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Abstract
This article is a survey of results in algebraic vision and multiview geometry. The starting
point is the study of projective algebraic varieties which are critical for scene reconstruction.
Initially studied for reconstructing static scenes in three-dimensional spaces, these critical
loci are later investigated for dynamic and segmented scenes in higher-dimensional projec-
tive spaces. The formal analysis of the ideals of critical loci employs Grassmann tensors,
introduced as crucial tools for determining these ideals and aiding the reconstruction process
away from critical loci. A long-term goal of the authors with other co-authors involves two
main aspects: firstly studying properties of Grassmann tensors, as rank, multi-rank and core,
along with the varieties that parameterize these tensors; concurrently conducting an analysis
of families of critical loci in various scenarios.

Keywords Algebraic vision · Multiview geometry · Critical loci · Determinantal varieties ·
Grassmann tensors

Mathematics Subject Classification 14M12 · 14N05 · 15A69

1 Introduction

This article is a survey of a number of results in algebraic vision and multiview geometry,
two branches of computer vision that are closely related to projective and algebraic geometry.
These results were obtained over a period of several years, in collaboration with different
co-authors.

The strand of research on these topics began with the study of special projective algebraic
varieties which arise as critical loci for the reconstruction of a static three-dimensional scene,
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from a set of its two-dimensional images. Images taken by pinhole cameras can be modeled
as linear projections from P

3 to P2 and original results involved the reconstruction of a set of
points, up to projective transformation of the ambient space, starting from two, three, or four
such images. Critical loci of scene points are those for which the projective reconstruction
fails, in the sense that there exists a non projectively equivalent set of points and cameras
giving the same images [27–30].

Later on, the analysis of certain dynamic and segmented scenes led computer vision experts
to consider higher dimensional projective spaces, given that a dynamic or segmented scene
in P3 can be modeled as a static and more manageable scene in a higher dimensional ambient
space P

k, k ≥ 3 (see, e.g. [42]). Thus, the classical problem of projective reconstruction
has been generalized in the setting of high dimensional projective spaces and the notion
of criticality has been naturally extended as well to projections from P

k to image spaces
of higher dimension, Ph, h ≥ 2. The resulting generalized critical loci turn out to be very
classical and well known projective algebraic varieties, arising as determinantal varieties [7,
10, 11, 15–17].

The study of the ideal of critical loci has been formalized using the so-called Grassmann
tensors (or multiview tensors) introduced in [31]. These tensors are defined for a set of projec-
tions from P

k to P
h j , j = 1, . . . n. They encode multilinear constraints among view spaces

P
h j , obtained considering various relationships among corresponding linear subspaces, i.e.

subspaces that contain images of the same scene point in the different target spaces.

These tensors are a key tool not only to determine the ideal of critical loci, but also
to carry out the reconstruction process of a scene whose points are far enough from the
critical loci. In this framework, one of the authors’ and their coauthors’ long term goals is to
investigate fundamental properties of Grassmann tensors including various notions of rank,
decomposition, degenerations, and identifiability in higher dimensions, and, when feasible,
to study the varieties parametrizing such tensors. Results contained in [8, 12, 13] are to be
framed in this context.

Concerning some bibliographic references, a foundational book on multiview geometry
is [30]. Multiview varieties are not addressed in this paper, but are strictly connected with
these topics [2, 38]. For tensors and tensor decomposition we refer to [35], and for some
applications to [6], while for a wide study of the multifocal tensor varieties we refer to [1,
32, 37]. A recent survey with updated bibliography on Algebraic Vision is given in [33].

The paper is structured as follows. Assuming no previous knowledge of computer vision,
in Sect. 2 we recall the setting and standard definitions of multiview geometry and we give
some examples to show how a dynamic scene in the three dimensional space can give rise
to a static one in a higher dimensional space. In Sect. 3 we introduce Grassmann tensors,
following [31], and we show their role in the reconstruction process. In Sect. 4 the focus
is on the case of two or three pojections and we recall the properties of the corresponding
Grassmann tensors, classically known as the bifocal and trifocal tensor, respectively. We
recall how to determine the rank of the bifocal tensor (which is indeed a matrix), the rank,
multilinear rank and the core of the trifocal tensor, under a generality assumption on the
centers of projections. This natural assumption allows us to obtain a canonical form for the
tensor that greatly simplifies all related computations. In Sect. 5 we introduce the variety of
Grassmann tensors and we give some results on its birational geometric properties in the
bifocal case.

Section 6 opens the second part of the paper, dedicated to the critical loci. In particular, in
Sect. 6 we show how the Grassmann tensors can be used to properly define critical loci and
to compute their ideals. In Sections from 7 to 11 we describe critical varieties in different

123



Problems and related results in algebraic vision and…

contexts. More precisely, in Sect. 7 we consider critical loci for the calibration of a camera
and in Sect. 8 critical varieties in the case of at least two projections, when they turn out
to be smooth. In Sect. 10 we report the particular case of three projections from P

4 to P
2

which produces a Bordiga surface, connected with a line congruence in G(1, 3). In Sect. 11
we briefly recall what happens in the degenerate cases. In Sect. 12 we introduce and give
some results on the unified critical loci and finally in Sect. 13 we recall the main steps of
the practical experiments, which prove how the reconstruction near a critical locus can be
unstable.

Throughout the paper, proofs are omitted or only briefly sketched, with two exceptions:
the explicit construction of the canonical form for the bifocal and trifocal tensors and the
definition and properties of critical loci via Grassmann tensors. This is due to the central role
that these constructions play in the rest of the paper.

We thank the referee for the useful comments which improved the presentation of the
survey.

2 Reconstruction problems

Oneof themost classical, still challenging tasks inComputerVision, specifically inMultiview
Geometry, is the so-called Structure fromMotion or Reconstruction problem. In this context,
when presented with a set of images (photos or videos) capturing the same scene, whether
static or dynamic, the objective is both to reconstruct

• the position and all the data of the cameras that captured the images

and

• the spatial coordinates of the points in the scene and all additional data such asmovement-
related information, including velocities and more.

The first task is called calibration of the cameras, the second is the actual reconstruction
of the scene.

Obviously this problem can be addressed at many different levels, depending on the type
of reconstruction you want to obtain: up to homography, up to affinity, or up to similarity.
Here we will only deal with the most generic reconstruction, i.e. the projective one, hence
we will not take into account all the metric aspects of the set up.

2.1 Classical set up: a static scene and, at least, two cameras

We begin by recalling the standard set up in multiview geometry. A scene is a set of N points
X ∈ P

3. A "pinhole" camera is represented as a central projection P of points in 3-space,
from a point C (the center of projection) onto a suitable target plane P2, which is called view.

After choosing appropriate bases in the vector spaces involved, we can identify the projec-
tion map P with its representative matrix, for which we use the same symbol P . Accordingly,
if X is a point in P3, we denote its image in the projection equivalently as P(X) or PX. The
line through C and X is a ray.

Of course, since all points of the same ray have the same image, the task of reconstructing
the scene is impossible, starting from only one view. The only possible reconstruction is cali-
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bration.Moreover, sincewe are dealingwith reconstructions up to projective transformations,
the center is the only property of the camera that can be reconstructed.

Hence, for the reconstruction of the scene, at least two views are needed. Points on the
views that are images of the same point of the scene are said to be corresponding points.

A well known result shows that, if enough pairs of corresponding points, in general posi-
tion, are known, the reconstruction process is successful. The key tool in the reconstruction
process is a matrix (the essential matrix introduced in 1981 by Christopher Longuet-Higgins,
equivalently the fundamental matrix) which encodes the possible constraints that exist
between two different images of the same scene.

2.2 Dynamic scenes

Experts in computer vision have shown interest in linear projections, not only P : P3 ���
P
2, but also between higher dimensional projective spaces. The reason for this lies in the

possibility for these projections to model shots of dynamic scenes, such as videos or film
sequences. The idea (due to L. Wolf and A. Shashua [42]) is that of replacing a dynamic
scene that takes place in the 3-dimensional space with a static scene in a k-dimensional
space where coordinates represent the initial position of points and the data of the movement
(speed, acceleration,...).

Of course in this context the problem of reconstruction becomes that of recovering all the
data of the dynamic scene: the coordinates of the initial points, their speeds, accelerations,
and so on.

Here we describe some examples of this approach.
Photos of a 3-dimensional dynamic scene with constant velocities and parallel trajecto-
ries
Assume you have a set of points in the 3D space where each point X j moves independently
along a straight-line path with constant velocity λ j and such that all the trajectories are
parallel to each other. Let P(t) denote the projection matrix from P

3 to P
2 at time t and let

Pj (t) be the j−th column of P(t). Assume that the common direction of the trajectories
is given by the unit vector (dx0 : dy0 : dz0). If X j starts at (x, y, z)T at time t = 0, then
the position of X j at time t is given by X j = (x + tλ j dx0, y + tλ j dy0, z + tλ j dz0, 1).
One can embed this scene in P

4, with coordinates (X1 : X2 : X3 : X4 : X5)
T by setting

X1 = x; X2 = y; X3 = z; X4 = 1; X5 = λ j ). Denote by P the following 3 × 5 matrix

P = [P1(t)|P2(t)|P3(t)|P4(t)|tdx0P1(t) + tdy0P2(t) + tdz0P3(t)].
It is immediated to see that one has

P(x, y, z, 1, λ j ) = P(t)X j ,

hence the dynamic scene in P3 has been trasnformed into a static one in P4.

