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Abstract: Phenotypic screenings are usually combined with deconvolution techniques to charac-

terize the mechanism of action for the retrieved hits. These studies can be supported by various

computational analyses, although docking simulations are rarely employed. The present study aims

to assess if multiple docking calculations can prove successful in target prediction. In detail, the

docking simulations submitted to the MEDIATE initiative are utilized to predict the viral targets

involved in the hits retrieved by a recently published cytopathic screening. Multiple docking results

are combined by the EFO approach to develop target-specific consensus models. The combination

of multiple docking simulations enhances the performances of the developed consensus models

(average increases in EF1% value of 40% and 25% when combining three and two docking runs,

respectively). These models are able to propose reliable targets for about half of the retrieved hits (31

out of 59). Thus, the study emphasizes that docking simulations might be effective in target identifi-

cation and provide a convincing validation for the collaborative strategies that inspire the MEDIATE

initiative. Disappointingly, cross-target and cross-program correlations suggest that common scoring

functions are not specific enough for the simulated target.

Keywords: SARS-CoV-2; phenotyping screening; in silico target identification; multiple docking

simulations; consensus strategy

1. Introduction

In the last years, phenotypic screening methods have gained a remarkable relevance
for their capacity to identify promising hits for well-defined pathological conditions [1,2].
The main reason for such a success can be found in the recent advancements in cell-
based technologies that allow the development of reliable disease models [3,4]. These
cellular models can express some key clinically relevant features and allow the effects of a
tested molecule to be monitored in phenotyping screening campaigns [5]. The phenotypic
screening implies a paradigm shift from a target-based approach to a disease (or phenotype)-
based approach. This strategy becomes particularly productive for complex or poorly
understood pathologies for which target identification and validation can be pursued with
difficulty [6]. Phenotypic screening can identify active molecules without unraveling the
corresponding mechanism of action. While not always mandatory for the drug discovery
process, understanding the targeted protein(s) can be of invaluable relevance during the hit
and lead optimization phases [7].
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Hence, a phenotypic screening is usually paired by a set of studies for determining
the mechanism of action, at least for the most promising compounds. Such a challenging
task is supported by a rich arsenal of experimental methods, including biochemical affinity
analyses [8,9], “omics” profiling [10–12], and mutational studies [13]. Furthermore, this
task can greatly benefit from computational studies, which become even more necessary
when dealing with huge datasets [14].

Some computational approaches can involve in-depth analyses of the phenotype
features to predict the potential mechanism of action based on cell viability or cell morphol-
ogy profiles [15]. Other computational approaches exploit common ligand-based and/or
cheminformatics approaches and are substantially based on similarity analyses [16,17]. By
contrast, docking simulations are rarely utilized for target identification apart from focused
studies to confirm the reliability of the targets proposed by other predictive approaches [18].
The limited use of docking simulations in target identification can be explained by the
greater complexity of these calculations, which are markedly more time-consuming than
simple similarity searches. Nevertheless, the recent advancements in high-performing
computing for docking simulations as well as the availability of optimized docking en-
gines render these simulations amenable for target prediction, at least in well-defined
contexts [19]. In this scenario, one can appreciate the various methods recently proposed
for the so-called inverse docking methodology, in which a single molecule is docked into a
set of therapeutically relevant proteins to reveal the potential targets and then the related
mechanisms of action [20,21]. For example, this approach was recently applied for the
target identification of compounds active against SARS-CoV-2 [22].

On these grounds, the present study aims to assess the efficacy of multiple docking
simulations to identify the proteins targeted by the hits retrieved during a phenotyping
screening. Specifically, the study is based on a recently published large-scale repurposing
campaign performed within an EU-funded project (H2020-EXSCALATE4COV). About
8700 compounds underwent cytopathic screening on VERO-E6 cells to reveal 110 active
compounds, namely endowed with an anti-cytopathic IC50 < 20µM [23].

