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ABSTRACT Staphylococcus aureus is an opportunistic pathogen and a leading cause of
morbidity and mortality worldwide. Genomic-based surveillance has greatly improved
our ability to track the emergence and spread of high-risk clones, but the full
potential of genomic data is only reached when used in conjunction with detailed
metadata. Here, we demonstrate the utility of an integrated approach by leverag-
ing a curated collection of clinical and epidemiological metadata of S. aureus in
the San Matteo Hospital (Italy) through a semisupervised clustering strategy. We
sequenced 226 sepsis S. aureus samples, recovered over a period of 9 years. By
using existing antibiotic profiling data, we selected strains that capture the full diver-
sity of the population. Genome analysis revealed 49 sequence types, 16 of which are
novel. Comparative genomic analyses of hospital- and community-acquired infection
ruled out the existence of genomic features differentiating them, while evolutionary
analyses of genes and traits of interest highlighted different dynamics of acquisition
and loss between antibiotic resistance and virulence genes. Finally, highly resistant
clones belonging to clonal complexes (CC) 8 and 22 were found to be responsible
for abundant infections and deaths, while the highly virulent CC30 was responsible
for rare but deadly episodes of infections.

IMPORTANCE Genome sequencing is an important tool in clinical microbiology, as it
allows in-depth characterization of isolates of interest and can propel genome-based
surveillance studies. Such studies can benefit from ad hoc methods of sample selection
to capture the genomic diversity present in a data set. Here, we present an approach
based on clustering of antibiotic resistance profiles that allows optimal sample selec-
tion for bacterial genomic surveillance. We apply the method to a 9-year collection
of Staphylococcus aureus from a large hospital in northern Italy. Our method allows
us to sequence the genomes of a large variety of strains of this important pathogen,
which we then leverage to characterize the epidemiology in the hospital and to
perform evolutionary analyses on genes and traits of interest. These analyses high-
light different dynamics of acquisition and loss between antibiotic resistance and
virulence genes.
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S taphylococcus aureus is a globally disseminated bacterial species capable of thriving
both free-living in the environment and associated with eukaryotic hosts (1). In humans,

S. aureus is present in the nasal microbiome of about 30% of the healthy population (2),
where it usually is a harmless commensal; however, it can also act as an opportunistic patho-
gen on immune-deficient hosts or body sites exposed during surgery. S. aureus can cause a
plethora of clinical manifestations, ranging from superficial skin infections to invasive, diffi-
cult to eradicate, and potentially fatal conditions, such as bacteremia, pneumonia, endocar-
ditis, and osteomyelitis (3). A key factor proposed to explain the success of S. aureus both as
a colonizer and as a pathogen is the ability to acquire novel genes and elements (e.g., transpo-
sons, bacteriophages, insertion sequences, pathogenicity islands) by horizontal gene transfer
(HGT), although chromosomal mutations in the core genome can also play a key role (4).
The frequent gain (or loss) of pathogenicity and resistance genes underpins the rapid evolu-
tion of high-risk clones, such as those resistant to methicillin (methicillin-resistant S. aureus
[MRSA]) (5) that are now widespread in both health care and community settings.

A central question of S. aureus epidemiology concerns the extent of overlap between
resistant clones circulating in health care settings, which are frequently exposed to anti-
biotics, and those in the community, which are broadly considered to be more suscepti-
ble to antibiotics (6). Early studies that compared community- and healthcare-acquired
(CA and HA) strains highlighted key molecular differences, such as differential expression of
the cytotoxin Panton-Valentine leukocidin (PVL, more common in CA strains) (7), different
staphylococcal chromosomal cassette (SCC) mec types (types IV and V are more common
in, but not restricted to, CA strains) (6–8). In addition to these genotypic characteristics, it was
shown that CA strains tend to affect healthier and younger patients, mostly causing minor
skin and soft tissue infections (9). With the advent of whole-genome sequencing (WGS),
more exhaustive comparisons have been performed which challenged the view that CA
and HA strains can be clearly distinguished on the basis of genomic features (10–16).

S. aureus was the first species for which population-scale genome sequencing was
exploited to understand local and global epidemiology of high-risk clones (17). Subsequent
studies helped to determine which clones were more frequent in specific settings and
worldwide (18–20) and in environments (21, 22). These population-wide studies pro-
vide important baseline data and complement studies focusing on specific lineages at
global or local levels (23, 24). These data have shed light on broad aspects of S. aureus epide-
miology, such as hypervirulence, specific lineages, and the reconstruction of transmission
chains during outbreaks (25–27).

Studies based on sequencing representative samples of the S. aureus population
“‘snapshots”’ (20) and studies focused on individual lineages are therefore both valuable
for understanding how the frequency of specific clones may change over time and from
region to region. However, these approaches may not capture the full diversity of the
population, and rare genotypes may be overlooked. Here, we take an alternative approach,
aimed to maximize the diversity of strains for sequencing in hospital settings by exploiting
archived antibiograms as proxies of genetic relatedness in a semisupervised sampling. We
apply our strategy on a 9-year data set from an Italian hospital, and we show that it allowed
us to sequence more rare strains, providing a more complete picture of the diversity existing
in the hospital. We then combined the detected genomic diversity with the available
metadata to examine potential differences between CA and HA strains and to investigate
risk factors and phyletic patterns of genes and traits of interest.

RESULTS AND DISCUSSION
Data set summary and antibiotic resistance. Our data set comprises a total of 7,523

records from different hospital wards and clinical samples, from 5,233 patients who tested
positive for S. aureus in 2011 to 2019. Of these patients, 2,807 stayed at the hospital at least
overnight and are thus considered inpatients, while the remaining 2,426 were classified as
outpatients. Of the 7,523 records, 1,404 (26.8%) are methicillin resistant (MRSA), a resistance
that was more common in samples from inpatients (32.2%) than in outpatients (20.5%).
MRSA isolates from inpatients were enriched (P, 2.2e-16) in blood (22%) and respiratory
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tract (22%) samples, while those from outpatients were more often from skin (39%) and
soft tissue (35%) (see Fig. S1 in the supplemental material). Fig. 1 shows a clustering of the
MRSA isolates based on profiles of resistance to the eight antibiotics for which the percentage
of resistant strains varied between 5% and 99%.

Linear regression estimated MRSA isolates to have decreased from 34.8% in 2011 to 23.5%
in 2019 (P5 0.0015). This change in percentage is not due to a reduction of MRSA in absolute
numbers, but to the increase of yearly methicillin-susceptible S. aureus (MSSA) isolates, which
in the analyzed time span increased from 73 in 2011 to 523 in 2019 (beta5 16.3, P5 0.002).

Resistance to penicillin, ciprofloxacin, erythromycin, clindamycin and gentamicin were
the most common across both MRSA and MSSA isolates, with the former characterized on
average by a larger number of resistances per isolate (Table S1). Resistance to teicoplanin,
daptomycin, and linezolid were found in less than 1% of isolates (generally regarded as false
positives; were not used for downstream analyses), while resistance to vancomycin was not
detected. Linear regression highlighted temporal trends in the relative abundance of resist-
ance. MRSA strains resistant to clindamycin, erythromycin, fosfomycin, ciprofloxacin, and rifam-
picin decreased in time, while the percentage of MSSA strains resistant to clindamycin and
erythromycin increased significantly, and those resistant to penicillin decreased (Table S2).