Photos of a 3-dimensional dynamic scene with constant velocities and no restriction on
the trajectories
Assume you have a set of points in the 3D space where each point moves independently along
some straight-line path with no restriction on themutual positions of the trajectories. Let P(t)
denote the projectionmatrix fromP

3 toP2 at time t and let Pj (t) be the j−th column of P(t).
If point Xi starts at (x : y : z) at time t = 0; and its velocity vector is (dx : dy : dz); then the
homogeneous coordinates of point Xi at time t are Xi = (x + tdx : y + tdy : z + tdz : 1)T .
One can embed this scene in P

6, with coordinates (X1 : X2 : X3 : X4 : X5 : X6 : X7)
T by

setting X1 = x; X2 = y; X3 = z; X4 = 1; X5 = dx; X6 = dy; X7 = dz). The projection
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matrix from P
6 to P

2 is then the 3 × 7 matrix

[P1(t)|P2(t)|P3(t)|P4(t)|t P1(t)|t P2(t)|t P3(t)].
Video of a 3-dimensional dynamic scene with constant velocities
Let Xi = (x + tdx : y + tdy : z + tdz : 1)T be, as in the previous example, a set of points
in the 3D space moving independently along some straight-line path with no restriction on
the mutual positions of the trajectories. Let P denote an affine projection matrix from P

3 to
P
2, i.e. a matrix with the last row of the form (0, 0, 0, 1).
We consider here a video of the scene, taken from a single camera. In this context, the

projection on the image plane of the 3-dimensional dynamic scene is itself a dynamic scene,
but in the plane. As the projection is linear, points in the image plane are still moving along
straight line trajectories. Moreover, as the projection matrix P is affine, even the image points
move with constant velocities. In this case we will embed this 3D scene in the hyperplane
X8 = 0 in the P

7 with coordinates (X1 : X2 : X3 : X4 : X5 : X6 : X7 : X8)
T , by

setting X1 = x; X2 = y; X3 = z; X4 = 1; X5 = dx; X6 = dy; X7 = dz; X8 = 0,
and the 2D video in the P

5 with coordinates (Y1 : Y2 : Y3 : Y4 : Y5 : Y6)T by setting
Y1 = x ′; Y2 = y′; Y3 = 1; Y4 = dx ′; Y5 = dy′; Y6 = 0. With these notation, the projection
of the dynamic scene from P

3 to P
2 translate into the static projection from P

7 to P
5 given

by the following 6 × 8 projection matrix:

(
P 0
0 P

)
.

3 Grassmann tensors

Motivated by the examples presented at the end of the previous section, from now on we will
deal with linear projections P : Pk ��� P

h defined by (h + 1) × (k + 1) full rank matrices.
To proceed further, it is essential to introduce specific notation.
Let V be a k + 1-dimensional vector space. We will denote by P

k = P(V) the projective
space of one-dimensional subspaces of V. Fix a proper subspace C ⊂ V of dimension k − h
(h < k), and consider the quotient map p : V → V/C. The map p induces a rational map
P : P(V) ��� P(W) where W = V/C.

We will call P camera and C = P(C) center of projection. The target space P(W) is
called space of rays: a point of P(W) can be identified with a projective k − h linear space
containing the center of projection and will be called ray.

As usual P(V�)will be identified with the linear space of hyperplanes of P(V) and P(W�)

with the subspace od hyperplanes containing C . We will call P(W�) the view space.
Once bases in V and in W are fixed, one obtains a representative matrix for P which we

will still denote by P . Columns of P generate W , whilst rows of P generate W�.

We are now ready to introduce Grassmann tensors.
Given a set of n linear projections Pj : Pk ��� P

h j , we choose a profile i.e. a n−tuple of
positive integers (α1, . . . αn) such that α1 + · · · + αn = k + 1.

One can choose a linear subspace L j ⊂ P
h j of codimension α j in the j−th view, j =

1, . . . n. The subspaces (L1, . . . Ln) are said to be corresponding if there exists at least one
point X ∈ P

k such that Pj (X) ∈ L j , ∀ j = 1, . . . n.
Let us consider a matrix S j whose columns represent a basis of L j .
The condition Pj (X) ∈ L j translates into PjX = S jvj, for some vj ∈ C

h j−α j+1.
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In other words, if (L1, . . . Ln) are corresponding subspaces, the following square homo-
geneous system has non trivial solutions

⎡
⎢⎢⎢⎢⎣

P1 S1 0 . . . 0
P2 0 S2 . . . 0
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

Pn 0 0 . . . Sn

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎢⎣

X
−v1
−v2

...

−vn

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
...

0

⎤
⎥⎥⎥⎥⎥⎦

, (1)

so that det(T P1,...Pn
S1,...Sn

) = 0, where T P1,...Pn
S1,...Sn

=

⎡
⎢⎢⎢⎢⎣

P1 S1 0 . . . 0
P2 0 S2 . . . 0
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

Pn 0 0 . . . Sn

⎤
⎥⎥⎥⎥⎦

Notice that T P1,...Pn
S1,...Sn

is an n−linear form in the Plücker coordinates of L ′
j s, hence it defines

a tensor T which is called Grassmann tensor defined by the P ′
j s and the profile (α1, . . . αn)

and which, in the sequel, we will also denote by T (P1,...Pn), or T (P1,...Pn)
(α1,...αn)

, when necessary.

The entries τ j1,... jn of T are (k + 1) × (k + 1)− minors of

⎡
⎢⎣
P1
...

Pn

⎤
⎥⎦ obtained by choosing α j

rows of Pj . Hence, in the decomposition

k+1∧
(W�

1 ⊕ · · · ⊕ W�
n) =

⊕
∑

r j=k+1

r1∧
W�

1 ⊗ · · · ⊗
rn∧

W�
n

they correspond to
∧α1 W�

1 ⊗· · ·⊗∧αn W�
n ; in other words T ∈ V1 ⊗V2 ⊗· · ·⊗Vn,where

Vj = ∧α j W�
j .

These tensors have been introduced by Hartley and Schaffalitsky in [31] and play a key
role in Structure-from-motion problems due to the following fundamental result.

Theorem 3.1 [31, Theorem 5.1] If at least one j = 1, . . . n is such that h j > 1, the Grass-
mann tensor T determines the projection matrices P1, . . . Pn, up to constants and up to a
projective transformation in Pk .

It is useful to notice that if all the target spaces areP1 the reconstruction is always ambiguous,
see for example [31, 34].

3.1 Classical multiview tensors

Grassmann tensors generalize to linear projections between spaces of higher dimension some
tools which where well-known in the case of projections from P

3 to P
2:

• the fundamental matrix, in the case of two projections from P
3 to P

2, with profile
(α1, α2) = (2, 2);

• the trifocal tensor, in the case of three projections from P
3 to P

2, with profile
(α1, α2, α3) = (1, 1, 2);
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• the quadrifocal tensor, in the case of four projections from P
3 to P

2, with profile
(α1, . . . α4) = (1, 1, 1, 1).

Multiview geometry in these classic cases has been studied exstensively and we refer the
reader to [30] for a throrough treatment. To give a flavour of the issues involved, here we
limit ourselves to the case of two views, describing the main properties of the fundamental
matrix and the associated epipolar geometry.

Consider two linear projections P1, P2 : P
3 ��� P

2, and denote by C1,C2 ∈ P
3 the

centers of P1 and P2 (resp.). The images Ei, j = Pi (CJ ) (i, j = 1, 2, i 
= j) of the center
C j in the i−th view, via the i−th projection, are called epipoles.

For a given x in the first view, the set of points in the second view that are corresponding
to x is a line λx through the epipole E2,1, and similarly the set of points in the first view
which are corresponding to a fixed x′ is a line λx′ passing through E1,2. Lines λx and λx′ are
called epipolar lines.

As we have seen above, the fundamental matrix F is defined by

det(M) = det

[
P1 x 0
P2 0 x′

]
= (x′)t Fx

and if x = P1(X) and x′ = P2(X) is a pair of corresponding points, then (x′)t Fx = 0.
In the sequel (see Sect. 4) we will deal with the ranks of multiview tensors. In the case of

the fundamental matrix it is very easy to see that it is a 3 × 3 matrix of rank 2. Indeed the
epipolar lines λx and λx′ have resp. equations (x′)t Fx = 0 and x′Fx = 0, and the epipoles
are the right and left annihilators of F . This implies that rk (F) = 2.

3.2 Steps for the reconstruction

We mentioned in the introduction that Grassmann tensors were introduced to perform the
reconstruction process in the general context of any number of projections between spaces of
any dimension. In this section, we will show the step-by-step solution to the structure-from-
motion problem.

We confine our discussion to the theoretical aspects of the question. In the real world,
all data is affected by noise, so it is necessary to treat the problem with Numerical Analysis
tools, but we will not address this aspect of the question.

