

1

2
ln |σ2Ip|.

It turns out that Ty→x(t − 1, t) = 0 if Apq = 0, i.e. if in the equations for x the
coefficients for y are all null.

Revisiting the analysis discussed above, the corresponding adaptations also follow for
this case, and it is possible to consider the transfer in k steps.

Remark 12 Let us reconsider the conditioning problem, with the aim of explicitly
writing down the expression of Tyd→xa|yc. It suffices to recall what is stated in Lemma
2 in iii., a direct consequence of the proposed definition of transfer:

Tyc,yd→x = Tyc→x + Tyd→x|yc .
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Given p = (a, b), q = (c, d), q̂ = (d), as well as reconsidering the theorems 7 and 8, it
is immediate to verify that

Tyd→xp|yc = Tyq→xp − Tyc→xp =
1

2
ln
|Apq̂Σ

∗
q̂A

T
pq̂ + σ2Ip|
|σ2Ip|

.

Similarly, given q = (b, c, d), q̂ = (b, d), q̃ = (b), it holds

Tyd→xa|yc = Tyq→xa − Tyc→xa =
1

2
ln
|Aaq̂Σ

∗
q̂A

T
aq̂ + σ2Ia|

|Aaq̃Σ∗
q̃A

T
aq̃ + σ2Ia|

.

If, for example, we consider the 64 model, it is easy to verify, in line with our expec-
tations, that

Tx→z|y(0, 1) = Tx,y→z(0, 1) = Tx→z(0, 1),

Ty→z|x(0, 1) = 0.

A similar check can be made for the model 65.

Linear Response

Let us consider [8], where causal links are characterized in terms of fluctuation-
dissipation relations. In the linear case, this approach to causality gives us indications
consistent with what was discussed in the previous section.

In the field of non-equilibrium statistical physics, response theory provides a re-
lationship linking the spontaneous fluctuations of a system with the response fol-
lowing a perturbation. In general, we consider a n-component Markovian process,
zt = (z1t , z

2
t , ..., z

n
t ), under the assumption that it admits an invariant distribution ρs,

non-zero everywhere and regular. Given an instantaneous perturbation at time t = 0
on component zi, say

zi0 → zi0 + δzi0

, we have a probability distribution ρ′s, for which the relation ρ′(z0) = ρ(z0 − δz0)
holds. We can then consider the mean for an observable F , for the unperturbed
and the perturbed case respectively, under the assumption that the dynamics of the
system is governed by some law zt = ϕtz0, deterministic or stochastic. We write

⟨F (zt)⟩ =
∫
F (zt)ρs(zt, z0)dztdz0,

⟨F (zt)⟩′ =
∫
F (zt)ρ

′
s(zt, z0)dztdz0,

where ρs(zt, z0) = pz0→ztρs(z0), ρ
′
s(zt, z0) = pz0→ztρ

′
s(z0) and pz0rightarrowzt is the tran-

sition probability for the system from the state z0 to zt. It is easy to evaluate the
difference between the two averages:

δF (zt) := ⟨F (zt)⟩′ − ⟨F (zt)⟩ =
∫
F (zt)pz0→zt {ρ′s(z0)− ρs(z0)} dztdz0 =
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=

∫
F (zt)

ρ′s(z0)− ρs(z0)
ρs(z0)

pz0→ztρs(z0)dztdz0 =

= −
∫
F (zt)

n∑
k=1

∂ ln ρs(z)

∂zk
∣∣
z0
δzk0pz0→ztρs(z0)dztdz0 +O(|δz0|2).

Assuming that we have only perturbed the component zi and neglecting higher-order
terms, we obtain the relationship:

δF (zt)

δzi0
= −

∫
F (zt)

∂ ln ρs(z)

∂zi
∣∣
z0
ρs(zt, z0)dz0dzt. (82)

If, instead of the generic function F , we consider the projection onto the component
zj, we define the linear response of zj at time t, to the perturbation on zi at time 0:

Rzi→zj(0, t) :=
δzjt
δzi0

= −
∫
zjt
∂ ln ρs(z)

∂zi
∣∣
z0
ρs(zt, z0)dz0dzt. (83)

We can then say that zi influences zj after t time steps if a small perturbation of zi

at time t = 0, say δzi0, produces a change on average for zjt . This change is quantified
by the response Rzi→zj(0, t). We interpret the possibility that Rzi→zj(0, t) ̸= 0 as
evidence that there is a causal connection from zi to zj, quantified by the value
assumed by Rzi→zj(0, t).

