
6

Fold2Vec: Towards a Statement-Based Representation of

Code for Code Comprehension

FRANCESCO BERTOLOTTI and WALTER CAZZOLA, Università degli Studi di Milano, Italy

We introduce a novel approach to source code representation to be used in combination with neural networks.

Such a representation is designed to permit the production of a continuous vector for each code statement.

In particular, we present how the representation is produced in the case of Java source code. We test our

representation for three tasks: code summarization, statement separation, and code search. We compare with

the state-of-the-art non-autoregressive and end-to-end models for these tasks. We conclude that all tasks ben-

efit from the proposed representation to boost their performance in terms of F1-score, accuracy, and mean

reciprocal rank, respectively. Moreover, we show how models trained on code summarization and models

trained on statement separation can be combined to address methods with tangled responsibilities, meaning

that these models can be used to detect code misconduct.
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1 INTRODUCTION

Premise. Code comprehension is one of the most challenging and time-consuming tasks in soft-
ware development. Often code is poorly documented, and its functionalities are tangled and scat-
tered throughout the whole codebase. This makes tasks like debugging and maintenance difficult
and time consuming. Therefore, the need for tools to support the developer in code comprehen-
sion is becoming critical. This need is also reflected by recent research trends where the focus is
on automatic code generation [8, 46, 48, 55], automatic code completion [52, 66], code summariza-

tion [1, 5–7, 65], and automatic test generation [16, 23].

Tangled intents. One aspect that renders code comprehension difficult is that the code of a single
functionality is often polluted by the code of other functionalities. We refer to this phenomenon as
tangled intents. This is where most of the models based on code comprehension have limits. Com-
prehension occurs at coarse grain usually set at the method/function level [1, 5–7, 65], which limits
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Fig. 1. Java tangled method with intent classifications (orange, blue, and red) by three separate runs of

fold2vec.

their applicability. Let us demonstrate the problem on an example involving intent identification.
Figure 1 shows the method whose behavior we have to guess by giving it a proper description.
Even if the code is quite short, it suffers from the preceding entangled intents—the code belonging
to different intents has a different colored background. To tell apart and name the code of every
single intent is difficult and often ambiguous. Moreover, a wrong classification presents obstacles
to proper reuse, refactoring, and maintenance, among others.

Motivation. Models like code2seq [5] and code2vec [7] have demonstrated that training a neu-

ral network (NN) with specifically designed representations for code helps to achieve better re-
sults with respect to standard natural language processing techniques. However, both code2seq and
code2vec are bounded by their representation, leaf-to-leaf abstract syntax tree (AST) path. In
our view, a fine-grained prediction that considers potentially non-consecutive statements should
be designed to deal with disconnected sub-trees of the AST. In these cases, leaves from different
sub-trees cannot be connected by leaf-to-leaf paths. This limitation leads to shorter and narrower
paths, for which it has been shown to hurt the performance [6]. These motivations lead us to
design a novel representation that aggregates all of the information available from the different
sub-trees. This information can be used to gather statements into coherent groups. These groups,
called intents, can be used to detect bad code practices.

Research questions. To address the mentioned issues and limitations, we try to answer the re-
search questions:

RQ1: Can NNs for code comprehension benefit from a statement-based code representation?
RQ2: Can such a code representation enable a NN to detect code misconduct?
RQ3: Which neural component with which neural representation behaves the best?

Statement-based representation. Kiros et al. [45] and Dwivedi and Shrivastava [24] build a hidden
representation aligned with its semantics for each natural language phrase of the document. All of
the hidden representations contribute together to perform a specific task on the whole document.
In our view, a similar approach could be exploited to improve code comprehension and provide
an answer to RQ1 where the analogous of a natural language phrase is a code statement. Our
NN, called fold2vec, builds a hidden representation for each code statement separately from the
others. Then, the combined hidden representations contribute to the classification of the method.
In this direction, our main contribution is a novel code representation. Given a code snippet, its
AST is considered. We split the AST into sub-trees, each representing a single code statement.
Each sub-tree is folded into two sequences of tokens—one for the terminals and one for the non-
terminals—via a pre-order visit. All token sequences are then fed to the NN, and they contribute
to the classification.
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Code summarization and code search. To answer RQ1, we show that our code representation im-
proves the state of the art for the code summarization and code search tasks. It is worth noting that
for code summarization, the dataset used to perform this task exploits the fact that method names
often summarize the method behavior. This assumption can be seen as a rough approximation,
but it permits to access a vast amount of available data on which the training can be performed.
Usually, more data lead to better and more robust results [29].

Statement separation. An intent can be any subset of statements, not necessarily adjacent in
the code, pursuing the same goal. In our view, intent identification could be possible by applying
a NN specifically trained for the task of statement separation. This NN can be used to induce a
metric over statements regarding the statement topics, meaning that statements with the same
topic would be close to each other, and statements with different topics would end up far apart
from each other. With an hierarchical clustering algorithm, the induced metric can be used to
cluster statements that share the same topic. To answer RQ2, we train fold2vec for the statement
separation task. We call this model stmt-fold2vec. However, the novelty of the task limits the
availability of baselines. To address this issue, we adapt the previously mentioned work (code2vec)
for the statement separation task. We demonstrate that the novel code representation leads to
improvements also for this task.

Overview. The rest of the article is organized as follows. Section 2 introduces the terminology.
Section 3 illustrates the design of our source code representation and the NN architecture used
on top of it. Section 4 discusses and compares fold2vec results to the state-of-the-art models for
the code summarization and code search. It also brings some evidence that fold2vec can classify
single or groups of statements to enable intent identification. We present our ablation study in
Section 5 and discussion in Section 6. Finally, in Sections 7 and 8, we examine some related work
and draw our conclusions, respectively.

2 BACKGROUND

The aim of this section is to set a common terminology used in this article by recalling the definition
of some core concepts as NN layers and AST.

Neural network. A NN is “a computing system made up of a number of simple, highly inter-
connected processing elements, which process information by their dynamic state response to
external inputs [21]”. Usually, NNs are organized in layers. In a supervised learning environment,
the NN is trained through gradient descent techniques to minimize a loss from a set of examples
called the training set. Additionally, a validation set and test set are used to evaluate the NN in a
developing phase and at the end of the process, respectively. These phases are meant to limit the
effect of overfitting.

Autoregressive architecture. A neural architecture is said to be autoregressive when each predic-
tion is part of several single classifications, each based on the previous ones. For example, while
predicting how a text continues, an autoregressive architecture predicts the next token by consid-
ering also the previous predictions.

Pre-trained and end-to-end models. A model is said to be pre-trained when it was already trained
on a specific task. These models can exploit a task for which there is a high availability of data
to learn intrinsic features of the media (text, code, images, videos, etc.) that can be useful in a
wide range of tasks. The learned features can then be reused and fine-tuned for tasks of which
there is less availability of data. Pre-trained models are usually trained on extremely large datasets
that require expensive hardware during training. In contrast, end-to-end models are trained from
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scratch directly on a task of interest. These models are usually smaller, customizable, and easily
reproducible. Using end-to-end models is convenient when the task of interest already has a large
dataset available.

Multi-layer perceptron. The multi-layer perceptron (MLP) is the composition of several dense

layers. A dense layer applies to a real vector �x ∈ R1×n the transformation:

�y =W�x + �b,

where W ∈ Rn×m and b ∈ Rm are trainable parameters randomly initialized. Usually, a non-linear
activation function is applied to the output �y (e.g., �z = tanh(�y)).

Embeddings layer. The embeddings layer maps tokens to real vectors. This kind of layer is a
matrix E ∈ Rt×d , where t is the number of tokens to be considered and d is the size of each
embedding. Pennington et al. [60] showed that values for d between 50 and 500 are a good fit in
most cases. Each token, indexed by i such that 0 ≤ i < t is mapped to the i-th row of E. E is
made up of trainable parameters randomly initialized. E can be either pre-trained as in the work
of Mikolov et al. [51] and Pennington et al. [60] or learned during network training like in the
work of Alon et al. [5, 7].

