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Abstract
We consider the problem of determining the maximum 
value of the point-polyserial correlation between a random 
variable with an assigned continuous distribution and an or-
dinal random variable with k categories, which are assigned 
the first k natural values 1, 2,…, k, and arbitrary probabili-
ties p

i
. For different parametric distributions, we derive a 

closed-form formula for the maximal point-polyserial corre-
lation as a function of the p

i
 and of the distribution's param-

eters; we devise an algorithm for obtaining its maximum 
value numerically for any given k. These maximum values 
and the features of the corresponding k-point discrete ran-
dom variables are discussed with respect to the underlying 
continuous distribution. Furthermore, we prove that if we 
do not assign the values of the ordinal random variable a 
priori but instead include them in the optimization problem, 
this latter approach is equivalent to the optimal quantiza-
tion problem. In some circumstances, it leads to a signifi-
cant increase in the maximum value of the point-polyserial 
correlation. An application to real data exemplifies the main 
findings. A comparison between the discretization leading 
to the maximum point-polyserial correlation and those ob-
tained from optimal quantization and moment matching is 
sketched.
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1   |  INTRODUCTION

In behavioural, educational, and psychological studies, the observed variables are frequently measured 
using ordinal scales. For example, the Likert scale is widely used to measure responses in surveys, allow-
ing respondents to express how much they agree or disagree with a particular statement or the level of 
satisfaction they show towards a product they bought or a service they experienced, in a (typically) five- 
or seven-point scale (e.g., 1 = ‘completely disagree’ or ‘completely unsatisfied’, …, 5 = ‘completely agree’ 
or ‘completely satisfied’). These categorical ordinal variables can be treated as being discretized from 
an underlying continuous variable for degree of agreement on the statement or level of satisfaction (see, 
e.g., Bartholomew, 1980; Zhang et al., 2024). There are also many examples of quantitative variables 
that are discretized explicitly in social science studies, for instance, when asking questions about sensi-
tive or personal quantitative attributes (e.g., income, alcohol consumption, time spent on social media), 
the non-response rate may often be reduced by simply asking the respondent to select one of two very 
broad categories (e.g., under 50 K/over 50 K). When analysing these kinds of data, a common approach 
is to assign consecutive integer scores (CISs) to the ordered categories and proceed in the analysis as if 
the data had been measured on an interval scale with desired distributional properties (Norman, 2010); 
‘Parametric statistics can be used with Likert data, with small sample sizes, with unequal variances, and 
with non-normal distributions, with no fear of “coming to the wrong conclusion”.’ The most common 
choice for the distribution of the latent variables is the (multivariate) normal distribution because the 
dependence structure among them can be fully captured by the variance-covariance matrix and each 
of its elements can be estimated using a bivariate normal distribution separately (see, e.g., chapter 6 in 
McNeil et al., 2015).

Let X
2
 be an observed ordinal variable that depends on an underlying latent continuous random 

variable (RV) Z
2
, and let Z

1
 represent another observed continuous variable. It is typically assumed that 

the joint distribution of Z
1
 and Z

2
 is bivariate normal. The product moment correlation between Z

1
 

and X
2
 is called the point-polyserial correlation, while the correlation between Z

1
 and Z

2
 is called the 

polyserial correlation. As a particular case, if X
2
 is a dichotomous random variable, we refer to them as 

point-biserial and biserial correlations. The problem of estimating the polyserial correlation based on a 
bivariate sample was studied by Cox (1974), who derived the maximum likelihood estimator (MLE); in 
a multivariate setting, the problem was later addressed by Lee and Poon (1986), who used the classical 
Newton-Raphson algorithm to produce the estimates and their standard errors; Olsson et al.  (1982) 
derived the relationship between the polyserial and the point-polyserial correlation and compared the 
MLE of polyserial correlation with a two-step estimator and with a computationally convenient ad hoc 
estimator. Bedrick (1995) studied the attenuation of the correlation coefficient (the polyserial correla-
tion) when one of the continuous variables is categorized. The attenuation is shown to depend critically 
on the distribution of the underlying latent variable and on the scores assigned to the categories. It is 
observed that the reduction in correlation can be substantially greater under exponential, double ex-
ponential, and t  distributions than is expected assuming normality. However, attenuation becomes less 
severe as the number of categories increases, provided the category scores are carefully selected. In par-
ticular, equally spaced scores (e.g., 1, 2,…, k) give reasonable protection against gross attenuation across 
a variety of distributions. On the problem of assigning scores to ordered categories, consult Ivanova and 
Berger (2001) and Fernández et al. (2020).

Demirtas and Hedeker (2016) and, later, Demirtas and Vardar-Acar (2017) studied the relation-
ship between the biserial and the point-biserial correlations by devising an algorithm working for 
any underlying distribution other than the (bivariate) normal for the bivariate vector (Z

1
,Z
2
). The 

authors state that ‘it works for ordinal-continuous data combinations, and so one can compute the 
polyserial correlation given the point-polyserial correlation (or vice versa) when the relative propor-
tions of the ordinal categories are specified’. The algorithm is based on the generation of a huge 
sample (of size, say, N = 100, 000) from a bivariate random vector (Z

1
,Z
2
) with assigned marginal 

distributions and dependence structure, implicitly induced by the method of Fleishman polynomi-
als (Fleishman, 1978) for the construction of bivariate random vectors (Foldnes & Grønneberg, 2015). 
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       |  3MAXIMAL POINT-POLYSERIAL CORRELATION

Although the numerical experiments carried out in Demirtas and Hedeker (2016) are said to pro-
duce negligible errors (when an analytical solution is also available), nevertheless the sampling error 
naturally induced by random simulation can hardly be controlled and contitutes an obstacle if one 
is interested in determining the range of the point-polyserial correlation. Cheng and Liu  (2016) 
derived the maximal point-biserial correlation under several non-normal distributions, namely, the 
uniform, Student's t , exponential, and a mixture of two normal distributions. They showed that the 
maximal point-biserial correlation, depending on the non-normal continuous distribution, may or 
may not be a function of the probability p that the dichotomous variable takes the value 1; it may be 
symmetric or non-symmetric around p = . 5. The relatively easy analytical derivation of (maximal) 
point-biserial correlation relies on the (availability of expression for) moments of truncated contin-
uous distributions.

It would be interesting to extend the results of this latter work to any k > 2 while avoiding explicit or 
implicit assumptions about the dependence structure between the two continuous random variables and 
minimizing the impact of sampling errors, as seen in previous contributions. The procedures developed 
in Demirtas and Hedeker (2016), in fact, are able to compute the correlation between a continuous and 
a discretized RV (and the corresponding correlational change) when their distribution before discretiza-
tion is fully specified and a dependence structure is implicitly or explicitly assumed.

The aim of this paper is to derive the expression for the maximal point-polyserial correlation, i.e., 
the maximal linear correlation between a continuous random variable and an ordinal RV with k cate-
gories, for several continuous random distributions. Along with the normal distribution, several widely 
used non-normal distributions are considered, namely uniform, exponential, Pareto, logistic, and power 
distributions. We will start with the general case (an ordinal random variable taking the values 1, 2,…, k 
with corresponding probabilities p

i
, i = 1, 2,…, k) and consider the particular case of equal-probability 

support values ( p
i
= 1∕k for all i = 1, 2,…, k), which is suitable for studying the limit behaviour of the 

maximal point-polyserial correlation. We will calculate, among all the k-point ordinal distributions, the 
one that maximizes the maximal point-polyserial correlation with the assigned continuous RV. We will 
also investigate the situation where the k values of the discrete random variable are not predefined as 
1,…, k but are instead assigned numerical scores aimed at maximizing the correlation itself.