Selection of strains for sequencing. To select strains for sequencing that captured
the maximum amount of diversity, we reasoned that the antibiotic resistance profiles

FIG 1 Summary of the MRSA samples grouped on the basis of similarities in resistance profiles for 8
antibiotics, chosen because the percentage of resistant strains varied between 5% and 99%. Black squares
on the right indicate resistance, while gray squares indicate susceptibility. Additional metadata are shown in
the six columns on the left, highlighting a relatively homogeneous distribution for outcome, material, age,
CDC classification, and year of sampling with respect to the patterns of resistance.
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available for all isolates provides a valid proxy of genomic relatedness/divergence. On
this premise, we clustered isolates based on resistance profiles and selected isolates from
each cluster, while also maximizing the temporal spread. This aim was achieved through
a two-step procedure: the uniform manifold approximation and projection (UMAP) algo-
rithm was used to reduce the dimensionality of the antibiograms, and DBSCAN was used
to partition observations into groups of similar profiles.

This procedure resolved the 243 unique resistance profiles of the 7,523 isolates into
24 clusters (Fig. 2), 16 of which contained only MSSA isolates. Isolates were selected for
sequencing to include, where possible, at least one isolate per cluster per year of study.
This resulted in the selection of 226 samples, encompassing 79 different resistance profiles,
including some below 1% frequency (see Table S3 for a detailed description of the resistance
profiles and corresponding sequenced isolates). By comparison, random sampling resulted in
a significantly smaller number of unique resistance profiles (496 4).

Genomic analysis. The 226 genomes were sequenced and assembled (see Materials
and Methods). In silico multilocus sequence typing (MLST) identified 8 clonal complexes
(CCs) and 49 sequence types (STs), including 16 novel ones STs 6438 to 6452 and ST
6461 that were submitted to PubMLST (28). We identified 87 Spa types and 4 staphylo-
coccal cassette chromosome mec (SCCmec) types: classical nosocomial SCCmec types I
(n 5 11) and II (n 5 6) represented a minority, while cassette IV, historically community
associated (n 5 74), made up 76% of the 97 MRSA isolates. SCCmec V, another commu-
nity-associated cassette, was detected in only 6 genomes. A detailed description of the
isolates and their genomic characteristics is given in Table S4.

The sampling strategy used allowed us to detect rare strains that otherwise would
have remained unseen with a sequencing effort based on random sampling. Indeed, we
found 37 locally rare STs (i.e., represented by one or two genomes in the entire data set),
16 of which are completely novel, for which we had to define novel STs. The phylogenetic
tree of our entire data set shows that we sequenced genomes from 13 rare and phyloge-
netically divergent lineages, which based on branch length can be clearly seen as not closely
related to the common ones (Fig. S2).

Although our sampling strategy intrinsically prevents the use of genomic data in con-
junction with information regarding the relative frequencies of the resistance profiles, this
approach maximizes phylogenetic breadth and thus allows us to investigate how often viru-
lence and antibiotic resistance genes (ARGs) are lost or gained over evolutionary time. ARGs
impose a fitness cost in the absence of the antibiotic, and this may provide strong selective
pressure for their rapid loss after treatment (29). We explore these dynamics using the phylo-
genetic signal (here indicated by D) as previously implemented in R (30) (Table S7). Briefly,
this metric provides a means to gauge the concordance between the presence/absence of a
given trait with the branching pattern of the underlying tree; a negative value reflects high
concordance, while a positive value indicates independence from the phylogenetic topology

FIG 2 UMAP transformation of the data and integration with sampling year. The x and y axes correspond
to the first two UMAP components and are therefore a function of the original resistance profiles, while
the z axis corresponds to the year of sampling (z 5 0 is 2011). (a and b) In panel a the colors indicate the
sampling years (2011 to 2019), while in panel b the black dots indicate the isolates selected for genome
sequencing.
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and, therefore, dispersion of a trait. A trait in this context can be a gene, a phenotype, or any
other binary feature (presence/absence) associated with the isolates. As a control, we cal-
culated the same metric for a trait that is, by definition, highly consistent with the tree, i.e.,
belonging to a clonal complex (CC22).

The D value of all-cause mortality in this analysis is 1.5, indicating a very low correlation
of this trait with the phylogenetic tree. This suggests that the outcome of S. aureus sepsis
could be largely independent from the S. aureus lineages and that other factors are likely
accountable for the death of the patients (such as starting health condition of the patient,
nature of the illness/wound, age). This topic was further explored with the ad hoc analysis
presented below.

The presence/absence of all virulence factors is consistent with the underlying tree
(D, –1), suggesting identity by descent to be the dominant mode of evolution, rather than
frequent horizontal transfer. Genes linked within a single pathogenicity island (e.g., splA and
splB) show highly consistent results, as expected for linked genes inherited together.

D values for antibiotic resistance genes are also mostly negative, but closer to zero than
those for virulence genes, suggesting a faster rate of gains and losses, which is to be expected,
as many resistance genes are carried on plasmids. We speculate that larger or positive D
values for antibiotic resistance genes reflect variable levels of antibiotic exposure, combined
with strong selection pressures for the gain and loss of these genes. Resistance genes may
impose a fitness cost in the absence of the antibiotic, and the plasmid carrying these genes
can be lost quickly if compensatory mutations are not acquired. Alternatively, resistant and
sensitive strains may coexist in the environment.

Rifampicin and ciprofloxacin show extreme values; the former is the only character
highly over dispersed on the tree, which is consistent with very frequent losses and gains
(D5 1.86). In contrast, ciprofloxacin resistance is by far the most stable (D5 –20), which is
consistent with previous findings (31). While both these resistances are due to mutations
in housekeeping chromosomal genes, there are important differences between them.
Resistance to rifampicin is typically caused by single mutations in the rpoB gene (32),
while resistance to ciprofloxacin requires multiple mutations in different genes (mainly
in genes encoding DNA gyrase and topoisomerase IV, the targets of the antibiotic) (33).
Additionally, mutations conferring resistance to rifampicin are associated with a significant
fitness cost in the absence of antibiotic, while mutations conferring resistance to ciproflox-
acin confer a comparatively mild decrease in fitness (29, 34). Both the fitness cost and the
resistance level can be reduced by additional mutations at the same or different loci in the
absence of antibiotic pressure (35).

We conclude that resistance to rifampicin is easy to develop but costly to maintain, while
resistance to ciprofloxacin is more difficult to acquire (multiple mutations required) but less
expensive. Indeed, mathematical modeling has previously shown that even small differences
in fitness can translate into very different survival times after removal of selective pressure
(e.g., 36). According to the modeling by Nowak, if rifampicin-resistant strains have a 25%
decrease in fitness with respect to ciprofloxacin (29, 34), they will be replaced more than four
times faster by wild-type strains once antibiotic treatment is removed.