Layer normalization. Layer normalization [9] is a regularization technique used to improve the
network training time and test error. Apart from the input layer, each layer learns its input distribu-
tion from the output of the preceding layer. During training, the output distribution from a layer
fed to another is constantly changing as the NN is updated; this is known as the covariate shift

problem. Given a set of features, layer normalization computes the mean and standard deviation,
then re-centers and re-scales the features using an extra normalization parameter. By normalizing
the distribution, the covariate shift is reduced and the network learns faster.

Recurrent neural network. A recurrent neural network (RNN) is the neural architecture com-
monly used when processing input sequences. It processes each element of the input sequence
considering the output of the preceding computation. Given the input sequence �x1, �x2, . . . , �xn , it
computes the t-th stage as

�ht = RNN(�ht−1, �xt ,θ ),

where, �ht−1 is a hidden state and θ represents the network parameters. The hidden state is a sort of
network memory updated as an input element is processed. RNN training can suffer from both the
vanishing and the exploding gradient problem as explained in [12, 59]—that is, parameter updates
can become either too small or too big, respectively.

Long short-term memory. Long short-term memory (LSTM) [26] is a type of RNN that deals
with the gradient problem [59] so that the network can make long-term associations. Each layer
can also use two LSTMs at the same time, where one consumes the input sequence and the other
the reversed input sequence; this configuration is called bidirectional long short-term memory

(BiLSTM). As well, an additional LSTM layer can consume the output of a previous LSTM layer;
this configuration is called stacked LSTM.

Attention mechanism. An attention mechanism helps the network focus on the input portion
that should be more relevant for its task. For example, articles are less informative than nouns
when you are trying to understand a sentence. The attention mechanisms used in this article are
self-attention (SA) [72] and global attention (GA) [47]:

• Global attention: Given the input sequence �x1, �x2, . . . , �xn ∈ R1×d and a parameter �a ∈ Rd×1

randomly initialized, the GA masks the useless information by computing some input scores
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si = �xi · �a that are normalized through a softmax function:

αi = softmax(si ) =
esi∑n

j=1 e
sj

x̂ =
n∑

i=1

αi �xi ,

where αi are real values between 0 and 1 whose sum is 1. The real vector x̂ summarizes
the inputs with a weighted sum. Each weight is a normalized relevance score. �xi has a low
relevance and does not contribute to x̂ when αi is close to 0. Conversely, �xi has a high
relevance when αi is close to 1. The GA process can be applied multiple times on the same
input sequence by training multiple a vectors. In this case, we will use the term multi-head

GA.
• Self-attention: In the case of SA, each input element �xi is scored with respect to all of the

other elements instead of using a global vector. Let X ∈ Rn×d be the matrix made up of the
row vectors �xi , and WQ , WK , and WV ∈ Rd×d are some parameters randomly initialized.
Three linear transformations are applied to the input sequence:

Q = X · WQ K = X · WK V = X · WV ,

where the i-th rows of Q, K, and V are different linear transformations of �xi . Q, K, and V are
combined into Z:

S = Q · KT Z = softmax(S) · V.

The score si j of xi with respect to �x j is given by the dot product of the i-th row and the

j-th column of Q and KT, respectively. The softmax function applied by rows normalizes
the scores so that the i-th row of softmax(S) contains the weights for �xi with respect to
all other elements. Z is the weighted sum obtained by multiplying the normalized scores
and V. Storing S in memory has a cost of O(n2), which often limits the applicability of this
mechanism.

Abstract syntax tree. An AST is a unique tree-shaped representation of a program. Formally, it
is a quintuple (N ,T ,X , s,δ ,ψ ), where the following apply:

• N is the set of internal nodes of the AST. It is split into NS and NE ,where the former contains
only statement-like nodes and the latter only expression-like nodes.

• T is the set of leaf nodes of the AST.
• X is a set of values that the leaf nodes can assume.
• s ∈ N is the root node of the AST.
• δ : N → (N ∪T )+ is the function that maps each node n ∈ N to a list of its children.
• ψ : T → X is a function that maps each leaf node n ∈ T to its actual values.

3 FOLD2VEC

In this section, we present the proposed model, named fold2vec, and the steps needed to train
and test it. In Section 3.1, we explain how to extract the features to feed the NN. In Section 3.2, we
describe how the neural architecture is composed and how its components interact. In Section 3.3,
we discuss the tuning process of fold2vec.

3.1 Code Feature Extraction

Overview. As mentioned previously, fold2vec adopts a source code representation based on
linearizations of the method AST. Before diving into the details, let us summarize how these lin-
earizations are extracted:
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Fig. 2. Two possible unfoldings: f (r ) applies a pre-order visit starting from the node r ; f ′ returns only leaves

starting from the node r .

(1) Given a method, we use a parser to obtain its AST. For example, step ➀ in Figure 3 (presented
later) shows a method, and step ➁ in the figure shows its AST.

(2) We split the AST into sub-trees such that each sub-tree represents a statement in the method.
For example, step ➀ in Figure 3 has three statements colored, and step ➁ in the figure has
the respective sub-trees colored in the same way.

(3) We linearize the obtained sub-trees into two ways:
• A pre-order visit registering non-terminals.
• A pre-order visit registering terminals.
For example, step ➁ in Figure 3 shows three sub-trees that will be linearized, and step ➂ in
the figure shows three lists each made of two linearizations.

(4) Last, We tokenize terminals and remove integer literals.

Tree unfolding. We refer to a tree unfolding as a linearization of a tree through an operation

f : (N ∪T )+ → (N ∪ X )∗,

where f is a placeholder representing the tree linearization operation. It can be anything, such as a
pre/post-order visit or a function returning the root node. Figure 2 shows some possible behaviors
for f . Tree unfoldings can be used to build a hybrid tree representation where some of its sub-trees
are folded into a more informative node by applying f and lowering the tree height. Based on the
findings of Shi et al. [67], short trees can be more easily exploitable by NNs because information
propagates on shorter paths reducing the number of classification errors.

Contextual unfolding. Contextual unfoldings (CU) are just tree unfoldings designed to deal
with the AST. In particular, CUs are obtained from the sub-trees of each statement AST. We have
designed two different types of CU: one for non-terminal nodes (e.g., IfStmt, ForStmt) and one
for terminal nodes (i.e., identifiers, literals, and keywords), respectively divX and divN (step ③ in
Figure 3). The two CUs provide different information to the NN—the former captures code struc-
ture and the latter its topic [56]. Let us define two helper functions to calculate the corresponding
CUs:

divX : (X ∪ N )+ → X ∗, divN : (X ∪ N )+ → N ∗.

Given a node sequence, divX and divN return only terminal or non-terminal nodes, respectively.
They are inductively defined over the length of their inputs.

Base: Let |x | = 1.

divX (x) =

{
x if x ∈ X

ε otherwise
divN (x) =

{
x if x ∈ N

ε otherwise

Step: Let |x | = n + 1, where x = y · z with |y | = 1 and |z | = n.
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divX (x) =

{
y · divX (z) if y ∈ X

divX (z) otherwise
divN (x) =

{
y · divN (z) if y ∈ N

divN (z) otherwise

We also define a third helper function (fv ) to linearize a given statement tree via a pre-order visit

that skips the sub-trees of other statements. It is defined as follows:

fv : (N ∪T )+ → (N ∪ X )+ fv (x) =

{
ψ (x) if x ∈ T

x · concat{ fv (c)|∀c ∈ δ (x) \ NS } otherwise.

Given a statement node x ∈ NS as input, fv consumes x and recursively calls itself on the children

of x that are not statement nodes by applying δ (x) \ NS . In step ② of Figure 3, fv is called twice
on the root node of every statement sub-tree (i.e., WhileStmt, IfStmt and ExprStmt).
Finally, we define the two linearization functions.

f (N )
cu : (N ∪T )+ → N ∗ f (X )

cu : (N ∪T )+ → X ∗

x 	→ divN (fv (x)) x 	→ divX (fv (x))

Again, in step ② of Figure 3, f (N )
cu and f (X )

cu are called once on the root node of every statement sub-
tree. The extraction function (fe ) exploits the helper functions to calculate the token sequences to
pass to fold2vec. It is defined as follows.

fe : (N ∪T )+ → (N ∗ × X ∗)+

fe (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε if x ∈ T

concat{ fe (c)|∀c ∈ δ (x)} if x ∈ NE

[f (X )
cu (x), f (N )

cu (x)] · concat{ fe (c)|∀c ∈ δ (x)} otherwise

fe starts visiting the AST from the root node (in Figure 3, that is the WhileStmt); the visit is in

pre-order. It uses both f (X )
cu and f (N )

cu functions to produce the relative CUs at each statement node.
The computed CUs are concatenated together in the output.

