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ABSTRACT

PURPOSE RET fusions are oncogenic drivers across different solid tumors. However, the
genomic landscape and natural history of patients with RET fusion–positive
solid tumors are not well known. We describe the clinical characteristics of RET
tyrosine kinase inhibitor (TKI)-näıve patients with RET fusion–positive solid
tumors (excluding non–small-cell lung cancer [NSCLC]), treated in a real-
world setting and assess the prognostic effect of RET fusions.

METHODS Data for RET TKI-näıve patients with metastatic solid tumors (excluding
NSCLC) who had ≥one Foundation Medicine comprehensive genomic profiling
test (January 1, 2011-March 31, 2022) were obtained from a deidentified na-
tionwide (US-based) clinicogenomic database. The primary objective of this
study was to compare the overall survival (OS) of patients with RET fusion–
positive tumors versusmatched patients with RETwild-type (RET-WT) tumors.
Patients with RET-WT solid tumors were matched (4:1) to patients with RET
fusion–positive tumors on the basis of preselected covariates.

RESULTS The study population included 26 patients in the RET fusion–positive cohort,
7,220 patients in the RET-WT cohort (before matching), and 104 patients in the
matched RET-WT cohort. Co-occurring genomic alterations were rare in the
RET fusion–positive cohort. Median OS was consistently lower in patients with
RET fusion–positive tumors versus those with RET-WT tumors, using three
different analyses (hazard ratios, 2.0, 1.7, and 2.2).

CONCLUSION These data suggest that RET fusions represent a negative prognostic factor in
patients with metastatic solid tumors and highlight the need for wider genomic
testing and use of RET-specific TKIs that could improve patient outcomes. Our
study also highlights the value of real-world data when studying rare cancers or
cancers with rare genomic alterations.

INTRODUCTION

Fusions of the rearranged during transfection (RET) gene are
oncogenic drivers across a number of solid tumors.1-3

Treatment options for patients with RET-altered solid tu-
mors were previously limited to multikinase inhibitors, but
these can be associated with significant toxicities and high
rates of dose reduction/discontinuation, and there may also
be limited efficacy.1,4,5 Therefore, there is a need for better
precision therapies that selectively target RET alterations
and anticipated resistance mechanisms.

Two RET-specific tyrosine kinase inhibitors (TKIs), selper-
catinib and pralsetinib, have demonstrated durable antitumor

activity andmanageable toxicity profiles and are approved for
the treatment of advanced/metastatic RET fusion–positive
non–small-cell lung cancer (NSCLC; both drugs in the
United States and Europe), advanced/metastatic RET-altered
thyroid cancer (both drugs in the United States; selpercatinib
in Europe), and advanced/metastatic RET fusion–positive
solid tumors (selpercatinib in the United States; neither in
Europe).6-9

RET fusions, although rare,5,10,11 have been detected in a wide
range of solid tumors.5,12 However, the genomic landscape
and natural history of patients with RET fusion–positive
tumors are not well documented. It is important to under-
stand whether RET fusion–positive tumors behave
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differently to RET wild-type (RET-WT) tumors of the same
histology and whether RET fusions are prognostic.

Examining the association between rare alterations and
patient outcomes is challenging in randomized treatment
trials because of limited patient numbers. Therefore, large-
scale real-world data provide a valuable alternative for
evaluating these associations.

The study objectives were to (1) describe the clinical char-
acteristics and overall survival (OS) of patients with RET
fusion–positive (for which there are limited data) and RET-
WT solid tumors and (2) provide an example of how real-
world data collected from routine clinical practice can be
used to determine the prognostic value of rare alterations.
This can then be used to evaluate targeted therapies in
tumor-agnostic clinical trials.

METHODS

Study Design and Data Sources

This retrospective, observational study of RET TKI-näıve
patients with metastatic, RET fusion–positive or RET-WT
solid tumors used real-world data collected during routine
clinical practice from the nationwide (US-based) deidenti-
fied Flatiron Health-Foundation Medicine clinicogenomic
database (CGDB).

Deidentified data were obtained from approximately
280 Flatiron Health cancer clinics in the United States
(approximately 800 care sites); retrospective longitudinal
clinical (patient-level structured and unstructured)
data were derived from electronic health records
and curated via technology-enabled abstraction. These
data were linked to genomic data derived from the

Foundation Medicine comprehensive genomic profiling
(CGP) tests in the Flatiron Health-Foundation Medicine
CGDB using deidentified, deterministic matching.13 Ethics
committee approval was not required because this study
used anonymized patient data and did not directly enroll
patients.