The paper is structured as follows. Section 2 reviews some results on attainable correlations between 
two random variables with assigned margins. Section 3 synthesizes and integrates the main findings 
about the point-biserial and point-polyserial correlation under bivariate normality. Section 4, after for-
mulating the optimization problem, investigates the main features of the optimal solution and the 
behaviour of the maximum point-polyserial correlation under normal and several non-normal distribu-
tions. Section 5 illustrates the main findings using a real data set. Section 6 hints at a possible application 
of the results on maximal point-polyserial correlations in finding an optimal k-point approximation of 
a continuous distribution. Section 7 concludes the paper with some final remarks.

2  |  AT TA INA BL E COR R EL ATIONS

Before introducing useful results about attainable correlations, we must review the concepts of co-
monotonicity and countermonotonicity for a pair of RVs. Two RVs X  and Y  are said to be comono-
tonic if they admit as copula the Fréchet upper bound M (u, v) = min(u, v). Equivalently, two RVs are 
comonotonic if they are monotonically increasing functions of a single RV; in other words, X  and Y  are 
comonotonic if and only if (X ,Y ) is equal in distribution to (v(Z), w(Z)) for some RV Z and increasing 
functions v and w. These two equivalent definitions encompass any type of RV, including absolutely 
continuous and discrete ones. If a discrete RV and a continuous RV are comonotonic, we observe that 
when we move towards a larger category of the former, the latter takes on larger values with probability 
1. Two RVs X  and Y  are said to be countermonotonic if they admit as copula the Fréchet lower bound 
W (u, v) = max(0, u + v − 1). Equivalently, two RVs are countermonotonic if and only if (X ,Y ) is equal in 
distribution to (v(Z), w(Z)) for some RV Z and increasing function v and decreasing function w.
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4  |      BARBIERO

Although Pearson's correlation � between two random variables X  and Y  can theoretically take 
on any value between − 1 and + 1; however, when the marginal distributions of X  and Y  are assigned, 
it may generally not span the entire [ − 1, + 1] interval and may not reach either its natural lower or 
upper bound. The constraint induced by assigning the marginal distributions typically reduces the 
range of Pearson's correlation to a narrower interval. In more detail (Fréchet, 1951; Hoeffding, 1940), 
the minimal and maximal attainable correlations that Pearson's � can reach form a closed interval 
[�
min
, �
max
] , with 𝜌

min
< 0 < 𝜌

max
. The minimum correlation �

min
 is attained if and only if X  and Y  are 

countermonotonic; the maximum correlation �
max

 is attained if and only if X  and Y  are comonotonic. 
Moreover, �

min
= − 1 if and only if X  and −Y  are of the same type, and �

max
= 1 if and only if X  and 

Y  are of the same type. We recall that two RVs X  and Y  (or their random distributions) are said to be of 
the same type if there exist two constants a ∈ ℝ and b ∈ ℝ

+ such that X d

= a + bY ; in other words, X  and 
Y  are RVs of the same type if they are a location-scale transformation of each other. The bounds for � 
are computed as �

min
= cor(F − 1

1
(U ),F

− 1
2
(1−U )) and �

max
= cor(F − 1

1
(U ),F

− 1
2
(U )), where U is a stan-

dard uniform RV, F
1
 and F

2
 are the marginal distributions of RVs X  and Y  respectively, and F − 1

1
 and 

F
− 1
2

 are their generalized inverses or quantile functions. It is often possible to determine analytically the 
minimum and maximum attainable correlations by using the two formulas above; otherwise, they can 
be computed numerically by resorting to the algorithm in Demirtas and Hedeker (2011). A correlation 
value � is said to be ‘feasible’ given the assigned margins F

1
 and F

2
 if it falls within [�

min
, �
max
].

This feature of Pearson's correlation, which is well known in the quantitative risk management 
field (Embrechts et al., 2002) but is often overlooked in other applied areas, represents a drawback and 
can lead to misinterpretations of its observed sample values. A typical example concerns two lognormal 
distributions with parameters �

1
= 0, �

1
= 1 and �

2
= 0, 𝜎

2
> 0. The two distributions are not of the 

same type unless �
2
= �

1
; the value of the minimal correlation is given by �min =

e
− �
2 − 1√

(e − 1)(e
�2
2 − 1)

 , the value of the 
maximal correlation is �max = e

�
2 − 1√

(e − 1)(e
�2
2 − 1)

. Therefore, if �
2
= �

1
= 1, �

max
= 1, and �

min
≈ − 0. 368; in fact, 

X
1
 and X

2
 are of the same type, but X

1
 and −X

2
 are not since the lognormal distribution is supported 

on ℝ+ and is consequently asymmetric. For any �
2
≠ �

1
, X

1
 and X

2
 are not RVs of the same type, and 

the interval [�
min
, �
max
] tends to get narrower as �

2
 increases. For example, if �

2
= 2, then we have that 

�
max

= 0. 666 and �
min

≈ − 0. 090; if �
2
= 4, �

max
≈ 0. 014, and �

min
≈ 0. 000, then these latter values can 

lead the inadvertent researcher to claim that the two RVs are nearly uncorrelated, whereas the two RVs 
are indeed perfectly (positively/negatively) correlated! Figure 1 displays the maximum and minimum 
attainable correlations for the two lognormal RVs as functions of �

2
.

From the foregoing explanation, it is clear that if we consider a first RV with a continuous distri-
bution and a second RV whose distribution is discrete, or is obtained by discretizing the former, then 
the maximum correlation cannot be + 1, and the minimum correlation cannot be − 1. This is because a 
discrete distribution can never be of the same type as a continuous distribution, simply due to the fact 
that the latter has a non-countable support, whereas the former is defined over a finite or countable set.

The extreme values − 1 and + 1 can be potentially obtained only as limits when the cardinality of 
the support of the discrete RV increases and resembles a continuous one or when the continuous RV 
converges to a discrete RV when one of its parameters tends to a limiting value, as can occur in the case 
of a mixture of two normal distributions with the same variance (Cheng & Liu, 2016).

3  |  POINT-POLYSER I A L COR R EL ATION UNDER 
NOR M A LIT Y

Let (Z
1
,Z
2
) be a bivariate standard normal RV, and let X

2
 be a dichotomy of Z

2
, with the point 

of dichotomy �; thus, X
2
 is a RV that takes a value of 1 when Z

2
≥ � and a value of 0 when 

Z
2
< 𝜔. If �( ⋅ ) denotes the probability density function (PDF) of a standard normal RV and 

P(X
2
= 1) = ∫∞

�
�(y)dy = p(�) and P(X

2
= 0) = q(�) = 1− p(�), then the relationship between 

�
PB

= cor(Z
1
,Z
2
) (the biserial correlation) and �

B
= cor(Z

1
,X

2
) (the point-biserial correlation) is 

due to Pearson  (1909) and reported also in MacCallum et  al.  (2002), where the consequences of 
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       |  5MAXIMAL POINT-POLYSERIAL CORRELATION

dichotomization for measurement and statistical analyses are illustrated and discussed in a more 
general context: 

It is interesting to consider the plot of this function displayed in Figure 2 and to note that it is symmetrical 
and presents its unique maximum (equal to 2�(0) =

√
2∕� = . 7979) in � = 0, which corresponds to the 

‘equal-probability’ dichotomization ( p = q = 1∕2). Note that changing the two values of the support of the 
discrete RV X

2
, by default set at 0 and 1, as long as their order is preserved, does not affect the value of the 

biserial correlation coefficient (this is due to the well-known invariance of Pearson's � under any positive 
linear transformation).