Tokenization. We additionally split all terminal nodes into sub-tokens (e.g., “toString” is split
into “to” and “string”). The split is done to keep the size of the embeddings table E reasonable
(see Section 2). E ∈ Rt×d , where t is the number of unique words that can be stored and d is the
size dedicated to representing each word. Each unique word is always mapped to a single entry in
E. If we create a table E for all possible terminal nodes, we would end up with an enormous table
E. Instead, by considering the tokenization, we reduce the dimension of E because the sub-tokens
can be repeated and shorter. We used ronin [35] to split the tokens, but other approaches could be
used with comparable results (e.g., [15, 31]). Moreover, we remove integer literals from the output

of f (X )
cu because their contribution to the classification is negligible and to further reduce the size of

the E table. For simplicity, we also omit the processing of the method declaration, but information
on parameters and return type is also included in the output.

An example. Figure 3 summarizes the process. A Java method code is shown at the top. Its AST
is in the middle, and the extracted features are at the bottom. Colors highlight representations of
different statements. For example, orange highlights the while statement, its AST, and its CUs. The
AST is built by a Java parser. Here, fv is used six times: twice with the root node of the orange
sub-tree, twice with the root node of the blue sub-tree, and twice with the root node of the red
sub-tree. Results of fv are combined further on by using fe .
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6:8 F. Bertolotti and W. Cazzola

Fig. 3. The isDone code snippet (top) with its AST (middle) and extracted CUs (bottom).

3.2 Neural Model for Code Labeling

Overview. Figure 4 shows the adopted architecture for the NN. A statement (step ① in Figure 4)
is processed as explained in Section 3.1 (step ② in Figure 4). In the case of multiple statements, the
process shown in Figure 4 from ① to ❶ is repeated for each statement. Step ③ of Figure 4 shows
the two sequences of tokens resulting from the feature extraction process.

Embeddings. Both terminal and non-terminal tokens are mapped into embeddings obtained
from the vector table E of 10,000 entries of 100 floats (steps ④ and ⑧ in Figure 4). Table E is
trained with back-propagation along with the rest of the network.

Terminals and non-terminals. Terminal and non-terminal tokens go through different paths. For
terminal tokens, we use the multi-head GA layer (step ⑤ in Figure 4). Each terminal token receives
a weight obtained through attention. All weights for each CU sum to 1. The higher the weight for a
token, the more relevant is the token considered by the network. A summarized vector is obtained
through a weighted sum. Finally, we apply the normalization layer from Ba et al. [9] (step ⑥ in
Figure 4). Non-terminal tokens are processed through a RNN, 1StackBiLSTM (step ⑨ in Figure 4).
To adopt GA, as used for the terminal tokens, would be undesirable in this case, because non-
terminal tokens, unlike terminal ones, are more dependent on their position inside the statement.
Using GA would lead to the loss of this positional information. Forward and backward states of the
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Fig. 4. NN architecture.

1StackBiLSTM are then summed up together. The resulting vector is the non-terminal intermediate
representation after the application of a second normalization layer [9].

CU intermediate representation. Figure 4 (step ❷) emphasizes one of the contextual unfold-

ing intermediate representations (CUIRs) obtainable by concatenating the terminal and non-
terminal intermediate representations together (step ❶ in Figure 4). Terminals bring information
from the domain in which the statement operates. For example, finding identifiers like log or log-

ging tells us that the statement operates in the logging domain. If more than one domain appears
in a single statement, then different attention heads will capture each domain. In contrast, non-
terminals bring a different type of information. They provide information about the program con-
trol flow and how the terminals are used in the statement. An SA layer is applied once the CUIRs
for all statements are computed (step ❸ in Figure 4). The CUIRs are put in relation to each other
through the SA layer. An attention score is computed for each CUIR with respect to all of the other
CUIRs. The normalized attention scores become the weights used to calculate a weighted sum of
the CUIRs. The result is that each CUIR is mixed with the other CUIRs considered relevant. Then,
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Table 1. Hyper-Parameter Values

Hyper-parameter Value Initial Configuration Option Class

No. stmts. 15 20 5, 10, 15, 20, 25
No. token per stmt. 25 25 15, 20, 25
Batch size 1,000 10 10, 100, 1,000
Loss Cross entropy Cross entropy –
Optimizer Adam [44] Adam [44] –
Learning rate 0.001 0.001 –
Embed. size 100 100 100
Embed. vocabs 104 104 104, 105

CUIR size 15 · 300 15 · 300 –
MIR size 300 300 100, 150, 300
MLP activations Relu Relu Tanh, relu
BiLSTM activations Tanh Tanh –
LSTM type 1StackBiLSTM LSTM BiLSTM, LSTM, 2StackBiLSTM
No. global heads 1 2 1, 2, 3
GA act. Tanh Tanh, relu Tanh
SA act. Tanh Tanh, relu Tanh
Reg. Layer norm [9] Dropout Layer norm [9], dropout

a vector of 2×embedding_size×|stmts| features (from terminals and non-terminals) is obtained by
flattening the SA output.

Final projections. A final MLP layer is applied to the resulting vector (step ❹ in Figure 4); this
reduces the hidden representation to a vector of 300 entries, named �v . One final linear transforma-
tion is applied to bring �v into the output space with 261,245 labels (step ❺ in Figure 4), and 261,245
is the same number of labels used by code2vec in the work of Alon et al. [7], which we use as a
baseline. If the output is made up of s1, s2, . . . , s261,245, each si is the score given to the i-th label.
The higher is si , the higher is the relevance of the i-th label. Initial labels are set to the method
names with higher frequency in the training split of the java-large dataset [7], as discussed in
Section 4. The last softmax layer normalizes the output so that the scores can be interpreted as
probabilities. Our output is a list of labels sorted by probabilities.

Scaling with statements. This architecture was designed to exploit the effectiveness of trans-
former architecture [72] while reducing its memory requirement. Recall (from Section 2) that the
SA mechanism has a memory requirement that grows quadratically in the number of tokens. In
practice, this means that methods with more than 512 tokens are difficult to process with the SA
mechanism. To avoid this issue, before applying SA, we encode each statement with a different
and more memory-efficient technique. By doing so, we move the input of the SA layer from the
bare code token to the statements encodings. Thus, the quadratic cost of the SA layer scales with
the number of statements and not with the number of tokens.

3.3 Tuning Fold2vec

Table 1 summarizes the hyper-parameters of fold2vec and their values. Such hyper-parameters
have been tuned over the validation split of the java-large dataset during a tuning phase. The
tuning consists of manually and independently tweaking each hyper-parameter starting from the
initial configuration shown in column 3 of Table 1. We kept all of the hyper-parameters that pro-
duce the best results in their option class (column 4 in Table 1, where a dash (–) indicates that
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the parameter has not been tuned). The tuned hyper-parameters include layer size, regularization
layer, number of global heads, batch size, activation functions, and input size. An exhaustive search
of the best hyper-parameters is not feasible due to training times (we based our estimation on the
results obtained after one epoch that required about 7 hours). Therefore, there is still space for im-
provement. We tested the model once we found the combination in Table 1. In addition, note that
we had previously used convolutional NNs in an early stage of our work. However, we dropped
them in favor of LSTMs, which led to better scores. Moreover, convolutional NNs were also used
in the work of Allamanis et al. [3] with lower scores compared to more recent works [5].

4 EVALUATION

Introduction. To evaluate the proposed representation with the proposed architecture, we con-
sider three different classification tasks: code summarization, statements separation, and code search.
The first two tasks are evaluated using datasets derived from a collection of GitHub projects. As we
will show, models trained for these tasks can be combined to build tools that could improve code
readability. The third one uses a dataset collected by Husain et al. [36]. We evaluate our proposal
against several baselines. Among these, several are completely replicated in our study to achieve a
fair comparison. The only difference between the replicated baselines and the original ones is the
used deep learning framework (originally TensorFlow,1 and here, PyTorch2).