Study Population

Eligible patients had ≥one documented clinical visit in a
Flatiron Health network center between January 1, 2011, and
March 31, 2022, and underwent CGP testing by Foundation
Medicine before April 1, 2022. Genomic alterations were
identified via CGP of >300 cancer-related genes using
FoundationOne, FoundationOneCDx, or FoundationOne-
Heme assays.14-16

The study population included patients with a de novo
metastatic diagnosis who had not previously been treated
with a RET TKI in any therapy line. As Flatiron CGDB retains
detailed documentation of all medications received by a
patient, regardless of their on-label or off-label status, all
patients who received a next-generation RET inhibitor
(such as pralsetinib or selpercatinib) or a study drug as part
of a clinical trial were excluded to eliminate any bias in the
description of standard of care. Patients diagnosed with
RET fusion–positive NSCLC were also excluded as this
represents a well-defined population with published
data,17 and there are licensed drugs for this particular
indication6-9; this exclusion is consistent with ongoing
clinical trials.18 Other patient exclusion criteria included
multiple cancer diagnoses or no initial diagnosis date, >one
type of CGP or a CGP report date before the initial diag-
nosis, an initial diagnosis within 3 months before the data
cutoff; death before 2012 (when Foundation Medicine’s
CGP was established), and a visit gap of >90 days after the

CONTEXT

Key Objective
Rearranged during transfection (RET) gene fusions are known but rare oncogenic drivers across many solid tumors. This
analysis examines the characteristics and overall survival of patients with RET fusion–positive and RET wild-type (RET-WT)
tumors from the Flatiron Health-FoundationMedicine clinicogenomic database and evaluates the prognostic impact of RET
alterations.

Knowledge Generated
Across three statistical models used, patients with RET fusion–positive solid tumors had consistently worse survival than
their RET-WT counterparts.

Relevance
RET alterations are actionable in patients with non–small-cell lung cancer or thyroid cancer using RET-specific tyrosine
kinase inhibitors (TKIs). Our data highlight an unmet need for wider genomic testing across different solid tumor types to
identify RET alterations that may have a negative impact on survival. The use of RET-specific TKIs in these patients may
improve outcomes beyond current standard of care options.
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initial diagnosis (patients may have been treated tempo-
rarily in a center outside of the Flatiron Health network
postdiagnosis).

Determination of RET Status

RET positivity was defined as the presence of a fusion or
rearrangementwith apredicted known/likely functional status
as defined by Foundation Medicine. This included a 3’ RET
fusion (breakpoint between exon 1 and intron 11) with a
protein-coding 5’ gene fusion partner, which was predicted to
be in-framewith an intact kinase domain.19 Fusionswithnon–
protein-coding gene partners or intragenic fusions were ex-
cluded. RET-WT status was determined when CGP was unable
to detect any qualifying RET fusions. To reduce the probability
of misclassifying patients with false-negative results as RET-
WT, we only analyzed solid tumor samples (using Founda-
tionOne, FoundationOneCDx, or FoundationOneHeme assays).

Study Design

We used data from eligible patients with known RET status in
the Flatiron Health-Foundation Medicine database. We also
performed a nested case-control study within this database.
Patients with RET-WT tumors were matched with patients
with RET fusion–positive tumors (4:1 ratio) using Mahala-
nobis distance matching20 on the basis of several covariates:
age, sex, race, tumor type, practice type (academic v com-
munity), Eastern Cooperative Oncology Group performance
status (ECOGPS)measured from30days before to 7 days after
index date, year of CGP, time from initial diagnosis of me-
tastatic disease to CGP report date, andnumber of oncologist-
defined, rule-based treatment lines before CGP report date.
An absolute mean difference of <0.1 was used as a quality
metric to indicate negligible distance between groups.21

Statistical Analyses

The primary objective was to evaluate the association be-
tween OS and RET fusion status. OS was defined as time from
the index date until death from any cause or the censoring
date (ie, last follow-up datewhen last known to be alive). The
index date could be the date of the CGP report or the date of
metastatic diagnosis. We also examined patient character-
istics, treatment patterns, and genomic alterations: tumor
mutational burden (TMB), microsatellite instability (MSI),
and co-occurring oncogenic functional alterations in ALK,
BRAF, ERBB2, EGFR, NTRK, ROS1, MET, and KRAS.

