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Abstract: Endothelial progenitor cells (EPCs): The name embodies years of research and clinical
expectations, but where are we now? Do these cells really represent the El Dorado of regenerative
medicine? Here, past and recent literature about this eclectic, still unknown and therefore fascinating
cell population will be discussed. This review will take the reader through a temporal journey that,
from the first discovery, will pass through years of research devoted to attempts at their definition and
understanding their biology in health and disease, ending with the most recent evidence about their
pathobiological role in cardiovascular disease and their recent applications in regenerative medicine.

Keywords: endothelial progenitor cells; CD34+ hematopoietic stem progenitor cells; regenerative
medicine; cardiovascular disease; angiogenesis

1. Introduction

In the late 1990s the discovery of endothelial progenitor cells (EPCs) has revolutionized
paradigms of physiology and pathology. For the first time, the existence of this cell
population in the peripheral blood demonstrated that both vasculogenesis and angiogenesis
could arise simultaneously during adulthood, overturning the dogma that vasculogenesis
only could occur during embryogenesis [1]. The discovery opened a new era as it posed the
basis for a theoretical regeneration of the cardiovascular (CV) system. As expected, on this
wave of the novelty, these cells were subject to intense basic, preclinical, and clinical research
that led to the accumulation of numerous publications. However, despite the relevant
number of studies, the findings with regard to EPC origin and biological characteristics
were controversial, ambiguous, and raised confusion in the field. The lack of consensus
mainly arose from the heterogeneous population of cells comprised in the term EPCs, and
on the different antigens, protocols, and cell culture methods used for their identification
isolation and characterization.

Although it is now clear that there is no specific marker able to uniquely identify
EPCs, this has not undermined the proof of their existence. Beyond the initial enthusiasm,
the EPCs and especially the cells from which they originate, the CD34+ hematopoietic
stem/progenitor cells (HSPCs), are once again in the spotlight. Currently, striking evidence
indicates that HSPCs and their residence tissue, the bone marrow (BM), are the main
culprits in determining health and disease in the CV system. In this review, we place
particular emphasis the role of EPCs and of their ancestors, HSPCs, in CV disease (CVD),
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shedding light on the evolving concept of the definition of EPCs. Finally, we provide a
recent overview on the use of this cell population in clinical translational studies.

2. Lost in EPC Definitions

In 1997, Asahara et al. identified the putative EPCs in the mononuclear cell fraction
of human peripheral blood, exploiting two antigens that are shared by endothelial and
hematopoietic stem cells (HSCs), namely CD34 and VEGFR2 [1]. Since then, the research
has strived to accurately identify EPCs to assure the most appropriate cell population in
view of future clinical applications. Ideally, from a biological point of view, the EPCs should
be endowed with an endothelial phenotype, self-renewal potential, and the capacity to
differentiate into endothelial cells and form blood vessels in the living body [2]. Based on
these definition criteria, two different approaches of studies have been used so far: (a) the
identification of specific cell markers by flow cytometric assay of peripheral blood samples;
and (b) the isolation of putative EPCs by cell culture methodologies.

The first approach, based on the use of monoclonal antibodies and flow cytometric
analysis, allowed the enumeration of specific circulating cell subpopulations. On the
assumption that endothelial and blood cells have a common embryological origin [3,4],
several groups of laboratories have attempted to identify circulating EPCs by the CD34
marker in combination with endothelial antigens (i.e., VEGFR-2, CD146, CD144, CD31
Tie-1, Tie-2) [5,6]. In addition, as some mature endothelial cells may circulate in the
bloodstream of healthy and diseased subjects [7,8], Peichev et al. introduced CD133 as a
marker to discriminate EPCs from circulating mature endothelial cells (CECs) [9]. Despite
the consensus statement that CD34+-CD133+-VEGFR-2+ expression should better identify
circulating EPCs, and the current use of this nomenclature to correlate their concentration
with severity and disease state, Case et al. demonstrated that it was not possible to
distinguish immature EPCs by CD34, CD133, or VEGFR-2 expression because these surface
markers also identified primitive HSCs [10]. Indeed, once isolated, they behaved as
hematopoietic colony forming cells and did not form endothelial cell-lined vessels [10,11].
In conclusion, the phenotype that best represents circulating EPCs in terms of cell markers
is still unknown.

The second approach was based on cell culture methodologies. Considering that
circulating EPCs are an extremely rare cell population, researchers developed ex vivo isola-
tion protocols based on the expansion of peripheral blood mononuclear cells (PBMCs) in
pro-angiogenic media. Interestingly, despite the use of non-standardized culture protocols,
different groups of laboratories achieved the same results, with only small differences.
Indeed, Kalka and colleagues, and later Hur et al., identified two types of EPCs named
“early” and “late” on the basis of their time of appearance in vitro [12,13]. Specifically,
“early EPCs” were detectable after 7–10 days of PBMC culture in pro-angiogenic media
on human fibronectin-coated dishes after the removal of non-adherent cells at day 4. The
cells, characterized by clusters with spindle-shaped morphology, displayed limited prolif-
erative potential and strong pro-angiogenic paracrine activity. Flow cytometric analysis
revealed that the majority of the cells were composed of “hematopoietic angiogenic cells,”
including monocyte/macrophages and lymphocytes (Figure 1). Three weeks after plating,
cell colonies characterized by “cobblestone” morphology, high proliferative potential, null
secretive activity, and endothelial cell lineage marker expression appeared in the same
dish (Figure 1). These cells were named “late EPCs” or ECFCs (endothelial colony-forming
cells).
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Figure 1. Phenotypical and functional differences between “early” and “late” EPCs [12,13,14]. 