Hardware setup. All deep learning models are trained, evaluated, and tested on a single T4
NVIDIA GPU. This ensures complete and free reproducibility using services such as Google Colab3

or Kaggle Kernels.4 We provide a Google Colab notebook with the necessary steps to reproduce
our study.5

Baselines. To achieve a fair comparison, we focus on baselines that fall in these categories:

• Non-autoregressive: We consider only models that are non-autoregressive. Although autore-
gressive models may work better for some tasks, they are not always applicable. For example,
binary classification tasks cannot be solved in an autoregressive manner.

• End-to-end: We consider only models that are not pre-trained. Although these models can
achieve better results, they are also trained on additional data and for more time. To have
a fair comparison, we believe that all models should be trained on the same dataset and for
the same number of epochs.

• Trained on java-large: All models should be trained and tested on the same dataset.

4.1 Code Summarization

Introduction. Summarizing code in meaningful short sentences is an extremely hard task. It can
be a challenging and time-consuming task even for experienced programmers. Developing tech-
niques that deal with this task can become useful tools in the developer’s hands. The method name
is the first thing a developer looks at to understand what the method does. Method names provide
a relevant and brief description of code snippets. Moreover, each method has its own method name.
Therefore, it is extremely easy to build massive datasets that incorporate several examples from
various domains.

1https://www.tensorflow.org/.
2https://pytorch.org/.
3https://colab.research.google.com.
4https://www.kaggle.com.
5https://colab.research.google.com/drive/1y383wyfNemYO7QYlmp7Nh7L_IHSMPvo4?usp=sharing.
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Fig. 5. A bubble sort method annotated for different tasks: statement separation (a) and code summariza-

tion (b).

Task. The model is presented with a method stripped of its name. The model should produce a
name as close as possible to the original one. Figure 5(b) shows an example: a bubble sort method
stripped of its name. The model is asked to retrieve the name just by looking at the method body.

Metrics. We adopt the same metrics used by Alon et al. [6, 7]: precision, recall, and F1-score (the
higher the values of precision, recall, and F1-score, the better the model behaves) described in
terms of true positives (TPs), false positives (FPs), and false negatives (FNs):

• TP is the number of predicted sub-tokens that are also in the original name.
• FP is the number of predicted sub-tokens that are not in the original name.
• FN is the number of original sub-tokens that are not in the predicted name.

Precision =
TP

TP + FP
Recall =

TP

TP + FN
F1 =

2 ∗ precision ∗ recall

precision + recall

Dataset. The dataset (java-large6) used to train, evaluate, and test every considered model is
the same used in the experiment reported in the work of Alon et al. [7]. This permits a fair com-
parison with code2vec, currently considered the state of the art for non-autoregressive models.
Java-large6 is a publicly available dataset composed of 16M samples. It is made up of 9,550 Java
projects collected since 2007 among those top-starred on GitHub. The projects in the dataset have
been used for training (9,000 projects), validating (300 projects), and testing (250 projects) the NN.
All baselines use these exact splits both in the literature and in our study. Following the preprocess-
ing used by Alon et al. [7], the training split of java-large is filtered to contain only the top 261,245
common method names. However, the test and validation split keeps all of their samples. This pro-
cess generated the following dataset splits: 10,993,069 samples for training, 321,718 samples for
validation, and 416,986 samples for testing. Additionally, a dataset with the same properties was
generated with code2vec style leaf-to-leaf paths and code2seq style leaf-to-leaf paths.

Models. We report the results for six different models, which are briefly described as follows:

(1) With the name Paths+CRFs, we denote a conditional random field model trained in the work
of Alon et al. [6]. Again, we only report results obtained in the previous study.

6https://s3.amazonaws.com/code2seq/datasets/java-large.tar.gz.
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Table 2. Results for the Task Code Summarization

Model Parameter (M) TP FP FN Precision Recall F1-score

Paths+CRFs [6] – – – – 32.56 20.37 25.06
HeMa [38] – 270,057 901,178 358,232 23.06 42.98 30.02
code2vec 179 430,399 412,910 740,380 51.04 36.76 42.74
code’2vec 81 484,331 328,407 685,989 59.59 41.38 48.84
fold2vec 83 508,526 302,249 661,720 62.72 43.45 51.34
HeMa×fold2vec 83 518,177 315,187 652,365 62.18 44.27 51.72

For parameters, FP, and FN, the lower the better. For precision, recall, F1-score, and TP, the higher the better. All

non-replicated results are accompanied with the respective citations. Last, “M” stands for millions.

(2) With the name fold2vec, we denote the proposed architecture with the proposed code rep-
resentation.

(3) With the name code2vec, we denote a replication of the original experiment proposed by
Alon et al. [5].

(4) With the name code’2vec, we denote an improved version of code2vec that employs the
improvement proposed by Alon et al. [5] re-purposed for the non-autoregressive setting.

(5) With the name HeMa, we denote the model developed by Jiang et al. [38]. HeMa uses a set of
handcrafted heuristics to produce a method name given its body. HeMa can classify only a few
method categories (getters, setters, delegations, and methods that match a pre-defined set).
On these methods, HeMa works exceptionally well. Although HeMa is non-autoregressive and
is non-pre-trained, it is also not trained on java-large. As a matter of fact, HeMa is not trained
at all. Therefore, following the conditions mentioned previously, HeMa cannot be compared
to other baselines. However, we believe that this baseline can lead to an interesting model,
HeMa×fold2vec.

(6) With the name HeMa×fold2vec, we denote a model produced by combining HeMa and
fold2vec. This model is trained only on those samples in which HeMa fails to give a pre-
diction. HeMa×fold2vec returns the HeMa prediction when available otherwise returns the
fold2vec prediction.

Although models 1 and 5 are not directly replicated in this study, all of the other techniques were
replicated to achieve maximum compatibility between training settings. In particular, models 2, 3, 4,
and 6 are all trained to minimize the cross-entropy loss [20]:

L(l ,y) = −ly + log

(∑
i

exp(li )

)
,

where l is the logits vector (the model output vector with size equal to the number of classes)
and y is the correct class. In addition, all models are trained using the Adam optimizer [44] with
a batch size of 100 and accumulated gradients for 10 steps. All chosen models predict in a non-
autoregressive style, meaning that each prediction is based only on the input and not on previous,
possibly iterated, predictions.

Results. Table 2 summarizes the results. code2vec achieves similar results to those reported by
Alon et al. [7]. In particular, our replication differs in−0.89%, 0.38%, and 0.57% with respect to preci-
sion, recall, and F1-score when compared to the result reported in the work of Alon et al. [7]. These
results independently confirm those reported by Alon et al. [7]. Additionally, the improvement of
code’2vec over code2vec is noticeable. In fact, code’2vec uses far less trainable parameters (M
less) and improves 8.55%, 4.62%, and 6.1% with respect to precision, recall, and F1-score when com-
pared to its predecessor (code2vec). Although HeMa uses handcrafted heuristics and Paths+CRFs
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use traditional machine learning techniques, both do not match the results obtained by the deep
learning approaches. This fact shows how hard the task is of giving relevant method names to code
snippets. The new representation alongside the proposed model is shown to be effective. We report
an improvement of 11.68%, 6.69%, and 8.6% with respect to precision, recall, and F1-score against
the previous best model (code2vec). The model that achieves the highest scores is HeMa×fold2vec.
It surpasses its counterpart (fold2vec) in −0.54%, 0.82%, and 0.38% with respect to precision, recall,
and F1-score. This fact shows that deep learning techniques with traditional approaches may have
a positive effect.

4.2 Statements Separation

Introduction. The code topical locality principle [56] states that human-developed code is spatially
organized. Close statements have a high probability to contribute to the same topic. We will train
a model that tries to recognize if two statements are close. Assuming the truthfulness of the code
topical principle, this model should be able to predict, with high probability, if two statements
contribute to the same topic. Although it is extremely hard to measure how good a model is in
distinguishing topically related statements, it is extremely easy to measure how good a model in
distinguishing close to far apart statements.