Kaplan-Meier curves and Cox regression were used for the
analysis of OS. R version 4.1.2 (R Foundation for Statistical
Computing, Vienna, Austria) and Python version 3.9.9
(Python Software Foundation, Wilmington, DE) were used
for all analyses. A crude (unmatched) analysis used the CGP
report date as the index for calculating time-to-event in the
OS analysis as confirmation of biomarker status was a
predefined inclusion criterion for study entry. Additionally,
two different models analyzed OS on the basis of the nested

case-control patients: model 1 used the CGP report date as
the index (as for the crude analysis), whereas model 2 used
the date of metastatic diagnosis as the index and also ad-
justed for immortal time bias with left truncation by con-
sidering the CGP report date.22

Time from metastatic diagnosis to CGP report may differ
between patients, and the adjustment for immortal time bias
accounts for patients having to survive long enough to receive
a CGP report, during which time the outcome of interest
(death) cannot occur (ie, they are immortal during that pe-
riod).23 This immortal time bias can result in overestimation
of the outcome event rate in the control group, underesti-
mation of the event rate in the exposed group, or both.24 To
address this issue, we used the date of metastatic diagnosis as
the index and estimated survival using a left truncationmodel
as proposed in the study by Mackenzie et al.22

Ethics

This study used deidentified patient data from the Flatiron
Health-Foundation Medicine CGDB, a US-wide longitudinal
database curated through technology-enabled abstraction,
and did not directly enroll patients.

RESULTS

Patient Characteristics

Between January 1, 2011, and March 31, 2022, a total of 222
patients with RET fusion–positive tumors and ≥one docu-
mented clinical visit in a Flatiron Health network center were
selected. In total, 196 patients were excluded on the basis of
criteria described above, including 92 patients with NSCLC
(Fig 1A); 26patients constituted theRET fusion–positive cohort
for this analysis. Baseline characteristics are presented in
Table 1. The majority of patients with RET fusion–positive
tumors were male (57.7%) and had ECOG PS 0/1 (53.8%); the
mean agewas 65.3 years. Themedian follow-up time fromCGP
report date for the RET fusion–positive cohort was 5.7 (IQR,
7.2) months while the median time from initial diagnosis of
metastaticdisease toCGPreport datewas3.5 (IQR,8.8)months.

The RET fusion–positive cohort consisted of nine distinct
tumor/histology types, most commonly colorectal cancer
(CRC; n59; 34.6%; Fig 2). Nine differentRET fusion partners
were detected, and the most common were NCOA4 (n 5 12;
46.2%), CCDC6 (n 5 6; 23.1%), and ERC1 (n 5 2; 7.7%).
CEP135, FAM13C, FGFR1OP, KIAA1217, KIF5B, and MACROD2
were detected in one patient each.

Fifteen patients had a CGDB record for prior antineoplastic
therapy, of whom seven (46.7%) had received ≥two prior
lines of therapy, six (40.0%) had received one prior line of
therapy, and two (13.3%) were recorded as treatment naı̈ve.

Of 62,456 patients with solid tumors in the CGDB, 7,220
patients with RET-WT solid tumors met the eligibility criteria
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(Fig 1B). These patients were matched for tumor type to the
RET fusion–positive cohort to prevent inconsistencies from
biasing the OS outcomes. After covariate matching for de-
mographic and clinical characteristics, the matched RET-WT
cohort included 104 patients. The RET fusion–positive and
matched RET-WT cohorts had comparable baseline serum
albumin levels and absolute neutrophil and platelet counts,
althoughmissing data ranged from 17.3% to 38.5% across the
cohorts (Table 1). Most patients had missing PD-L1 status in
the CGP report (76.9% in both the RET fusion–positive and
matched RET-WT cohorts). Three patients (2.9%) in the
matched RET-WT cohort had received prior PD-L1 therapy
versus none in the RET fusion–positive cohort.

Presence of Co-Occurring Genomic Alterations

In the RET fusion–positive cohort, 17 patients (65.4%)
had low TMB (<5.7 mut/Mb), and two patients (7.7%)

were TMB-high (≥20 mut/Mb); 13 patients (50.0%) had low
MSI, and one patient (3.8%) was MSI-high (Table 2). One
patient in this cohort had an ERBB2 amplification (3.8%); no
other assessed oncogenic coalterations were identified.