To this end, the study utilizes the docking simulations focused on the viral targets
and submitted to MEDIATE [24,25]. This collaborative computing initiative invites
researchers worldwide to contribute to docking simulations by exploiting shared sets of
purposely prepared and annotated protein structures and standardized ligands libraries.
In detail, the results analyzed here are derived from three sets of docking simulations (as
generated by PLANTS, LiGen, and GOLD). They comprise an extended set of 14 viral
binding sites (from 12 viral proteins) and encompass a large portion of the experimen-
tally screened ligands. The collected virtual screening results were employed to develop
consensus models able to predict the viral targets for the retrieved hits. Along with
proposing potential targets, the performed analyses provide a set of predictive models
for each considered SARS-CoV-2 target. All the consensus models were generated by the
EFO approach (Enrichment Factor Optimization), which generates its predictive equa-
tions by linearly combining a user-defined number of variables through an exhaustive
search algorithm guided by a quality function, in which the resulting EF1% value has a
prevailing role [26].

It should be noted that the approach described here was applied to SARS-CoV-2 tar-
gets as a case study, but the multiple virtual screening approach here proposed might find
successful applications in all target identification studies based on phenotyping screening
campaigns. Similarly, the collaborative computing activities proposed by the MEDIATE ini-
tiative is focused on SARS-CoV-2 targets but can be clearly applied for docking simulations
and virtual screening campaigns in all therapeutic areas.

Finally, the availability of the docking results for the same ligands on different proteins
and by diverse docking tools allowed unprecedented comparative and correlative analyses
to be performed.
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2. Results

2.1. Docking Simulations and the Mediate Initiative

As stated in the Introduction, the study is based on the docking simulations sub-
mitted to the MEDIATE initiative [24]. The libraries shared by MEDIATE include a
dataset of about 8700 safe-in-human molecules, which roughly corresponds to those
experimentally screened in the repurposing campaign [23]. Here, attention was focused
on 12 viral proteins, including a total of 14 target binding sites. (Nsp-12 includes two
additional allosteric pockets.) The docking simulations submitted to MEDIATE include
three almost complete sets of virtual screening campaigns, as carried out by using
PLANTS [27], LiGen [28], and GOLD [29]. Even though the collected results did not
include all 8700 compounds for all considered binding pockets and all docking programs,
a common subset of about 6000 molecules for which docking results are available for all
considered binding sites and for the three docking engines was identified. Such a dataset
included 59 retrieved hits and thus was well suited for virtual screening campaigns,
with a percentage of active compounds equal to about 1%. As detailed under Methods,
the docking results were then rescored by using Rescore+ [30], and the computed scores
were used to develop consensus models by applying the EFO approach [26].

2.2. Comparison of the Performances of the Employed Docking Tools

Figure 1 shows the performances reached by the three docking programs for the
14 binding pockets, as encoded by the EF1% mean for the best 20 EFO models. The
comparison of the reported mean values reveals that there is no correlation between the
performances of the three docking programs.

 
Figure 1. EF1% means as obtained for the 14 binding pockets by the three docking programs (The

values were calculated by averaging the EF1% values for the best 20 EFO models).

Although they reach comparable EF1% overall means, the docking simulations show
similar performances only for two targets (i.e., N-Prot and Pl-Pro). In most cases, a program
outperforms, compared to the other two. This situation is particularly remarkable for
LiGen with Nsp14, for PLANTS with Nsp9, and for GOLD with Nsp16. The different
performances of the three docking engines suggest that they do not depend on an intrinsic
complexity of the targets but are mostly related to the implemented docking algorithms.
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Table S1 details the performances of the three sets of VS campaigns, reporting the
EF1% value for the best models and the number of active molecules in their top 1%. The
best EF1% values show mean performances that are even more superimposable. Similarly,
the number of actives ranges between 3 and 7, with a mean value around 4.5 in all the three
sets of docking runs.