Assume we have a set of n ≥ 2 linear projections Pj : Pk ��� P
h j , j = 1, . . . n which

are unknown and which project unknown scene points X ∈ P
k . Assume also that we can

identify some corresponding points in the images.
We choose a profile (α1, . . . αn), with α1+· · ·+αn = k+1 and the associated Grassmann

tensor

det(T P1,...Pn
S1,...Sn

) = det

⎡
⎢⎢⎢⎢⎣

P1 S1 0 . . . 0
P2 0 S2 . . . 0
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

Pn 0 0 . . . Sn

⎤
⎥⎥⎥⎥⎦ .

1 reconstructionof the tensor: For any set (L1, . . . Ln)of corresponding spaces, one has to
compute their Plücker coordinates and substitute them in the expression of det(T P1,...Pn

S1,...Sn
).
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In this way, det(T P1,...Pn
S1,...Sn

) = 0 turns out to be a linear equation in the unknowns entries
τ j1,... jn of T . If sufficiently many n−tuples of corresponding subspaces in the views (and
in general enough position) are recognized, one gets a linear system from which the
entries of the tensor can be obtained. Of course, in the real word case, one has to deal a
with overdetermined linear system and to solve it with numerical methods.

2 reconstruction of the cameras or calibration: Once the Grassmann tensor T has been
reconstructed, Theorem 3.1 is used to determine projection matrices, up a projective
trasnsformation in P

k and up to constants.
3 reconstruction of the scene: Finally, once the projection matrices are reconstructed, for

each n−tuple of corresponding subspaces (L1, . . . Ln), one can recover the scene point
X such that Pj (X) ∈ L j , j = 1, . . . n, by solving the linear system (1).

4 Ranks and Core of Grassmann tensors

In this section we recall the well-known notions of rank and multilinear rank of a tensor. For
a text that deals extensively with this type of topic, see e.g. [35]. We also mention the notion
of core of a tensor (see [39]). Finally we consider the ranks and the core in the case of the
Grassmann tensor.

4.1 Ranks of tensors

Let Z j be a vector space of dimension dimZ j = n j , j = 1, . . . h and consider a tensor
K ∈ Z1 ⊗ Z2 ⊗ · · · ⊗ Zh .

One can consider different notions of "rank" for K. The most standard is the following.
The rank of K, denoted by rk(K), is the minimum number of decomposable tensors

z1 ⊗ z2 · · · ⊗ zh (z j ∈ Z j ) needed to write K as a sum.

Another important notion of rank for a tensor, is the so-calledmultilinear rank.To introduce
this notion we have to recall the definition of flattening matrices. We will explain it explicitly
in the case of interest to us, i.e. in the case of a three dimensional tensor.

Let Z1, Z2, Z3 be vector spaces of dimension n1, n2, n3, with chosen bases {αi }, {β j },
{γk}, respectively.

Let K = [Ki, j,k] ∈ Z1 ⊗ Z2 ⊗ Z3. We can interpret Z1 ⊗ Z2 ⊗ Z3 as Z1 ⊗ (Z2 ⊗ Z3)

to get

K =
∑
i

αi ⊗ (
∑
j,k

Ki, j,k(β j ⊗ γk)). (2)

The corresponding matrix, of size n1 × (n2n3), which is the flattening K1, has the following
block structure:

⎡
⎢⎣

K1,1,1 . . . K1,n2,1 K1,1,2 . . . K1,n2,2 . . . K1,1,n3
. . . K1,n2,n3

K2,1,1 . . . K2,n2,1 K2,1,2 . . . K2,n2,2 . . . T2,1,n3
. . . K2,n2,n3

.

.

.

.

.

. . . .

.

.

.
Kn1,1,1 . . . Kn1,n2,1 Kn1,1,2 . . . Kn,n2,2 . . . Kn1,1,n3

. . . Kn1,n2,n3

⎤
⎥⎦

In the same way, paying attention to the cyclic nature of indices i, j, k, one can define
flattenings K2 and K3. One then defines the mutilinear rank (or F-rank) of the tensor K as
F-rk (K) = (rk (K1), rk (K2), rk (K3)).
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In the case of an h-dimensional tensorK ∈ Z1⊗Z2⊗· · ·⊗Zh,weproceed in a similarway
to construct thea−th flatteningKa (a = 1, . . . n)which turns out to be ana×(n1 . . . ňa · · · nh)
matrix (where ˇ(−) denotes deleting). One defines the multilinear rank (or flattening rank )
of K to be F-rk(K) = (r1, r2, . . . rh), where ra =rk(Ka) is the rank of the a−th flattening
matrix Ka .

Of course, if n = 2, the tensor K turns out to be a matrix M , its flattenings are K1 = M
and K2 = MT , so that one has F-rk(K) = (r , r), where r = rk (K) = rk (M).

Remark 4.1 For what follows it is worth observing that

• the rank of a tensorK ∈ Z1⊗ Z2⊗· · ·⊗ Zh, is invariant under multilinear multiplication
by (M1, . . . Mh) where Ma ∈ GL(na), a = 1, . . . h;

• the rank ofKa , a = 1, . . . h, is invariant under left action of GL(na) and the right action
of GL(na+1) ⊗ · · · ⊗ GL(nh) ⊗ GL(n1) ⊗ · · · ⊗ GL(na−1)).

Finally we recall the notion of core of a tensor. The core of a tensor is crucial for appli-
cations as it represents a smaller tensor that retains all the information of the original tensor.

LetK ∈ Z1⊗ Z2 ⊗· · ·⊗ Zh , with dimZ j = n j , j = 1, . . . h be a tensor with multilinear
rank F-rk(K) = (r1, r2, . . . rh).

By a core tensor of K we mean a tensor C satisfying:

1. C ∈ W1 ⊗ · · · ⊗ Wh , where dimWj = r j , j = 1, . . . h;
2. there exist n j × r j semi-orthogonal matrices Uj , (i.e. U∗

j U j = Ir j , where (−)∗ denotes
the adjont matrix), such that:

(U∗
1 , . . .U∗

h ) · K = C;
(U1, . . .Uh) · C = K.

4.2 Ranks of Grassmann tensors: classical cases

In this section we study ranks and multilinear ranks of the Grassmann tensors.
First of all, it it is worth noting that the study of ranks of Grassmann tensors is interesting

not only from a teorical point of view, but also for applications. To explain it let’s consider
the simplest scenario: that of 2 projections from P

3 to P
2. As we have seen before, in this

case the tensor corresponds to the 3 × 3 fundamental matrix. The knowledge of this matrix
is a crucial step in reconstructing the scene. However, in practical applications, when the
fundamental matrix is reconstructed from a set of pairs of corresponding points, the resulting
matrix F̃ is an approximate version of the "true" fundamental matrix F and typically has
rank 3. As highlighted in section 3.1, F has rank 2, so that a refinement strategy involves
projecting the reconstructed matrix F̃ onto the variety of matrices of rank 2.

In the classical cases of section 3.1, (i.e. for n=2, 3, or 4 projections P3 ��� P
2) ranks of

Grassmann tensors are well known, see for example [30, 32]:

• for n = 2 (fundamental matrix), rk(T ) = 2;
• for n = 3 (trifocal tensor), rk(T ) = 4;
• for n = 4 (quadrifocal tensor), rk(T ) = 9.

4.3 Bifocal and trifocal tensors: canonical form

The authors, together with some co-authors, have started to study the ranks of Grassmann
tensors for the higher dimensional cases, i.e. for projections Pk ��� P

h j , j = 1, . . . n, in
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case n = 2 (bifocal tensor) [12] and in case n = 3 (trifocal tensor) [8]. One of the key tool
for these results is the reduction of the projection matrices into a particular form which we
will call canonical form.

We start with the case of n = 3 projections Pk ��� P
h j , j = 1, 2, 3.

Recall that the entries τ j1, j2, j3 of T are (k + 1) × (k + 1)− minors of

⎡
⎢⎣
P1
...

Pn

⎤
⎥⎦ obtained

by choosing α j rows of Pj . Hence a projective transformation in the scene Pk = P(V) has
the only effect of multipliyng all the entries of the tensor by a constant (the determinant of
the associated matrix), while a projective trasformation on one view P

h j = P(W∗
j ) induces,

through the Plücker embedding, a projective trasformation on Vj = ∧α j W�
j .

Therefore, from Remark 4.1, one easily deduces the following

Remark 4.2
• the right action of GL(k + 1) on P does not change T (up to constants)
• the left action of GL(h1 + 1) ×GL(h2 + 1) ×GL(h3 + 1) on P does not change either

rk(T ) or F-rk(T ).

Nowwemake a general position assumption on the cameras, namely that the span of each
pair of centers of projection does not intersect the third center.

Denote by L1, L2 and L3 the vector spaces of dimension h1 + 1, h2 + 1 and h3 + 1
respectively, spanned by the columns of P1T , P2T and P3T .