A generalization of Pearson's point-biserial correlation to the case of discretization into a k point 
distribution, supported on {1, 2,…, k}, is easily provided, again starting from a bivariate normal RV. 
Let, then, X

2
 be the discrete RV obtained by discretizing the component Z

2
. Recalling that the following 

relationship holds for the PDF of a standard normal RV: 

it can be proved that the resulting Pearson's correlation coefficient between Z
1
 and X

2
, i.e., the point-

polyserial correlation coefficient, is 

(1)
�
PB

�
B

=
�(�)√
pq

.

∫ x�(x )dx = −�(x ) + constant,

(2)�
PP

= cor(Z
1
,X

2
) = �

P

k∑
i=1

�
[
Φ− 1

(F
i
)

]
∕

√√√√√
k∑
i=1

i
2
p
i
−

(
k∑
i=1

ip
i

)2
,

F I G U R E  1   Attainable correlations between two lognormal RVs, X ∼ ℒ𝒩(�
1
= 0, �

1
= 1) and Y ∼ ℒ𝒩(�

2
= 0, �

2
).

0 1 2 3 4 5

−1
.0

−0
.5

0.
0
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6  |      BARBIERO

where p
i
 and F

i
=

∑
i

j=1
p
j
 are the probability and cumulative probability of the value i  respectively, 

and �
P
= cor(Z

1
,Z
2
). Equation (2) indicates that there is a linear relationship between the polyserial 

and the point-polyserial correlations, at least when working with a bivariate normal RV. The ratio 
between the point-polyserial correlation and the (polyserial) correlation of the bivariate normal 
distribution is therefore constant once the p

i
 are assigned and is equal to (see equation 12 in Olsson 

et al., 1982) 

which consequently corresponds to the maximal point-polyserial correlation, which is obtained by letting 
cor(Z

1
,Z
2
) = 1.

We can particularize the formulas above in the case of discretization into k equal-probability catego-
ries ( p

i
= 1∕k for each i = 1,…, k), i.e., if the discretized RV X

2
 is defined as 

(3)

�
PP
∕�
P
=

k∑
i=1

�
[
Φ− 1

(F
i
)

]
∕

√√√√√
k∑
i=1

i
2
p
i
−

(
k∑
i=1

ip
i

)2
=

k∑
i=1

�

[
Φ− 1

(
i∑
j=1

p
j

)]
∕

√√√√√
k∑
i=1

i
2
p
i
−

(
k∑
i=1

ip
i

)2
,

X
2
=

⎧
⎪⎪⎨⎪⎪⎩

1 if Z
2
<Φ− 1

(1∕k),

i if Φ− 1
�
i − 1

k

�≤Z
2
<Φ− 1

�
i

k

�
, 1< i <k,

k if Z
2
≥Φ− 1

�
k− 1

k

�
.

F I G U R E  2   Maximal point-biserial correlation (i.e., ratio between point-biserial and biserial correlations) as a function of 
the cut-point � for a bivariate normal RV – Equation (1); the maximum, equal to 2�(0), is attained at � = 0.

−4 −2 0 2 4

0.
0
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2
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4
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8

�
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       |  7MAXIMAL POINT-POLYSERIAL CORRELATION

Then, specializing (3), we obtain 

since �(Φ− 1
(1)) = 0, and for a discrete uniform RV X

2
, �(X

2
) = (k + 1)∕2 and Var(X

2
)=∑

k

i=1
i
2∕k− [(1+k)∕2]2= (k+1)(2k+1)∕6− (k+1)2∕4= (k2 − 1)∕12.

4  |  M A XIMUM POINT-POLYSER I A L COR R EL ATION 
UNDER NOR M A L A ND NON-NOR M A L DISTR IBUTIONS

If we consider a bivariate continuous RV (Z
1
,Z
2
) that is not bivariate normal, then (2) does not hold 

and one cannot claim there exists a linear relationship between the linear correlation coefficient before 
and after the discretization of Z

2
. This means that for fixed k and p

i
, the ratio between the correlations 

before and after discretization is not constant but depends on the value of the latter, although in some 
contributions, such as Bedrick (1995), Equation (2), and Demirtas and Vardar-Acar (2017), an approxi-
mately linear relationship is presumed.

In the following subsections, we want to assess the maximum value that the point-polyserial 
correlation can attain when we consider a RV X  with an assigned continuous distribution, not nec-
essarily normal, and a discrete RV X

d
. We will review several continuous parametric families widely 

used in many fields of statistics, such as the uniform, exponential, Pareto, logistic, and power distri-
butions. For each family we will derive the expression of the maximal point-polyserial correlation as 
a function of the probabilities p

i
 of the ordinalized distribution, and we will provide an algorithm 

that returns the maximum value of the maximal point-polyserial correlation within the class of all 
possible k-point distributions supported on {1, 2,…, k}, discussing the features of the ordinal ran-
dom distribution that produces this maximum value. We will also obtain analytically the limit of the 
maximal point-polyserial correlation as k tends to ∞ when the ordinalized distribution is assumed 
to be uniform.

Then we will remove the assumption of CIS for the discretized RV and study the maximization 
problem, letting its support values themselves be variables along with their probabilities.

Note that the bivariate RV (X ,X
d
) can be thought of as coming from the discretization of the 

second component of a bivariate continuous RV (X ,Y ). In this case, one can assume that Y  has 
the same distribution as the unaltered continuous component X , but this is only required to let 
the polyserial correlation cor(X ,Y ) attain its natural upper bound + 1: As recalled in Section 2, 
the maximum attainable correlation between two identically distributed RVs is always + 1. In 
other words, computing the maximum point-polyserial correlation between a continuous RV and 
ordinal/discrete RV does not strictly require specifying either the distribution of the latent con-
tinuous RV hypothetically underlying the latter or their joint continuous distribution. This would 
be required, however, if one needed to compute the point-polyserial correlation given the value of 
the polyserial correlation.

4.1  |  General statement of problem

Let us consider an absolutely continuous RV X  with known PDF f (x ) and a discrete RV X
d
 supported 

over k values x
1
< x

2
<⋯ < x

k
 with probabilities p

i
 and cumulative probabilities F

i
, i = 1,…, k. The 

p
i
 are unknown, and the x

i
 can be assumed to be unknown quantities or can be fixed a priori to CIS. 

Let us assume that the first two moments of X  exist and are � = �(X ) and �2 = Var(X ). X
d
 may be 

(4)�
PP
∕�
P
=

k− 1∑
i=1

�(Φ− 1
(i∕k))∕

√
(k
2 − 1)∕12,
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8  |      BARBIERO

thought of as the result of the discretization of a continuous RV with the same distribution as X . 
The objective is to find the maximum value of the linear correlation between X  and X

d
, cor(X ,X

d
)

, for a fixed k, by considering all the discrete distributions supported on k distinct values. The cor-
relation can be written 

where �(X
d
) =

∑
k

i=1
x
i
p
i
 and Var(X

d
) =

∑
k

i=1
x
2

i
p
i
− (�(X

d
))
2. To compute the foregoing correlation, 

one would need to know the joint distribution of (X ,X
d
), but to find its maximum value, this is not neces-

sary. A first step is to recognize that this value will be taken when X and X
d
 are comonotonic (Section 2). 