The comparison of hits retrieved within the top 1% by all performed simulations
reveals that there is a significant occurrence of frequent hits, namely of ligands, that are
predicted as actives (namely found within the top 1%) for several targets (up to six different
binding sites). In detail, the occurrence of unique hits, namely ligands that are predicted
to be active for only one target, is lower for LiGen, compared to PLANTS and GOLD. In
contrast, the frequencies of ligands that are active at most on two binding sites are rather
similar in all docking runs and around 50%. This means that all programs provide rather
specific suggestions concerning the possible mechanism(s) of action for about one half of
the retrieved hits. The frequencies of ligands that are predicted as actives on many targets
(i.e., >4) are similar in all docking programs and around 25%. The interpretations of these
frequent hits are either that they elicit their antiviral effect through a polypharmacological
profile or that the interacting capacity of some large and/or polar ligands tends to be
overestimated by all docking programs (and by all computed scores). The obtained results
indicate that the three docking tools are similarly affected by this possible bias.

The analysis of common retrieved hits between the three docking engines reveals
similar results. Indeed, the three possible pairs of docking programs always share
11 common ligands, and only three molecules are predicted as actives on the same target
by all programs. The shared molecules include salinomycin, which is predicted to be
active on Nsp13, Nsp12_ortho, and Nsp14, while loperamide is predicted as active on
Nsp3, and hypericin is seen as a potential allosteric modulator for Nsp12.

2.3. Consensus Analyses and Predicted Targets

The MEDIATE initiative is based on the concept that proper combinations of different
docking results should lead to enhanced predictive powers. Hence, the results of the three
sets of docking runs were combined by using the EFO algorithm. In other words, for each
target, the computed scores from two or three docking simulations were merged to generate
the corresponding consensus EFO-based equations.

Figure 2 shows the performances derived by these consensus analyses as encoded
by their EF1% mean values. In detail, Figure 2 compares the performances reached by
combining the scores (1) from all three docking programs, (2) from the three possible pairs
of docking tools, and (3) the average performances of the three docking runs taken alone.

Figure 2 shows that the combination of the three sets of docking scores enhances the
resulting performances in all considered targets. In detail, the enhancement is greater
than 40% in 6 cases out of 14, with an enhancement mean equal to 34.4%. The effect is
particularly relevant for 3CL-Pro, Nsp14, and Nsp16, where the consensus approach leads
to a doubling of the EF1% values. Such an enhancement is reflected in the number of hits
retrieved in the top 1%, ranging from 5 to 9 molecules, with an average equal to 6.2. Similar
enhancements are seen when analyzing the best EF1% values (Table S2). The average
increase in the best EF1% values is equal to 36.6%, with the remarkable case of Nsp14
showing an EF1% increase of 71.5%.

The analysis of the predictive results reached by combining the three possible pairs of
docking runs reveals rather similar performances with the GOLD–PLANTS pair, which
provides slightly better results, compared to the other two combinations. The EF1% means
are equal to 6.5, 6.2, and 6.0 for GOLD–PLANTS, GOLD–LiGen, and LiGen–PLANTS,
respectively. As seen previously, there is no correlation between the performances of the
three pairs of docking results, a finding that depends on the differences already seen for
the performances of each docking simulation. Notably, the combinations of the pairs of
docking runs induce an average increase in the performances equal to 25%.
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Figure 2. Effect of the combination of the docking scores from two or three simulations on the EF1%,

compared to the mean performances of the three docking engines taken alone. (The values were

calculated by averaging the EF1% values for the best 20 EFO models).

Table S2 also includes the best consensus models generated by combining all three
docking runs. A bird’s eye view of these equations reveals that the three sets of docking
simulations similarly contribute to the compiled equations, although the scores from
GOLD simulations are slightly less frequent. (The models comprise 16 scores from LiGen,
15 from PLANTS, and 11 from GOLD runs.) This outcome witnesses the efficacy of com-
bining different docking simulations to optimize the resulting predictive performance.
In detail, the included scores highlight the remarkable role of ionic contacts, since 10 out
14 models include at least one scoring function accounting for polar interactions. Finally,
the consensus equations emphasize the relevance of PLANTS-based scores and XScore
components (10 and 9 occurrences, respectively), which appear particularly effective in
rescoring analyses.