Most patients in the matched RET-WT cohort had low TMB
(84.6%) and low MSI (82.7%); none had high TMB or MSI
(Table 2). The only genomic alterations observed in this
cohort were KRAS alterations (36.5%), BRAF alterations
(5.8%), and ERBB2 amplifications (3.8%).

OS

In the crude analysis, the median OS was 6.0 months (95%
CI, 1.6 to 9.9) for the RET fusion–positive cohort (N 5 26)
and 10.4 months (95% CI, 10.0 to 10.9) for the nonmatched
RET-WT population (N5 7,220; Table 3; Fig 3A). The hazard
ratio (HR) was 2.0 (95% CI, 1.3 to 3.1), indicating that

Patients with solid tumors in the Flatiron/FMI
CGDB

RET fusion–positive patients
(n = 222)

No NSCLC diagnosis
(n = 40)

No CSD or RETi
(n = 35)

Patients with single CGP
(n = 32)

No structured activity/death within 90d after
CGPa (n = 26)

De novo stage IV patients
(n = 132)

A
Patients with solid tumors in the CGDB

(N = 62,456)

No NSCLC diagnosis
(n = 19,447)

No CSD or RETi
(n = 17,149)

Patients with single CGP
(n = 16,443)

No structured activity within 90d after
CGP (n = 13,012)

No multiple cancer diagnoses
(n = 12,803)

Additional data maturity checksb

(n = 12,441)

Same tumors as RET fusion–positive
patients (n = 7,220)

De novo stage IV patients
(n = 25,741)

B

FIG 1. Cohort attrition for (A) the RET fusion–positive population and (B) the RET-WT pop-
ulation. Structured activity refers to a recordingof vital information, amedicationadministration,
a noncanceled drug order, or a reported laboratory test/result. aAlso excluded patients with no
initial metastatic disease diagnosis date or a diagnosis within 3 months before the data cutoff,
patients who died before 2012, patients with multiple cancer diagnoses, and patients with a
CGP report date before the initial diagnosis, with no impact on attrition. bAlso excluded patients
with no initial metastatic disease diagnosis date or a diagnosis within 3months before the data
cutoff, patients who died before 2012, and patients with a CGP report date before the initial
diagnosis, with no impact on attrition. 90d, 90 days; CGDB, clinicogenomic database; CGP,
comprehensive genomic profiling; CSD, clinical study drug; FMI, Foundation Medicine, Inc;
NSCLC, non–small-cell lung cancer;RET, rearrangedduring transfection; RETi, RET inhibitor;WT,
wild type.
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TABLE 1. Baseline Patient Characteristics

Characteristic
RET Fusion–Positive

(N 5 26)

RET-WT (N 5 7,220)

Matched (n 5 104) Nonmatched (n 5 7,116)

Sex,a No. (%)

Female 11 (42.3) 43 (41.3) 4,035 (56.7)

Male 15 (57.7) 61 (58.7) 3,081 (43.3)

Age, years, mean (SD) 65.3 (10.3) 61.8 (12.0) 64.8 (9.9)

Race, No. (%)

Asian 0 0 173 (2.4)

Black/African American 1 (3.8) 4 (3.8) 615 (8.6)

Hispanic/Latino 0 0 15 (0.2)

White 21 (80.8) 89 (85.6) 4,599 (64.6)

Other 3 (11.5) 9 (8.7) 1,120 (15.7)

Missing 1 (3.8) 2 (1.9) 594 (8.3)

Primary tumor type, No. (%)

Colorectal 9 (34.6) 37 (35.6) 2,899 (40.7)

Pancreatic 4 (15.4) 15 (14.4) 1,089 (15.3)

Thyroid 4 (15.4) 16 (15.4) 83 (1.2)

Neuroendocrineb 3 (11.5) 12 (11.5) 338 (4.7)

Breast 2 (7.7) 8 (7.7) 1,167 (16.4)

Endometrial 1 (3.8) 4 (3.8) 335 (4.7)

Head and neck 1 (3.8) 4 (3.8) 418 (5.9)

SCLC 1 (3.8) 4 (3.8) 307 (4.3)

Occult/unknown primary 1 (3.8) 4 (3.8) 480 (6.7)

ECOG PS,c No. (%)

0 7 (26.9) 30 (28.8) 1,652 (23.2)

1 7 (26.9) 31 (29.8) 2,342 (32.9)

≥2 1 (3.8) 4 (3.8) 869 (12.2)

Missing 11 (42.3) 39 (37.5) 2,253 (31.7)

Practice type, No. (%)