Remark 13 The assumption of regularity of the invariant distribution is essential to
proceed with the first-order expansion and write the relation 82. This condition is not
satisfied if the system has a nonsmooth attractor, a typical situation in the presence
of a nonlinear term in the model equations. However, this limitation does not arise
for the calculation of the transfer, where the concrete difficulty lies in determining
explicitly the evolution of the distribution for the initial data.

Linear Case

If we consider a linear system of the form xt = Axt−1 + σw, it is easy to calculate
the response, taking into account that ρs goes to zero at infinity and proceeding with
some simple integration by parts.

Rzi→zj(0, t) = −
∫
zjt
∂ ln ρs(z)

∂zi
∣∣
z0
ρs(zt, z0)dz0dzt =

= −
∫
zjt dzt

∫
∂ρs(z0)

∂zi0
pz0→ztdz0 =

∫
zjt dzt

∫
ρs(z0)

∂pz0→zt

∂zi0
dz0 =

=

∫
zjt dzt

∫
ρs(z0)

n∑
k=1

At
ki

∂

∂zkt
pz0→ztdz0 =

= −
n∑

k=1

∫
At

ki

∂zjt
∂zkt

ρs(z0)pz0→ztdz0dzt =
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= −At
ji

∫
ρs(z0)pz0→ztdz0dzt = −At

ji.

We observe that the relationship just established directly follows from the linear na-
ture of the system, without the need to make assumptions about the distribution of
the initial data or the shape of the invariant distribution.

Considering the discussion so far, we have proven the following result:

Theorem 12 Given a linear system of the type 71, assuming that the initial data is
distributed as a Gaussian, the transfer Tzi→zj(0, t) is zero if and only if the response
Rzi→zj(0, t) is zero.

We can therefore say that, under the aforementioned assumptions, we have a causal
relationship in the sense of transfer if and only if we have it in the sense of response.
Assuming that the initial data is distributed as a Gaussian with covariance matrix
Σ0 = σ2

0I, we can write a simple relationship between transfer and response.

Tzi→zj(0, 1) =
1

2
ln

(
1 +

{
Rzi→zj(0, 1)

}2 σ2
0

σ2
0

∑n
l ̸=i,j a

2
jl + σ2

)
, (84)

which can generalize to the case at time k,

Tzi→zj(0, k) =
1

2
ln

(
1 +

{
Rzi→zj(0, k)

}2 σ2
0

σ2
0

∑n
l ̸=i,j â

2
jl + σ′2

)
, (85)

Where âjl is the (j, l)-th element of the matrix Ak and σ′ is the noise redefined at
step k. These relationships can be generalized to the case of an arbitrary matrix
Σ0, taking care to rewrite the involved coefficients accordingly. The problem arises
of determining how the introduction of a nonlinear term affects the validity of these
relationships.

Remark 14 Given that the perturbation for zi is instantaneous and at time t = 0,
we can define a cumulative index in time for causality by summing the contributions
given by the response for zj at the various subsequent instants:

Dzi→zj(t) :=
t∑

k=1

Rzi→zj(0, k), (86)

Dzi→zj := lim
t→∞

Dzi→zj(t). (87)

These indices are of a different nature compared to those proposed for transfer,
which take into account the information transferred for all the pairs (t− k, t).

Revisiting the definition of transfer entropy in the framework of dynamical systems
theory, we obtained an exact expression for linear models in the presence of Gaussian
initial data and noise. This led to a necessary and sufficient condition for the existence
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of a causal relationship between two variables in the system. This characterization can
also be obtained in the context of response theory, which offers a different conceptual
framework from that of information theory. The next step could involve discussing the
robustness of this correspondence for nonlinear systems, starting from some specific
cases.
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[132] H. Poincaré. Sur le problème des trois corps et les équations de la dynamique.
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