Taken together, these results emphasize the relevance of combining the results from
various docking simulations and reveal that even the simplest combination of two docking
runs has an encouraging effect that conceivably increases when combining all docking
campaigns. These results represent a compelling confirmation of the concept inspiring the
MEDIATE initiative and indicate that predictive performances should be further enhanced
by combining a higher number of docking simulations. These results also confirm the
reliability of the EFO approach for developing consensus models by combining various
socking scores. This finding is in line with recent studies that evidenced how machine
learning methods can provide consensus models with very remarkable performances, even
when applied to a single docking run (e.g., see Ref. [31]).

Table 1 compiles the hits retrieved in the top 1% for the 14 explored binding sites.
Overall, the consensus models were able to identify only about half of the retrieved
hits (31 out of 59). On one hand, this result might be ascribed to the above-mentioned
underestimation of the interaction of small and hydrophobic compounds. On the other
hand, this finding is explainable by considering the recently identified viral binding sites
for which docking results are not yet available within the MEDIATE resources (e.g., the
allosteric sites of 3CL-Pro).
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Table 1. Hits retrieved in the top 1% for the 14 explored binding pockets. For each target, the

compounds are listed according to the EFO ranking. The frequent hits with more than 4 targets are

evidenced by a background with a specific color code, while the unique ligands are in bold. Due to

their structural similarity, UNC-0646 and UNC-0642 are considered as a sole entity.

Target Retrieved Hits in the Top 1%

3CL-Pro Berzosertib Clofazimine Hypericin Ivacaftor KG-5 Triclo carban

N-Prot UNC-0642 Amodia quine Clofazimine Halo fantrine PHA-665752 tetrandine UNC-0646

Nsp3
3′-Fluoro

benzyl spiperone
Loperamide Hypericin UK-356618 Vx-11e WAY-600

Nsp6 MCOPPB Salinomycin Tandutinib UNC-0642 UNC-0646
Nsp9 BS-181 CGP-71683 KG-5 UNC-0642 UNC-0646 Vx-11e YM201636

Nsp12_ortho CGP-71683 Clofazimine ELN-441958 NVP-BHG712 Salinomycin UK-356618
Nsp12_Palm1 CGP-71683 Clofazimine ELN-441958 Hypericin UK-356618 Vx-11e
Nsp12_Thmb2 ELN-441958 Loperamide Tandutinib tetrandine UNC-0646

Nsp13 CGP-71683 ELN-441958 Nelfinavir UNC-0642 UNC-0646 VU-0364739
Salino mycin

Nsp14 UNC-0646
3′-Fluoro

benzylspiperone
CGP-71683 ELN-441958 GSK2194069 Nelfinavir + WAY-600

Nsp15 CGP-71683 Clofazimine Hypericin IPAG PHA-665752 tetrandine

Nsp16 CGP-71683
3′-Fluoro

benzy lspiperone
Amodia quine Berzosertib Clofazimine Hypericin

VU-0364739
+ YM201636

Pl-Pro CP-640186 NVP-BHG712 PHA-665752 Salino mycin YM201636
Spike ELN-441958 NVP-BHG712 PHA-665752 Salino mycin Masitinib

In detail, the molecules identified as active (i.e., found in the top 1%) on a single target
represent the most frequent case (9 out of 31, i.e., 29%). As previously seen, molecules
active on at most two targets constitute 50%, and those predicted as active on more than
three targets represent 26%. These percentages are very similar to those obtained by the
single docking runs, thus suggesting that the combination of docking simulations does
influence the occurrence of frequent hits.

While avoiding a systematic analysis of the compounds listed in Table 1, some re-
trieved hits deserve special attention. Among the frequent hits, the polypharmacologi-
cal profile of clofazimine was experimentally investigated by Yang and coworkers, who
demonstrated that it elicits antiviral activity by targeting several steps in SARS-CoV-2 repli-
cation [32]. Although their marked polarity and molecular size suggest that the remarkable
ranking exhibited by 7-aminoalkoxy-quinazolines (UNC-646 and UNC-642) for several
targets might be affected by the above-mentioned bias, their activity as potent inhibitors of
the lysine methyltransferase G9a might indicate that they can also inhibit viral enzymes
catalyzing similar transferase reactions [33]. The broad spectrum of amodiaquine was
confirmed in a recent study that investigated the activity of a set of anti-malaria quinolines
that interfere with the viral entry process at a post-attachment stage [34].