Similar results were also obtained by the laboratories of Lin and Ingram [14,15] with 
some modifications (Figure 2). Interestingly, preclinical studies demonstrated that both 
EPC types were equally able to restore the perfusion after hindlimb ischemia [13]. Overall, 
unlike the flow cytometric approach, the cell culture method of EPC isolation provided 
important biological information: (a) there is a crosstalk between myeloid and lymphoid 
cells and EPCs that may promote their expansion and differentiation [16], and (b) 
undoubtedly, late EPCs were derived from a rare heterogeneous PBMC population 
hidden in the early EPCs. This latter hypothesis was further corroborated by the finding 
that CD34+-depleted PBMCs, as well as cord blood-derived cells, were unable to generate 
any late EPC colonies, suggesting that late EPCs were raised from the CD34+ stem cell 
population [17]. In addition, by plating PBMCs on fibronectin-coated dishes in angiogenic 
growth medium for 48 h to avoid contamination by circulating endothelial cells and, after 
removing and seeding non-adherent cells into another fibronectin-coated dish for an 
additional 7 days, Hill’s group [18] obtained cell clusters morphologically similar to early 
EPCs, named endothelial cell colony-forming units (CFU-EC, also known as CFU-Hill), 
but not late EPCs, even after 3 weeks of culture (Figure 2). This evidence clearly indicated 
that EPC population resides in the discarded adherent cell fraction. Flow cytometric 
analysis showed that the clusters generated by Hill et al. were mainly composed of 
differentiated myeloid and lymphoid cell subsets that were unable to in vivo form blood 
vessels in experimental models [19]. The CFU-Hill colonies have been extensively used by 
clinicians as a predictive biomarker of vascular disease owing to their high correlation 
with the Framingham CV risk factor score. However, numerous authors equally and 
improperly grouped early EPCs and CFU-Hill culture techniques as the same method 
[2,20] (Figure 2).  

Figure 1. Phenotypical and functional differences between “early” and “late” EPCs [12–14].

Similar results were also obtained by the laboratories of Lin and Ingram [14,15] with
some modifications (Figure 2). Interestingly, preclinical studies demonstrated that both EPC
types were equally able to restore the perfusion after hindlimb ischemia [13]. Overall, unlike
the flow cytometric approach, the cell culture method of EPC isolation provided important
biological information: (a) there is a crosstalk between myeloid and lymphoid cells and
EPCs that may promote their expansion and differentiation [16], and (b) undoubtedly,
late EPCs were derived from a rare heterogeneous PBMC population hidden in the early
EPCs. This latter hypothesis was further corroborated by the finding that CD34+-depleted
PBMCs, as well as cord blood-derived cells, were unable to generate any late EPC colonies,
suggesting that late EPCs were raised from the CD34+ stem cell population [17]. In addition,
by plating PBMCs on fibronectin-coated dishes in angiogenic growth medium for 48 h
to avoid contamination by circulating endothelial cells and, after removing and seeding
non-adherent cells into another fibronectin-coated dish for an additional 7 days, Hill’s
group [18] obtained cell clusters morphologically similar to early EPCs, named endothelial
cell colony-forming units (CFU-EC, also known as CFU-Hill), but not late EPCs, even after
3 weeks of culture (Figure 2). This evidence clearly indicated that EPC population resides
in the discarded adherent cell fraction. Flow cytometric analysis showed that the clusters
generated by Hill et al. were mainly composed of differentiated myeloid and lymphoid cell
subsets that were unable to in vivo form blood vessels in experimental models [19]. The
CFU-Hill colonies have been extensively used by clinicians as a predictive biomarker of
vascular disease owing to their high correlation with the Framingham CV risk factor score.
However, numerous authors equally and improperly grouped early EPCs and CFU-Hill
culture techniques as the same method [2,20] (Figure 2).
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Figure 2. Representative scheme of culture methods developed by different laboratories to obtain “early
EPCs”, “late EPCs” (named also ECFCs; endothelial colony-forming cells), and CFU-Hill [12–15].

The culture approach firmly demonstrated that it was possible to in vitro obtain two
groups of culture-committed cells characterized by intermediate stages of differentiation
and different pro-angiogenic properties, namely instructive (release of angiogenic cytokines)
and structural (vessel incorporation and stabilization). However, in this case, controversial
findings have also accumulated over the years. Indeed, the development of numerous and
different protocols for EPC enumeration and cultivation resulted in the identification of
various EPC subsets that have been differently named according to their cellular origin,
phenotype, and in vitro and in vivo properties, resulting in a general lack of consensus in
the nomenclature (Figure 3) [2]. However, regardless of the multiple names used to identify
the two different culture-derived cell populations, we should not underestimate that there
is no demonstration of their existence in vivo and they may represent an in vitro artifact.



Cells 2023, 12, 112 5 of 22
Cells 2022, 11, x FOR PEER REVIEW 5 of 23 
 

 

 
Figure 3. Different nomenclature used in the studies to define cells with pro-angiogenic properties. 
The cells have been divided into two group according to their lineage phenotype. 

3. Circulating HSPCs and CV System: The Unifying Concept of EPCs 
Notwithstanding the current impossibility to phenotypically separate EPCs from 

HSPCs because of their overlapping phenotype [21], EPCs have been universally 
considered as integrated components of the CV system committed to maintenance of 
endothelial integrity and vascular health. Consequently, their numerical reduction and 
dysfunction have been physiopathologically linked to the onset and progression of CVD 
in numerous clinical conditions, transforming this cell population in a powerful predictive 
biomarker of CVD [22–24]. During clinical studies aimed at circulating CD34+-VEGFR-2+ 
EPC enumeration, it was also noted that circulating CD34+ cells were reduced in CVD 
condition. In this regard, the literature provides compelling evidence that, unlike CD34+-
VEGFR-2+ EPCs, circulating CD34+ cells as well as CD34+-CD133+ cells significantly 
predicted disease severity, mortality, and improved risk stratification in subjects with 
different CVDs and other CV-related disorders [25–31]. In 2016, these observations were 
further supported with a meta-analysis by Rigato et al., which showed that circulating 
CD34+-CD133+ cells were the most predictive phenotype for CV events, restenosis after 
endovascular intervention, CV death, and all-cause mortality [32]. One year later, Fadini 
et al. demonstrated that in patients with type 2 diabetes (T2D), the reduced baseline levels 
of circulating CD34+ stem cells were a long-time (up to 6 years) predictive biomarker of 
adverse CV outcomes [33]. However, almost simultaneously Hayek et al. [34] reported 
that low CD34+-VEGFR-2+ cells, but not CD34+ cells, predicted the risk of mortality and 
peripheral artery disease (PAD)-related events. These discrepancies may be ascribable to 
technical reasons, such as lot-to-lot variability of anti-VEGFR-2 antibodies that, unlike 
anti-CD34+ antibodies, are not clinical grade but for research use only, and to the different 
flow cytometry gating strategies used for event acquisition. Nevertheless, taken together, 
these data provide important insights: (i) the most predictive circulating stem cell 
population could be disease-specific [35]; (ii) CD34+-VEGFR-2+ EPCs are progeny of 
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The cells have been divided into two group according to their lineage phenotype.