For each triplet of distinct integers r , s, t = 1, 2, 3,we can consider the following integers:

ir ,s = hr + hs + 1 − k; (3)

i = h1 + h2 + h3 + 1 − 2k; (4)

jr ,s = ir ,s − i . (5)

The general position assumption implies, in particular, that for any choice of a pair r , s, the
span of Lr and Ls is the whole Ck+1, (which means that the two centers Cr and Cs do not
intersect), moreover, applying Grassmann formula one sees that the three numbers above
have the following geometric meaning: ir ,s = dim(Lr ∩ Ls) ≥ 0, for any choice of r , s,
i = dim(L1 ∩ L2 ∩ L3) ≥ 0 and jr ,s is the affine dimension of the centerCt i.e. k−ht = jrs
for r , s, t = 1, 2, 3.
Hence one can choose bases for L1, L2 and L3 so that:

L1 =< v1, . . . vi , w1, . . . w j1,2 , u1, . . . u j1,3 >,

L2 =< v1, . . . vi , w1, . . . w j1,2 , t1, . . . t j2,3 >,

L3 =< v1, . . . vi , u1, . . . u j1,3 , t1, . . . t j2,3 >,

and that B = {v1, . . . vi , w1, . . . w j1,2 , u1, . . . u j1,3 , t1, . . . t j2,3} is a basis of Čk+1.

Making use of the action of GL(hi + 1) on the views i = 1, 2, 3, one can transform the
columns of P1T , P2T , and P3T so that they become, respectively:

[v1, . . . vi , w1, . . . w j1,2 , u1, . . . u j1,3 ],
[v1, . . . vi , w1, . . . w j1,2 , t1, . . . t j2,3 ],
[v1, . . . vi , u1, . . . u j1,3 , t1, . . . t j2,3 ].
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and finally, via the action of GL(k +1) on the scene, we can reduce B to the canonical basis.
With these transformations the matrix [PT

1 |PT
2 |PT

3 ] takes the following form (canonical
form):

[P1TC |P2TC |P3TC ] :=

⎡
⎢⎢⎣
Ii 0 0 Ii 0 0 Ii 0 0
0 I j1,2 0 0 I j1,2 0 0 0 0
0 0 I j1,3 0 0 0 0 I j1,3 0
0 0 0 0 0 I j2,3 0 0 I j2,3

⎤
⎥⎥⎦ , (6)

Ia denoting the identity matrix of order a and 0 denoting a suitable zero-matrix.

In the case of n = 2 projections Pk ��� P
h j , j = 1, 2, we have only to assume that the

two centers of projection do not meet each other, and, with similar, but easier, arguments we
obtain the following canonical form for projection matrices

[P1TC |P2TC ] :=
⎡
⎣ Ii 0 Ii 0

0 Ih1+1−i 0 0
0 0 0 Ih2+1−i

⎤
⎦ . (7)

4.4 Bifocal and trifocal tensors: ranks and core in the general case

Both in the case of the bifocal and in the case of the trifocal tensor we will denote by TC the
Grassmann tensor corresponding to projection matrices P1C and P2C (for n = 2), P1C , P2C
and P3C (for n = 3, resp.).

The tensor TC has an extremely simple form: all the column vectors of its flattenings are
either zero-vectors or, up to a sign, vectors of the canonical bases so that one can reason
about TC through purely combinatorial arguments.

On the other hand, due to Remark 4.2 we have rk (T ) = rk (TC ), so that, by performing
some combinatorial computations, one gets the following Theorems 4.3 and 4.4.

Theorem 4.3 [12, Theorem1] The bifocal tensorT for two projectionsPk ��� P
h j , j = 1, 2,

whose centers do not intersect each other, with profile (α1, α2), has rank:

rk (T ) =
(

(h1 − α1 + 1) + (h2 − α2 + 1)

h1 − α1 + 1

)
.

Theorem 4.4 [8, Theorem 5.2] The trifocal tensor T for three projections Pk ��� P
h j , j =

1, 2, 3, such that the span of any two centers does not intersect the third, with profile
(α1, α2, α3), has rank:

rk(T ) =
j12∑

a2=0

j13∑
a3=0

j23∑
b3=0

(
j12
a2

)(
j13
a3

)(
j23
b3

)(
i

α1 − a2 − a3

)(
i − α1 + a2 + a3

α2 − j12 + a2 − b3

)
,

where, for {r , s, t} = {1, 2, 3} we have put jrs = k − ht .

The proof of Theorem 4.3 provided in [12] is derived through a completely different
approach, i.e., via a geometric interpretation of a map associated to the matrix T . It turns
out to be a rational map � : G(h1 − α1, h1) ��� G(k − α1, h2) whose image is a suitable
Schubert variety	, so that rk (T ) = dim(< 	 >)+1, < 	 > denoting the projective space
spanned by 	.
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The canonical form (6) of the projection matrices plays also a key role for the computation
of the multilinear rank of T . Indeed, for the tensor in canonical form, one can show that the
multilinear rank is (r1, r2, r3), where r j = n j − ν j , and ν j = number of zero rows of j−
flattening of TC .

The result turns out to be the following

Theorem 4.5 [9, Theorem 3.1] The trifocal tensor T for three projections Pk ��� P
h j , j =

1, 2, 3, such that the span of any two centers does not intersect the third, with profile
(α1, α2, α3), has multilinear rank (r1, r2, r3) where

r1 = n1 −
∑

(a1,a2,a3)∈A

(
i

a1

)(
j1,2
a2

)(
j1,3
a3

)
,

with A = {(a1, a2, a3)} such that au are non negative integers satisfying ∑
u au = α1, a1 ≤

i,max(0, α1 − i − j1,t ) ≤ as ≤ j1,s − αs − 1, at ≤ j1,t . and r2, r3 are obtained similarly
to r1 taking into account the cyclic nature of the indexes 1, 2, 3.

Once again, it is the canonical form that provides us with a method to find the core C of
the trifocal tensor T . Indeed, as mentioned before, the columns of the j-th flattening of TC
are zero or elements of the canonical basis {e1, . . . en j } of Cn j . As a consequence, one can
easily show that a core tensor CC of TC is obtained from TC simply by deleting all null faces
in each of the three directions, and that the matrices Uj such that

(U∗
1 ,U∗

2 ,U∗
3 ) · TC = CC ;

(U1,U2,U3) · CC = TC
are the n j × r j matrices whose columns are the vectors ek1 , . . . ekr j , j = 1, 2, 3.

Now, to obtain the core of T , we use an approach which is essentially the same as HOSVD
[23, 40], but that turns out to be easier due to the particular form of the involved matrices.
First of all one considers the r j × r j invertible matrix Bj defined by Bj = E j D

−1
j where Dj

is the diagonal matrix with the singular values of V−1
j U j and E j is the matrix whose columns

are the eigenvectors of (V−1
j U j )

∗(V−1
j U j ). Then one defines the core of the tensor T to be

C = (B−1
1 , B−1

2 , B−1
3 ) ·CC . Finally, one introduces matrices S j = V−1

j U j B j for j = 1, 2, 3,
which are semi-orthogonal and verify that C is a core of T , because C = (S∗

1 , S
∗
2 , S

∗
3 ) ·T and

T = (S1, S2, S3) · C, since the following diagram commutes:

T
(V1,V2,V3) �� T c

(UT
1 ,UT

2 ,UT
3 )

��
C

(S1,S2,S3)

��

Cc
(B−1

1 ,B−1
2 ,B−1

3 )

��

(8)

4.5 Non-general case

In Subsection 4.4 we have reported how to compute the rank, themultilinear rank and the core
of the trifocal tensor under a general position assumption on the centers of projection. If this
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condition is not satisfied, no general statement can be made, since the rank, the multilinear
rank (and hence also the core) of the tensor strongly depends on the mutual position of the
centers.

Just to give an idea for the rank, consider the case of three projections P4 ��� P
2. When

the lines which are centers of projection are in general position, we know (Theorem 4.4) that
rk(T ) = 4, but (see [8], Example 6.3):

• rk(T ) = 5, when the centers lie in the same hyperplane, or
• rk(T ) = 2, when the centers span P4, but two of them have nonempty intersection,
• rk(T ) = 4, when the centers lie in the same hyperplane and two of them have nonempty

intersection.

The examples seen above make it clear that the rank can both go up and down when the
position of the centers is specialized, hence they provide evidence of the fact that the rank
of tensors is not semicontinuous, also in the contest of multiview tensors. We recall that a
tensor K has border rank r if it is a limit of tensors of rank r but is not a limit of tensors of
rank s for any s < r and that, of course R(K) ≤ R(K), R(K) denoting the border rank of
K. Examples above also show that the border rank of a multiview tensor can be strictly less
than its rank.

5 The variety of Grassmann tensors

In the previous sections, we analyzed the properties of a given Grassmann tensor. In this
section, the entries of the cameras will be treated as parameters, and we will explore the
algebraic varieties described by the corresponding Grassmann tensors.

As before, we consider a Grassmann tensors associated to a set of n projections Pk ���
P
h j , j = 1, . . . n, and we fix a profile (α1 . . . αn). We will denote by X (k,h1...hn)

(α1...αn)
the variety

described by these tensors. Before giving the formal definition of such variety, we recall the
state of the art, in the classical case.