Even though specific antiviral activity data are available for a few compounds and
on a limited number of viral targets, some predicted targets have found an experimental
confirmation. The predicted activity of hypericin on 3CL-Pro was experimentally confirmed
by a recent study that evidenced that this molecule is a pan-anti-α-CoV able to exert general
antiviral activity against their replication [35]. Masitinib was also confirmed for its activity
on Spike-ACE2 binding in two different assays [36]. Additionally, salinomycin was reported
as a modest inhibitor of the spike protein [37].

To further assess the occurrence of frequent hits, the analysis was extended to the best
100 molecules (regardless of their activity) according to the EFO rankings for the 14 targets.
Table S3 shows the common compounds between all the possible pairs of targets, while the
diagonal values (in bold) report the unique hits for each target.

The first relevant consideration is that the unique ligands represent a vast majority, and
only for two pairs of targets is the percentage of shared compounds slightly higher than 10%.
From a methodological point of view, the relative scarcity of shared compounds indicates
that the consensus models developed here provide rather specific and target-dependent
results, at least for the best-ranked molecules. This finding is particularly relevant when
considering the above-mentioned docking approximations and the cross-target and cross-
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docking correlations discussed below and suggests that the EFO-based consensus models
might have a beneficial effect for these downsides. These results also indicate that there
are neither highly promiscuous binding sites nor particularly similar pairs of targets, apart
from a few cases (PLPro–Nsp12_ortho and Nsp6–Nsp13 are the only pairs with more than
20 common ligands).

2.4. Comparative Analyses of the Computed Scores

The availability of docking results and score values for the same ligands on 14 binding
sites from three different docking engines enable meaningful analyses by variously compar-
ing the corresponding scores. Figure 3 shows the normalized mean values as computed for
the 14 targets by averaging some relevant docking scores for all the simulated compounds
and for the three docking programs. For the sake of completeness, Table S4 lists the (not
normalized) average values for all the computed scoring functions.

While showing conceivable differences, the score averages reported in Figure 3 reveal
some similar trends. For almost all monitored scores, Nsp3 and spike targets reveal the best
scores, while Nsp9 shows the worst averages. Also, 3CL-Pro, Nsp14, and Nsp16 exhibit, on
average, rather good score values, while Nsp6, Nsp12 (all sites), and Nsp13 exhibit modest
score means. There is an encouraging agreement between the score trends and the binding
pocket characteristics previously reported [24]. On average, the pockets showing the best
score averages are characterized by either large pockets (as in the case of spike, 3CL-Pro,
and Nsp14) or remarkable interaction capacities (as in the case of Nsp16 and Nsp3). In
contrast, small or superficial pockets with reduced interacting features yield poor score
values (as in the case of Nsp9 and, to a minor extent, PL-Pro).

Table S5 compiles the correlations between the score averages for all the considered
scoring functions and for the three docking programs. The first consideration is that the
overall average correlation is rather low (r2 = 0.22). In detail, the few highly correlated
pairs of scoring functions involve the three PLANTS-based scores, which indeed share
parts of the algorithm to calculate them. These high cross-correlations are reflected into
the averages per scoring function. There are only 8 out of 24 scoring functions with an r2

mean greater than 0.3, and almost all involve PLANTS-based scores. Even though there is
not necessarily a direct relation between the score averages and the score values for each
compound, the modest average r2 value emphasizes that the computed scoring functions
account for the diverse characteristics of the molecular recognition process, and thus, they
can be included in the same predictive models (as performed by the EFO approach).