Task. A model is presented with two statements. The model should predict whether the two
statements were taken close (positive sample) or far apart (negative sample) in the source code.
We impose two statements to be close if there is at most one statement between them. Figure 5(a)
shows a bubble sort method. A statement named anchor is highlighted. Respectively to the anchor,
both a positive and a negative statement are highlighted.

Metrics. We adopt common metrics used in literature for binary classification tasks. In particu-
lar, we show precision, recall, F1-score, and accuracy, which are described in terms of TPs, true

negatives (TNs), FPs, and FNs.

• TP is the number of nearby statements classified as nearby.
• TN is the number of far apart statements classified as far apart.
• FP is the number of nearby statements classified as far apart.
• FN is the number of far apart statements classified as nearby.

Although precision, recall, and F1-score are computed as shown previously, accuracy is computed
as follows.

accuracy =
TP +TN

TP +TN + FP + FN

Dataset. We again used java-large to generate the dataset to train, validate, and test our mod-
els. Let us consider only the training split of java-large. For each statement, we sampled one
positive sample and one negative sample. Positive samples are statements taken from a window of
five statements around the anchor. Negative samples are statements that are taken either outside of
this window or randomly from another method. This process generated the following splits from
java-large: 75,910,619 samples for training, 2,816,578 samples for validating, and 4,768,550 sam-
ples for testing. A dataset with the same properties was generated with code2vec-style leaf-to-leaf
paths and code2seq-style leaf-to-leaf paths.

Models. We designed and trained four separate models:

• stmt-fold2vec. stmt-fold2vec reuses most of the architecture of fold2vec to encode one
statement at a time.
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Table 3. Results for the Task Statement Separation

Model Parameters (M) TP TN FP FN Precision Recall F1-score Accuracy

stmt-fold2vec 14 1,522,725 1,701,919 682,356 861,550 69.06 63.87 66.36 67.62
stmt-code2vec 107 1,460,976 1,617,295 766,980 923,299 65.57 61.28 63.35 64.55
stmt-code’2vec 19 1,546,965 1,623,206 761,069 837,310 67.03 64.88 65.94 66.48
stmt-BiLSTM 12 1,541,846 1,655,046 729,229 842,429 67.89 64.67 66.24 67.04

For parameters, FP, and FN, the lower the better. For precision, recall, F1-score, accuracy, TP, and TN, the higher the

better.

• stmt-code2vec. stmt-code2vec applies the same architecture and representation for meth-
ods used by code2vec (leaf-to-leaf paths) to statements.

• stmt-code’2vec. stmt-code’2vec introduces the improvements introduced by code2seq in
the context of stmt-code2vec.

• stmt-BiLSTM. stmt-BiLSTM uses a BiLSTM to encode statements. BiLSTMs are a standard
architecture used to process sequences.

All models are trained on the mentioned training split to minimize the triple loss [10]:

L(a,p,n) = max{d(ai ,pi ) − d(ai ,ni ) +m, 0},

whered(xi ,yi ) = | |xi ,yi | |2 andm = 1.a represents an anchor statement, whereasp andn are a close
statement (positive statement) and a far apart one (negative statement), respectively. Moreover, all
models are trained with the same batch size of 100 samples and accumulated gradients for 10 steps.
All models use the Adam optimizer [44] and take as input one statement and encode it into a vector
of 100 floats.

Results. Table 3 summarizes the results. stmt-fold2vec is the model that achieves the best re-
sults, with an increment of 3.07% over stmt-code2vec and 1.14% over stmt-code’2vec in terms
of accuracy. fold2vec can distinguish the positive samples from the negative ones the 67.62% of
times. Nonetheless, all models achieve comparable results for this task.

4.3 Intent Complexity

Introduction. Over the years, the software engineering community has proposed a variety of
software metrics to measure several aspects of code quality. In this section, we propose a software
metric to measure the quality of source code with respect to the single responsibility principle

(SRP) [49]. Our metric should be low for an SRP compliant method and should be higher otherwise.

Task. We will evaluate the proposed metric with respect to a simple binary classification task.
A model is presented with a method, and it is asked to classify the method as positive or negative,
where a positive method means an SRP-compliant method, whereas a negative method means a
method with multiple responsibilities (which violates the SRP).

Metrics. We will evaluate the proposed models with respect to the following simple accuracy
metric.

#correct prediction

#predictions

Dataset. To properly evaluate the extracted intents, we adopted an approach similar to Gu
et al. [27]. We collected a simple dataset made of 100 manually annotated methods. These meth-
ods were collected and annotated using the following systematic approach (illustrated later in
Figure 8):
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Table 4. Ability of Several Source Code Metrics to Detect Tangled Concerns

Metric Description Accuracy

Di Data Complexity 50%
Si Structural Complexity 50%
Ci System Complexity 50%
VG no. Execution paths 55%
NVAR no. Control variables 57%
NCOMP no. Comparisons 60%
MCLC no. Comparisons + no.control variables 62%
TLOC no. Lines 71%
IC(ours) Intent Complexity 80%

(1) We collected GitHub projects that use using the Spring framework Aspect-Oriented Pro-
gramming.7

(2) We randomly sampled pointcuts (which describe (join) points in the program execution, like
method calls/executions).

(3) Given a pointcut, we sampled the relative advice (which describes the effect at the described
join point).

(4) Given a pointcut, we also sampled the method whose call/execution is captured by the point-
cut (i.e., the method that is decorated (woven) with the advice code).

(5) The sampled method, by itself, represents a positive sample (shown later in Figure 8).
(6) The sampled method merged with the advice represents a negative sample (shown later in

Figure 8).

At this point, we have 100 annotated samples (50 positives, 50 negatives). Positive samples are
usually brief methods that accomplish a single responsibility (SRP compliant). Negative samples
are usually longer and accomplish multiple responsibilities (non-SRP compliant).

Models. All models will be defined based on software engineering metrics. From each metric,
we build a simple threshold classifier. The considered metrics are listed in Table 4. In addition
to the established metrics, we propose the intent complexity (IC) metric. IC is based on the
previously discussed task, statements separation. Recall that stmt-fold2vec encodes statements
into R100 vectors (called encodings). We use a hierarchical clustering algorithm to group together
statements based on this distance. We refer to these groups as intents. For example, Figure 6
shows a Java method with its detected intents highlighted and annotated with fold2vec. To
obtain a score out of this set of intents, we measure the maximum Hausdorff distance between
intents:

IC(I ) = max
A,B∈I

{dH (A,B)},

where I is a set of intents and dH is the Hausdorff distance. Intuitively, the IC score is higher
when a method covers many and broad topics. Meanwhile, it is low when a method covers few
and similar topics.

Results. The average IC score on positive samples is 4.04. Meanwhile, the average IC score on
negative samples is 6.87. Moreover, by tuning a simple threshold, one can separate positive from
negative samples with an accuracy of 80%. In practice, this means that the IC score can be used to
detect SRP violations. When compared to other classical software engineering metrics (see Table 4),

7https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#aop-api.
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Fig. 6. On the top, statements are clustered accord-

ing to the metric induced by stmt-fold2vec. On the

bottom, clusters are summarized using fold2vec in

the colored bubbles.

Fig. 7. On the top, the distribution of intent complex-

ity scores (of the method with more than one intent)

inside the test split of java-large. On the bottom,

some examples organized according to their intent

complexity score.

the IC score is the most accurate in detecting methods with multiple responsibilities. Additionally,
Figure 7 shows how the IC score is distributed among methods found in the test split of java-large.
Alongside the histogram, four methods are shown with an increasing IC score. The more the IC
score increases, the more methods become longer and convoluted.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 6. Publication date: February 2023.



6:18 F. Bertolotti and W. Cazzola

Fig. 8. On the left, a method, its pointcut, and its advice are shown. On the right, the original method by

itself composes a positive example (i.e., a single, brief, and coherent concern). The original method combined

with the advice composes a negative example (i.e., a method with mixed concerns).

4.4 Code Search

Introduction. The activity of programming often relies on exploiting information already avail-
able in other code bases [27]. Therefore, search engines capable of effectively filtering relevant
information can have a tremendous impact on the development process. To fairly evaluate the
proposed model with the state of the art, we followed the procedure described in the work of
Husain et al. [36].