Academic 4 (15.4) 12 (11.5) 1,002 (14.1)

Community 22 (84.6) 92 (88.5) 6,114 (85.9)

Serum albumin, g/dLd

Mean (SD) 3.5 (0.5) 3.8 (0.6) 3.7 (0.6)

Missing, No. (%) 6 (23.1) 18 (17.3) 1,081 (15.2)

Absolute neutrophil count, 109/L)d

Mean (SD) 5.1 (2.5) 5.4 (5.0) 6.4 (59.7)

Missing, No. (%) 10 (38.5) 28 (26.9) 1,957 (27.5)

Platelet count, 109/Ld

Mean (SD) 243.7 (114.9) 240.5 (120.1) 247.9 (122.5)

Missing, No. (%) 7 (26.9) 19 (18.3) 1,234 (17.3)

No. of prior lines of treatment, (%)

0 2 (7.7) 8 (7.7) 807 (11.3)

1 6 (23.1) 24 (23.1) 2,580 (36.3)

≥2 7 (26.9) 27 (26.0) 1,933 (27.2)

Missing 11 (42.3) 45 (43.3) 1,796 (25.2)

PD-L1 status at CGP report, No. (%)

High (>50) 0 3 (2.9) 70 (1.0)

Low (1-50) 1 (3.8) 10 (9.6) 502 (7.1)

Negative (<1) 5 (19.2) 11 (10.6) 1,315 (18.5)

Missing 20 (76.9) 80 (76.9) 5,229 (73.5)

(continued on following page)
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patients in the RET fusion–positive cohort had a two-fold
increase in risk of death compared with the nonmatched
RET-WT cohort.

The results for models 1 and 2 (with matched controls) were
consistentwith the crude analysis. Usingmodel 1 (CGP report
date as the index date), the median OS was 6.0 months (95%
CI, 1.6 to 9.9) in the RET fusion–positive cohort (N5 26) and
9.4 months (95% CI, 5.5 to 11.7) in the matched RET-WT
cohort (N 5 104; Table 3; Fig 3B), with an adjusted HR of 1.7
(95% CI, 1.0 to 2.9). Correspondingly, using model 2 (date of
metastatic diagnosis as the index date, after adjusting for
immortal time bias), themedianOSwas 6.9months (95%CI,
1.6 to 9.6) in the RET fusion–positive cohort (N 5 26) and
11.3 months (95% CI, 7.7 to 17.1) in the matched RET-WT
cohort (N 5 104; Table 3; Fig 3C). The adjusted HR was 2.2
(95% CI, 1.3 to 3.7), confirming that patients with RET
fusion–positive tumors had approximately twice the risk of
death compared with matched RET-WT controls.

DISCUSSION

This large-scale study investigated the prognostic associ-
ation between RET fusion status and OS, and as far as we are

aware, this is the first such study to include multiple tumor
types. Other published studies have focused on NSCLC,17

which we exclude, and there has been one study each in
CRC25 and medullary thyroid cancer.26 NSCLC was excluded
from this analysis for several reasons. First, RET fusion–
positive NSCLC represents a well-defined population, for
which data on the association between RET status and
outcomes have already been published.17 Second, if the 92
cases of NSCLC had been included alongside the 26 cases of
other cancer types in the RET fusion–positive cohort, they
would have biased the associations toward patterns in lung
cancer while the focus of this analysis was on other and rare
cancer types. Furthermore, there are already licensed drugs
for RET fusion–positive lung cancer (namely selpercatinib
and pralsetinib).6-9 We included CRC and thyroid cancer
because they are uncommon among RET fusion–positive
patients, and there is limited evidence on the prognostic
associations for RET in these cancers.

Co-occurrence of other assessed oncogenic alterations was
not observed in the RET fusion–positive cohort, except for
one patient with an ERBB2 amplification. These data support
the hypothesis that RET fusions are the primary oncogenic
driver in these tumors.1,5,11 Patients in the matched RET-WT

TABLE 1. Baseline Patient Characteristics (continued)

Characteristic
RET Fusion–Positive

(N 5 26)

RET-WT (N 5 7,220)

Matched (n 5 104) Nonmatched (n 5 7,116)

Documentation of any PD-L1 therapy, No. (%)

Yes 0 3 (2.9) 301 (4.2)

No 26 (100) 101 (97.1) 6,815 (95.8)

PD-L1 therapy on or before CGP report date, No. (%)

Yes 0 2 (1.9) 111 (1.6)