2.5. Cross-Target and Cross-Docking Correlations

Along with the comparative analyses discussed above, the computed scores can also
be utilized for correlative studies. Here, two kinds of possible correlations are considered:
the cross-target and the cross-docking correlations. For each docking program, the former
correlates the docking scores computed for the simulated ligands between the 14 targets and
reveals how much the score values depend on the target and how much they can be related
to the ligand features. Stated differently, low correlations indicate high signal-to-noise
ratios, namely docking scores (and docking programs) able to properly parameterize the
specific ligand’s interactions within the binding pockets. In contrast, high correlations are
suggestive of poor signal-to-noise ratios, namely docking scores (and docking programs)
that are heavily influenced by the ligand properties and are less specific for the simulated
target. For each target, the cross-docking correlations compare the results as computed by
the three docking programs. They allow a degree of similarity (at least in terms of scoring
functions) between different docking tools to be evaluated.

Concerning the cross-target correlations, Table 2 summarizes the r2 averages for some
relevant scores, while Table S6 comprises a set of upper triangular matrices reporting the
specific r2 values for the 91 possible pairs of targets. Table 2 comprises both primary scores
and some relevant scoring functions from rescoring analyses. The compiled r2 averages
show the differences between scoring functions and docking engines, which allow for
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some relevant considerations. The first observation is that LiGen reveals an overall better
specificity, compared to PLANTS and GOLD, which show similar signal-to-noise ratios.
This higher specificity is also evident when considering the simple primary scores. Next,
Table 2 highlights that the number of contacts possesses the highest specificity, followed by
the primary scores. In contrast, XScore and the even worse MLPIns appear to be poorly
dependent on the considered binding pocket.

 

 

 

Figure 3. Trends of some normalized score means as computed by averaging the score values for all

the simulated ligands. The top, middle, and bottom plots refer to the results from GOLD, LiGen, and

PLANTS, respectively. The value 1 corresponds to the best normalized score value. The bottom panel

includes only three docking scores because ChemPLP is also the primary score for PLANTS.
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Table 2. Cross-target correlation (r2) averages for some representative scoring functions from the

three utilized docking tools. The primary scores correspond to ChemPLP, CSopt, and GOLD_Score

for PLANTS, LiGen, and GOLD, respectively. Notice that ChemPLP was also utilized to rescore the

computed poses by LiGen and GOLD.

Score PLANTS LiGen GOLD Mean

Primary scores 0.38 0.26 0.32 0.32

XScore 0.71 0.29 0.73 0.57

No. contacts 0.30 0.03 0.32 0.22

MLPIns 0.87 0.80 0.84 0.84

ChemPLP 0.38 0.13 0.37 0.31

Mean 0.57 0.31 0.52 0.46

In general, Table 2 suggests that scoring functions computed by additive algorithms
unavoidably depend on the ligand features, thus showing high cross-target correlations.
This appears particularly evident for scoring functions that are based on pair potentials,
such as MLPIns. In contrast, scoring functions that do not involve ligand features show
reduced correlations, as in the case of the number of contacts. Although there is not a clear
agreement between cross-target correlations and resulting predictive powers, this kind of
analysis could reveal which docking scores are able to specifically encode for the molecular
recognition process. As a matter of fact, the overall correlation mean reported in Table 2
indicates that almost half the score values do not depend on the simulated target.

The observed differences between the scoring functions also influence the cross-
program correlations, as reported in Figure 4 and Table S7. Thus, MLPIns shows the
highest r2 averages, while the number of contacts and ChemPLP show the lowest values.
The better signal-to-noise ratio of the LiGen software v1.4.1 influences the cross-program
correlations, and, indeed, the pairs GOLD–LiGen and PLANTS–LiGen reveal lower and
similar r2 mean values, compared to the GOLD–PLANTS combination. Taken together,
Figure 4 suggests that the docking results generated by PLANTS and GOLD possess a
higher degree of similarity, compared to those produced by LiGen. This kind of analysis
could be useful when combining different docking runs to avoid consensus procedures
involving highly redundant results.