In case n = 2, Grassmann tensors are fundamental matrices and a very classical result is
the following

Theorem 5.1 The variety of fundamental matrices is

X (3,2,2)
(2,2) = {M ∈ Mat3,3|det(M) = 0},

Mat3,3 denoting the space of 3 × 3 matrices.

Recently, some authors have dealt with the study of varieties of Grassmann tensors in the
context of 3 or 4 projections P3 ��� P

2. Their focus has primarily been on determining the
ideals of these varieties.

In particular

• n = 3, A. Alzati and A. Tortora [3] have determined the equations of the the trifocal
varietyX (3,2,2,2)

(1,1,2) , and C. Aholt and L. Oeding [1] have determined its ideal and computed
its Hilbert polynomial,

• n = 4, L. Oeding [37] has computed the ideal of the the quadrifocal variety X (3,2,2,2,2)
(1,1,1,1)

up to degree 8 and partially in degree 9.
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The authors, in collaboration with some co-authors [12–14], have begun a research pri-
marily focused on determining the geometric and birational properties of the variety of
Grassmann tensors X (k,h1...hn)

(α1...αn)
for projections between spaces of any dimension.

As we have seen in Sect. 3 for a Grassmann tensor T we know that its entries are some
of the Plücker coordinates of the linear space represented by the matrix PT = [PT

1 . . . PT
n ]

and that T ∈ V1 ⊗ V2 ⊗ · · · ⊗ Vn, where Vj = ∧α j W�
j ,

Because of this, it is natural to consider the Grassmannian G(k,P(W�
1 ⊕ · · · ⊕W�

n)) and
the projection

π : P(

k+1∧
(W�

1 ⊕ · · · ⊕ W�
n)) ��� P(

α1∧
W�

1 ⊗ · · · ⊗
α2∧

W�
2).

By definition, the variety X (k,h1...hn)
(α1...αn)

of Grassmann tensors for n projections P
k ���

P
h j , j = 1, . . . n, with profile (α1 . . . αn) is

X (k,h1...hn)
(α1...αn)

= π(G(k,P(W�
1 ⊕ · · · ⊕ W�

n))),

( ) denoting the Zariski closure.
By Theorem (3.1), π induces a birational map

� : G(k,P(W�
1 ⊕ · · · ⊕ W�

n))

(C∗ ⊕ · · · ⊕ C∗)/C∗ ��� X (k,h1...hn)
(α1...αn)

.

In particular, one has

dim(X (k,h1...hn)
(α1...αn)

) = (k + 1)(h1 + h2 + · · · + hn + n − k − 1) − n + 1. (9)

Notice that the dimension ofX (k,h1...hn)
(α1...αn)

is independent of the profile (α1, . . . αn): different
profiles only correspond to different projections of the Grassmannian.

In [12, 13], the authors focus on the case n = 2 and, in order to give a geometric description
of the variety Xα1,α2 of bifocal Grassmann tensors they prove the following results

a) X (k,h1,h2)
(h1,h2)

= {M ∈ Math1+1,h2+1 | rk(M) = 2} (see [12], Theorem 2).

b) X (k,h1,h2)
(α1,α2)

is birational to a homogeneous space with respect to the action of GL(h1 +
1) × GL(h2 + 1) (see [13], Theorem 4.1).

c) X (k,h1,h2)
(α1,α2)

is endowed with a dominant rational map 
 : Xα1,α2 ��� G(i − 1,P)(V∗))
with fibres isomorphic to PGL(i) (see [13], Theorem 4.5).

Part a) provides a generalization of Theorem 5.1. Its proof follows easily from formula
(9).

The key tool for the proof of part (b) is again the canonical form. Indeed in the space of

(h1 +h2 +2)× (k+1)matrices one can consider the open subset Z of matrices P =
[
P1
P2

]
,

with P, P1, P2 of maximal rank and where Pj has size (h j + 1) × (k + 1), j = 1, 2 and
notice that, as we have seen in Sect. 4, every P ∈ Z can be put in the canonical form (7).

The proof of part (c) is much more technical and for a comprehensive understanding, we
refer to [13].
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6 Grassmann tensors and critical loci

As discussed in Sect. 3, given n projections of a scene in Pk and a suitable number of corre-
sponding points in the images Phi of the scene, it becomes possible first to recover the entries
of a suitable Grassmann tensor T , then the projection matrices, and finally the coordinates
of the scene points.

Hence, in principle, achieving a successful reconstruction is possible given a sufficient
number of views and a a sufficient number of corresponding points. This holds true in general,
but it is possible to find two sets of scene points (non projectively equivalent) and cameras
that produce the same images in the views. This scenario, which even occurs in the classical
setup of two projections from P

3 to P
2, prevents any possible reconstruction.

Such configurations of points in Pk are referred to as critical and the loci they describe as
critical loci.

To formalize the notion of critical configuration and loci, let us suppose to have n projec-
tions of a static scene, consisting of a set of N >> 0 points {X j } in Pk . The projected points
on the image spaces are denoted with xi j = Pi (X j ). In all this section we will work under
the:

First generality assumption: we assume that the intersection of the centers C1 ∩ · · · ∩Cn

is empty.

Definition 6.1 Given n projections Qi : Pk ��� P
hi , a set of points {X1, . . .XN } in P

k is
said to be a critical configuration for projective reconstruction for Q1, . . . Qn if there exists
another set of n projections Pi : P

k ��� P
hi and another set {Y1, . . .YN } ⊂ P

k , non-
projectively equivalent to {X1, . . .XN }, such that, for all i = 1, . . . n and j = 1, . . . N , we
have Pi (Y j ) = Qi (X j ), up to homography in the targets. The two sets {X j } and {Y j } are
called conjugate critical configurations, with associated conjugate projections (or associated
couple of n projections) {Qi } and {Pi }

According to notations in Sect. 2, the n projections are identified by n matrices Pi , i =
1, . . . , n, of dimension (hi + 1) × (k + 1) and maximal rank.

The points in critical configurations fill an algebraic variety, called critical locusX , whose
ideal can be obtained by making use of the Grassmann tensor introduced in Sect. 3.

Proposition 6.2 [17, Proposition 3.1] The critical locus X is an algebraic variety, whose
ideal I (X ) is generated by the maximal minors of the matrix

MP1,...Pn
Q1,...Qn

=

⎛
⎜⎜⎜⎝

P1 Q1(X) 0 0 . . . 0 0
P2 0 Q2(X) 0 . . . 0 0
...

...

Pn 0 0 0 . . . 0 Qn(X)

⎞
⎟⎟⎟⎠ . (10)

Then X is a determinantal variety, containing the centers of the projections Q j ’s.

Proof Let L j ⊆ P
h j be corresponding linear subspaces, of codimensions αi for i = 1, . . . n,

and (α1, . . . αn) the corresponding profile, as defined in Sect. 3. We have seen that the Grass-
mann tensor T P1,...Pn (L1, . . . Ln) encodes the algebraic relations between corresponding
subspaces in the different views of the projections P1, . . . Pn . Hence by definition of crit-
ical set, if {X j ,Y j } are conjugate critical configurations, then, for each j , the projections
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Q1(X j ), . . . Qn(X j ) are corresponding points not only for the projections Q1, . . . Qn, but
for the projections P1, . . . Pn , too.

We choose a point X in the critical locus. If Qi (X) ∈ Li , for every i = 1, . . . n, then
T P1,...Pn (L1, . . . Ln) = 0. The previous condition is fulfilled if Li is spanned by Qi (X) and
any other hi − αi independent points in Phi . So, we can suppose

Si = (
Qi (X) xi1 . . . xi,hi−αi

) = (
Qi (X) S′

i

)
of maximal rank hi − αi + 1, that is to say, S′

i is a general (hi + 1) × (hi − αi ) matrix of

rank hi − αi . Due to this choice, the matrix T P1,...Pn
S1,...Sn

becomes

T P1,...Pn
S1,...Sn

=

⎛
⎜⎜⎜⎝

P1 Q1(X) S′
1 0 0 0 . . . 0 0 0

P2 0 0 Q2(X) S′
2 0 . . . 0 0 0

...
...

Pn 0 0 0 0 0 . . . 0 Qn(X) S′
n

⎞
⎟⎟⎟⎠ .

The determinant det(T P1,...Pn
S1,...Sn

) is a sum of products of maximal minors of S′
1, . . . S

′
n , and

maximal minors of the matrix

MP1,...Pn
Q1,...Qn

=

⎛
⎜⎜⎜⎝

P1 Q1(X) 0 0 . . . 0 0
P2 0 Q2(X) 0 . . . 0 0
...

...

Pn 0 0 0 . . . 0 Qn(X)

⎞
⎟⎟⎟⎠ . (11)

Such a matrix is a (n +
n∑

i=1

hi ) × (n + k + 1) matrix, the last n columns of which are of

linear forms, while the first k + 1 columns are of constants.
If we allow the profile to change, as X is in the critical locus independently from the

profile, we get all the possible maximal minors of MP1,...Pn
Q1,...Qn

.
To conclude the proof we only have to show that the center C ′

j of Q j is contained in X
for every j = 1, . . . n. C ′

j is the zero locus of Q j (X), and so MP1,...Pn
Q1,...Qn

drops rank at every
point in C ′

j , for each j . ��
We remark that to get all the generators of I (X ), i.e all the maximal minors of MP1,...Pn

Q1,...Qn
,

we have to allow α j to be equal to 0 for some j . If this happens, L j = P
h j , so that the

associated view does not impose any constrain and the effect of setting α j = 0 is to decrease
the number of views.