Task. A model takes as input a natural language query q and several code methods
K={k1,k2, . . . ,kn}. The model should pair q with the most relevant method in K . In practice,
the natural language query is represented by a documentation string. Instead, the most relevant
method (with respect to q) is represented by the method that q is documenting.

Metrics. We evaluate the considered model on two metrics:

• Top-1 accuracy (top-1): This represents the number of queries matched with their correct
answers over the total number of queries.

• Mean reciprocal rank: Mean reciprocal rank (MRR) represents the mean of the reciprocal
rank. The reciprocal rank of an answer is the reciprocal of the rank of the correct answer
with respect to the query:

MRR =
1

Q

|Q |∑
i=1

1

ranki
,

where Q is a set of queries and ranki is the rank of the correct answer with respect to the
i-th query.

Dataset. We use the Java portion of the CodeSearchNet dataset [36]. The training split contains
454,450 samples. The validation split contains 15,327 samples. The test set contains 26,908 samples.
Each sample is composed of the code and its documentation string.

Models. We trained and evaluated four models: search-code2vec, search-code’2vec,
search-fold2vec, and search-SA. As such, search-code2vec, search-code’2vec, and
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Table 5. Top-1 Accuracy and MRR Scores Are Shown for Each Model

Name Parameters (M) Top-1 MRR

search-code2vec 228 24.47 34.05
search-code’2vec 12 39.75 46.81
search-SA 13 46.78 56.02
search-fold2vec 13 48.8 56.05

For both top-1 and MRR, the higher the better.

search-fold2vec are based upon code2vec, code2seq, and fold2vec, respectively. Instead,
search-SA is a replica (written using PyTorch instead of TensorFlow) of the best-performing
model proposed in the work of Husain et al. [36]. All models are made of two parts: an encoder
for query, Eq , and an encoder for method, Ec . All models are trained using the same loss function:

L(Q) = −
1

N

∑
i

log
exp(Ec (ci )

T Eq(di ))∑
j exp(Ec (c j )T Eq(di ))

,

where qi represents the i-th query, ci represents the correct answer,Q is the set of samples, and c j ,
with j � i , represents incorrect answers (also called distractors). The result of minimizing this loss
is the maximization of the inner product between qi and ci while minimizing the inner product
between qi and c j . Now, we proceed by describing the evaluated models.

All models use the same query encoder Eq . Eq is made of three consecutive layers of SA. Mean-
while, Ec , the code encoder, is specialized for each model:

(1) search-code2vec uses the same encoding procedure used by code2vec.
(2) search-code’2vec uses the same encoding procedure used by code2seq.
(3) search-fold2vec encodes the source code as it is done in fold2vec.
(4) search-SA is the best-performing model used in the work of Husain et al. [36], asEc , similarly

to Eq , uses three consecutive layers of SA.

Result. Table 5 shows the scores obtained by each considered model. Models are ordered by
their performance. Both search-code2vec and search-code’2vec fall behind on several points
when compared to search-SA and fold2vec. Meanwhile, in terms of MRR, both search-fold2vec

and search-SA behave almost identically. Instead, in terms of top-1 accuracy, search-fold2vec
achieves the best score.

5 ABLATION STUDY

Introduction. In this section, to answer RQ3, we are going to evaluate how the model fold2vec
behaves with and without some of its parts. Moreover, we are going to study the dependence of
fold2vec from code identifiers and how identifiers relate to the method name.

Identifier dependence. First, let us study the contribution of the two types of information (termi-
nals and non-terminals) fed to fold2vec. Let us call term2vec the fold2vec variant stripped of the
architecture path from ⑦ to ⑩ of Figure 4 and non-term2vec the fold2vec variant stripped of the
architecture path from ③ to ⑥ of Figure 4. Table 6 summarizes the result. term2vec achieves a sim-
ilar result to the complete architecture, whereas non-term2vec falls behind by several percentage
points (−32.18%, −23.52%, and −27.22% with respect to precision, recall, and F1-score). This fact
should not come as a surprise. Developers put a lot of effort into using relevant identifiers, and
often one can guess the method behaviors just by looking at them. Moreover, without identifiers,
all method calls look alike. Therefore, the information on what a sub-call is doing is lost. If we test
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Table 6. Effect of Positional information within Statements on

fold2vec Variants

Model Precision (%) Recall (%) F1-score(%)

term2vec 59.88 40.84 48.56
term2vec+PE 59.97 40.46 48.32

non-term2vec 30.54 19.93 24.12
non-term2vec+PE 30.33 19.93 24.05

fold2vec (std.) 62.72 43.45 51.34
fold2vec+PE 62.54 42.9 50.89

non-term2vec on methods that do not perform other method calls (which are 120,551 samples),
we can even raise the scores to 37.49%, 27.93%, and 32.01% with respect to precision, recall, and F1-
score. Alongside method calls, information about types and reused variables are also lost, which
explains the ongoing low result.

Method name token dependence. The previous paragraph showed and explained the dependence
of fold2vec from code identifiers. However, not all identifiers are equal. In particular, fold2vec is
dependent on a specific kind of identifier, those that appear in method names. Let us consider only
methods that have among their code identifier tokens that appear in the method name itself. By
doing so, we can build a subset of the test split composed of 155,030 samples. fold2vec evaluated
on the set scores 67.04%, 48.32%, and 56.16% with respect to precision, recall, and F1-score, which
represent an improvement of around 5 percentage points.

Positional embeddings. Let us consider the effect of positional embeddings (PEs) within state-
ments (see Table 6). Notably, most of the time, PEs do not yield improvements and when they do,
the improvements are marginal. This fact suggests that positional information is not a necessary
component for the CUIRs. For non-term2vec, this should not come as a surprise since CUIRs are
generated with a BiLSTM; however, the same appears to be true for term2vec and fold2vec.

LSTM variants. Next, consider Table 7. We used increasingly bigger LSTM layers processing
non-terminals. Namely, we trained fold2vec using an LSTM, a BiLSTM, and a 2LayerBiLSTM for
non-terminals. The best scores are achieved using a single layer of BiLSTM (51.34% with respect
to F1-score). The 2LayerBiLSTM leads to almost identical results (51.31% with respect to F1-score).
This study suggests that adding more BiLSTM layers does not lead to better results.

Terminals and non-terminal processing variants. To validate the different choices of using dif-
ferent architectures for terminals and non-terminals, consider Table 8. We evaluated three addi-
tional variants of fold2vec: fold2vec+GA|GA uses GA instead of the BiLSTM, fold2vec+BiLSTM|GA
has the architecture for terminals swapped with the architecture for non-terminals, and
fold2vec+BiLSTM|BiLSTM uses a BiLSTM instead of GA. The most noticeable result is that swap-
ping architecture has a detrimental effect. When exclusively using BiLSTMs and GAs, a mild
version of the same effect seems to appear. These facts seem to suggest that terminals and non-
terminals can benefit from different architectural paths of execution, each leveraging specific prop-
erties of the CUs.

Not all methods are equal. Not all methods are equally easy to classify. In fact, some methods
are much easier than others. Among these methods, we have getters and setters. Removing these
methods from the test set has negative effect on the results: −11.35%, −9.65%, and, −10.57% with
respect to precision, recall, and F1-score. This is mainly caused by two factors: the intrinsically
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Table 7. Effect of LSTM Variants

Model Precision (%) Recall (%) F1-score (%)

fold2vec+LSTM 62.17 43.03 50.86
fold2vec+BiLSTM (std.) 62.72 43.45 51.34
fold2vec+2LayerBiLSTM 62.59 43.47 51.31

Table 8. Effect of Different Models for the Two Representations,

Where X|Y means X for terminals and Y for non-terminals

Model Precision (%) Recall (%) F1-score (%)

fold2vec+GA|GA 62.35 42.9 50.83
fold2vec+GA|BiLSTM (std.) 62.72 43.45 51.34
fold2vec+BiLSTM|GA 61.48 42.62 50.34
fold2vec+BiLSTM|BiLSTM 62.25 43.21 51.01

hardness of getters and setters (which can be considered low), and the abundance of these methods
in the dataset (which is high for java-large).