Additionally, we performed a birth-death analysis to explore the relative rates of gains
and losses of these two resistance traits compared to the presence/absence of a virulence
gene, lukED (see Materials and Methods; Fig. 3b). This confirmed that resistance tends to
be lost more commonly than gained, while the opposite is true for the more stable virulence
gene, lukED. Rifampicin resistance is more rapidly lost than ciprofloxacin resistance, which
again is consistent with the former conferring a greater fitness cost.

Community- and hospital-acquired infections. S. aureus infections are usually defined
as hospital or community acquired (HA and CA) based on epidemiological criteria. While
most early studies suggested genetic characteristics that may differentiate HA and CA, later
comparative studies have challenged this view (14).

According to the CDC epidemiological criteria, out of the 2,807 inpatients positive
for S. aureus in our data set, 51.7% are classified as CA (while the 2,426 outpatients were
clearly all classified as CA). HA isolates were more common in blood (27%) and respiratory
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tract samples (29%), while CA isolates were more commonly recovered from skin (24%)
and soft tissue infections (33%) (Fig. S1). During this period, CA infections increased in
yearly numbers (from 39 in 2011 to 182 in 2019), while HA remained stable, leading to an
increase of CA from 38% to 54.4% of the total (linear regression P , 0.01, beta 5 1.8),
becoming the primary source of infections in the hospital. By additionally partitioning HA
and CA infections into MR and MS, we observed significant changes in the prevalence of
CA-MSSA and HA-MRSA in inpatients. The percentage of CA-MSSA increased from 27% to
42.1%, while HA-MRSA declined from 30.2% to 16% (see Table S5 for raw numbers and
regression values). Comparison of resistance patterns of HA and CA samples indicates that
the former tend to have more resistances than the latter, with the largest differences being
for methicillin (37.89% and 27.05%, respectively) and ciprofloxacin (39.29% and 27.8%,
respectively) (Table S6). However, since MRSA and MSSA are nonhomogeneously distrib-
uted in the two groups, we explored how the number of different antibiotic resistances is

FIG 3 (a) Phyletic patterns with ancestral state reconstruction for two resistance phenotypes and one
virulence gene. Rifampicin resistance is highly scattered across the tree and is lost quickly, consistent
with a high fitness cost in the absence of the antibiotic. This contrasts with the ciprofloxacin resistance,
which is more common and carries a lower fitness cost. The distribution of LukED closely matches the
phylogeny. (b) Evolutionary rates for the same traits, indicating that reversion rates (from resistant to sensitive)
for antibiotics are on average higher than the rate of loss of virulence genes. The trees have branch lengths
rescaled for graphical purposes.
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distributed across the four groups, CA-MSSA, HA-MSSA, CA-MRSA, and HA-MRSA (Fig. S3),
confirming that the main differences reflect the MRSA/MSSA partition. As expected, and
previously reported (20), isolates sensitive to all or most antibiotics are more often MSSA,
while multidrug-resistant isolates tend to be MRSA (Table S2).

Considering the 226 sequenced genomes of sepsis isolates, 35% were HA and 65%
CA. We checked for the presence of markers known to be associated with CA, such as
the SCCmec type and the presence of the PVL gene. However, no trait was found to be
significantly associated with either HA or CA strains, confirming previous findings that
showed that the two epidemiological classes are not distinct at the genomic level.

Mortality rate. Through the studied period, S. aureus infections can be connected
to at least 435 all-cause deaths (8.3%; mean age, 71.8 years), 418 of which were inpatients.
We used generalized linear models (GLM) to identify predictive factors of mortality. At first,
we used the whole metadata associated with samples and patients, including antibiotic
resistances, site of infection/sampling, and age as predictors (Table S7). This resulting model
highlighted that the most significant predictor associated with fatal outcome is age, to-
gether with two source materials, blood and respiratory tract, which are associated with
invasive infections and higher mortality rates (42.5% and 30%, respectively). Two antibiotic
resistances, to methicillin and fosfomycin, are also positively significantly associated with
mortality. Resistance to ciprofloxacin is associated with increased survivability. Mortality rate
due to MR infections was higher that due to MS infections (15% to 5.9%), a difference that
may be associated with the higher average number of resistances in MR isolates (Fig. S3).
Additionally, the average length of stay (LOS) for MR infections is significantly longer than
for MS infected inpatients (31.2 and 18.21, respectively). Older patients usually have weak-
ened immune systems, which makes any infection potentially lethal; this might mask the
smaller contribution of other predictors. For this reason, we also built a model removing iso-
lates from patients more than 60 years old (Table 1). This model confirms the one above and
additionally identifies urine infections as leading to an increased risk of death.

Lastly, the mortality of CA and HA strains was 13.2% and 16.7%, respectively. For the latter,
we report a significant mortality reduction (P 5 0.03, beta 5 –0.7), from 20.5% in 2011 to
13.1% in 2019, while casualties associated with CA strains were relatively stable (standard
deviation5 2.2%). By exploiting the additional MR/MS partitioning, we detected a significant
(P5 0.02, beta5 –0.4) decline over time in the number of HA-MR casualties.

When focusing on the isolates selected for genomic sequencing, the overall mortality
rate was 29.7% (n 5 53). The attributable mortality rate for MSSA (n 5 29) and MRSA
(n 5 24) blood infections was 28.7% and 31.1%, respectively. None of the CCs were found
to be significantly associated with an increased risk of death, even though we found CC22,
CC8, and CC30 to have a rate of mortality above the mean, standing at 40.9%, 39.3%, and
33.3%, respectively.

This result agrees with that described above, with the distribution of mortality on the
phylogenetic tree being best explained by a model that does not account for phylogenetic
structure (Table S8). The two results indicate that mortality is more dependent on charac-
teristics of the host/infection site than on genomic properties of the specific S. aureus strain.
To explore this issue in more detail, we applied phylogenetic regression to mortality using

TABLE 1 Significant (P, 0.05) predictors of worse outcome when patients older than
60 years are removed from the analysis and the predictors indicated in Materials and Methodsa

Predictor Estimate SE Z value Significance
Intercept 24.77 0.85 25.59 2.22E-08
Methicillin 1.62 0.70 2.32 2.02E-02
Fosfomycin 1.90 0.84 2.25 2.43E-02
Ciprofloxacin 21.73 0.76 22.28 2.25E-02
Blood 2.69 0.68 3.97 7.09E-05
Respiratory tract 3.07 0.68 4.51 6.42E-06
Urine 2.41 0.98 2.45 1.43E-02
aThis filtered data set highlights additional predictors that may be important when infections involve younger
patients.
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as predictors both hospital and genomics data. In contrast to the generalized models
described above, in this case we integrated the structure of the phylogenetic tree to take
into account the nonindependence of the observations. The model identifies several predic-
tors that are significantly associated with the outcome; the most important is age, followed
by contracting the infection once inside the hospital (CDC-HA). We also identified some anti-
biotic resistances and virulence factors that are associated with the outcome (Table S9).

It must be noted that our analysis presents limitations. First, we were not able to evaluate
the association between genotype and important clinical outcomes outside mortality (e.g.,
readmission, prolonged bacteremia), as we had no access to these metadata. Additionally,
our numbers are limited; this could explain discrepancies with previous studies suggesting a
significant relationship of genotype and mortality (e.g., 37, 38). It should be considered, how-
ever, that studies such as those cited above use multivariate regression without taking into
account the fact that genomes are not independent observations. This makes all studies
where this is not considered potentially flawed. The major technical novelty of our paper is
indeed that we account for phylogenetic distances in the regression analysis, which enables
us to remove the confounding effect of an uneven sampling of the different CCs. We posit
that future studies, with higher numbers, following our unbiased sampling approach and con-
sidering genomes as not independent observations could be the key to better understanding
whether and howmuch genotypes and outcomes can be associated.