In the following proposition we simplify the matrix used to generate the ideal I (X ). In
particular:

Proposition 6.3 [17, Section 3] I (X ) is generated by the maximal minors of a matrix of
linear forms and the expected dimension of X is

edX = k −
(
1 + (n − k − 1 +

n∑
i=1

hi ) − n

)
= 2k −

n∑
i=1

hi . (12)

Moreover, if dim(X ) = edX ,

deg(X ) =
(
n − k − 1 + ∑n

i=1 hi
n − 1

)
. (13)
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Proof From the first generality assumption, it follows both that the first k + 1 columns of
MP1,...Pn

Q1,...Qn
are linearly independent, and that the linear forms in the last n columns of the above

matrix span a linear space of dimension k + 1 in R = C[x0, . . . xk], where Pk = Proj(R). In
fact, no point is common to either the centers of the Pi ’s or of the Q j ’s.

As in [16], we write the matrix MP1,...Pn
Q1,...Qn

as the following block matrix

MP1,...Pn
Q1,...Qn

=
(
A B
C D

)

where A is a (n − k − 1+
n∑

i=1

hi ) × (k + 1) matrix, B is a (n − k − 1+
n∑

i=1

hi ) × n matrix,

C is an order (k + 1) square matrix, and, finally, D is a (k + 1) × n matrix.

Due to the first generality assumption,

(
A
C

)
has rank k+1.Hence, it contains an invertible

square submatrix of order k + 1. Up to row exchanges, we can assume that the last k + 1
rows give us the required invertible matrix, so we will assume C to be invertible.

By performing elementary operations on columns and rows, we can reduce MP1,...Pn
Q1,...Qn

to
the following easier form (

0 NX
Ik+1 0

)

where NX = B−AC−1D is a (n−k−1+
n∑

i=1

hi )×nmatrix of linear forms. Furthermore, the

maximal minors of MP1,...Pn
Q1,...Qn

span the same ideal as the maximal minors of NX . Hence, we

have that I (X ) is generated by the maximal minors of NX = B − AC−1D. Since, as proven
above, the critical locusX is a determinantal variety whose ideal is generated by the maximal
minors of a matrix of linear forms, the expected dimension of X is obtained from standard
computations of the dimension of determinantal varieties. Moreover if dim(X ) = edX , from
Porteous’s formula [4, formula 4.2], we get its degree. ��

In the following sections we will give an overview on the state of the art about the results
on critical loci, according to the dimensions of the scene spaces and to the number of views.
For these results we need to introduce the:

Second generality assumption: we assume the projections {Pi } and {Qi } to be general
enough to guarantee that the critical locusX has the expecteddimension edX = 2k−∑n

i=1 hi .

Hence, from now on, every time we assert we are in the general case, we assume that both
the generality assumptions hold.

7 The case of one view from P
k to P

2

The calibration process of a single projection, whether in the classical case of a static scene
in P3 or in its generalization to a dynamic scene in Pk , equivalent to reconstructing the center
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of the projection, can be ambiguous. Hence we define the critical set for the calibration from
P
k to Ph as the set of points {Xi} ∈ P

k having the same projection from two distinct centers.
In this case, we we do not yet require the tensor machinery introduced in Sect. 6.
In the classical case of a single projection from P

3 to P2, the critical locus has been proven
to be a non-degenerate twisted rational cubic curve in P3 (see for example [21, 22, 27, 30].

The generalization to the critical loci arising in the reconstruction from a single view from
P
k, k ≥ 4, to P

h can be obtained as follows. Assume that {Xi} is a critical configuration for
projective reconstruction from 1-view from P

k to P
h with h ≥ 2, as above, with associated

projection matrices P and Q. As P · Xi = μQ · Xi, the associated critical locus is the
determinantal variety defined by the 2 × 2 minors of the (h + 1) × 2 - matrix

(
P(X) | Q(X)

)
.

Hence, if the critical locus is irreducible and reduced, it is a minimal degree variety in P
k

classified in [24].
In the case h = 2, these critical loci are bundles P(E) over P1, where E = OP1(a1) ⊕

OP1(a2) ⊕ · · · ⊕ OP1(ak−2) is a rank k − 2 vector bundle over P1, ai ≥ 0,
∑

i ai = 3, and
P(E) is embedded by the tautological line bundle. In [10], the authors present a computer
vision interpretation. If k = 4 or k = 5, the variety can either be smooth, if the null-spaces of
P and Q, i.e. the centers of the two projections, do not intersect, or cones over a cubic surface
with center V , if the two null spaces intersect at V . If k ≥ 6 the centers of the two projections
given by P and Q always intersect in a linear subspace V , hence all the null-spaces contain
V . This implies that the variety is never smooth, but a cone with vertex V over a suitable
three dimensional variety.

8 The case of n ≥ 2 views from P
k to P

hi

An exhaustive analysis of critical loci in P
3 is presented in [27]. The classical result (due to

Kramer) regarding the criticality of a quadric surface in the case of 2-views, is considered and
generalized in the case of multiple views, to subvarieties obtained as suitable intersections
of sets of critical quadrics.

As the dimension k of the ambient space increases, partial results, in the direction of
determining the ideal of the critical variety for projections onto P

2 are presented in [11],
where a general framework for studying critical loci is proposed.

A complete classification of the smooth determinantal varieties which are critical loci for
n projections from P

k to P
hi is contained in [17]. Moreover particular attention has been

given to the case of three projections from P
4 to P

2, in which a Bordiga surface is obtained
as essential component of the critical locus.

The results obtained in the smooth case and for the Bordiga surface are presented in the
following two sections.

9 Smooth critical loci

For the results of this section we refer to [17] and we follow the notation of Sect. 6.
Under the two generality assumptions recalled in Sect. 6, to classify the smooth critical

loci in any dimension, i.e for n projections from P
k to Phi , we need the following preliminary

facts.
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Let X be the critical locus for a couple of n projections P1, . . . Pn and Q1, . . . Qn from
P
k to P

hi , i = 1, . . . n. Then we have:

1. the following lower bound for
∑

hi :

k + 1 ≤
n∑

i=1

hi . (14)

2. if two centers of the projections Q1, . . . Qn intersect, the critical locus is singular.
3. if n ≥ 4 and X has codimension c ≥ 2, then, either X is not irreducible, or is singular.
4. if n ≥ 5 and X has codimension c = 1, then, either X is not irreducible, or is singular.

Hence, smooth critical loci can appear only in the cases n = 2 and n = 3, for every
codimension c and n = 4 for c = 1. Now we analyse these remaining cases.

9.1 The n = 2 views case

Proposition 9.1 [17, Proposition 5.1] In the general case, the codimension c critical loci for
two views are minimal degree varieties.

When n = 2, we have h1 + h2 = k + c and k > h2 ≥ h1 ≥ c + 1. Moreover the ideal I (X )

is generated by the maximal minors of the matrix NX whose dimension is (c + 1) × 2 and
hence is generated by quadrics. Moreover deg(X ) = c+ 1 and hence X is a minimal degree
variety in Pk .

The generality assumptions implies that the minors of NX define a variety of the expected
codimension c. From the classification of minimal degree varieties in [24], we get that X
is singular as soon as k ≥ 2(c + 1). Hence, smooth irreducible varieties of minimal degree
that can be critical loci are embedded in Pk for c + 2 ≤ k ≤ 2c + 1. For example, when the
codimension is 1, the critical locus for two projections from P

3 to P
2 is a quadric surface,

and this is well-known; when c = 2, the critical locus for two projections from P
4 to P

3 is
a rational normal scroll; when c = 3 the critical locus for two projections from P

5 to P
4 is

either P(OP1(2) ⊕ OP1(2)), or P(OP1(1) ⊕ OP1(3)).

Conversely, starting from the matrix NV defining a generic minimal variety V of codi-
mension c in Pk , with elementary operations, it is possible to recover two pairs of projection
matrices P1, P2 and Q1, Q2 for which V is a critical locus. Hence we have:

Proposition 9.2 [17, Proposition 5.2] With the only exception of Veronese surfaces in P
5,

every codimension c minimal degree variety embedded in Pk with c+ 2 ≤ k ≤ 2c+ 1, is the
critical locus for a suitable pair of projections.

9.2 The n = 3 views case

The classification result, in the case of three views, is contained in the following:

Theorem 9.3 [17, Theorem 6.1] Let X ⊆ P
k be a smooth codimension c variety. X is the

critical locus for a suitable couple of three projections from P
k if and only if either X ⊆ P

2

is a cubic curve, or X ⊆ P
3 is a cubic surface, or, finally, X ⊆ P

4 is a Bordiga surface. In
particular, c ≤ 2.