3. Circulating HSPCs and CV System: The Unifying Concept of EPCs

Notwithstanding the current impossibility to phenotypically separate EPCs from
HSPCs because of their overlapping phenotype [21], EPCs have been universally consid-
ered as integrated components of the CV system committed to maintenance of endothelial
integrity and vascular health. Consequently, their numerical reduction and dysfunction
have been physiopathologically linked to the onset and progression of CVD in numerous
clinical conditions, transforming this cell population in a powerful predictive biomarker
of CVD [22–24]. During clinical studies aimed at circulating CD34+-VEGFR-2+ EPC enu-
meration, it was also noted that circulating CD34+ cells were reduced in CVD condition.
In this regard, the literature provides compelling evidence that, unlike CD34+-VEGFR-2+

EPCs, circulating CD34+ cells as well as CD34+-CD133+ cells significantly predicted disease
severity, mortality, and improved risk stratification in subjects with different CVDs and
other CV-related disorders [25–31]. In 2016, these observations were further supported with
a meta-analysis by Rigato et al., which showed that circulating CD34+-CD133+ cells were
the most predictive phenotype for CV events, restenosis after endovascular intervention,
CV death, and all-cause mortality [32]. One year later, Fadini et al. demonstrated that in
patients with type 2 diabetes (T2D), the reduced baseline levels of circulating CD34+ stem
cells were a long-time (up to 6 years) predictive biomarker of adverse CV outcomes [33].
However, almost simultaneously Hayek et al. [34] reported that low CD34+-VEGFR-2+

cells, but not CD34+ cells, predicted the risk of mortality and peripheral artery disease
(PAD)-related events. These discrepancies may be ascribable to technical reasons, such as
lot-to-lot variability of anti-VEGFR-2 antibodies that, unlike anti-CD34+ antibodies, are
not clinical grade but for research use only, and to the different flow cytometry gating
strategies used for event acquisition. Nevertheless, taken together, these data provide
important insights: (i) the most predictive circulating stem cell population could be disease-
specific [35]; (ii) CD34+-VEGFR-2+ EPCs are progeny of HSPCs and are rarer than expected;
and (iii) circulating CD34+ stem cells are mainly composed by HSPCs and are endowed
with vasculotrophic properties.
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This latter assumption is corroborated by clinical evidence that circulating HSPCs
increase by 25% in patients after acute myocardial infarction (AMI). This mobilization,
which starts within few minutes and persists for several days after AMI, is suggestive
of the active participation of this cell population in CV repair [36–38] as, consistently,
its mobilization failure correlates with poorer prognosis [39]. In addition, classical CV
risk factors such as smoking, hypertension, dyslipidemia, diabetes, obesity, and aging are
associated with a decline in circulating HSPCs number and function [40,41], supporting the
concept that CVD is the result of an “impaired damage control” condition, wherein tissue
damage is not adequately counterbalanced by endogenous repair [42,43]. The mechanistic
concept of CV defective repair was supported by the observation that patients with extreme-
duration type 1 diabetes without CVD had preserved levels of stem/progenitor cells,
suggesting a direct involvement of these cells in the neutralization of adverse effects
promoted by the metabolic abnormalities on vascular tissue [44]. However, there is no
direct demonstration of whether therapeutic strategies aimed at restoring or increasing
CD34+ stem cell number and function can also exert CV protective effects.

Finally, CD34+ stem cells demonstrated their vascular regenerative capacity and
proangiogenic potential as successfully used in regenerative medicine for the treatment
of limb and cardiac ischemia [36,45]. Collectively, this experimental evidence suggested
an interdependent relationship among HSPCs, the CV system, and the BM, because the
origin of circulating CD34+ stem cells must be tracked back in the BM, and led to the
reassessment of EPC concept in terms of definition, identity, origin, and function at CV
level. The emerging concept is that the whole circulating CD34+ stem cell population, of
which EPC progeny is a minor subset, is the true executor of CV health maintenance.

4. Intertwined Relationship of Circulating CD34+ Progenitor Cells with the
Cardiovascular System

As previously detailed, circulating CD34+ HSPCs comprise several subsets of CD34+

cells, including EPCs, (CD34+CD133+/KDR+) that can actively participate in vascular repair
and growth [46,47]. Besides reflecting vascular integrity and having been used as biomark-
ers of vascular repair [48,49], their low CD34+ HSPC circulating number in individuals with
CVD (e.g., heart failure or acute coronary syndromes) predicts higher mortality risk [50]
strengthening the impact of their dysfunction on endogenous vascular repair capacity. A
number of studies has shown that lifestyle behaviors and environment can significantly
affect CV health. To this regard, obesity [51], smoking [52], and physical inactivity [53] are
associated with increased CVD and a greater risk of mortality. Exercise training is known to
improve vascular function and this effect seems to be, in part, mediated by the modulation
of circulating CD34+ cell number and function [54]. Indeed, numerous studies have demon-
strated that chronic and acute exercise both improve cardiovascular health and promotes
the mobilization of CD34+ cell from the BM to peripheral blood compartment where they
realistically exert their vasculotrophic functions [55–59]. However, if we can beneficially
affect our CV system health by improving our lifestyle, particular attention should be
paid to the environment where we live. It has been demonstrated that fine particulate
matter (PM) exposure, consisting of mixture of various particles including crustal material,
metals, and bioaerosols, can induce cardiovascular disorders such as reduced heart rate
variability, vascular dysfunction, and enhanced coagulation–thrombosis [60,61]. Again,
these effects were associated with a significant suppression of circulating CD34+ stem cell
number and function in both mice and humans with mechanisms involving PM-mediated
ROS production [62–65].

In recent years, investigations have been devoted to understanding the significance of
circulating CD34+ proangiogenic progenitors (EPCs) in host defense during sepsis-induced
vascular injury.