Clonal complexes. Almost half (n 5 109) of the 226 sequenced strains belong to CC5,
CC8, and CC22, which are known to be globally abundant, and we therefore inspected them
in more detail, together with CC30, a complex characterized by a high all-cause mortality rate
(33%). We used core single-nucleotide polymorphism (SNP)-based phylogenetic analysis and
profiling of virulence and antibiotic resistance genes, and the results are summarized in Fig. 4
(see also Fig. S4 and S5 for trees without and with branch lengths). Figure S6 shows the heat-
maps of the SNP distances between pairs of isolates, highlighting the presence of clusters of
genomes with high levels of similarity.

The phylogenetic analyses, which include genomes from public database of the Bacterial
and Viral Bioinformatics Resource Center (BV-BRC) (39) (see Table S10), provide the means to
determine whether monophyletic clades of closely related genomes can be found in our
data set. Indeed, such clades can be spotted in the phylogenetic tree of CC8 and CC22 and
encompass isolates dating across the 9 years of our data set, indicating that these strains are
endemic to the hospital. The phylogenetic tree of CC5 is also characterized by several small
monophyletic clades of highly related genomes, but these are more limited in time, indicat-
ing that there were independent introductions in the hospital with consequent outbreaks
that were quickly eradicated. The phylogenetic tree of CC30 reveals interesting differences
with respect to the other three CCs: genomes are more diverse and spread on the tree with
no monophyletic clades, suggesting sporadic but deadly infections, with no strain appa-
rently persisting in the hospital. This lower persistence of CC30 could be explained by an av-
erage lower resistance to antibiotics of these isolates (Fig. 4), as also previously reported by
Aanensen and colleagues (20).

Besides being resistant to penicillin, and less commonly to tetracycline, CC5, CC8, and
CC22 are also usually resistant to ciprofloxacin and oxacillin/cefoxitin, these two being rare
in other CCs, and to a lesser degree also gentamicin and erythromycin, which are shared
with several other CCs (Fig. S5a). Isolates belonging to CC30 show much lower levels of anti-
biotic resistance. CC5, CC22, and CC30 possess the enterotoxin gene cluster (ecg, light blue
in Fig. S5b), genes that are only sparsely present in other CCs, except for CC45. They also
code for hemolysins, chemotaxis inhibitory protein (Chp), and staphylococcal complement
inhibitor (Scn). CC5 and CC8 show the sporadic presence of several additional toxins (light
purple in Fig. S5b) that are not found in any of the other CCs, including some that were
annotated as superantigens (ser and sel) and share the presence of a serine protease operon
(represented here by the splABE genes) together with the pore-forming toxin gene lukED. A
portion of CC30 isolates also harbor tst, an association consistent with previous genomics
studies (20). This gene has been implicated in toxic shock syndrome in susceptible hosts
(40). This serious and often fatal condition is triggered by superantigen toxins causing a
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cytokine avalanche by T cells manifesting as fever, rash, shock, and rapid and multiple organ
failure (41).

Conclusions. In this work we present a strategy for maximizing the diversity of clini-
cal strains that can be characterized through genomics in real-world settings with finite
resources. The strategy exploits antibiograms as a proxy of genetic diversity to select iso-
lates for sequencing, as these data are usually generally available for all isolates in clinical
settings. We validated our strategy on an S. aureus collection, demonstrating how it can
reveal rare lineages by reducing the redundancy that characterizes bacterial populations,
especially in hospitals, where outbreaks of identical clones are common.

This approach provides a means to avoid the oversampling of very similar isolates
from common STs, allowing us to obtain genomes from rarer strains, which would be less
likely to be detected through a random population snapshot. We posit that obtaining the
genomes of rare strains provides a more complete genomic and phylogenetic picture of the
epidemiology of the hospital. This, in turn, grants advantages such as additional power to
forecasting strategies, which can benefit from the early detection of rare strains that could
be rising in prevalence and cause outbreaks in the future.

MATERIALS ANDMETHODS
Determination of antimicrobial susceptibility by MIC. Staphylococcus aureus isolates from patients

admitted to Fondazione IRCCS Policlinico San Matteo Hospital (Pavia, Italy) are routinely investigated by
the automated system Phoenix (Becton, Dickinson, Franklin Lakes, NJ, USA) using PMIC-88 panels for the
detection of antimicrobial resistances and determination of MIC values. MICs are interpreted with the EUCAST

FIG 4 (a and b) Summary of antibiotic resistances (a) and virulence factors (b) in a clonal complex perspective.
Cells in the heatmap correspond to the frequency of strains possessing a resistance or virulence factor in a
given CC. Functional annotation of virulence genes is also indicated.
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breakpoints (42) to define which strains are susceptible, intermediate, or resistant to each antibiotic. This work
collects and exploits available metadata collected in the hospital for all the isolates of S. aureus and the respec-
tive patients, from 1 January 2011 to 31 December 2019. For all isolates, resistance profiles were collected with
respect to 15 antibiotic compounds of clinical relevance: penicillin, teicoplanin, clindamycin, daptomycin, cotri-
moxazole, oxacillin, cefoxitin, erythromycin, linezolid, rifampicin, vancomycin, gentamicin, fosfomycin, ciproflox-
acin, and tetracycline. Oxacillin and cefoxitin results are used to define methicillin resistance. For all patients,
the following data were retrieved and used: isolation material, patient age, admission date, outcome. It should
be noted that due to technical issues occurring within the hospital servers/digital infrastructure before the be-
ginning of this project, for the years 2011 and 2015 an unspecified number of samples were lost.

CDC classification. Community- and health care-acquired infections are currently defined based on
criteria provided by the Centers for Disease Control and Prevention (CDC) (11). An isolate is considered
CA if the patient fulfills the following criteria: (i) testing positive for an infection within 48 h of admission,
(ii) not having undergone surgery in the 48 h since admission, (iii) not residing in a long-term-care facil-
ity before admission, and (iv) not having undergone hemodialysis/peritoneal dialysis in the past year or
during the current admission. Instead, it is considered HA if a subsequently positive wound culture was
taken after 48 h from the hospital admission or if one or more of the CA criteria are not met.

Antibiogram-based isolate selection for genome sequencing. All antibiograms with missing MICs,
MICs classified as intermediate, or ambiguous MIC values were removed from the data set. The remaining MIC
values were coded into binary variables R (resistant) and S (susceptible). Data set dimensionality was first
reduced with a technique called uniform manifold approximation and projection (UMAP) using the R pack-
age uwot (43). Subsequently, DBSCAN enabled the identification of compact clusters in UMAP coordinates
using the R package DBSCAN (44). This analysis informed the selection of 226 S. aureus isolates that capture all
the cluster diversity.