In the case under consideration, X is a codimension c smooth determinantal variety associated
to amatrix NX of type (c+2)×3. From thenumerical boundprovedbefore,weget that smooth
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determinantal varieties can be critical loci for two triples of projection only if embedded in
a projective space Pk with k = 2c or k = 2c + 1. The degree of such varieties is

(c+2
2

)
, and

consequentially, thanks to classification results on smooth varieties with small invariants,
we get the thesis. For the converse problem, i.e. the problem of getting the above smooth
varieties as critical loci for the reconstruction problem, we work quite similarly to the case
of 2 views: we consider a codimension c, determinantal variety V ⊆ P

k , with k = 2c or
k = 2c + 1, whose defining ideal is generated by the 3 × 3 minors of a (c + 2) × 3 matrix
NV of linear forms. Performing elementary operations on NV , it is possible to get again the
two pairs of projection matrices for which the variety is critical.

9.3 The n = 4 views case

In the case of 4 views, the codimension of the critical locus is one, otherwise the critical
locus is either not irreducible or singular. In such a case, h1 + h2 + h3 + h4 = k + 1. On the
other hand, a degree 4, determinantal hypersurface is singular if embedded in Pk with k ≥ 4.
Hence, the only possible case is k = 3, and hi = 1 for every i = 1, . . . 4.

Proposition 9.4 [17, Proposition 7.1] Let Pi , Qi : P3 → P
1, i = 1, . . . 4, be two 4-tuples

of projections. Then, in the general case, the associated critical locus is a smooth quartic
determinantal surface, containing four pairwise skew lines.

We notice also that this quartic determinantal surface contains 4 skew lines as centers
of projections. It is known that the generic quartic surface in P

3 is not determinantal, and
that the locus of the determinantal ones is a divisor in P

34 [26]. Moreover, a generic quartic
surface does not contain any line.

Finally, we can consider a partial converse of the above Proposition:

Proposition 9.5 [17, Proposition 7.3] Let �1, . . . �4 ⊂ P
3 be 4 lines, pairwise skew. Then

there exists a quartic determinantal surface S containing the 4 lines that is critical for two
4-tuples of projections from P

3 to P
1. The given lines are centers for the four projections

Q1, . . . Q4.

10 The Bordiga surface and reconstruction via lines

In this section we focus on the case of three projections fromP
4 toP2, where the critical locus

comes out to be a classical surface in P
4, specifically, the Bordiga surface, as hinted in the

previous section, when the critical surface is smooth. The reason for dedicating a section to
this specific case is the close connection between this critical locus and the reconstruction of a
scene inP3 with projections via lines. The reconstruction using lines is particularly significant
in the real word, since images of lines can be more easily and accurately detected and tracked
than points. Furthermore, the relationship between the critical locus for reconstruction via
points (a Bordiga surface) and the one for reconstrucion via lines (a line congruence of
bidegree (3, 6) and sectional genus 5 in G(1, 3)) is established through a birational map
which is well known in the setting of classical algebraic geometry varieties.

For the content of this section we refer to [16].
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10.1 The Bordiga surface as critical locus in P4

For convenience, we recall here the definition of the Bordiga surface as the embedding in P4

of the blow-up of P2 at 10 general points via the linear system of plane quartics through the
points. In particular, let Z = {p1, . . . p10} ⊂ P

2 be the set of ten general points and let P̃2 π−→
P
2 be the blow-up of P2 in p1, . . . p10. The linear system |4π∗L − E1 − · · · − E10|, where

L is the line divisor in P
2 and Ei is the exceptional divisor associated to pi , i = 1, . . . 10,

embeds P̃2 in P
4, and becomes the hyperplane divisor H of the image. If φ : P̃2 ↪→ P

4 is
the embedding, B = φ(̃P2) is called a Bordiga surface. B is a smooth surface of degree 6
and sectional genus 3.

If Z ⊆ P
2 is the set of 10 general points, and B ⊆ P

4 the associated Bordiga surface, the
ideal sheaves IZ and IB are defined from the following exact sequences:

0 → O4
P2

(−5)
NZ−→ O5

P2
(−4) → IZ → 0 and 0 → O3

P4
(−4)

NB−→ O4
P4

(−3) → IB → 0.

Moreover the matrices NZ and NB are not independent given that the following relationship
holds

(x0, . . . x4)NZ = (z0, z1, z2)N
T
B (15)

where x0, . . . x4 are coordinates in P
4 and z0, z1, z2 are coordinates in P

2. Hence, more
precisely, we can say that the Bordiga surface is the general element of the irreducible
component of the Hilbert schemeHilbpB (t)(P

4) containing the codimension 2, ACM closed
subschemes of P4 with Hilbert polynomial pB(t) = (6t2 + 2t + 2)/2. [25]

According to the theoretical set up introduced in section 6 to describe the ideal I (X ) of
a critical locus X , in the case of of three projections from P

4 to P
2, we get that I (X ) is

generated by the maximal minors of a 3 × 4 matrix NX , hence, under the usual generality
assumption we have:

Proposition 10.1 [16, Proposition 5.1] The general critical locus for projective reconstruc-
tion for three views fromP

4 toP2 is in the irreducible component ofHilbpB (t)(P
4) containing

the Bordiga surfaces.

Indeed, we have a stronger result. Leveraging an analysis of the matrix NX , the minimal
free resolutions of I (X ) and the geometry of the Bordiga surface as blow-up of P2, we can
prove that

Proposition 10.2 [16, Theorem 5.1] Let B be a Bordiga surface. Then B is a critical locus
for the projective reconstruction from three views from P

4 to P
2, that is to say, there exist

two couples of three projections P1, P2, P3 and Q1, Q2, Q3 from P
4 to P

2 such that the
associated critical locus is B.

10.2 Projections of lines in P3 and critical loci

In the previous sections, we addressed the reconstruction problem for sets of points from
their images. However, when dealing with projections of lines in P

3 rather than points, it is
necessary to consider a different set-up also for the reconstruction problem (see for example
[21, 22, 36]). In this context as well, there is a natural notion of critical locus, consisting of
lines in P

3.
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Definition 10.3 A set of lines {λ j }, j = 1, . . . N , N � 0, in P
3 is said to be a critical

configuration for projective reconstruction of lines from three views if there exist two collec-
tions of projections ϕi and ψi , i = 1, 2, 3, and a set of N lines {μ j } in P3, non-projectively
equivalent to {λ j }, such that, for all i and j , ϕi (λ j ) = ψi (μ j ), up to homography in the
(dual) image planes. The two sets {λ j } and {μ j } are called conjugate critical configurations,
with associated conjugate projections {ϕi } and {ψi }.

In [16], via an algebraic approach, we compute the defining ideal of the critical locus for
the reconstruction via lines and we prove that:

Theorem 10.4 [16, Theorem 6.2] The critical locus for the reconstruction problem for a
pair of three projections ϕi , ψ j , i, j = 1, 2, 3, of lines from P

3 to P
2 is the union of a line

congruence of bi-degree (3, 6) and sectional genus 5 and the three α-planes associated to the
projection centers of the ϕi ’s. Moreover, each α-plane intersects the line congruence along
a degree 3 plane curve.

Once again for convenience, we recall the construction and some properties of the line
congruence K of bi-degree (3, 6) and sectional genus 5 in the GrassmannianG(1, 3) of lines
in P

3, following [5, 41].
Let P̃2 be the blow-up of P2 at 10 general points p1, . . . p10. The linear system |7π∗L −

2E1−· · ·−2E10| on P̃2 embeds P̃2 inG(1, 3) ⊂ P
5. For a suitable choice of the coordinates,

G(1, 3) = V (x0x5 − x1x4 + x2x3). Let ψ : P̃2 → G(1, 3) be such an embedding, and let
K = ψ(̃P2) be its image. Then, K is a line congruence of bi-degree (3, 6) and sectional genus
5. Furthermore, the converse is true; in other words, every such surface is the embedding of
P̃
2 with |7π∗L − 2E1 − · · · − 2E10|. In G(1, 3), the ideal sheaf IK |G(1,3) is generated in

degree 3 and it holds

0 → O5
G(1,3) → E2(1)3 → IK |G(1,3)(3) → 0 (16)

where E2 is the rank 2 vector bundle on G(1, 3) coming from the universal exact sequence

0 → E1 → H0(OP3(1)) ⊗ OG(1,3) → E2(1) → 0.

Moreover, denoting by T = C[x0, . . . x5] the polynomial ring, the minimal free resolution
of IK is:

0 → T 5(−5) → T 12(−4) →
T (−2)

⊕
T 7(−3)

→ IK → 0. (17)

Hence, K is ACMwith Hilbert polynomial pK (t) = (9t2+ t+2)/2. So we get the following
result, similar to Proposition 10.1.

Proposition 10.5 [16, Proposition 3.2] The line congruence of bi-degree (3, 6) and sec-
tional genus 5 is the general element of the irreducible component of the Hilbert scheme
HilbpK (t)(P

5) containing the codimension 3, ACM, closed subschemes of P5 with Hilbert
polynomial pK (t) and resolution (17).