In this case, it is easy to see that the mixed moment, which we denote by �
c
(XX

d
), where the subscript c 

stands for comonotonicity, can be written 

In the preceding formula, the values F − 1
(F
i
), for i = 1,…, k− 1, can be seen as thresholds induced on 

the continuous distribution of X by the distribution of X
d
; the values ∫ F − 1

(F
i
)

F
− 1
(F
i − 1)

xf (x )dx∕p
i
 are actually the 

conditional moments of X over the intervals 
(
F

− 1
(F
i − 1),F

− 1
(F
i
)

)
. Substituting (6) into (5) we obtain the 

expression of the point-polyserial correlation in the case of comonotonicity between X and X
d
, which we 

call the ‘maximal point-polyserial correlation’; we will denote it by �
PP ,max

. This expression depends on the 
p
i
 and on the x

i
, if these latter have not been assigned. One can then maximize (5), with the mixed moment 

expressed by (6), with respect to all the discrete distributions supported on k distinct values. If the x
i
 are not 

fixed a priori, it can be shown (Bedrick, 1995) that their optimal values, given the probabilities p
i
, are equal to 

or to a positive linear transformation thereof. It is well known that the x∗
i
 in (7) preserve the expectation 

of X but underestimate its variance (Drezner & Zerom, 2016), i.e., for the resulting RV X
d
, �(X

d
) = � 

and Var(X
d
) < 𝜎2. We will refer to the x∗

i
 as the ‘optimal scores’ (OPT), retaining the terminology 

in Bedrick (1995). With x
i
= x∗

i
, i = 1,…, k, the correlation between X

d
 and X , combining (5) with (6) 

and (7), can be rewritten as 

hence, maximizing the correlation between X  and X
d
 is equivalent to maximizing the variance of X

d
 

since �2 is fixed. But maximizing the point-polyserial correlation (8) also with respect to the p
i
 leads 

to the solution commonly referred to as the ‘optimal quantizer’  (Lloyd, 1982) or the set of ‘principal 
points’ (Flury, 1990). In fact, for the decomposition of the mean squared error (MSE) between X  and 
the x

i
 (see property (C) in theorem 1, Fang & Pan, 2023), we have that Var(X

d
) = �2 −MSE(X

d
), so 

that maximizing Var(X
d
) is equivalent to minimizing the MSE between X  and X

d
. We will return to 

discussing quantization in Section 6.
Resuming, if we assume a CIS system for X

d
, then the optimization problem can be stated as 

(5)�
PP

= cor(X ,X
d
) =

�(XX
d
)−�(X )�(X

d
)√

Var(X )

√
Var(X

d
)

,

(6)�
c
(XX

d
) =

k∑
i=1

x
i ∫
F

− 1
(F
i
)

F
− 1
(F
i − 1)

xf (x )dx .

(7)x
∗
i
= ∫

F
− 1
(F
i
)

F
− 1
(F
i − 1)

xf (x )dx∕p
i

(8)cor(X ,X
d
) =

∑
k

i=1 x
∗
i

2
p
i
−�2

��∑
k

i=1
x
∗
i

2
p
i
−�2

�
�2

=

�∑
k

i=1
x
∗
i

2
p
i
−�2

�
=

�
Var(X

d
)

�2
;
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       |  9MAXIMAL POINT-POLYSERIAL CORRELATION

If, instead, the support values of X
d
 are unknown, then the optimization problem can be written 

We will refer to Problems (9) and (10) as the ‘maximum point-polyserial correlation problem’, with 
CIS and OPT support values respectively. Needless to say, the maximum value of the objective func-
tion, i.e., the maximum point-polyserial correlation, will always be greater (or, at most, equal) for 
Problem (10). However, we would like to emphasize that assigning a CIS to the discrete variable X

d
 

in (9) is motivated by the fact that ordinal variables in real data sets may not provide any indication 
of the underlying continuous latent variable. Therefore, it is a fairly standard procedure to assign 
CIS to the ordered categories of X

d
.

Although the two problems are generally not analytically solvable, we now provide an interesting 
general property of the solution to Problem (9).

Proposition 1.  Property of the solution to Problem  (9). The solution of the optimization 
Problem (9) satisfies for all k ≥ 4 the following equality: 

where F
i
=

∑
i

j=1
p
j
, and F − 1 is the quantile function of X . We can summarize this property by 

stating that the optimal cumulative probabilities F
i
 mark on the continuous distribution of X  equally 

spaced values.

Proof.  Let us start from the expression of the maximal point-polyserial correlation in the 
case of CIS: 

We can rewrite Problem  (9) as a non-linear optimization problem by using Lagrange 
multipliers: 

(9)

max

p
1
,…,p

k

cor(X ,X
d
)

subject to p
i
≥0, i =1,…, k

k∑
i=1

p
i
=1

x
i
= i , i =1,…, k.

(10)

max

p
1
,…,p

k
;x
1
,…,x

k

cor(X ,X
d
)

subject to p
i
≥0, i =1,…, k

k∑
i=1

p
i
=1

x
1
<x

2
<⋯<x

k
.

F
− 1
(F
i+1)−F

− 1
(F
i
) = constant, for all i = 1, 2,…, k− 2,

�
PP ,max

=

∑
k

i=1
i ∫ F − 1

(F
i
)

F
− 1
(F
i − 1)

xf (x )dx −�
∑
k

i=1
ip
i

�

�∑
k

i=1
i
2
p
i
− (

∑
k

i=1
ip
i
)
2

.
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10  |      BARBIERO

We can compute the partial derivative of the foregoing Lagrangian function with respect to 
p
j
 and set it equal to zero, thereby obtaining 

where � =
∑
k

i=1
ip
i
 denotes the expectation of the discrete RV, � =

∑
k

i=1
i
2
p
i
− (

∑
k

i=1
ip
i
)
2 

its variance, and � its covariance with X ; in the notation, for the sake of simplicity we omit-
ted the dependence on the p

i
. Since for the optimal solution the foregoing equation must 

be satisfied for any feasible value of j , by evaluating it for two consecutive values of j , we 
obtain 

By subtracting the former from the latter, we obtain 

and again, by considering two consecutive values for the index j , we can derive that for the 
optimal solution to (9), for all i = 1,…, k− 2, the following equality holds: 

Since the covariance � can be written � = �∗
PP
�
√
�, the preceding result can be restated as 

where �∗
PP

= max�
PP ,max

 represents the maximum correlation value attained.� ■
Thanks to this result, it is possible to supply an alternative equivalent formulation of Problem (9).

Proposition 2.  Alternative statement of Problem (9). Problem (9) can be restated as follows: 

ℒ(p
1
,…, p

k
, �)=

∑
k

i=1
i ∫ F − 1

(F
i
)

F
− 1
(F
i − 1)

xf (x )dx −�
∑
k

i=1
ip
i

�

�∑
k

i=1
i
2
p
i
− (

∑
k

i=1
ip
i
)
2

+�(

k�
i=1

p
i
− 1).

�ℒ(p
1
,…, p

k
, �)

�p
j

=

[ −
∑
k− 1
h=j

F
− 1
(F
h
)− j�]�

√
�−

��

2

√
�

(j
2 − 2j�)

�2�
+�

=
−
�∑

k− 1
h=j

F
− 1
(F
h
)+ j�

�
�−�(j

2 − 2j�)∕2

��3∕2
+�=0,

−

[
k− 1∑
h=j

F
− 1
(F
h
)+ j�

]
�−�(j

2 − 2j�)∕2+���3∕2 =0

−

[
k− 1∑
h=j+1

F
− 1
(F
h
)+ (j +1)�

]
�−�((j +1)2 − 2(j +1)�)∕2+���3∕2=0.

[
F

− 1
(F
j
)−�

]
�−�(j +1∕2−�)=0,

F
− 1
(F
i+1)−F

− 1
(F
i
) = �∕�.