DNA extraction and sequencing. DNA was extracted from 226 blood isolates using the DNeasy
blood and tissue kit (Qiagen, Hilden, Germany), following the manufacturer’s recommendation and adding an
initial step of incubation of the bacterial pellet with lysozyme (20 mg/mL) for 2 h; gel electrophoresis (Tris-ace-
tate-EDTA [TAE], 1.5% agarose) was used to check DNA quantity and quality. Whole-genome sequencing was
performed in paired-end mode (2 � 150 bp) on a NovaSeq machine (Illumina). Reads were quality checked
with FastQC (www.bioinformatics.babraham.ac.uk/projects/fastqc/) and assembled with SPAdes v.3.14.1 (45),
and quality was assessed with assembly-stats (github.com/sanger-pathogens/assembly-stats). In order to evalu-
ate the completeness of our genome assemblies, we performed a previously described check (46). Briefly, we
searched for the presence of core genome MLST (cgMLST) genes (determined in reference 47) using BLAST
and verified that all genomes contained more than 95% of them (Table S4).

In silico typing and annotation. In silicomultilocus sequence typing (MLST) was performed by com-
paring our genomes with the S. aureus MLST database (PubMLST) (28), using an in-house python script.
Typing of the staphylococcal cassette chromosomemec (SCCmec) element was done with the web implemen-
tation of SCCmecFinder (48) with the options min_coverage5 80 and percentage identity5 90. Spa types
were assigned with Ridom SeqSphere1 (48, 49). Presence/absence profiles of 32 virulence factors, chosen
because they are commonly associated with bloodstream infections and involved in different clinical syn-
dromes, were identified with VirulenceFinder v.2.0 (50), with the settings min_coverage 5 80 and percentage
identity5 90.

Statistical analyses. As recommended by the Clinical and Laboratory Standards Institute (CLSI)
guidelines M39-A4 (51) and many recent papers (e.g., 52), statistical analyses were performed on the first
isolate per patient only. R (v3.2.4) was used for all statistical analyses. Antibiotic resistance data were analyzed
using the chisq.test function, while population proportions were assessed with the proportion test (Z test)
through the function prop.test. The lm function was used for linear regression using time as a predictor; a signif-
icant regression coefficient (beta) for time was taken as an indication of a temporal trend in the data. For gener-
alized models, we used the glm function and a combination of numerical and categorical variables as detailed
in Results and Discussion. For models with outcome as the dependent variable considering all isolates, we
included antibiotic resistance profiles, age, material, and CDC classification as predictors.

Phylogenetic analyses. A core SNP-based phylogeny and an SNP distance matrix were generated
for each of the selected clonal complexes (CC) using the P-DOR pipeline (53). Briefly, the pipeline contex-
tualizes the query genomes with background data sets, based on genetic similarity. Core SNPs are then called,
aligning the genomes to a reference. The following reference genomes were used: GenBank accession no.
NC_017763.1 (CC22), BX571856.1 (CC30), CP026068.1 (CC8), and CP021105.1 (CC5); the BV-BRC (39) genomes
used for contextualization are available in Table S10. The resulting core SNP multialignment was fed to IQ-TREE
(54) to obtain phylogenetic trees for each CC. P-DOR was also used to generate the phylogenetic tree of
the entire novel local data set (GenBank accession no. BX571858), skipping the step of retrieval of database
genomes from BV-BRC (39).

We estimated the transition rates of a simple birth-and-death model based on the phyletic pattern
of interest, whose states are given by sensitive (or absent, S or A) and resistant (or present, R or P) and
are on the core SNP-based phylogenetic tree (Fig. 3b). The mcmcMk function from the R package phytools
(55) applied here uses the tree and the phyletic pattern to estimate the transition rates among the two states
and was run for 50,000 generations; the function contMap from the same package was used to reconstruct
and map ancestral states on the phylogenetic tree; the phylogenetic signal was estimated using the function
phylo.D from the package caper (https://rdrr.io/cran/caper/) and 1,000 permutations. Linear phylogenetic
regression was performed with phylolm (56) to explicitly consider the nonindependence of observations
through the relationships summarized by the phylogenetic tree. Before using presence/absence profiles of vir-
ulence genes as predictors in phylogenetic regression, we removed colinear profiles that are known to affect
parameter estimation in a negative way. This was done by identifying genes with profiles 90% identical or
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more and then using one of the profiles as a representative in regression, resulting in 18 virulence gene
patterns over 26 genes.

Data availability. The genome sequences are available at NCBI under BioProject accession number
PRJNA797572. Accession numbers of BV-BRC genomes used for contextualization are listed in Table S10.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.01 MB.
SUPPLEMENTAL FILE 2, PDF file, 0.4 MB.
SUPPLEMENTAL FILE 3, PDF file, 0.02 MB.
SUPPLEMENTAL FILE 4, PDF file, 0.1 MB.
SUPPLEMENTAL FILE 5, JPG file, 0.2 MB.
SUPPLEMENTAL FILE 6, PNG file, 0.3 MB.
SUPPLEMENTAL FILE 7, DOCX file, 0.02 MB.
SUPPLEMENTAL FILE 8, XLSX file, 0.1 MB.

ACKNOWLEDGMENT
The project was funded by Ricerca Corrente grant 924-rcr2018i-34 (Italian Ministry of

Health) to S.G.

REFERENCES
1. Balasubramanian D, Harper L, Shopsin B, Torres VJ. 2017. Staphylococcus

aureus pathogenesis in diverse host environments. Pathog Dis 75:ftx005.
https://doi.org/10.1093/femspd/ftx005.

2. Kluytmans JAJW, Kluytmans JAJ, Wertheim HFL. 2005. Nasal carriage of
Staphylococcus aureus and prevention of nosocomial infections. Infec-
tion 33:3–8. https://doi.org/10.1007/s15010-005-4012-9.

3. Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. 2015. Staph-
ylococcus aureus infections: epidemiology, pathophysiology, clinical manifes-
tations, and management. Clin Microbiol Rev 28:603–661. https://doi.org/10
.1128/CMR.00134-14.

4. Haaber J, Penadés JR, Ingmer H. 2017. Transfer of antibiotic resistance in
Staphylococcus aureus. Trends Microbiol 25:893–905. https://doi.org/10
.1016/j.tim.2017.05.011.

5. Jani M, Sengupta S, Hu K, Azad RK. 2017. Deciphering pathogenicity and
antibiotic resistance islands in methicillin-resistant Staphylococcus aureus
genomes. Open Biol 7:170094. https://doi.org/10.1098/rsob.170094.

6. Tsuji BT, Rybak MJ, Cheung CM, Amjad M, Kaatz GW. 2007. Community-
and health care-associated methicillin-resistant Staphylococcus aureus: a
comparison of molecular epidemiology and antimicrobial activities of var-
ious agents. Diagn Microbiol Infect Dis 58:41–47. https://doi.org/10.1016/
j.diagmicrobio.2006.10.021.

7. Baggett HC, Hennessy TW, Rudolph K, Bruden D, Reasonover A, Parkinson
A, Sparks R, Donlan RM, Martinez P, Mongkolrattanothai K, Butler JC.
2004. Community-onset methicillin-resistant Staphylococcus aureus asso-
ciated with antibiotic use and the cytotoxin Panton-Valentine leukocidin
during a furunculosis outbreak in rural Alaska. J Infect Dis 189:1565–1573.
https://doi.org/10.1086/383247.