Extensive endothelial cell damage, especially in the microcirculation, frequently occurs
during sepsis. Multiple pathological factors, including systemic inflammation, oxidative
stress, toxic compounds generated by invading microorganisms, and unbalanced release of
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vasoactive mediators synergistically lead to the loss of endothelial barrier function resulting
in tissue edema, the collapse of circulation, and final vital organ system failure (multiple
organ dysfunction syndrome caused by sepsis, MODS). The host organism reacts to massive
endothelial damage through BM mobilization and the activation of resident progenitors
that are part of the intrinsic mechanisms involved in the maintenance of vascular home-
ostasis and regeneration [66]. Numerous studies have repeatedly reported the increase
in circulating CD34+ progenitors as well as their active recruitment and homing to tissue
sites of injury in response to septic challenges, both in pediatric and adult patients [67–69].
The recruited vascular progenitors can then participate in the host repair of damaged
endothelium via direct endothelial differentiation and/or the release of angiogenic me-
diators and extracellular vesicles (EVs) [70–72]. To this regard, EVs, not replicating lipid
bilayer particles released from the cell, have been shown to have an important role in the
intercellular communication of circulating CD34+ progenitors by which they can mediate
and modulate pro-angiogenic/vasculogenic and anti-inflammatory paracrine effects [73,74].
In recent years, the striking significance of CD34+ vascular progenitors in host defense has
promoted numerous lines of investigation for the development therapeutic strategies in
sepsis-induced vascular injury, mainly based on CD34+ progenitor transplantation or EV
delivery [66].

Circulating CD34+ Progenitor Cells and Cancer

Tumor growth and progression require nutrients and oxygen to proliferate. These
physiological tumor needs are achieved by new blood vessel formation, of which the net-
work in turn facilitates cancer metastasis into the systemic circulation. Accumulating data
indicate that circulating vascular progenitors not only provide structural support to nascent
vessels [75,76] but also actively participate in new blood vessel formation via the paracrine
secretion of pro-angiogenic factors [73,74]. The CD34+ progenitor cell-mediated neovas-
cularization process involves multiple steps, including BM cell mobilization, recruitment,
and homing to neovessel sites, which are finely orchestrated by tumor cells [77]. A wide
range of cytokines and chemokines, such as VEGF and SDF-1α, released by tumor microen-
vironment promote vasculogenesis and cancer progression by mobilization of BM resident
CD34+ progenitors in the systemic circulation and enhancement of their recruitment to the
tumor site [78–81]. The inhibition of CD34+ progenitor-mediated vasculogenesis, likewise
anti-angiogenic therapies, showed significant reduction in tumor neovasculogenesis and
development [82,83]. A comprehensive understanding of the molecular mechanisms sub-
tending CD34+ cell-mediated neovascularization may provide novel therapeutic strategies
in cancer treatment.

5. The CV Tropism of HSPCs: Origin, Role, and Pathogenic Implications in CVD

HSPCs are commonly defined by CD34 expression. CD34 is a transmembrane adhesion
phosphoglycoprotein, with unknown function. First identified on HSPCs, its expression
has been uniquely related to this cell population because clinically associated with selection
of stem cells with hematopoietic properties [84]. Conversely, from a prevailing school
of thought, strong evidence demonstrates that CD34 is expressed by a numerous other
nonhematopoietic cell types, including mesenchymal stem cells (MSCs), interstitial cells,
epithelial cells, keratocytes, and endothelial cells where it represents a small proportion of
the total cell population and defines a distinct cell subset with progenitor activity [85–88].
It is universally recognized that stem cells reside in adult tissues. This is especially true
of the vascular system, where resident and circulating HSPCs play an active role both in
normal homeostasis maintenance and disease progression [89].

What is the relationship between HSPCs and vascular cells? On the basis of their close
kinship and proximity during early development, Florence Sabin in 1920 [Contrib. Embryol.
Carnegie Inst. 9, 215–262 (1920)] supposed the existence of the hemangioblast, a putative
common progenitor of hematopoietic and endothelial cells [90]. Although the existence
of the hemangioblast is still debated 100 years later, current data support the concept of
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the “hemogenic endothelium” according to which terminally differentiated endothelial
cells generate hematopoietic cells during a specific stage of embryonic development [91,92].
Specifically, HSPCs arise from a region of the mammalian embryo encompassing the
aorta, gonads, and mesonephros (AGM) from which they detach into circulation, reach the
liver, and finally colonize the BM. There, inside the hematopoietic BM niche, a functional
structure devoted to their quiescence, differentiation, and egression maintenance, they
generate all cells of the blood lineage throughout life span [93,94]. At the molecular level,
the endothelial hematopoietic transition envisages the activation of the transcription factor
RUNX1 (runt-related transcription factor 1) that is normally downregulated by HOXA3
(Homeobox A3) in endothelial cells. RUNX1 expression is then suppressed once HSPCs are
formed [95,96]. The hemato–vascular overlap observed during embryological development
can thus explain the strong vascular tropism displayed by HSPCs.

For decades, scientists considered HSPCs as a static source of stem cells indefinitely
located in the BM with the unique role of replenishing blood and immune system cells only
when called upon. However, HSPCs are also present in the peripheral blood (PB) where
they represent the 0.05% of total white cells [97]. Although it was believed that this small
amount was a passive leak from the BM, today it is clear that HSPCs are actively released
from the BM to PB from which they reach various organs and eventually come back home
into BM in few hours in accordance with circadian rhythm [98–100]. But the question now
is: Why? What exactly are they doing? Although today the biological meaning of HSPCs
in–out is not completely understood yet, it is assumed that the continuous in-out trafficking
has various role: (i) to patrol peripheral tissue contributing to local immunosurveillance
and inflammation [98]; (ii) to allow a better redistribution and replenishment of BM niche
improving normal hematopoiesis [99]; and finally (iii) to contribute to the maintenance
of tissue homeostasis by regulating and promoting endogenous repair [98,101,102]. This
latter assumption was supported by compelling evidence that donor cells can repopulate
nonhematopoietic tissue such as the lungs [103], liver [104], kidney [105], and including
myocardium [106] and endothelium [107] in BM-transplanted individuals. In this regard, it
is noteworthy to mention the study of Jiang et al., who demonstrated that 2% of endothelial
cells in the skin and gut of patients with hematologic malignancy who underwent BM
CD34+ cell transplantation were of donor origin [108]. Similarly, Peters et al. demonstrated
by in situ hybridization with sex chromosome-specific probes that 4.9% of blood vessel
in the histological samples of various cancers originated from BM donors of the opposite
sex [109]. Although recent literature also shows the existence of vascular and myocardial
niches as alternative source of vasculotrophic progenitors [110–113]; taken together, these
data suggest that progenitor cells with pro-angiogenic properties represent a small CD34
subset and that the number and functionality of circulating HSPC population, as whole, is
the mirror and at the same time the determinant of the cardiovascular and general health.