F
− 1
(F
i+1)−F

− 1
(F
i
) = �∗

PP
�∕

√
�,
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       |  11MAXIMAL POINT-POLYSERIAL CORRELATION

This formulation is simpler, since now there are just two variables on which to optimize the objective 
function: a shift variable a and a scale variable b > 0, which define the equally spaced support points x

i
 as 

a positive linear transformation of the CIS. However, to define the probabilities, one must introduce the 
thresholds c

i
, built as midpoints between consecutive support values, which are equally spaced values as 

well. The optimal solution to Problem (11) (i.e., the optimal values of a and b) will yield the same p
i
 and the 

same value of maximum correlation as (9); the optimal support values x
1
,…, x

k
 will be generally different 

from 1,…, k.

4.2  |  Normal

For a (standard) normal RV X , the maximal correlation with an ordinal k-point RV X
d
 equals the ratio 

in (3). Figure 3 displays for k = 2,…, 10 the optimal solution to Problems (9) (top panel) and (10) (bottom 
panel). For each k, a bar plot (for the CIS) and a stick plot (for OPT) are drawn that represent the k optimal 
probabilites p

i
 leading to the maximum point-polyserial correlation. For OPT, the optimal support values 

x
i
 are displayed considering the scale of the x-axis. Starting from the CIS, we notice that all these ordinal 

distributions maximizing the maximal point-polyserial correlation are symmetrical, as one could have 
expected, with a unique mode – the central category – if k is odd, and with two modes – the central cat-
egories – if k is even. Therefore, at least when k is odd, they inherit or, better, mirror the two main features 
of the continuous Gaussian distribution, symmetry and unimodality. The results for OPT are similar; 
the optimal distribution shows for the same k ≥ 4 slightly different probabilities and support values that 
are slightly unequally spaced. The increase in the maximum correlation is quite negligible. For illustrative 

(11)

max

a,b

cor(X ,X
d
)

subject to a∈ℝ

b>0

x
i
= a+b ⋅ i , i =1,…, k

p
i
=∫

c
i

c
i − 1

f (x )dx , i =1,…, k

c
0
= −∞, c

i
= (x

i
+x

i+1)∕2 (i =1, . . . , k−1), ck=∞.

F I G U R E  3   Maximal point-polyserial correlations and corresponding configurations p
1
,…, p

k
 for a number of categories 

k = 2,…, 10 when the continuous distribution is normal. In the top panel, we consider CISs for the ordered categories; in the 
bottom panel, the support values (OPT) are determined along with the probabilities as a solution to the optimization problem.

p i

1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10

0.7979 0.8999 0.9387 0.958 0.9692 0.9763 0.9811 0.9845 0.9871

p i
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0
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k=3

0.9394

k=4

0.9592

k=5
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12  |      BARBIERO

purposes, we report here the R code used to determine the value of the maximal point-polyserial correla-
tion, Problem (9), for k = 5.

which produces the following output:

 20448317, 0, D
ow

nloaded from
 https://bpspsychub.onlinelibrary.w

iley.com
/doi/10.1111/bm

sp.12362 by A
lessandro B

arbiero - U
niversita'D

egli Studi D
i M

ila , W
iley O

nline L
ibrary on [24/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://bpspsychub.onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2Fbmsp.12362&mode=


       |  13MAXIMAL POINT-POLYSERIAL CORRELATION

The R code used to solve Problem (10), with k = 5, is as follows:

which produces the output:

We used the solnp function included in the Rsolnp package (Ghalanos & Theussl, 2015; Ye, 1987) to 
solve the non-linear maximization problems, which are actually converted into minimization problems by 
simply changing the sign to the expression of the maximal point-polyserial correlation for an underlying 
normal distribution (3). The constraints on the p

i
 are provided through the arguments eqfun and eqB 

(through which we impose that 
∑
k

i=1
p
i
= 1), LB (lower bounds for the p

i
), and UB (upper bounds for the 

p
i
 ). For Problem (10), the optimal scores are obtained recalling (7), adapted to the standard normal distri-

bution, and saved in the R object x.i.
From the R output, one can check the feature of the optimal p

i
 for Problem  (9), expressed by 

Proposition (1): The corresponding thresholds (i.e., the quantiles of level F
i
 of the continuous RV) con-

stitute a set of equally spaced values. It should also be expected that the k-point distribution maximizing 
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14  |      BARBIERO

the point-polyserial correlation will be symmetrical, i.e., p
j
= p

k+1− j, j = 1,…, k; hence, the thresholds 
are symmetrical around zero.

If we consider a discrete uniform RV X
d
, then the maximal point-polyserial correlation is equal to 

the ratio in (4). For k→∞, it tends asymptotically to 
√
3∕�. In fact, we can write 

but the integral on the left-hand side of (12) is related to the finite sum above through 

and then it easily follows that 

This is an interesting theoretical result: Starting from a bivariate standard normal distribution with 
correlation coefficient � and discretizing one of its components through an equal-probability dis-
cretization process, the resulting correlation coefficient between the unaltered component and the 
new discrete one, letting k go to ∞, tends to a value strictly smaller than �. This result is not unex-
pected since discretizing a normal distribution, although through ‘many’ equal-probability catego-
ries, produces a distribution that cannot resemble the unimodal normal PDF (see, e.g., Barbiero & 
Hitaj, 2023; Table 1).

We concisely summarize the main results concerning the maximum point-polyserial correlation for 
the normal distribution in the following proposition.

Proposition 3.  Normal distribution. For the standard normal distribution, the optimal solution to 
Problem (9) has symmetric probabilities, p

j
= p

k+1− j , j = 1,…, k, with a unique mode in (k + 1)∕2 if 
k is odd, two modes in k∕2 and k∕2 + 1 if k is even. For the same k, the optimal solution to problem (10) 
has a slightly different symmetric distribution (with the same features as for the CIS) with unequally spaced 
support values; the maximum value of correlation is just barely larger than for Problem (9).

4.3  |  Uniform

Let X  be a uniform RV in (0, 1), with f (x ) = 1, x ∈ [0, 1]; then �(X ) = 1∕2 and Var(X ) = 1∕12. Then 
the mixed moment in the case of comonotonicity between X  and X

d
 becomes 

Problem (9) can be rewritten, following the lines of Proposition (1), as 

(12)∫
1

0

�[Φ− 1
(x )]dx =∫

+∞

−∞

�(u)Φ�
(u)du=∫

+∞

−∞

�2(u)du=∫
+∞

−∞

1

2�
e
−u2
du=

1

2�

√
�=

1

2

√
�
,

lim

k→∞

1

k

�
i=1

k�[Φ− 1
(i∕k)]= lim

k→∞

1

k

k− 1�
i=1

�[Φ− 1
(i∕k)]=∫

1

0

�[Φ− 1
(x )]dx =

1

2

√
�
,

lim

k→∞
�
PP ,max

=
2

√
3

2

√
�
=
√
3∕� ≈ 0. 977205.

�
c
(XX

d
) = 1 ⋅ ∫

F
1

0

xdx + 2 ⋅ ∫
F
2

F
1

xdx +⋯ + k ⋅ ∫
1

F
k− 1

xdx =

k∑
i=1

i ⋅
F
2

i
−F2

i − 1

2

=
1

2

(
k−

k− 1∑
i=1

F
2

i

)
.

max

p
1
,…,p

k

[
1

2

(
k−

k− 1∑
i=1

F
2

i

)
−
1

2

k∑
i=1

ip
i

]
∕

√√√√ 1

12

(
k∑
i=1

i
2
p
i
− (

k∑
i=1

ip
i
)
2

)
,
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       |  17MAXIMAL POINT-POLYSERIAL CORRELATION

subject to the usual constraints on the p
i
. Using the notation � for the variance of X

d
, with � its expectation, 

and with � the covariance between X and X
d
 (�, �, and � all depend on the p

i
, but for the sake of simplicity 

we omitted this dependence in the notation), the equation obtained by setting the partial derivative of the 
Lagrangian function with respect to p

i
 equal to zero is 

Subtracting the second (i = 2) from the first (i = 1) equation we obtain 

and then 

from which 

Subtracting the third and the second equation yields 

from which, recalling the previous expression obtained for p
1
, 

from which one derives p
2
= �∕� and, in a similar manner, p

3
=⋯ = p

k− 1 = �∕�; finally, 
p
k
=
1

2

−
�

2�
(2k− 1− 2�).