8. Berglund C, Ito T, Ikeda M, Ma XX, Söderquist B, Hiramatsu K. 2008. Novel
type of staphylococcal cassette chromosome mec in a methicillin-resist-
ant Staphylococcus aureus strain isolated in Sweden. Antimicrob Agents
Chemother 52:3512–3516. https://doi.org/10.1128/AAC.00087-08.

9. DavidMZ, Daum RS. 2010. Community-associatedmethicillin-resistant Staphy-
lococcus aureus: epidemiology and clinical consequences of an emerging epi-
demic. Clin Microbiol Rev 23:616–687. https://doi.org/10.1128/CMR.00081-09.

10. Miller LG, Perdreau-Remington F, Bayer AS, Diep B, Tan N, Bharadwa K,
Tsui J, Perlroth J, Shay A, Tagudar G, Ibebuogu U, Spellberg B. 2007. Clinical
and epidemiologic characteristics cannot distinguish community-associated
methicillin-resistant Staphylococcus aureus infection frommethicillin-suscepti-
ble S. aureus infection: a prospective investigation. Clin Infect Dis 44:471–482.
https://doi.org/10.1086/511033.

11. David MZ, Glikman D, Crawford SE, Peng J, King KJ, Hostetler MA, Boyle-
Vavra S, Daum RS. 2008. What is community-associated Methicillin-resist-
ant Staphylococcus aureus? J Infect Dis 197:1235–1243. https://doi.org/
10.1086/533502.

12. McCarthy NL, Sullivan PS, Gaynes R, Rimland D. 2010. Health care-associ-
ated and community-associated methicillin-resistant Staphylococcus aureus

infections: a comparison of definitions. Am J Infect Control 38:600–606. https://
doi.org/10.1016/j.ajic.2010.01.006.

13. Mediavilla JR, Chen L, Mathema B, Kreiswirth BN. 2012. Global epidemiol-
ogy of community-associated methicillin resistant Staphylococcus aureus
(CA-MRSA). Curr Opin Microbiol 15:588–595. https://doi.org/10.1016/j.mib
.2012.08.003.

14. Feil EJ, Cooper JE, Grundmann H, Robinson DA, Enright MC, Berendt T,
Peacock SJ, Smith JM, Murphy M, Spratt BG, Moore CE, Day NPJ. 2003.
How clonal is Staphylococcus aureus? J Bacteriol 185:3307–3316. https://
doi.org/10.1128/JB.185.11.3307-3316.2003.

15. Calfee DP. 2017. Trends in community versus health care-acquired methi-
cillin-resistant Staphylococcus aureus infections. Curr Infect Dis Rep 19:
48. https://doi.org/10.1007/s11908-017-0605-6.

16. Pang R, Wu S, Zhang F, Huang J, Wu H, Zhang J, Li Y, Ding Y, Zhang J,
ChenM,Wei X, Zhang Y, Gu Q, Zhou Z, Liang B, Li W,WuQ. 2020. The genom-
ic context for the evolution and transmission of community-associated ST59
through the food chain. Front Microbiol 11:422. https://doi.org/10.3389/fmicb
.2020.00422.

17. Harris SR, Feil EJ, Holden MTG, Quail MA, Nickerson EK, Chantratita N,
Gardete S, Tavares A, Day N, Lindsay JA, Edgeworth JD, de Lencastre H, Parkhill
J, Peacock SJ, Bentley SD. 2010. Evolution of MRSA during hospital transmission
and intercontinental spread. Science 327:469–474. https://doi.org/10.1126/
science.1182395.

18. Monaco M, Pimentel de Araujo F, Cruciani M, Coccia EM, Pantosti A. 2017.
Worldwide Epidemiology and Antibiotic Resistance of Staphylococcus aureus.
Curr TopMicrobiol Immunol 409:21–56. https://doi.org/10.1007/82_2016_3.

19. Stefani S, Chung DR, Lindsay JA, Friedrich AW, Kearns AM, Westh H, Mackenzie
FM. 2012. Meticillin-resistant Staphylococcus aureus (MRSA): global epidemiol-
ogy and harmonisation of typingmethods. Int J Antimicrob Agents 39:273–282.
https://doi.org/10.1016/j.ijantimicag.2011.09.030.

20. Aanensen DM, Feil EJ, Holden MTG, Dordel J, Yeats CA, Fedosejev A,
Goater R, Castillo-Ramírez S, Corander J, Colijn C, Chlebowicz MA, Schouls L,
Heck M, Pluister G, Ruimy R, Kahlmeter G, Åhman J, Matuschek E, Friedrich
AW, Parkhill J, Bentley SD, Spratt BG, Grundmann H, European SRL Working
Group. 2016. Whole-genome sequencing for routine pathogen surveillance in
public health: a population snapshot of invasive Staphylococcus aureus in
Europe. mBio 7:e00444-16. https://doi.org/10.1128/mBio.00444-16.

21. Matuszewska M, Murray GGR, Harrison EM, Holmes MA, Weinert LA. 2020.
The Evolutionary Genomics of Host Specificity in Staphylococcus aureus.
Trends Microbiol 28:465–477. https://doi.org/10.1016/j.tim.2019.12.007.

22. Merla C, Kuka A, Petazzoni G, Postiglione U, Zatelli M, Gaiarsa S, Mariani B,
Corbella M, Marone P, Sassera D, Cambieri P. 2022. Livestock-associated
methicillin-resistant Staphylococcus aureus in inpatients: a snapshot from
an Italian hospital. J Glob Antimicrob Resist 30:10–15. https://doi.org/10
.1016/j.jgar.2022.05.013.

Genome Surveillance of Hospital Staphylococcus aureus Microbiology Spectrum

July/August 2023 Volume 11 Issue 4 10.1128/spectrum.01010-23 11

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

07
 M

ay
 2

02
4 

by
 1

59
.1

49
.1

92
.8

6.

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA797572
https://doi.org/10.1093/femspd/ftx005
https://doi.org/10.1007/s15010-005-4012-9
https://doi.org/10.1128/CMR.00134-14
https://doi.org/10.1128/CMR.00134-14
https://doi.org/10.1016/j.tim.2017.05.011
https://doi.org/10.1016/j.tim.2017.05.011
https://doi.org/10.1098/rsob.170094
https://doi.org/10.1016/j.diagmicrobio.2006.10.021
https://doi.org/10.1016/j.diagmicrobio.2006.10.021
https://doi.org/10.1086/383247
https://doi.org/10.1128/AAC.00087-08
https://doi.org/10.1128/CMR.00081-09
https://doi.org/10.1086/511033
https://doi.org/10.1086/533502
https://doi.org/10.1086/533502
https://doi.org/10.1016/j.ajic.2010.01.006
https://doi.org/10.1016/j.ajic.2010.01.006
https://doi.org/10.1016/j.mib.2012.08.003
https://doi.org/10.1016/j.mib.2012.08.003
https://doi.org/10.1128/JB.185.11.3307-3316.2003
https://doi.org/10.1128/JB.185.11.3307-3316.2003
https://doi.org/10.1007/s11908-017-0605-6
https://doi.org/10.3389/fmicb.2020.00422
https://doi.org/10.3389/fmicb.2020.00422
https://doi.org/10.1126/science.1182395
https://doi.org/10.1126/science.1182395
https://doi.org/10.1007/82_2016_3
https://doi.org/10.1016/j.ijantimicag.2011.09.030
https://doi.org/10.1128/mBio.00444-16
https://doi.org/10.1016/j.tim.2019.12.007
https://doi.org/10.1016/j.jgar.2022.05.013
https://doi.org/10.1016/j.jgar.2022.05.013
https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.01010-23