Clinical Implications of HSPC Dysfunction

In view of the aforementioned role of circulating HSPCs, it is clear that their numeri-
cal and functional perturbation implies profound and severe clinical sequelae, including
increased mortality [114]. So far, the dysfunctions of circulating HSPCs have mostly been
studied and interpreted in view of their pro-angiogenic counterpart, namely the EPC
progeny. Countless studies have mechanistically detailed the alterations promoted by
different pathological contexts on the main EPC functional processes, including BM mobi-
lization, migration, homing, and differentiation [10,75,115], overlooking that CD34+ cells,
as HSPCs, are sources not only of pro-angiogenic cells but also of immune system cells.
The profound link existing between HSPCs and cardiovascular system was made more
evident by the clonal hematopoiesis of indeterminate potential (CHIP) a clinical condition
in which the mutation in only handful genes, specifically DNMT3A (DNA MethylTrans-
ferase 3 Alpha), TET2 (ten eleven translocation (Tet) methylcytosine dioxygenase), AXL1
(AneXeLekto receptor tyrosine kinase), PPM1D (Protein Phosphatase, Mg2+/Mn2+ De-
pendent 1D), JAK2 (Janus Kinase 2), TP53 (Tumor Protein p53), SF3B1 (Splicing Factor
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3b Subunit 1), and SRSf2 (Serine/arginine-Rich Splicing factor 2) in HSPCs promotes the
accumulation of clones of mutated leukocytes that populate the PB. This pre-malignant
state, although considered as the first step towards leukemia, rarely develops malignancy
(only 0.5% to 1% per year, hence the term ”indeterminate potential”), but represents a
potent and independent cardiovascular risk factor (40% increase) [116]. Concerning the
mechanisms proposed to link CHIP and cardiovascular events, it has been observed that in
mice engineered to bear mutations in genes commonly involved in CHIP (e.g., Tet2), there
was an increased expression of proinflammatory mediators implicated in the pathogenesis
of atherosclerosis, such as cytokines interleukin (IL)-1b and IL-6 [117]. Similarly, atheroscle-
rosis, hypercholesterolemia, hypertension, and diabetes are associated with the elevation of
hematopoiesis with a myeloid bias that suggests a contribution of inflammatory leukocytes
to the development and progression of CVD. In this regard, Terenzi et al. demonstrated, by
a multiparametric flow cytometry assay, profound differences in circulating proangiogenic
and proinflammatory progenitor cell content between patients with T2D and age-matched
control subjects [118]. Specifically, patients with T2D displayed an increased frequency of
proinflammatory myeloid cells and decreased frequency of circulating monocytes with an
M2 phenotype, which is associated with proangiogenic and anti-inflammatory functions,
and a reduction of proangiogenic CD34+ progenitor cells with primitive (CD133) and
migratory (CXCR4) phenotypes. The flow cytometric assessment of the balance between
circulating vascular regenerative progenitor cells and inflammatory cells in patients with
T2D could represent a promising translational approach for identifying patients with T2D
at increased risk for cardiovascular comorbidities [118]. Interestingly, preclinical and clin-
ical evidence showed that different pathological milieus, including diabetes, are able to
redirect HSPC differentiation toward pro-inflammatory and harmful cell populations with
pro-calcific and profibrotic properties [119–124] by molecular and epigenetic mechanisms
that could already take place at the BM level (Figure 4) [125].
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Figure 4. Schematic representation of CV risk-induced reprogramming of HSPCs at bone marrow
level. CV risks promote epigenetic changes in HSPCs that results in abnormal expansion of cells
with inflammatory and pro-atherosclerotic features. Specifically, monocytes characterized by more
inflammatory phenotypes (e.g., alternative and non-classic monocytes) and generation of circulating
progenitors with pro-calcific and pro-fibrotic characteristics [119–124].
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6. BM as Master Regulator of Global Organismal Health

A complex signaling network triggered by internal, metabolic, extrinsic factors (out-
side the bone marrow) and finely orchestrated in a physically defined area of BM, named
the HSPC niche, regulates, by epigenetic modifications, the differentiation and maintenance
of HSPCs pool, granting an adequate blood cell production, both under steady-state and
stress conditions [126]. At the BM level, the perturbation of this delicate balance is asso-
ciated with adverse clinical sequelae, including excess mortality [114]. Indeed, although
the links between hematological disturbances and accelerated CVD remain unclear, both
BM failure and alteration in circulating HSPC level and phenotype are associated with
clinical conditions characterized by premature death [127]. These observations increased
the interest in the BM status of patients with CVD or other risk factors [128–130] transform-
ing the role of this organ from merely dedicated to the generation of blood elements, to
central housekeeper of global organismal health [114]. Interestingly, experimental studies
in animal models of atherosclerosis and diabetes have revealed the reprogramming of
HSPCs in the BM as a cause of changes in circulating innate immune cells that cause
predisposition to CVD. Hyperlipidemia showed the promotion of inflammatory activation
of monocytes by epigenetic reprogramming of HSPCs in low-density lipo- protein receptor
deficient (Ldlr−/−) mice [131]. In a mouse model of diabetes, epigenetic modifications
were responsible for the activation of inflammatory genes in BM progenitors that per-
sisted in the differentiated progeny [132–135]. Similar mechanisms seem to be involved in
the monocytosis and neutrophilia of humans with chronic stress [136].

However, such data do not provide any clue whether the differentiation drift of
HSPCs has to be considered as a mechanistic factor of disease or an epiphenomenon of BM
dysfunction.

7. Vascular Progenitors: Are All They of BM Origin?

In addition to BM stem and progenitor cells with an embryonic developmental origin,
the existence of a class of vascular progenitor cells in the adult vasculature has been debated.
Within mural cells, vascular pericytes have reported to possess stem cell properties in
adult tissue [137]. These cells, identified by several markers including smooth muscle
α-actin (SMA), desmin, NG-2, and platelet-derived growth factor receptor (PDGFR)-β, can
be expanded clonally in vitro and possess properties of mesenchymal stem cells. They
have the potential to give rise to different tissues in vitro, but this is not clear in vivo.
Mounting evidence suggests a model in which mesenchymal stem cells remain entangled in
developing vessels and become pericytes. These cells, which maintain stem cell properties,
can be reactivated after injury and disease, providing instructive and structural information
during vascular regeneration. However, as their identifying markers are not restricted
to pericytes, the contributions from cells other than pericytes cannot be ruled out. The
presence in vessels of pericytes with mesenchymal stem cell properties and of other vascular
stem or progenitor cells could have important therapeutic implications as they could be
harvested for tissue regeneration [138].