10.3 Relationship between B and K

Given Z = {p1, . . . p10} ⊂ P
2, we have seen that the blow up P̃

2 = BlZ (P2) is embedded
both in P

4 as a Bordiga surface B, and in G(1, 3) as a suitable line congruence K . In [41],
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it is proved that the map θ = |OP4(2) − �|, where � = φ(l) is a rational normal quartic,
makes the following diagram commutative and is biregular between B and K .

BlZ (P2)

P
4 ⊃ B K ⊂ P

5

φ|4H−Z | ψ|7H−2Z |

θ

Recalling that B ⊂ P
4 is critical locus for the reconstruction of points with three projections

from P
4 on P

2, and K ⊂ G(1, 3) ⊂ P
5 is the main component of the critical locus for the

reconstruction of lines with three projections from P
3 on P

2, we can restore this biregular
correspondence in the setting of Computer Vision. More precisely, the two reconstruction
problems considered in the previous sections are related to each other. Given two triples of
projections from P

4 to P
2, and the corresponding critical locus X ⊂ P

4, it is possible to
determine two triples of projections from P

3 to P2 in such a way that the critical locus for the
reconstruction problem for lines is the union of three suitable α-planes and the image of X
inG(1, 3) via the rational map θ : P4 → G(1, 3) quoted in the diagram above. Furthermore,
also the converse holds.

11 Dropping generality assumptions

The results presented in the previous sections hold under the two generality assumptions
introduced in Sect. 6. When these generality assumptions are relaxed, some degenerate con-
figurations of the center of projections and the corresponding degenerate critical loci naturally
appear.

In the specific case of three projections from P
4 to P

2, the minimal generators of the
critical locus (Bordiga surface) are cubic polynomials obtained as maximal minors of a
suitable matrix of dimension 4× 3 of linear forms. The assumption of genericity is reflected
in the fact that those maximal minors do not have any common factors. Therefore, one is
naturally led to consider (n + 1) × n matrices of linear forms, whose minors have common
factors. Matrices of type (n + 1) × n that drop rank in codimension 2 have been intensively
studied within the framework of liaison theory, and in the context of commutative algebra,
as a generalization of the Hilbert-Burch Theorem.

Conversely, matrices of type (n + 1) × n of linear forms that drop rank in codimension
1 do not seem to have been systematically studied. In [7] a classification of canonical forms
of such matrices, over any field, for n ≤ 3 is conducted and is utilized to study degenerate
critical loci for suitable projections from P

3. In particular, the authors revisit the classical
case of two projections from P

3 to P
2, refining results obtained originally by Hartley and

Kahl in [27] (see also [19, 20]).

12 Unified critical loci

For all the results of this sections we refer the reader to [18].
The definition of critical loci, as quoted and utilized in the preceding sections, focuses

on the points X in P
k that cannot be reconstructed from their projections. Indeed, in the

formulation of Definition 6.1, another set of points Y appears, which is associated with the
points X to determine their criticality. From a theoretical point of view, to highlight the
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symmetry between the two configurations of points X and Y, in [18] the authors slightly
modify Definition 6.1 as follows:

Definition 12.1 Given two sets of n projections Q j , Pj : Pk ��� P
h j , j = 1, . . . n, two sets

of points {X1, . . .XN } and {Y1, . . .YN }, N � 0, in P
k , are said to be conjugate critical

configurations, associated to the projections {Q1, . . . Qn} and {P1, . . . Pn} if, for all i =
1, . . . N and j = 1, . . . n, we have Q j (Xi ) = Pj (Yi ).

Notice that in Definition 12.1, we have symmetry between the projections Q1, . . . Qn and
P1, . . . Pn and from 12.1, it is evident that we can get a symmetric definition for the critical
loci as well:

Definition 12.2 Given two sets of n projections Q j , Pj : Pk ��� P
h j , j = 1, . . . n, as above,

the locus X ⊆ P
k (Y ⊆ P

k , respectively) containing all possible critical configurations
{X1, . . .XN } ({Y1, . . .YN }, respectively) is called critical locus for the associated projec-
tions. Finally, we have the unified critical locus U ⊆ P

k ×P
k defined as the locus containing

all the pairs (Xi ,Yi ) of corresponding conjugate critical points.

The motivation for introducing the unified critical locus U is to restore symmetry between
the two sets of projections. Such a symmetry is hidden when considering only the critical
locus X or Y .

Generalising the construction of the ideal I (X ) (and I (Y) by exchanging the projection
matrices) as outlined in Sect. 6, through the use of Grassmann tensors, we get the ideal of the
unified critical locus U . Indeed, from its definition, it follows that U is an algebraic variety in
P
k ×P

k . Let us denote byMX andMY the analogous of matrix (10) forX andY respectively.

Proposition 12.3 [18] The defining ideal I (U) is bi-homogeneous generated by the maximal
minors of MX , MY and by the 2 × 2 minors of the matrices(

Pj (Y) | Q j (X)
)
, j = 1, . . . n.

The unified critical locus U is equipped with projections to the critical loci X ,Y , and so
we have the following diagram

U

X Y

π1 π2 . (18)

If we consider the projections π1 and π2, and the induced maps π2 ◦π−1
1 : π1(U) ��� π2(U)

and π1 ◦ π−1
2 : π2(U) ��� π1(U), one might assume that π1 and π2 are dominant maps, and

that π2 ◦π−1
1 , π1 ◦π−1

2 are birational maps. On the contrary, this guess does not always hold
as shown in [18] with some examples.

1. The first example we produce concerns the classical setting of two pairs of projections
from P

3 to P
2. The twin critical loci X and Y are quadric surfaces. In this case, π1 and

π2 are surjective, and π2 ◦ π−1
1 is a birational map.

2. In a second example, we consider a couple of three projections from P
3, the first two to

P
2 and the third to P1. The twin critical loci X and Y are determinantal, with dimension

1 and degree 6 in P3. The unified critical locus U ⊆ P
3 ×P

3 has dimension 1 and degree
5. In this case it possible to show that maps πi are not dominant.
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3. In a third example, concerning the construction of a singular Bordiga surface as degen-
eration of the critical loci for three projections from P

4 to P
2, we show that not every

irreducible component of X is necessarily birational to at least an irreducible component
of Y .

Leveraging these examples as well, we see that the description of the images π1(U) and
π2(U) as subvarieties of X and Y can be quite intricate.

We can summarize the results on these maps with the help of the following diagram:

U

X ⊇ π1(U) π2(U) ⊆ Y

π1 π2

π2◦π−1
1

.

– in the general case, X − {CQi } ⊆ π1(U ) ⊆ X , where {CQi } are the centers of the
projection matrices Qi .

– if (X0,Y0) ∈ U is a point such that X0 is smooth on an irreducible component X ′ of X ,
and Y0 is smooth on an irreducible component Y ′ of Y , then the map:

π2 ◦ π−1
1 : X ′ ��� Y ′

is a birational map.

13 Instability Phenomena

From a realistic and practical point of view, it is unlikely that all the points of a scene or
the centers of the cameras under consideration lie on a critical configuration. Therefore, one
might draw the conclusion that critical sets have no effect in real life.

On the contrary, as highlighted in [10, 27], understanding the behavior of reconstruction for
configurations of points near the critical locus is of practical relevance. In such circumstances,
reconstruction solutions become extremely unstable, meaning that small perturbations in
the data can lead to drastic changes in the output. We conducted simulated experiments to
illustrate this phenomenon, exploring various contexts and situations, in the case of one view,
where we conducted this experiment for the twisted cubic or the smooth, two-dimensional
cubic scroll and in the case of multiple views, when the critical locus is a Bordiga surface
[10], or an hypersurface [15] or a degenerate configurations [7].

A unified approach, in the case of n ≥ 2 views, is outlined below from a theoretical point
of view, was employed in these experiments:

1 Generation of Critical Configurations Given two sets of projection matrices {Pi } and
{Qi }, of the appropriate type, equations of the critical locus can be obtained (for example
with the help ofMaple). Equations are then solved to retrieve a suitable number of critical
points {Xj} in P

k .

2 Perturbation of critical configurations Points {Xj} are then perturbed with a k-
dimensional noise, normally distributed, with zero mean, and with assigned standard
deviation σ , obtaining a new configuration {Xpert

i }, which is close to being critical. This
configuration is projected via the original projection matrices Pi . The resulting images
xij = P jXpert

i are again perturbed with normally distributed hi -dimensional noise with
zero mean and fixed standard deviation to obtain {xij pert }.

123



M. Bertolini, C. Turrini

3 Reconstruction The multifocal tensor corresponding to the true reconstruction, TP is
computed from the projection matrices Pi . using an algorithm implemented in Matlab.
An estimated multifocal tensor T is computed from {xij pert } using a reconstruction
algorithm implemented in Matlab as well.

4 Estimating instabilityAsmultifocal tensors are defined up tomultiplication by a non-zero
constant, TP and T are normalized. Using a suitable notion of distance, it is possible to
estimate whether T is close to TP , or not. The above procedure is then repeated many
times for every fixed value of σ.

5 Results Results are then plotted in figures showing the frequency with which the recon-
structed solution is close or far from the true solution TP , against the values of σ utilized.
The results confirm that the larger the value of σ, the stabler the solution gets, with
standard deviation approaching zero.
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