6 DISCUSSION

In this section, we discuss strengths and shortcomings of the considered approaches and the con-
sidered tasks.

6.1 Code Summarization

HeMa shortcomings. HeMa can give accurate method predictions for only three categories of
methods: getters, setters, and delegations. These few categories cover a fairly large portion of
the test set (32.89%). If one considers only these methods, HeMa achieves quite outstanding results:
70.26%, 77.49%, and 73.7% with respect to precision, recall, and F1-score. However, when one
considers the full test set, HeMa performs rather poorly: 23.06%, 42.98%, and 30.02% with respect
to precision, recall, and F1-score. This fact is also highlighted by Figure 9 snippets ❶ and ❷.
HeMa is the only model that is unable to properly classify the shown factorial methods. Moreover,
all methods predicted by HeMa are rather simple, and other techniques achieve high results. For
example, fold2vec achieves 78.96%, 60.9%, and 68.76% when considering only HeMa predictable
methods. Moreover, HeMa is also sensible to code modifications. Consider Figure 9 snippets ❸ and
❹; enclosing the return expression in parentheses causes a prediction to fail. Of course, this is
just a limit of the handcrafted features of HeMa that cannot possibly cover all possible cases even
for the limited scope of getters and setters.

HeMa strengths. Although HeMa has an extremely narrow scope, its predictions are accurate and
cover a fairly large portion of the training set (58.15%). Combining HeMa with a deep learning
technique like fold2vec means cutting down the training set of 58.15%, which greatly reduces
training times without compromising the results.

fold2vec shortcomings. As was highlighted by the ablation study (Section 5), fold2vec is ex-
tremely dependent on code identifiers. In fact, removing identifiers reduce the scores of 32.18%,
23.52%, and 27.22% with respect to precision, recall, and F1-score. Consider snippets ❶ and ❷
in Figure 9, which shows two factorial methods. The method on the right has the identifier “n”
changed to “image.” Although this modification keeps both methods equivalent, it is enough to
compromise the classification.
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Fig. 9. Four methods with relative predictions (HeMa, fold2vec, code2vec, and code’2vec) are displayed.

❶ and ❷ display a factorial method with different variable identifiers. ❸ and ❹ display a getter with different

yet equivalent return expressions.

fold2vec strengths. As mentioned in Section 2, the SA layer has a memory footprint that grows
quadratically with the sequence length. Although processing each token in the method through SA
is probably beneficial, it is also extremely costly in terms of memory. fold2vec can cut down this
cost by applying the SA only to the statement-level vectors. When compared to other transformer
architectures such as CodeBERT [25], fold2vec requires much less computational power. fold2vec
requirements are small enough that the whole experiment can be reproduced by using free services
as Google Colab and Kaggle Kernels.

code2vec shortcomings. code2vec stores into embedding matrices not only terminals and non-
terminals tokens but also sequences of non-terminals (the mentioned leaf-to-leaf paths). In fact,
leaf-to-leaf paths are stored and trained as embedding vectors. This greatly affects the memory re-
quirements of the architecture. Consider that code2vec has 116 M trainable parameters, whereas its
counterpart code2seq has only 37 M trainable parameters. Like fold2vec, code2vec also depends
heavily on identifiers. Again, this dependence results in misclassifications like the one shown in
snippets ❶ and ❷ in Figure 9.

code2vec strengths. code2vec is an extremely shallow yet effective network, thus it can effi-
ciently make predictions. code2vec is the model that achieves faster throughput (on a i7-10700K
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CPU @ 3.80 GHz) of 1641.7 methods per second. Even when compared to its counterpart, code2seq,
code2vec is faster. In fact, code2seq achieves only 135.3 methods per second. Like fold2vec,
code2vec can be trained using a single P100 NVIDIA GPU with 16 GB of memory. Thus, it can be
trained without any cost using the mentioned services (Google Colab and Kaggle Kernels).

code’2vec shortcomings. code’2vec is by far the slowest model. It takes about 6 hours to com-
plete a training epoch. Meanwhile, fold2vec and code2vec complete an epoch in about 2 hours.
This reflects also only on the prediction throughput of 186.2 methods per second. Meanwhile,
fold2vec achieves 1544.4 and code2vec achieves 1641.7 methods per second.

code’2vec strengths. Although code’2vec is quite slower, it addresses and solves several of the
problems mentioned for code2vec. First, instead of storing the most common leaf-to-leaf, they
are processed token by token (using a bidirectional LSTM), reducing the need for the embedding
matrix. As a result, code’2vec uses far less trainable parameters (only 81 M). Nonetheless, although
this approach is more effective and more memory efficient, it is also slower.

6.2 Statement Separation

stmt-fold2vec shortcomings. As was previously highlighted, fold2vec is sensible to identifier
changes. Although these changes may leave the semantics unaltered, they heavily affect the model
predictions. stmt-fold2vec inherits the same issue.

stmt-fold2vec strengths. fold2vec representation is designed to separately process statements
into neural hidden representations. stmt-fold2vec exploits the same representation to generate
semantically relevant statement-level encodings and achieves the best results.

stmt-code2vec shortcomings. Like the other deep learning techniques, stmt-code2vec mani-
fests dependence on code identifiers. Moreover, the leaf-to-leaf representation used by code2vec

cannot be applied directly to statements without adjustments. For example, consider snippet ❶ in
Figure 10. code2vec leaf-to-leaf paths would normally require two different leaves to be computed.
However, a statement like “return name;” has only one leaf. Moreover, statements without leaf
identifiers can occur as well. One example is the plain “return;” statement as shown in snippet
❷ in Figure 10. Ultimately, code2vec representation needs to be adapted to deal with corner cases
that were not possible when considering only methods.

stmt-code2vec strengths. Once again, stmt-code2vec tops in terms of prediction through-
put. However, our approach (stmt-fold2vec) can predict 11380.8 statement per section.
stmt-code2vec practically doubles this number, achieving 22282.9 statements per section.

stmt-code’2vec shortcomings. As mentioned previously, stmt-code’2vec is quite slow in both
training and evaluating. For example, completing a training epoch requires around 17 hours. Mean-
while, stmt-code2vec requires around 7 hours.

stmt-code’2vec strengths. Again, stmt-code’2vec retains the strengths discussed for the code
summarization task: it improves in terms of scores and in terms of memory efficiency.

6.3 Code Search

search-SA strengths. When compared to the other architectures, this has several advantages. SA
has become a popular component in many architectures. Thus, it is already available in most of
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Fig. 10. ❶: On the left, the statement return name; is shown. On the right, its AST is shown. On the bot-

tom, our interpretation of leaf-to-leaf paths for this case is shown. ❷: On the left, the statement return; is

shown. On the right, its AST is shown. On the bottom, our interpretation of leaf-to-leaf paths for this case is

shown.

the popular deep learning libraries (e.g., TensorFlow,8 PyTorch9). Additionally, search-SA treats
source code as a simple text string, meaning that (1) it does not require the input to be parsable,
and (2) it can be easily applied to many programming languages.

search-SA shortcomings. Although search-SA performs very well, it may still be beneficial to
have information based on the AST. Additionally, given the quadratic memory cost of SA layers,
search-SA has higher memory requirements than its counterparts. Moreover, search-SA is one
of the slowest architectures at inference time (112 samples/second). Meanwhile, search-code2vec
and search-fold2vec achieve 217 and 186 samples/second, respectively. Finally, as mentioned for
fold2vec, search-SA is still heavily dependent on source code identifiers.

Other models. Finally, it is worth noting that the strengths and weaknesses of the other models
(fold2vec, code2vec, and code’2vec) previously noted appear for the code search task as well.

6.4 Intent Complexity

We compared the IC score with respect to a specific aspect of software quality (i.e., the SRP).
However, the quality of source code should be evaluated considering several aspects, such as
the mentioned SRP, quality of identifiers, and complexity of the method, and many other aspects.
Although our evaluation tells us that the IC score can be used to measure the adherence of a
method to the SRP, it should be combined with other metrics to measure the overall quality of the
code.