No 26 (100) 102 (98.1) 7,005 (98.4)

Year of CGP report, No. (%)

2012 0 0 4 (0.1)

2013 0 0 64 (0.9)

2014 2 (7.7) 5 (4.8) 312 (4.4)

2015 3 (11.5) 12 (11.5) 492 (6.9)

2016 2 (7.7) 8 (7.7) 529 (7.4)

2017 4 (15.4) 16 (15.4) 799 (11.2)

2018 3 (11.5) 12 (11.5) 1,133 (15.9)

2019 7 (26.9) 29 (27.9) 1,401 (19.7)

2020 2 (7.7) 10 (9.6) 1,367 (19.2)

2021 3 (11.5) 12 (11.5) 1,015 (14.3)

Follow-up time from CGP report, median (IQR) 5.7 (7.2) 6.2 (9.8) 7.5 (13.6)

Time from initial diagnosise to CGP report date, months, median (IQR) 3.5 (8.8) 4.0 (9.4) 4.5 (16.9)

Abbreviations: CGP, comprehensive genomic profiling; ECOG PS, Eastern Cooperative Oncology Group performance status; RET, rearranged during
transfection; SCLC, small-cell lung cancer; SD, standard deviation; WT, wild type.
aData missing for one patient in the nonmatched RET-WT cohort.
bNeuroendocrine tumors included one GI tumor and two unspecified anatomic locations.
cClosest value 30 days before to 7 days after index date.
dClosest value 90 days before to 7 days after index date.
eOf de novo metastatic (stage IV) disease.
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cohort had a high rate of KRAS alterations (36.5%) and some
BRAF alterations (5.8%). There were no other notable
baseline patient or molecular characteristics in the RET
fusion–positive cohort.

In three different analyses (crude, model 1, model 2), pa-
tients with RET fusion–positive tumors consistently had a
shorter median OS than those with RET-WT tumors. The
approximate two-fold increase in risk of death suggests that
RET fusions have a negative prognostic effect. A similar
conclusion was reached in a study of patients with CRC (24
with RET fusion–positive and 291 with RET-WT tumors), in
which the adjusted OS HR was 2.97 (95% CI, 1.25 to 7.07; P5

.014).25

A study of patients with metastatic RET fusion–positive
NSCLC suggested that RET positivity may be associated with
improved survival.17 However, some analyses were not
statistically significant, and therefore, the data were in-
conclusive. A retrospective study of patients with medullary
thyroid cancer found that at time points between 6 and
48 months, progression-free survival rates after first-line
therapy were similar between all-comers and patients who
had RET mutations; however, median progression-free
survival was higher in patients with RET mutations.26 It is
possible that RET alterations have a different prognostic
effect in different tumor types, which may justify examining
them separately.

Our data indicate that patients with RET fusion–positive
tumors may not be optimally treated by current standards of
care, highlighting the unmet need for precision therapies

Colorectal,
34.6% (n = 9)

Pancreatic,
15.4% (n = 4)

Thyroid,
15.4% (n = 4)

Neuroendocrine,a

11.5% (n = 3)

Breast,
7.7% (n = 2)

SCLC, 3.8% (n = 1) CUP, 3.8% (n = 1)

Head and neck,
3.8% (n = 1)

Endometrial,
3.8% (n = 1)

FIG 2. Tumor types in theRET fusion–positive cohort (N5 26).
Patients with RET fusion–positive non–small-cell lung cancer
were excluded. aNeuroendocrine tumors included one GI tumor
and two unspecified anatomical locations. CUP, cancer of
unknown primary; RET, rearranged during transfection; SCLC,
small-cell lung cancer.

TABLE 2. Co-Occurring Biomarkers and Molecular Characteristics

Co-occurring Biomarkers/Molecular Characteristics
RET Fusion–Positive
(N 5 26), No. (%)

RET-WT (N 5 7,220)

Matched (n 5 104) Nonmatched (n 5 7,116)

TMB status, No. (%)

High (≥20 mut/Mb) 2 (7.7) 0 215 (3.0)

Medium (<20, ≥5.7 mut/Mb) 5 (19.2) 16 (15.4) 1,323 (18.6)

Low (<5.7 mut/Mb) 17 (65.4) 88 (84.6) 5,578 (78.4)

Missing 2 (7.7) 0 0

MSI-high, No. (%)

Yes 1 (3.8) 0 119 (1.7)

No 13 (50.0) 86 (82.7) 6,021 (84.6)