Although the preceding optimization problem cannot be solved analytically in a direct way, it can be  
proved that for any k ≥ 2, the discrete uniform distribution, which assigns each value i ∈ {1, 2,…, k}  
a constant probability p

i
= 1∕k, is the one, among all the k-point discrete distributions sitting on {1, 2,…, k},  

that maximizes the maximal point-polyserial correlation. In fact, letting p
i
= 1∕k for all i = 1,…, k, we  

obtain � = (k + 1)∕2, � = (k2 − 1)∕12, �=�(XX
d
)−�(X )�(X

d
)=

1

2

�
k−

∑
k− 1
i=1 (i∕k)

2

�
  

− (k+1)∕4=
1

2

[
k−

1

k
2

(k− 1)k(2(k− 1)+1)

6

]
− (k+1)∕4= (k2 − 1)∕(12k) , and all the equations obtained by 

setting equal to zero the derivatives of the Lagrangian function are satisfied. What follows is the R code that 
can be used to numerically determine the solution to (9) with a number of categories from 2 to 10:

1

2

[
−

(
2

k− 1∑
j=i

(k− j + 1)p
j
+ i

)
�− 0. 5

(
k−

k− 1∑
i=1

(

i∑
j=1

p
i
)
2 −

∑
ip
i

)
(i
2 − 2i

k∑
i=1

ip
i
)

]
∕�3∕2 + � = 0, i = 1,…, k− 1.

−
1

2

(1− 2p
1
)�−

1

2

�(3− 2�) = 0,

(1− 2p
1
)� + �(3− 2�) = 0,

p
1
=

�−�(2�− 3)

2�
=
1

2

−
�(2�− 3)

2�
.

−
1

2

(1− 2p
1
− 2p

2
)�−

1

2

�(5− 2�) = 0,

[
1− 1 +

�

�
(2�− 3)− 2p

2

]
� + �(5− 2�) = 0,
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Table 2 displays for several values of k the maximum point-polyserial correlation, for which an analytic 
expression is readily obtained: 

We thus observe that lim
k→∞�

PP ,max
= 1. As the number of categories k increases, the maximum point-

polyserial correlation approaches 1, which is the natural upper bound of Pearson's correlation.
If we remove the hypothesis of CIS for the ordinal RV, the results about the maximal point-polyserial 

correlation would not change: The OPT would be equally spaced values in (0, 1), x∗
i
= (2i − 1)∕(2k), 

i = 1,…, k (Zoppè, 1995) and, thus, turn out to be positive linear transforms of the CIS. We concisely 
summarize these main results by the following proposition.

Proposition 4.  Uniform distribution. For a standard uniform distribution, the optimal solution for 
both Problems (9) and (10) has constant probabilities p

i
= 1∕k, i = 1,…, k. For the latter, the optimal 

support values are equally spaced: x
i
= (2i − 1)∕(2k). The maximum value of the correlation in both cases 

is 
√
1− 1∕k2.

It is important to note that, although it is quite easy to derive the expression of the maximal point-polyserial 
correlation, starting from the (bivariate) continuous distribution, finding the point-polyserial correlation and 
then the correlation ratio is more challenging or, more specifically, it requires some additional information: 
While for the former it is sufficient to fully specify the univariate non-normal continuous distribution, for 
the latter it is necessary to specify the joint random distribution of (Z

1
,Z
2
) or, equivalently, the two marginal 

distributions of Z
1
 and Z

2
 and the copula C (u

1
, u
2
) linking them into the joint distribution. To better under-

stand this point, we carried out the following numerical experiment. We considered four different parametric 
copulas C (u

1
, u
2
; �) (Gauss, Frank, Clayton, and Gumbel), whose marginal distributions are by definition 

standard uniform. For each copula and for different values of the linear correlation � (the biserial/polyserial 
correlation), properly induced by the copula parameter �, we computed the point-biserial/polyserial correla-
tion, and the corresponding ratio, by considering for the sake of simplicity k = 2 and k = 3 equal-probability 
categories (which are assigned CISs) for the discretized random variable. The results indicate that the ratio 

max�
PP ,max

=

k
2 − 1

12k�
k
2 − 1

12

1

12

=

√
k
2 − 1

k

=
√
1− 1∕k2.
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       |  19MAXIMAL POINT-POLYSERIAL CORRELATION

between point-polyserial and polyserial correlations is not constant with � (although it can be treated as nearly 
constant), confirming the fact that a constant ratio characterizes the (bivariate) normal distribution only 
(Equations 2 and 3). The range of values that the ratio can span, though narrow, sensibly varies depending on 
the copula selected. We considered only positive values of � since, whereas the Frank and Gauss copulas are 
comprehensive (i.e., they are able to model the entire range of dependence, from countermonotonicity to co-
monotonicity, passing through independence), and then they are able to induce all the values of � in [ − 1, + 1]
), the Gumbel and Clayton copulas can only model positive dependence and, thus, induce only positive values 
of linear correlation. The point-biserial (point-polyserial) correlation can be computed as usual as 

where the value of the mixed moment can be expressed, in the case of two equal-probability categories for 
U
2d

, as 

where c (u
1
, u
2
; �) is the copula density, with �(U

1
) = 1∕2, �(U

2d
) = 3∕2, Var(U

1
) = 1∕12, Var(U

2d
) = 1∕4 . 

In the case of three equal-probability categories for U
2d

, the value of the mixed moment takes on the 
expression 

and it is easy to check that now �(U
2d
) = 2 and Var(U

2d
) = 2∕3. The point-polyserial correlation is readily 

computed once the quantities in  (13) and (14) are evaluated: To this end, one can resort to the cuba-
ture package (Narasimhan et al., 2023) in R, which implements adaptive multivariate integration over 
hypercubes. The function iRho, provided by the package copula  (Hofert et  al.,  2023), determines 
(“calibrates”) the copula parameter � given the value of Spearman's rank correlation, which coincides with 
Pearson's correlation for a bivariate copula.

Figure 4 displays, for each copula examined, the values of the ratio between point-biserial and bise-
rial correlations for different values of the latter (from .05 to .95 in steps of .05). Note that the values 
of the ratio all cluster around the value .8660, which is reported in Table 2 as the maximum value of 
point-biserial correlation for a uniform distribution. Analogously, Figure 5 displays, for each copula 
examined, the values of the ratio between point-polyserial and polyserial (k = 3) correlations for differ-
ent values of the latter (the same grid as was adopted for k = 2). Note the values of the ratio all cluster 
around the value .9428, which is reported in Table 2 as the maximum value of point-biserial correlation 
for the uniform distribution for k = 3.

4.4  |  Exponential

Let X  be an exponential RV with PDF f (x ) = �e−�x and cumulative distribution function (CDF) 
F (x ) = 1− e−�x, x > 0, 𝜆 > 0. It is well known that �(X ) = 1∕� and Var(X ) = 1∕�2. The quantile of 
level 0 < u < 1 is x

u
= − log(1− u)∕�.