8. Clinical Use of CD34+ Cells: How Far Are We from Using Them?

The regenerative potential of BM-derived stem cells (SC) and their capability to
differentiate into a wide-ranging set of cellular types in vitro and in animal models [139]
piqued the interest of researchers assessing their possible role in clinical practice. Most of
the initial cell therapy studies were based on the administration of a whole unfractionated
BM-SC population, containing HSPCs, mesenchymal stem cells, and EPCs, usually obtained
from iliac crest aspiration. Nevertheless, CD34+ cells were rapidly recognized as the most
relevant subpopulation in terms of bioactivity and therefore rapidly became an appealing
instrument for researchers, despite a more complex selection procedure and a lower yield in
number of cells (they typically represent only 0.5% to 6% of unfractionated BMCs) [140,141].
The most relevant clinical trials involving the administration of CD34+ cells were designed
to evaluate their therapeutic potential in various CV and non-CV disease settings, such
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as refractory angina (RA), left ventricular systolic dysfunction (LVSD), liver failure, and
complications of type I diabetes.

8.1. Refractory Angina

A relevant number of preclinical studies has addressed the need to find new therapeu-
tic options for RA, a condition defined as “symptoms due to established reversible ischemia
in the presence of obstructive coronary artery disease (CAD), which cannot be controlled by
escalating medical therapy with the use of second- and third-line pharmacological agents,
bypass grafting, or stenting including percutaneous coronary intervention (PCI) of chronic
total coronary occlusion”. RA is a main CV problem, affecting about 5–10% of chronic
stable CAD patients and is responsible for (i) frequent hospitalizations, (ii) a high amount
of resource utilization, and (iii) a poor quality of life for CAD patients [142,143]. It was
already known from these studies that, in the rat, intramyocardially transplanted CD34+

cells after myocardial infarction could contribute to cardiomyogenesis and vasculogenesis,
probably by both a direct regenerative effect and a paracrine secretion of growth factors
and cytokines [144]. On this basis, Losordo et al. assessed, for the first time, the safety and
bioactivity of intramyocardial administration of CD34+ cells in 24 patients with RA, in a
phase I/IIa, double-blind, randomized controlled trial (RCT, Table 1). All patients received
granulocyte-colony stimulating factor (G-CSF) for mobilization, followed by leukapheresis
for collection of mononuclear cells. Then, CD34+ cells were purified and intramyocardially
injected during NOGA electromechanical mapping in treatment group patients, which
were divided in three dose cohorts (5 × 104, 1 × 105, and 5 × 105 CD34+ cells/kg), while
placebo group patients received an intramyocardial injection of cell diluent. Despite RA
transiently worsening in 13 patients after G-CSF administration, probably due to its in-
trinsic side effects of increased blood viscosity, metabolic demand, and platelet count, and
one placebo group patient developed ventricular tachycardia, successfully cardioverted,
during mapping procedure, the protocol was judged adequately safe overall. The efficacy
endpoints included angina frequency, nitroglycerine usage, exercise tolerance, Canadian
Cardiovascular Society (CCS) class, and Seattle Angina Questionnaire assessment; despite
a global amelioration in all treatment and placebo groups at 6 months, probably due to an
overall strong placebo effect of the procedure, treatment groups showed a better trend for
all of efficacy endpoints, with no significant difference amongst the three different doses
groups, although the study was not really powered to detect it [145].

Similar results came from a subsequent double-blind, multicentric, controlled phase II
RCT, the ACT34-CMI in which 167 patients were enrolled (Table 1). Indeed, patients who
received intramyocardial administration of autologous CD34+ cells (1 × 105 or 5 × 105)
experienced a significant amelioration of angina frequency and exercise tolerance at 6 and
12 months from injection, and a reduction in mortality rate at 12 months (i.e., 5.4% in the
placebo group vs no deaths in the treatment group) [111]. A significant reduction in angina
frequency and a trend towards lower mortality were confirmed at 24 months follow-up
for both treatment groups [36]. Unfortunately, the phase III RENEW study, which was
supposed to include 444 patients, was prematurely terminated by the sponsor after the
enrolment of only 112 and thus, despite the results were consistent with previous studies,
it was underpowered to provide conclusive evidence of efficacy and safety of CD34+

cells intramyocardial administration (Table 1) [146,147]. Current (2019) European Society
of Cardiology (ESC) Guidelines for the diagnosis and management of chronic coronary
syndromes, based on the results of a pooled analysis of the three aforementioned RCTs that
substantially confirms a positive effect of CD34+ intramyocardial injection on exercise time
and angina frequency, classify this procedure amongst the “potential treatment options for
refractory angina”, but underscore the need for larger RCTs in order to elaborate a clear
recommendation [142].
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Table 1. Clinical trials on refractory angina.

Condition Population Study Design Outcomes Major Adverse Events Ref

R
ef

ra
ct

or
y

A
ng

in
a

24 pts (>21 yrs old),
CCS class III or IV

angina, on OMT, not
amenable to

revascularization

Phase I/IIa,
double-blind, RCT.

Intramyocardial
injection of

autologous CD34+

cells (5 × 104,
1 × 105, or 5 × 105

cells/kg vs cell
diluent)

Treatment better than
placebo in angina

frequency,
nitroglycerine usage,

exercise tolerance,
CCS class, and Seattle
Angina Questionnaire

assessment.
No dose–response

observed.

1 pt in ctr group
developed ventricular

tachycardia during
mapping procedure,

then successfully
cardioverted.

[145]

167 pts (21–80 yrs
old), CCS class III or
IV angina, on OMT,

not amenable to
revascularization

Phase II,
double-blind, RCT.

Intramyocardial
injection of

autologous CD34+

cells (1 × 105 or
5 × 105 cells/kg vs

cell diluent)

Low-dose treatment
significantly better

than placebo in angina
frequency and exercise

tolerance at 6 and
12 mo. Both low- and
high-dose better than

placebo in angina
frequency at 24 mo.