Unknown/missing 12 (46.2) 18 (17.3) 976 (13.7)

Oncogenic alterations, No. (%)

ALK rearrangement 0 0 13 (0.2)

BRAF alteration 0 6 (5.8) 389 (5.5)

ERBB2 amplification 1 (3.8) 4 (3.8) 300 (4.2)

EGFR alteration 0 0 53 (0.7)

NTRK rearrangement 0 0 13 (0.2)

ROS1 alteration 0 0 11 (0.2)

MET alteration 0 0 9 (0.1)

KRAS alteration 0 38 (36.5) 2,623 (36.9)

NOTE. Only variants of known or likely functional status were included.
Abbreviations: ALK, anaplastic lymphoma kinase; BRAF, proto-oncogene B-Raf; ERBB2, Erb-B2 receptor tyrosine kinase 2; EGFR, epidermal growth
factor receptor; KRAS, Kirsten rat sarcoma viral oncogene homolog; MET, mesenchymal epithelial transition factor receptor; MSI, microsatellite
instability; NTRK, neurotrophic tyrosine receptor kinase; RET, rearranged during transfection; ROS1, ROS proto-oncogene 1; TMB, tumor mutational
burden; WT, wild type.
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that specifically target this biomarker.3,27 Retrospective
analyses from a multicenter study of 218 patients with RET
fusion–positive NSCLC showed significantly improved
survival using RET-specific TKIs (such as pralsetinib and
selpercatinib).28 Single-arm clinical trials have also shown
good efficacy and safety with RET-specific TKIs in patients
with RET-altered solid tumors.29-34 In these trials, response
rates in patients with previously treated RET fusion–positive
NSCLC or thyroid cancer ranged from 63% to 84% with
pralsetinib29,30 and 61% to 77% with selpercatinib.32,34

Consequently, both drugs achieved grade 3 in the ESMO
Magnitude of Clinical Benefit Score version 1.1, the highest
grade for single-arm evidence on the basis of response rates
of >60%.35 Taken together with our findings, these data
suggest that RET-specific TKIs may represent better
treatment options for patients with RET fusion–positive
tumors than non-RET inhibitor standards of care.

RET fusions are rare in solid tumors,5,10,11 making it difficult
to conduct randomized head-to-head trials of new versus
established therapies. Standards of care also differ across
histologies and treatment lines; therefore, matching a
control arm with the same disease entities and types/
numbers of prior treatments is unfeasible. Using high-
quality real-world data can robustly evaluate patient out-
comes contingent on certain oncogenic drivers and can
address key questions around the biological plausibility of
using genetic biomarkers as novel therapeutic targets36 or
describe unmet needs for patients. A recent study in patients
with NTRK fusion–positive solid tumors also used data from
the Flatiron Health-Foundation Medicine CGDB and con-
cluded that NTRK fusions may represent another negative
prognostic factor in patients with locally advanced/
metastatic tumors.37 Again, this reflects the value of real-
world data as an integral resource for clinical evidence
generation beyond the confines of conventional clinical
trials,38-40 particularly when considering outcomes for pa-
tients with rare molecular alterations.

Strengths of our study include the use of real-world data
from a large CGDB, with a broad network of sites, which has
been used in published analyses of other biomarkers.37,41

Consistent results across three different analyses,

including one to account for immortal time bias, support the
robustness of our findings.

Limitations of this study include its retrospective nature and
the relatively small number of patients with RET fusion–
positive tumors, reflecting the rarity of these fusions.2 Our
study cohort was heterogeneous, and it could not be de-
termined if/how tumor types with relatively long survival or
large censoring could influence the findings. We adjusted for
several important factors in the regression analyses, but
there may also be unmeasured confounding factors. In ad-
dition, some of these factors had a certain degree of missing
data, and therefore, we could not totally assess their impact
on the measured associations. It is unknown how well our
data represent the wider spectrum of RET fusion–positive
solid tumors as CGP is not yet a routine practice for all tumor
types. Potential biases may exist if CGP was preferentially
performed on patients who did not respond to treatment in
the real-world setting.