23. Abdelbary MMH, Feil EJ, Senn L, Petignat C, Prod’homG, Schrenzel J, François P,
Werner G, Layer F, Strommenger B, Pantosti A, Monaco M, Denis O, Deplano A,
Grundmann H, Blanc DS. 2020. Phylogeographical analysis reveals the historic
origin, emergence, and evolutionary dynamics of methicillin-resistant ST228.
FrontMicrobiol 11:2063. https://doi.org/10.3389/fmicb.2020.02063.

24. Reuter S, Török ME, Holden MTG, Reynolds R, Raven KE, Blane B, Donker T,
Bentley SD, Aanensen DM, Grundmann H, Feil EJ, Spratt BG, Parkhill J,
Peacock SJ. 2016. Building a genomic framework for prospective MRSA
surveillance in the United Kingdom and the Republic of Ireland. Genome
Res 26:263–270. https://doi.org/10.1101/gr.196709.115.

25. Harris SR, Cartwright EJP, Török ME, Holden MTG, Brown NM, Ogilvy-Stuart
AL, Ellington MJ, Quail MA, Bentley SD, Parkhill J, Peacock SJ. 2013. Whole-
genome sequencing for analysis of an outbreak of meticillin-resistant Staph-
ylococcus aureus: a descriptive study. Lancet Infect Dis 13:130–136. https://
doi.org/10.1016/S1473-3099(12)70268-2.

26. Stein M, Navon-Venezia S, Chmelnitsky I, Kohelet D, Schwartz O, Agmon
O, Somekh E. 2006. An outbreak of new, nonmultidrug-resistant, methicillin-
resistant Staphylococcus aureus strain (SCCmec type iiia variant-1) in the neo-
natal intensive care unit transmitted by a staff member. Pediatr Infect Dis J 25:
557–559. https://doi.org/10.1097/01.inf.0000219407.31195.44.

27. Manara S, Pasolli E, Dolce D, Ravenni N, Campana S, Armanini F, Asnicar F,
Mengoni A, Galli L, Montagnani C, Venturini E, Rota-Stabelli O, Grandi G,
Taccetti G, Segata N. 2018. Whole-genome epidemiology, characterisa-
tion, and phylogenetic reconstruction of Staphylococcus aureus strains in
a paediatric hospital. Genome Med 10:82. https://doi.org/10.1186/s13073
-018-0593-7.

28. Jolley KA, Bray JE, Maiden MCJ. 2018. Open-access bacterial population
genomics: BIGSdb software, the PubMLST.org website and their applications.
WellcomeOpen Res 3:124. https://doi.org/10.12688/wellcomeopenres.14826.1.

29. Melnyk AH, Wong A, Kassen R. 2015. The fitness costs of antibiotic resist-
ance mutations. Evol Appl 8:273–283. https://doi.org/10.1111/eva.12196.

30. Fritz SA, Purvis A. 2010. Selectivity in mammalian extinction risk and threat
types: a newmeasure of phylogenetic signal strength in binary traits. Conserva-
tion Biology 24:1042–1051. https://doi.org/10.1111/j.1523-1739.2010.01455.x.

31. Jones ME, Boenink NM, Verhoef J, Köhrer K, Schmitz F-J. 2000. Multiple
mutations conferring ciprofloxacin resistance in Staphylococcus aureus
demonstrate long-term stability in an antibiotic-free environment. J Anti-
microb Chemother 45:353–356. https://doi.org/10.1093/jac/45.3.353.

32. Goldstein BP. 2014. Resistance to rifampicin: a review. J Antibiot (Tokyo)
67:625–630. https://doi.org/10.1038/ja.2014.107.

33. Jacoby GA. 2005. Mechanisms of resistance to quinolones. Clin Infect Dis
41:S120–S126. https://doi.org/10.1086/428052.

34. Dunai A, Spohn R, Farkas Z, Lázár V, Györkei Á, Apjok G, Boross G, Szappanos
B, Grézal G, Faragó A, Bodai L, Papp B, Pál C. 2019. Rapid decline of bacterial
drug-resistance in an antibiotic-free environment through phenotypic rever-
sion. Elife 8:e47088. https://doi.org/10.7554/eLife.47088.

35. O’Neill AJ, Huovinen T, Fishwick CWG, Chopra I. 2006. Molecular genetic
and structural modeling studies of Staphylococcus aureus RNA polymer-
ase and the fitness of rifampin resistance genotypes in relation to clinical
prevalence. Antimicrob Agents Chemother 50:298–309. https://doi.org/
10.1128/AAC.50.1.298-309.2006.

36. Nowak MA. 2006. Evolutionary dynamics: exploring the equations of life.
Harvard University Press, Cambridge, MA.

37. Kempker RR, Farley MM, Ladson JL, Satola S, Ray SM. 2010. Association of
methicillin-resistant Staphylococcus aureus (MRSA) USA300 genotype
with mortality in MRSA bacteremia. J Infect 61:372–381. https://doi.org/
10.1016/j.jinf.2010.09.021.

38. Souli M, Ruffin F, Choi S-H, Park LP, Gao S, Lent NC, Sharma-Kuinkel BK,
Thaden JT, Maskarinec SA, Wanda L, Hill-Rorie J, Warren B, Hansen B,
Fowler VG. 2019. Changing characteristics of Staphylococcus aureus bac-
teremia: results from a 21-year, prospective, longitudinal study. Clin Infect
Dis 69:1868–1877. https://doi.org/10.1093/cid/ciz112.

39. Olson RD, Assaf R, Brettin T, Conrad N, Cucinell C, Davis JJ, Dempsey DM,
Dickerman A, Dietrich EM, Kenyon RW, Kuscuoglu M, Lefkowitz EJ, Lu J, Machi
D, Macken C, Mao C, Niewiadomska A, Nguyen M, Olsen GJ, Overbeek JC,

Parrello B, Parrello V, Porter JS, Pusch GD, Shukla M, Singh I, Stewart L, Tan G,
Thomas C, VanOeffelen M, Vonstein V, Wallace ZS, Warren AS, Wattam AR, Xia
F, Yoo H, Zhang Y, Zmasek CM, Scheuermann RH, Stevens RL. 2023. Introduc-
ing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): a resource
combining PATRIC, IRD and ViPR. Nucleic Acids Res 51:D678–D689. https://doi
.org/10.1093/nar/gkac1003.

40. Spaulding AR, Salgado-Pabón W, Kohler PL, Horswill AR, Leung DYM,
Schlievert PM. 2013. Staphylococcal and streptococcal superantigen exotoxins.
Clin Microbiol Rev 26:422–447. https://doi.org/10.1128/CMR.00104-12.