MACE/deaths
33.9/12.5% in ctrl group,
21.8/1.8% in low-dose

group and 16.2/3.6% in
high-dose group at

24 mo.

[111]

112 pts (18–80 yrs
old), CCS class III or
IV angina, on OMT,

not amenable to
revascularization,

LVEF ≥ 25%,
reproducible

exercise-limiting
angina

Phase III,
double-blind, RCT.

Intramyocardial
injection of

autologous CD34+

cells (1 × 105 up to
1 × 107 cells/kg vs
cell diluent (active

control) vs standard
of care control)

Change in TET in
treated pts vs placebo

was 42.1/61.0 s in
ITT/PP populations at

3 mo, 34.7/46.2 s at
6 mo, and 20.4/36.6 s
at 12 mo. Angina RR

in treated pts vs
placebo was 0.77/0.80

in ITT/PP at 3 mo,
0.58/0.63 at 6 mo, and

1.02/0.95 at 12 mo.

MACE/deaths
67.9/7.1% in standard of

care ctrl group,
42,9/10.7% in active ctrl
group, and 46.0/4.0 in
treated group at 24 mo.

[146,147]

Abbreviations: CCS = Canadian Cardiovascular Society; ITT = intention to treat; LVEF = left ventricular ejection
fraction; MACE = major adverse cardiovascular event; OMT = optimal medical therapy; PP = per protocol;
PTs = patients; RCT = randomized controlled trial; RR = relative risk; TET = total exercise time.

8.2. Left Ventricular Systolic Dysfunction

Most of the CD34+ studies from Vrtovec’s group addressed non-ischemic dilated
cardiomyopathy (DCM). A first, pilot, open-label clinical study included 55 patients (i.e.,
28 treated, 27 controls) with a diagnosis of DCM with a left ventricular ejection fraction
(LVEF) < 30% and a New York Heart Association (NYHA) Class ≥ 3 for at least 3 months
before referral (Table 2). Following mobilization by G-CSF and apheresis, CD34+ cells
were injected in the coronary artery supplying the less viable segments (localized by
myocardial scintigraphy). After 1 year, LVEF and 6-minute walk distance performance
significantly increased in the treatment group, while N-terminal pro-brain natriuretic
peptide (NT-proBNP) values and a composite endpoint of mortality or heart transplantation
was significantly lower [148]. Similar results came from another study evaluating the
5-year follow-up in 110 (i.e., 55 treated, 55 controls) after treatment. Moreover, a higher
CD34+ cell engraftment correlated with a better treatment response [149]. Good results
have been obtained also for ischemic cardiomyopathy (ICM) after an intramyocardial
injection of cells in the hibernating myocardium (Table 2) [150]. The intramyocardial
injection seems to be more effective than intracoronary in the DCM form as well [151].
Moreover, there is evidence that right ventricular function could also benefit from left
ventricle intramyocardial administration of CD34+ cells, most likely due to the functional
interdependence between the left and right sections of the heart [152].
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Table 2. Clinical trials on dilated and ischemic cardiomyopathy.

Condition Population Study Design Outcomes Major Adverse Events Ref

D
C

M

55 pts (>18 yrs old),
DCM, LVEF < 30%,
NYHA Class ≥ III

for 3 mo before
referral, on OMT for

at least 6 mo.

Phase II, open-label,
RCT. Intracoronary

infusion of autologous
CD34+ cells (average
123 ± 23 × 106) vs no

infusion.

Significant improvement in
LVEF and 6MWT distance
in treated pts vs ctrl group
at 3 and 12 mo. Significant

reduction in
cardiac mortality/heart

transplantation in
treated pts vs ctrl group at

12 mo.

No major
procedure-related

complications.
No effects of

transplanted stem cells
on QTc interval and QT

interval variability.

[148]

110 pts (18–65 yrs
old), DCM, LVEF <

30%, NYHA Class III
for 3 mo before

referral, on OMT for
at least 6 mo.

Phase II, open-label,
RCT. Intracoronary

infusion of autologous
CD34+ cells (average
113 ± 26 × 106) vs no

infusion.

Significant improvement in
LVEF and 6 MWT distance

in treated patients vs control
group at 60 months.

Significant reduction in
total mortality in treated

patients vs control group at
60 months (14% vs 35%).

No major
procedure-related

complications.
[149]

IC
M

33 pts (>18 yrs old),
ICM, no amenable to

revascularization,
LVEF < 40%, NYHA

Class III for 3 mo
before referral.

Phase II crossover study.
In phase I, patients were

treated for 6 mo with
OMT. Thereafter, they

crossed over to phase II
where they received

intramyocardial
injection of autologous
CD34+ cells (average

90.6 ± 7.5 × 106).

No significant improvement
in LVEF and 6 MWT
distance after OMT,

significant improvement
6 mo after cell injection.

2 deaths during phase I [150]

Abbreviations: 6MWT= 6-Minute Walking Test; DCM = dilated cardiomyopathy; ICM = ischemic cardiomyopathy;
LVEF = left ventricular ejection fraction; NYHA = New York Heart Association; OMT = optimal medical therapy;
RCT = randomized controlled trial.

8.3. Use of CD34+ in Conditions Other Than CVD

Moving to a non-CV condition, CD34+ cells have been demonstrated to be capable to
differentiate into hepatocyte as well. Gordon and colleagues assumed that the regenerative
effect observed in previous studies involving other BMC populations [153–155] had to be
ascribed to CD34+ cells; therefore, they attempted intraportal or via hepatic artery infusion
of CD34+ autologous cells after mobilization with G-CSF, in 3 and 2 patients with liver
insufficiency, respectively (Table 3). No serious complications were observed. Interestingly,
three out of five patients improved in terms of serum bilirubin and four out of five in
terms of serum albumin at 60 days [153]. Bilirubin levels slightly increased back after
12-18 months follow up, but without the detection of long-term complications [153]. The
same research group later obtained further encouraging results from hepatic artery infusion
of CD34+ cells in 9 patients [156]. Moreover, Sharma et al. compared hepatic artery infusion
of autologous CD34+ cells with standard of care in 45 non-viral cirrhosis patients (i.e.,
22 in the treatment group, 23 in the control group) and observed a significant improved
liver function after cell therapy, as reported in Table 3 [157]. Regenerative potential is not
the only clinically relevant feature of CD34+ cells: they also possess immunoregulatory
properties, as shown in multiple sclerosis studies [158]. Some clinical trials enrolled patients
with early onset type I diabetes mellitus, who underwent the so called nonmyeloablative
hematopoietic stem cell transplantation (AHST) of autologous CD34+ cells. Beneficial
effects of this treatment have been observed in terms of autoimmunity, β-cell function, and
insulin dependency, with some patients remaining insulin independent for several years
(Table 3) [159–161].
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Table 3. Clinical trials on liver insufficiency and T1D.