8https://www.tensorflow.org/api_docs/python/tf/keras/layers/Attention.
9https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html.
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6.5 Research Questions

In Section 1, we proposed three research questions, which we are ready to answer:

RQ1: Can NNs for code comprehension benefit from a statement-based code representation?
We evaluated the proposed representation against three baselines (code2vec, code’2vec,

and search-SA) using different source code representations with three different tasks
(code summarization, statement separation, and code search). In all considered cases, the
statement-based representation showed improvements. We can conclude that source code
statements can be compressed in a concise hidden representation that can be effectively
used by the deeper layers of a NN. This has another main benefit: the SA layer scales
quadratically in the number of statements and not in the number of source code tokens,
which greatly reduces the memory footprint of the layer without compromising the results.

RQ2: Can such a code representation enable a NN to detect code misconduct?
We showed that a statement-based code representation can be used to train NNs to cluster

statements into coherent snippets. We show that the induced distance between snippets
can detect tangled responsibilities with a success rate of 80% using a simple threshold.

RQ3: Which neural component with which neural representation behaves the best?
We evaluated fold2vec under different conditions. Most notably, identifiers represent the infor-

mation that is needed the most. In addition, the most important identifiers are those that
mimic the method name. However, other parts seem to have little influence. For example,
the presence of PE or the number of LSTM layers does not heavily impact the scores.

6.6 Threats to Validity

In this section, we present the threats to validity that may have affected the evaluation.

External validity. All networks were evaluated only on one dataset processed from java-large.
This involves a risk relative to a measurement bias since our model could behave particularly well
only on this dataset. However, this risk is mitigated by the fact that java-large is a huge dataset
made up of numerous Java projects from several different domains.

Internal validity. The initial dataset is composed of single .java files. We transformed these files
into the used dataset by using a parser and a tokenizer. We ended up with differences in the used
dataset by adopting a parser and a tokenizer different from those used by the other models. These
differences can negatively affect the estimation of the measurements. To mitigate this issue, we
replicated the work of Alon et al. [7] using our framework. Nonetheless, by replicating code2vec,
we may have inadvertently introduced errors or misimplemented some parts. However, the repli-
cated models achieved results similar to the original one. Thus, we are confident of the validity of
the comparison.

Construct validity. Due to the difference in representation (between code2vec and fold2vec),
there are also differences in the network architecture. It is possible that the better results are due
more to the architectural differences than to the difference in representation. To mitigate the prob-
lem, we restricted the comparison to models with strong similarities: only non-autoregressive
models and only end-to-end models.

7 RELATED WORKS

In this section, we examine approaches that share the same goals, techniques, or application do-
main as fold2vec.
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Code summarization. In the non-autoregressive family of models, we can enumerate
code2vec [7] and Paths+CRFs [6], which we have already discussed extensively. Autore-
gressive models produce a sequence of predictions where each prediction is based on the previous
one. Even if these are promising approaches, they better fit when the classification can be split
into multiple steps. code2seq [5] and ConvAttention [3] fall into this category. The former is,
once again, based on the leaf-to-leaf path representation, whereas the latter is based on source
code tokenization. Both use NNs to achieve their purpose: attention based and convolution based,
respectively. Although we focused on deep learning methods, there are other techniques using
more traditional approaches. For example, Hellendoorn and Devanbu [30] use an n-gram-based
language model. Raychev et al. [64] use support vector machines constrained to predict only few
method names. Wang et al. [74] train an autoregressive model using reinforcement learning using
two different datasets for Python and Java code.

Intent identification. Since intents and concerns can be overlapping concepts, in this section we
present some work on concern identification. Kästner et al. [42] proposed a semi-automatic tool
for extracting features from code. It relies on a configuration given from a domain expert to cor-
rectly recognize the features. In the same research area, Valente et al. [71] proposed an approach
to semi-automatically annotate optional features. UML model variants have been used to automat-
ically identify model-based product lines in the work of Martinez et al. [50]. Qu and Liu [62], Breu
and Krinke [13], and Tonella and Ceccato [70] proposed approaches based on program tracing to
automatically mine concerns. Moldovan and Şerban [53] proposed a clustering-based approach.
All of these are semi-automatic or manually driven approaches to feature identification, whereas
fold2vec is automatic; however, apart from this aspect, they share the same goal.

Machine learning on code. Allamanis and Sutton [4] presented an early analysis of source code
based on n-gram language models. Their results have been used to build a Java-source code dataset
that has been used as the basis to build the java-large dataset we use. From the same research
group, graph NNs were applied for code generation and representation learning [2, 14]. The task
of code generation is tackled in the work of Hu et al. [33] using transformer-generated represen-
tation from AST paths. For the same task, a massive transformer language model developed in
the work of Chen et al. [17] achieved outstanding results. CodeBERT uses a large transformer
language model for the task of mask language modeling [25]. Pre-trained models of the size of
CodeBERT usually have high training costs. However, these models can be generalized to several
tasks through fine-tuning with lower cost (both in terms of data and hardware). Usually, these
large models are resource heavy and are accessible through online APIs. The main benefit of this
approach is that it leads to better results. Again, for representation learning, Wang et al. [75, 76]
used graph NNs and program traces to achieve the same scope. Instead, Ben-Nun et al. [11] used
recurrent architectures trained from features extracted from the LLVM representation of source
code. Raychev et al. [65] exploited CRF on a dependency network built from JavaScript code to
automatically predict program properties such as type annotation and variable identifiers. Their
approach led to JSNice, which predicts correct name identifiers in 63% of the cases and correct
type annotations in 81% of the cases. Hu et al. [34], Chen and Zhou [18], and Movshovitz-Attias
and Cohen [54] developed autoregressive models to automatically generate comments from source
code. Iyer et al. [37] used attention networks to generate natural language descriptions from code,
and Haiduc et al. [28] shared the same goal. Jiang et al. [40] used NN to automatically generate
commit messages from diffs. Piech et al. [61] translated programs into real valued embeddings.
Chen et al. [19] used tree decoders and encoders to translate programs from one language to an-
other. Oda et al. [57] tried to translate formal code into pseudo code. Another, interesting research
field applies machine learning techniques to spot bugs, as in the work of Dam et al. [22] and
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Shi et al. [68]. Related to bug detection, much work focuses on program repair. For example, Jiang
et al. [39] used a transformer-based architecture (GPT) to pre-train a large language model for the
task. For the same task, a recurrent neural architecture was used by Wang et al. [73]. All of these
approaches exploit code representation and machine learning, and represent potential application
domains for fold2vec. A different type of code representation based on code updates was devel-
oped by Hoang et al. [32]. Last, Kang et al. [41], Keim et al. [43], and Rabin et al. [63] assessed
generalizability of several deep learning baselines as code2vec, code2seq, and CodeBERT.

8 CONCLUSION AND FUTURE WORK

This work introduced a source code representation to be used with NNs that differs from tradi-
tional approaches for its granularity. On such a representation, we developed the fold2vec model
and compared it to the state-of-the-art techniques for the task of code search, code summarization,
and statements separation. Such a representation could also bring an improvement in other code
tasks, such as automatic defect detection and automatic comment generation. We addressed and
answered RQ1 by showing improvements on the task of code summarization, code search, and
statements separation. Moreover, by addressing RQ2, we showed that a NN trained on the state-
ments separation task can be used to measure the code quality with respect to the SRP. To answer
RQ3, we evaluated several variants of fold2vec. It appears that the different properties of termi-
nal and non-terminal can potentially benefit from tailored architectures. Both the model and data
needed to reproduce our experiment are available at the following URL:

https://cazzola.di.unimi.it/fold2vec.html.

Additionally, we provide a Google Colab notebook to replicate our experiments:

https://colab.research.google.com/drive/1y383wyfNemYO7QYlmp7Nh7L_IHSMPvo4?usp=sharing.

In the future, we will move fold2vec to the autoregressive model family and compare it to
code2seq. We must note that other valid directions are positional-like embedding that encode the
parent-child relations between tokens [58]. In addition, Tree-LSTMs [69] could be applied for both
inter-statements and intra-statements. Another available approach is to introduce an auto-encoder
for statements to be either pre-trained or trained altogether with fold2vec.
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