41. Silversides JA, Lappin E, Ferguson AJ. 2010. Staphylococcal toxic shock
syndrome: mechanisms and management. Curr Infect Dis Rep 12:392–400.
https://doi.org/10.1007/s11908-010-0119-y.

42. European Committee on Antimicrobial Susceptibility Testing (EUCAST). 2019.
Breakpoint tables for interpretation of MICs and zone diameters, version 9.0.
https://www.eucast.org/ast_of_bacteria/previous_versions_of_documents.

43. McInnes L, Healy J, Saul N, Großberger L. 2018. UMAP: uniform manifold
approximation and projection. JOSS 3:861. https://doi.org/10.21105/joss.00861.

44. Hahsler M, Piekenbrock M, Doran D. 2019. DBSCAN: fast density-based cluster-
ing with R. J Stat Softw 91:1–30. https://doi.org/10.18637/jss.v091.i01.

45. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS,
Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV,
Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new ge-
nome assembly algorithm and its applications to single-cell sequencing. J
Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021.

46. Effelsberg N, Stegger M, Peitzmann L, Altinok O, Coombs GW, Pichon B,
Kearns A, Randad PR, Heaney CD, Bletz S, Schaumburg F, Mellmann A. 2020.
Global epidemiology and evolutionary history of Staphylococcus aureus ST45.
J Clin Microbiol 59:e02198-20. https://doi.org/10.1128/JCM.02198-20.

47. Leopold SR, Goering RV, Witten A, Harmsen D, Mellmann A. 2014. Bacterial
whole-genome sequencing revisited: portable, scalable, and standardized
analysis for typing and detection of virulence and antibiotic resistance genes.
J Clin Microbiol 52:2365–2370. https://doi.org/10.1128/JCM.00262-14.

48. Kaya H, Hasman H, Larsen J, Stegger M, Johannesen TB, Allesøe RL, Lemvigh
CK, Aarestrup FM, Lund O, Larsen AR. 2018. SCCmecFinder, a web-based tool
for typing of staphylococcal cassette chromosome mec in Staphylococcus
aureus using whole-genome sequence data. mSphere 3:e00612-17. https://
doi.org/10.1128/mSphere.00612-17.

49. Jünemann S, Sedlazeck FJ, Prior K, Albersmeier A, John U, Kalinowski J,
Mellmann A, Goesmann A, von Haeseler A, Stoye J, Harmsen D. 2013.
Updating benchtop sequencing performance comparison. Nat Biotech-
nol 31:294–296. https://doi.org/10.1038/nbt.2522.

50. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup
FM. 2014. Real-time whole-genome sequencing for routine typing, sur-
veillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin
Microbiol 52:1501–1510. https://doi.org/10.1128/JCM.03617-13.

51. Clinical and Laboratory Standards Institute (CLSI). 2014. Analysis and pre-
sentation of cumulative antimicrobial susceptibility test data, 4th ed. CLSI,
Wayne, PA.

52. Kim S, Yoo SJ, Chang J. 2020. Importance of susceptibility rate of “the first”
isolate: evidence of real-world data. Medicina 56:507. https://doi.org/10.3390/
medicina56100507.

53. Batisti Biffignandi G, Bellinzona G, Petazzoni G, Sassera D, Zuccotti GV,
Bandi C, Baldanti F, Comandatore F, Gaiarsa S. 2023. P-DOR, an easy-to-
use pipeline to reconstruct outbreaks using pathogen genomics. BioRxiv
https://doi.org/10.1101/2023.05.30.542810.

54. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von
Haeseler A, Lanfear R. 2020. IQ-TREE 2: new models and efficient methods
for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534.
https://doi.org/10.1093/molbev/msaa015.

55. Revell LJ. 2012. phytools: an R package for phylogenetic comparative
biology (and other things). Methods Ecol Evol 3:217–223. https://doi.org/
10.1111/j.2041-210X.2011.00169.x.

56. Ho L Si T, Ané C. 2014. A linear-time algorithm for Gaussian and non-Gaussian
trait evolution models. Syst Biol 63:397–408. https://doi.org/10.1093/sysbio/
syu005.

Genome Surveillance of Hospital Staphylococcus aureus Microbiology Spectrum

July/August 2023 Volume 11 Issue 4 10.1128/spectrum.01010-23 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

07
 M

ay
 2

02
4 

by
 1

59
.1

49
.1

92
.8

6.

https://doi.org/10.3389/fmicb.2020.02063
https://doi.org/10.1101/gr.196709.115
https://doi.org/10.1016/S1473-3099(12)70268-2
https://doi.org/10.1016/S1473-3099(12)70268-2
https://doi.org/10.1097/01.inf.0000219407.31195.44
https://doi.org/10.1186/s13073-018-0593-7
https://doi.org/10.1186/s13073-018-0593-7
https://doi.org/10.12688/wellcomeopenres.14826.1
https://doi.org/10.1111/eva.12196
https://doi.org/10.1111/j.1523-1739.2010.01455.x
https://doi.org/10.1093/jac/45.3.353
https://doi.org/10.1038/ja.2014.107
https://doi.org/10.1086/428052
https://doi.org/10.7554/eLife.47088
https://doi.org/10.1128/AAC.50.1.298-309.2006
https://doi.org/10.1128/AAC.50.1.298-309.2006
https://doi.org/10.1016/j.jinf.2010.09.021
https://doi.org/10.1016/j.jinf.2010.09.021
https://doi.org/10.1093/cid/ciz112
https://doi.org/10.1093/nar/gkac1003
https://doi.org/10.1093/nar/gkac1003
https://doi.org/10.1128/CMR.00104-12
https://doi.org/10.1007/s11908-010-0119-y
https://www.eucast.org/ast_of_bacteria/previous_versions_of_documents
https://doi.org/10.21105/joss.00861
https://doi.org/10.18637/jss.v091.i01
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1128/JCM.02198-20
https://doi.org/10.1128/JCM.00262-14
https://doi.org/10.1128/mSphere.00612-17
https://doi.org/10.1128/mSphere.00612-17
https://doi.org/10.1038/nbt.2522
https://doi.org/10.1128/JCM.03617-13
https://doi.org/10.3390/medicina56100507
https://doi.org/10.3390/medicina56100507
https://doi.org/10.1101/2023.05.30.542810
https://doi.org/10.1093/molbev/msaa015
https://doi.org/10.1111/j.2041-210X.2011.00169.x
https://doi.org/10.1111/j.2041-210X.2011.00169.x
https://doi.org/10.1093/sysbio/syu005
https://doi.org/10.1093/sysbio/syu005
https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.01010-23

	RESULTS AND DISCUSSION
	Data set summary and antibiotic resistance.
	Selection of strains for sequencing.
	Genomic analysis.
	Community- and hospital-acquired infections.
	Mortality rate.
	Clonal complexes.

	MATERIALS AND METHODS
	Determination of antimicrobial susceptibility by MIC.
	CDC classification.
	Antibiogram-based isolate selection for genome sequencing.
	DNA extraction and sequencing.
	In silico typing and annotation.
	Statistical analyses.
	Phylogenetic analyses.
	Data availability.

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENT
	REFERENCES