Condition Population Study Design Outcomes Major Adverse Events Ref

Li
ve

r
In

su
ffi

ci
en

cy

5 pts (20–65 yrs old),
chronic liver failure,

abnormal serum
albumin and/or
bilirubin and/or

pro-thrombin time,
unsuitable for liver

transplantation, WHO
performance status

< 2.

Phase I clinical trial.
3 pts received

1 × 106–2 × 108

autologous CD34+ cells
via portal vein, 2 pts

received 1 × 106–2 × 108

autologous CD34+ cells
via hepatic artery.

Improvement in serum
bilirubin in 3/5 pts at 60
days maintained by only

1 patient at 12 mo.
Improvement in serum
albumin in 4/5 pts at 60

days maintained at
12–18 mo.

No major
procedure-related

complications.
[153]

9 pts (20–65 yrs old),
chronic alcoholic liver

failure, abnormal
serum albumin and/or

bilirubin and/or
pro-thrombin time,
unsuitable for liver

transplantation, WHO
performance status

< 2.

Phase II clinical trial.
Injection of autologous
CD34+ cells (average

229.7 × 106) via hepatic
artery.

Improvement in serum
bilirubin at 12 weeks,

transient improvement
in ALT and AST.
Improvement of

Child–Pugh score in 7/9
patients and

improvement of ascites
in 5/9 patients at

12 weeks.

No major
procedure-related

complications.
[156]

55 pts (18–70 yrs old),
non-viral hepatic

cirrhosis, MELD score
> 14, requiring liver

transplantation.

Phase II open-label
non-randomized
controlled CT. 22

patients unwilling for
liver transplantation
received autologous

CD34+ cells via hepatic
artery. 23 patients opted
for regular inclusion in
the institutional liver

transplantation waiting
list.

Transient improvement
in serum albumin in

treated pts (not
sustained at 3 mo);

improvement of serum
creatinine and MELD

score at 3 mo.

3 deaths in ctrl group (2
due to sepsis, 1 to

gastrointestinal
bleeding), 1 death in

treatment group on 88th
day after CD34+ cell

infusion (due to sepsis).
No major

procedure-related
complications.

[157]

T
1D

23 pts (12–35 yrs old),
diagnosis of T1D

within the previous
6 weeks.

Phase I/II clinical trial.
Pts underwent immune

ablation with
cyclophosphamide and

ATG, followed by
infusion via peripheral

vein of autologous
CD34+ cells (10.52 × 106

cells/kg).

Most pts showed a
reduction in Hb1Ac

levels and an increase in
C-peptide levels after

treatment.
20 pts experienced time

free from insulin (12
until the end of follow

up, up to 4 yrs).

Bilateral nosocomial
pneumonia (2 pts),

posttransplant
oligospermia (9 pts),

Graves’ disease (1 pt),
transient

hypergonadotropic
hypogonadism (1 pt),

autoimmune
hypoth-roidism (1 pt).

[159]

24 pts (12–35 yrs old),
diagnosis of T1D

within the previous
6 weeks, sustained

endogenous secretion
of insulin and WHO

performance status ≤
2.

Phase II clinical trial. Pts
underwent immune

ablation with
cyclophosphamide and

ATG, followed by
infusion via peripheral

vein of autologous
CD34+ cells (4.19 × 106

cells/kg).

General reduction in
Hb1Ac levels and

increase in C-peptide
levels after treatment.

20 pts experienced time
free from insulin (4 until
the end of follow-up, up

to 80 mo).

ATG–related skin
reaction/vasculitis

(4 pts), neutropenic fever
(12 pts), sepsis (4 pts, out

of which 1 was fatal).

[160]



Cells 2023, 12, 112 15 of 22

Table 3. Cont.

Condition Population Study Design Outcomes Major Adverse Events Ref

40 pts (14–27 yrs old),
recent diagnosis of

T1D with time from
symptom onset to
AHST 4–26 weeks

Phase II,
parallel-assignment,

non-randomized clinical
trial. Treatment

group pts underwent
immune ablation with
cyclophosphamide and

ATG, followed by
infusion via peripheral

vein of autologous
CD34+ cells. Ctrl

group pts received
regular insulin therapy.

Increase in C-peptide
levels in treatment

group and decline in ctrl
group at 48 mo.

Comparable reduction
in Hb1Ac levels in both

groups.
14 pts in treatment

group experienced time
free from insulin (3 until
the end of follow up, up
to 48 mo). One pt in ctrl

group experienced
transient insulin

independence for 7 mo.

Graves’ disease (2 pts on
treatment, 1 pt in ctrl
group), autoimmune

thyroid disease (2 pts in
ctrl group).

[161]

Abbreviations: ASHT = allogeneic hematopoietic stem cell transplantation; ALT = alanine aminotransferase;
AST = aspartate aminotransferase; ATG = anti-thymocyte globulin; CT = clinical trial; Hb1Ac = glycated
hemoglobin; MELD = model for end-stage liver disease; PT = patient; T1D = type 1 diabetes; WHO = World
Health Organization.

9. Conclusions

In the past, researchers have been focused on the quantification and identification of
the circulating “true EPCs”, while today the interest is gradually shifting to the study of
the complex network existing among BM, circulating HSPCs, and the CV system. Over the
years, the numerous theories regarding EPC origin led to opposing schools of thought that,
from a holistic point of view, were not mutually exclusive anyway. The intimate relationship
and legacy existing between hematopoietic and CV system are witnessed by the emerging
cross-talk signals that, through the BM, take part in cardiac and vascular regulation, both in
health and disease conditions. In the clinical arena, the quantification of circulating HSPC
subpopulations, not limited to the vasculotrophic phenotype, could provide additional
physiological and prognostic information improving CV risk stratification throughout
patient lifespan. In addition, a better understanding of cellular and molecular mechanisms
subtending BM dysfunction and BM stem/progenitor cells could boost the development of
novel therapies for CVD.
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