In tumor-agnostic clinical trials, multiple tumor types with
the same alteration are given an experimental targeted
therapy. There may be a single control arm (including
patients who are all given standard-of-care treatment) or
no control arm. Ideally, each tumor type in the experi-
mental arm would have corresponding control patients,
and the trial would be powered for this comparison. In
reality, the number of patients with a specific tumor type in
the trial is too small for this to be feasible, especially when
the overall prevalence of genetic alterations, such as RET or
NTRK fusions,42,43 is already low. If patients with an
alteration-positive tumor have improved prognoses versus
those who are alteration-negative, the apparent increased
efficacy seen in tumor-agnostic trials could be partly or
wholly due to the prognostic effect of the alteration (ie,
confounding) and not the treatment. The prognostic as-
sociation cannot be determined from these trials because,
by design, they exclude patients without these alterations.
However, we show that patients with RET fusion–positive
tumors have worse OS; in tumor-agnostic trials, any im-
provements in efficacy associated with experimental
therapies targeted for RET fusions are more likely to be due
to the treatment. Such treatments essentially must not only

TABLE 3. Analysis of OS

Analysis Cohort No. of Deaths, (%) Median OS, Months (95% CI) HR (95% CI)

Crude RET fusion–positive (N 5 26) 20 (76.9) 6.0 (1.6 to 9.9) 2.0 (1.3 to 3.1)

Nonmatched RET-WT (N 5 7,220) 4,838 (67.0) 10.4 (10.0 to 10.9)

Model 1a RET fusion–positive (N 5 26) 20 (76.9) 6.0 (1.6 to 9.9) 1.7 (1.0 to 2.9)

Matched RET-WT (n 5 104) 72 (69.2) 9.4 (5.5 to 11.7)

Model 2b RET fusion–positive (N 5 26) 20 (76.9) 6.9 (1.6 to 9.6) 2.2 (1.3 to 3.7)

Matched RET-WT (n 5 104) 72 (69.2) 11.3 (7.7 to 17.1)

Abbreviations: CGP, comprehensive genomic profiling; HR, hazard ratio; OS, overall survival; RET, rearranged during transfection; WT, wild type.
aModel 1: using the CGP report date as the index date.
bModel 2: using the date of metastatic disease diagnosis as the index date (corrected for immortal time bias).
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0.25

0.00

10 20 30 40 50 60 70 80 90 100

7,220 2,942 1,397 650 327 170 96 54 25 9 1

26 3 0 0 0 0 0 0 0 0 0

RET-WT RET fusion–positive

C

0

No. at risk:

Time (months)

1.00

OS
 (p

ro
ba

bi
lit

y) 0.75

0.50

0.25

0.00

10 20 30 40 50 60 70 80 90 100
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RET-WT

RET fusion–
positive
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B
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positive

RET-WT RET fusion–positive

0

No. at risk:

Time (months)

1.00

OS
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0.25

0.00
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104 37 18 11 7 2 0 0 0 0 0
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FIG 3. Kaplan-Meier estimates of OS (A) comparing the RET fusion–positive population (N 5 26)
with the crude RET-WT population (before matching; N 5 7,220), using the CGP report date as the
index date; (B) comparing the RET fusion–positive population with the matched RET-WT population
(n 5 104), using the CGP report date as the index date (model 1); (C) comparing the RET fusion–
positive population with the matched RET-WT population (n 5 104), using the initial diagnosis date
as the index date (corrected for immortal time bias; model 2a). aThe number of patients inmodel 1 (B)
and model 2 (C) is the same (ie, N 5 26 for the RET fusion–positive cohort and n 5 104 for the
RET-WT cohort); however, in model 2, where left truncation is used to (continued on following page)
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overcome the negative prognostic association but also
provide extra benefit versus standard of care.

In conclusion, our study shows the value of real-world
data by highlighting that large data sets are needed to
yield a sufficient number of patients when studying rare
cancers or genomic alterations. We focused on RET sta-
tus, but there are plans to use the same CGDB to examine
the prognostic performance of other uncommon alter-
ations. Our study showed that patients with RET fusion–
positive tumors, excluding NSCLC, have worse survival
outcomes than patients with RET-WT tumors, high-
lighting the importance of these fusions as actionable

drug targets and the need for widespread integration of
CGP in routine clinical practice. This evidence may help
interpret future clinical trials of tumor-agnostic thera-
pies developed for RET fusions (other than in NSCLC); our
findings indicate that the negative prognostic associa-
tion would be unlikely to explain treatment benefits. This
information could be used by researchers, regulators,
and other decision makers. Combined efforts across in-
dustry, academia, health care authorities, and payers are
needed to evaluate RET-specific TKIs for patients with
RET fusion–positive tumors and potentially allow more
patients to benefit from advances in precision oncology
in the future.
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