The mixed moment between X  and X
d
 when they are comonotonic and CISs are used for the latter 

RV is obtained by recalling (6) 

�
PP

=
�(U

1
U
2d
)−�(U

1
)�(U

2d
)√

Var(U
1
)Var(U

2d
)

,

(13)�(U
1
U
2d
)=1 ∫

1

0

d u
1 ∫

1∕2

0

u
1
c (u

1
, u
2
; �)d u

2
+2 ∫

1

0

d u
1 ∫

1

1∕2

u
1
c (u

1
, u
2
; �)d u

2
,

(14)

�(U
1
U
2d
)=1 ∫

1

0

d u
1 ∫

1∕3

0

u
1
c (u

1
, u
2
; �)d u

2
+2 ∫

1

0

d u
1 ∫

2∕3

1∕3

u
1
c (u

1
, u
2
; �)d u

2
+3 ∫

1

0

d u
1 ∫

1

2∕3

u
1
c (u

1
, u
2
; �)d u

2
,
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since 

�
c
(XX

d
) =

k∑
i=1

i ∫
F

− 1
(F
i
)

F
− 1
(F
i − 1)

x�e−�x dx =

k∑
i=1

i

[
− (x+1∕�)e−�x

]− log(1−F
i
)∕�

− log(1−F
i − 1)∕�

=
1

�

k∑
i=1

i{[log(1−F
i
)− 1](1−F

i
)− [log(1−F

i − 1)− 1](1−Fi − 1)}=
1

�

[
1−

k− 1∑
i=1

[log(1−F
i
)− 1](1−F

i
)

]

∫
b

a

x�e−�xdx =
[
−
(
x+

1

�

)
e
−�x

]
b

a

.

F I G U R E  5   Graph of ratio between point-polyserial (k = 3) correlation and biserial correlation for several copulas and 
values of �; we assumed p

1
= p

2
= p

3
= 1∕3 for the ordinal RV.
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F I G U R E  4   Graph of ratio between point-biserial correlation and biserial correlation for several copulas and values of �; 
we assumed p

1
= p

2
= 1∕2 for the dichotomous RV.
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       |  21MAXIMAL POINT-POLYSERIAL CORRELATION

Therefore, the expression of the corresponding maximal point-polyserial correlation is 

As an example, Figure 6 displays the level curves of the maximal point-polyserial correlation in (15) for 
k = 3 as a function of the probabilities p

1
 and p

2
 (which must satisfy 0 ≤ p

1
+ p

2
≤ 1), since p

3
= 1− p

1
− p

2
 . 

Figure 6 can be seen as the trivariate analogue of figure 1 in  (Cheng & Liu, 2016) for the exponential 
distribution.

Maximizing the function in Equation  (15), for a fixed k, with respect to the p
i
 (i.e., solving 

Problem (9)) does not return a closed-form solution; one must resort to numerical optimization as 
was already done for the normal and uniform distributions. The k-point distribution maximizing 
the maximal point-polyserial correlation is empirically proved to have decreasing probabilities p

i
 for 

k ≤ 7, thereby resembling the trend of the exponential PDF; for k ≥ 8 the probabilities are decreas-
ing till the second to last category, but the last category has a larger, though very small, probability 
than the former ( p

k
> p

k− 1); one can empirically ascertain this by looking at the three right-most 
graphs of Figure 7 (top panel), where the k-point discrete distributions maximizing �

PP ,max
 are dis-

played for k = 2, 3,…, 10 (top panel). We note that, for any k there examined, the values of �
PP ,max

 for 
the exponential distribution are not very different from the analogue values for the normal distri-
bution, reported in Figure 3, and are a bit smaller than those obtained for the uniform distribution. 

(15)�
PP ,max

=
1−

∑
k− 1
i=1

[log(1−F
i
)− 1](1−F

i
)−

∑
k

i=1
ip
i�∑

k

i=1
i
2
p
i
− (

∑
k

i=1
ip
i
)
2

.

F I G U R E  6   Level curves for maximal point-polyserial correlation (15) between an exponential distribution and a discrete 
RV with k = 3 ordered categories, which are assigned CISs, with probabilities p

1
, p
2
, and p

3
. The point of the coordinates 

(1∕3, 1∕3), corresponding to the discrete uniform distribution, is represented by the empty circle between the contour lines of 
levels .75 and .8. The pair (p

1
, p
2
) maximizing (15) is represented by the filled circle inside the contour line of level .89 (refer 

also to Figure 7, top panel, second bar plot from left).
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Despite being strongly asymmetrical, the exponential distribution is still able to assure high values 
of a point-polyserial correlation.

If we restrict our attention to a uniform discrete RV, then F
i
= i∕k, and the i∕k-order quantile is 

x
i∕k =

logk− log(k− i )

�
,and then one obtains, by specializing Equation (15), after some algebraic steps, the 

following expression for the maximum mixed moment: 

and for the maximal point-polyserial correlation: 

which tends to 
√
3∕2≈ 0. 866 as k tends to infinity. In fact, since 

and the sum appearing in the numerator of �(eq)
PP ,max

 can be approximated for large k as 

it is immediate to prove the asymptotic result.
Table 3 reports the values of the maximal point-polyserial correlation under the equal-probability 

setting for different values of k. By comparing them to the values of the maximum point-polyserial 
correlations displayed in Figure 7 (top panel), we can conclude that properly diversifying the probabil-
ities of the k categories significantly increases the maximal value of point-polyserial correlation even 
when k becomes larger: For k = 10, the increase in the maximal correlation is approximately 15%, 
and this is ascribable to the highly non-uniform and asymmetrical nature of the exponential PDF. 
Moreover, note that the limiting value of the point-polyserial correlation for the exponential distribu-
tion under the equal-probability setting is quite a bit smaller than its analogue resulting for the normal 
RV (

√
3∕2 <

√
3∕𝜋); this clearly derives from the asymmetrical nature of the exponential distribution, 

which mismatches with the equal probabilities characterizing the k-point discrete uniform RV consid-
ered in the limit case.

If we consider the OPT instead of the CIS, then the k-point distributions maximizing the point-
polyserial correlation are, for each k, different. They are characterized by decreasing probabilities p

i
, 

by support values that now depend on �, and increasing spacings between consecutive support values. 
We recall that for the optimal k-point distribution (which coincides with the optimal quantizer) the j
th spacing is equal to the (j + 1)th spacing of the optimal (k + 1)-point distribution, i.e., the series of 
spacings repeats itself (Zoppè, 1995). The maximum correlation for k ≥ 3 is larger than in the case of 
the CIS. These results are graphically displayed in Figure 7 (bottom panel), where the parameter � is set 
equal to 1. Indeed, changing the parameter value from �

1
 to �

2
 simply translates into a scale transforma-

tion with a factor �
1
∕�
2
 for the optimal support values.

We concisely summarize the main results for the exponential distribution in the following 
proposition.

max�(XX
d
)
(eq)=

1

�k

[
k(k+1)

2

(1+ logk)−

k∑
i=2

i logi

]

�
(eq)

PP ,max
=

1

k

�
k(k+1)(1+ logk)∕2−

∑
k

i=2
i logi

�
−
k+1

2√
(k
2 − 1)∕12

,

∫
k

1

x logxdx =
[
1

4

x
2
(2logx − 1)

]
k

1

=
1

2

k
2
logk−

1

4

(k
2 − 1)

k∑
i=2

i logi =

k∑
i=1

i logi ≈
1

2

k
2
logk−

1

4

(k
2 − 1),
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       |  23MAXIMAL POINT-POLYSERIAL CORRELATION

Proposition 5.  Exponential distribution. The optimal solution to Problem (9) has decreasing p
i
 

for k ≤ 7. The optimal solution to Problem (10), for the same k ≥ 3, has decreasing p
i
 and yields a slightly 

larger maximum value of correlation. We observe that compared to CIS, smaller support values are assigned 
smaller probabilities and larger support values are assigned larger probabilities.