Figure 4. Cross-target correlation averages for some representative docking scores and for the three

possible pairs of docking programs.
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3. Materials and Methods

3.1. Docking Simulations

For all the performed docking simulations, the protein and ligand structures were
retrieved from the shared MEDIATE resources. In detail, the set-up of the protein structures
and the annotations of their binding sites were described elsewhere [24]. The ligands
were prepared as described in [24], even though the tautomers were not considered for
simplicity. In all performed docking simulations, one pose per ligand was generated
by focusing the search within the spheres that were previously defined [24]. Docking
simulations by PLANTS and GOLD were performed using the ChemPLP scoring function,
as well as the speed = 1 and the virtual screening accuracy methods, respectively. The
geometrical docking procedure implemented in LiGen followed a workflow based on three
docking scores: the Pacman score (PS) to estimate the geometric fitting between a ligand
conformation and the pocket; the chemical score (CS), representing the ligand binding
energy; and the optimized chemical score (Csopt), which accounts for the ligand binding
after a minimization algorithm that treats the docked ligand as a rigid body inside the
binding site.

3.2. Predictive Analyses

The collected docking results from the MEDIATE initiative (1 pose per ligand) were
then rescored by using Rescore+, as implemented in the WarpEngine architecture [30].
Briefly, Rescore+ calculates a set of scoring functions that can be roughly subdivided
into three groups: (a) interaction-specific scores (mostly calculated by the VEGA pro-
gram [38]), such as APBS for ionic interactions [39], MLPInS for hydrophobic contacts, and
the CHARMM-based Lennard-Jones component for non-polar interactions; (b) PLANTS-
derived scores (i.e., PLP, PLP95, and ChemPLP, plus their normalized values); and
(c) XScore functions (i.e., binding energy and its components) [40]. For each docking run, the
final score dataset included the primary scores plus the so-computed rescoring values.

On these grounds, for each binding site and for each docking engine, predictive
models were developed by the EFO approach, which was also utilized to combine the
scores from multiple docking runs. Further details concerning the EFO approach can be
found elsewhere [26]. In all performed analyses, the 59 included confirmed hits were
labeled as actives without exception. All developed EFO equations included three variables
as selected by an exhaustive search algorithm. The predictive power of the final consensus
models was assessed by randomly subdividing the dataset into training (70%) and test
(30%) sets and by repeating this validation 5 times to minimize the randomness.

4. Conclusions

The study aims to assess the possibility of exploiting multiple virtual screening cam-
paigns to perform an in silico target deconvolution in phenotypic screening. Specifically,
the study is based on a recently published cytopathic screening study for SARS-CoV-2 and
exploits the docking simulations submitted to the MEDIATE initiative. The collected dock-
ing results were used to develop consensus models, which were able to predict plausible
targets for 31 (out of 59) active molecules. Among them, seven proposed targets found an
experimental confirmation. Overall, these results might represent an encouraging valida-
tion for the efficacy of the computational approach for target deconvolution proposed here.
Despite the discussed downsides of the docking simulations, the obtained results appear to
be satisfactory when considering the scarcity of hitherto published biological data involv-
ing specific SARS-CoV-2 targets and when that the analyzed simulations were focused on
the viral targets only. Notably, the predicted targets should be useful for prioritizing the
ongoing biochemical assays for the retrieved hits.

Altogether, the reported docking analyses provide an encouraging confirmation to the
rationale for the MEDIATE initiative, emphasizing that a proper combination of the results
from different docking simulations can improve the resulting predictive performances. In
detail, the consensus analyses reported here reached satisfactory performances, allowing
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the development of predictive models with a best EF1% average equal to 10.63 and an
increased average, compared to the single docking run, equal to 40%. The developed
consensus models (see Table S2) can be used to analyze docking results for those viral
targets for which experimentally tested inhibitors are not yet available.

Moreover, the availability of homogeneous docking simulations involving the same
ligands dataset on 14 different targets by three diverse docking programs enabled unprece-
dented comparative analyses to investigate the extent and the meaning of the correlations
between docking scores. Thus, the cross-target correlations revealed significant differences
between the computed scores and the utilized programs. On average, the reported correla-
tions suggest that the signal-to-noise ratio of most docking scores is not satisfactory enough,
since a non-negligible component of the score value is independent of the simulated target.
Also, the cross-program correlations might be exploited to properly evaluate the similarity
between the computed results from different docking runs. Finally, these comparative
analyses appear to be particularly relevant when applying consensus strategies to extract
the most informative and specific docking scores, as well as to combine non-redundant
docking results.
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