4.5  |  Pareto (Lomax)

The one-parameter Pareto distribution is characterized by the PDF f (x ) = �∕x�+1 and the CDF 
F (x ) = 1− 1∕x� for x > 1, with 𝛼 > 0; its expectation is �(X ) = �∕(� − 1) for 𝛼 > 1; its variance is 
Var(X ) = �∕[(� − 1)2(� − 2)] for 𝛼 > 2. The quantile function is x

u
= F − 1

(u) = 1∕(1− u)1∕�, 0 < u < 1.
It is easy to find the expression of the mixed moment when the two RVs X  and X

d
 are comonotonic 

and the ordered categories of X
d
 are assigned CISs; it is equal to 

The corresponding maximal point-polyserial correlation can then be determined; its maximum value, for a 
given k, can be obtained solving the optimization Problem (9) numerically. Here, in Table 4, we report the 
maximum value of the point-polyserial correlation for several combinations of the Pareto parameter � and 
of the number of categories k.

Figure 8 displays, for k = 2,…, 10, the discrete distribution solutions to the maximal point-polyserial 
correlation problem when � = 6, for CIS (top panel) and OPT (bottom panel).

In general, focusing on the CIS, for an assigned k, it can be shown numerically that the discrete 
distribution maximizing the point-polyserial correlation has most of the probability concentrated 
in the first category, whereas much smaller probabilities are assigned to the others. Furthermore, 
we observe that for each k, p

1
> p

2
>⋯ > p

k− 1. This behaviour is similar to that of the exponential 
distribution; we note that for the same number of categories k, the maximum value of the point-
polyserial correlation for the Pareto distribution is smaller for any value of � than for the exponen-
tial distribution.

(16)

�
c
(XX

d
)=

k∑
i=1

i ∫
F

− 1
(F
i
)

F
− 1
(F
i − 1)

�x

x
�+1
dx =

k∑
i=1

i

�

1− �

[
x
1− �

]
1∕(1−F

i
)
1∕�

1∕(1−F
i − 1)

1∕� =
�

� − 1

[
1+

k− 1∑
i=1

1

(1−F
i
)

1− �

�

]
.

F I G U R E  7   Solution to maximal point-polyserial correlation problem for exponential distribution for different values of 
k. In the top panel, we consider CISs for the ordered categories; in the bottom panel, the support values (OPT) are determined 
along with the probabilities as a solution to the optimization problem.
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Focusing on the equal-probability case, since the expression of the quantile of level i∕k is 
x
i∕k =

(
k

k− i

)
1∕�

, it is easy to compute the mixed moment arising when the two RVs are comonotonic, 
specializing the general expression in (16): 

and therefore the expression of the maximum point-polyserial correlation becomes 

Since we have that ∑
k

i=1
(k∕(k− i ))(1− �)∕� ≈ ∫ k

1
(k∕(k− x ))(1− �)∕�

dx =
�
�k(k∕(k− x ))1∕� − 2

1− 2�

�
k

1

=�k
(

k

k− 1

)
1∕� − 2

∕(2� − 1), then for k→∞, provided that 𝛼 > 2, 

�
c
(XX

d
)
(eq) =

k∑
i=1

i ∫
x
i∕k

x
(i − 1)∕k

x ⋅
�

x
�+1
dx =

k∑
i=1

i

[
�

1− �
x
1− �

]
(

k

k− i+1
)
1∕�

(
k

k− i
)
1∕�

=
�

� − 1

[
1 +

k− 1∑
i=1

(
k

k− i

)
(1− �)∕�

]
,

�
(eq)

PP ,max
=

�

� − 1

�
1+

∑
k− 1
i=1

�
k

k− i

�
(1− �)∕�

− (k+1)∕2

�

�
�

(� − 1)2(� − 2)

k
2 − 1

12

.

lim

k→∞
�
(eq)

PP ,max
=

√
3�(� − 2)

2� − 1
.

T A B L E  4   Maximum point-polyserial correlation between a Pareto-distributed RV with parameter � and a discrete RV 
with k categories.

�, k 2 3 4 5 6 7 8 9 10 20

3 .6813 .7716 .8148 .8413 .8596 .8731 .8837 .8922 .8992 .9350

4 .7345 .8274 .8695 .8942 .9106 .9224 .9313 .9382 .9439 .9700

5 .7556 .8488 .8899 .9134 .9286 .9393 .9473 .9534 .9583 .9800

F I G U R E  8   Solution to maximal point-polyserial correlation problem for a Pareto distribution with parameter � = 6 for 
different values of k. In the top panel, we consider the CIS for the ordered categories; in the bottom panel, the support values 
(OPT) are determined along with the probabilities as a solution to the optimization problem.
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For � = 3 we have �(eq)
pp,max

= 0. 6; for � = 5 we have �(eq)
pp,max

= 0. 745356; for � →∞, the maximum of the 
point-polyserial correlation, under the equal-probability setting, tends to 

√
3∕2, i.e., the same value as for 

the exponential distribution.
If we consider OPT, looking at the bottom panel of Figure 8, we notice that the discrete distribu-

tion maximizing the correlation has, for any k, decreasing probabilities ( p
1
> p

2
>⋯ > p

k
) and yields 

a larger correlation than the CIS (for k ≥ 3). We can state that removing the constraint on the support 
values of the ordinal RV allows it to “adapt” to the skewed continuous distribution better.

We concisely summarize the main results for the Pareto distribution in the following proposition.

Proposition 6.  Pareto distribution. For the Pareto distribution with parameter 𝛼 > 2, by consid-
ering the CIS, the maximum value of the maximal point-polyserial correlation is obtained through a dis-
tribution with decreasing p

i
 for k smaller than some threshold depending on �. By considering OPT, for the 

same k ≥ 3, the maximum value of correlation can be sensibly larger and is obtained through a distribution 
with decreasing p

i
. We observe that, compared to CIS, for the optimal discrete distribution, smaller values 

are assigned smaller p
i
 and larger values are assigned larger p

i
.

4.6  |  Logistic

The logistic distribution, in its standard version, has PDF f (x ) = e
x

(1+ex )2
 and CDF F (x ) = e

x

1+ ex
, x ∈ ℝ . 

The quantile function is x
u
= ln(u∕(1− u)), 0 < u < 1; moreover, �(X ) = 0 and Var(X ) = �2∕3. Since 

∫ b
a

xe
x

(1+ex )2
dx =

[
xe
x

1+ex
− ln(1+ ex )

]
b

a

, it is easy to derive the expression of the mixed moment between a 

logistic RV X  and a discrete RV X
d
 in the case of comonotonicity and CIS for X

d
: 

and the expression of the correponding maximal point-polyserial correlation for given probabilities p
i
, 

i = 1,…, k, is then 

which can be maximized with respect to the p
i
 for any k by resorting to the same optimization routines used 

in the previous subsections.
Figure  9 displays the k-point discrete distributions (k = 2,…, 10) that maximize the maximal 

point-polyserial correlation, for CIS (top panel) and OPT (bottom panel). Focusing on the CIS, we 
note that, as an expected consequence of the symmetry of the logistic distribution, the probability 
distributions that solve the optimization problem are all symmetrical around the mid-value (k + 1)∕2 
and unimodal (for k odd) or bimodal (with k even) with the mode(s) coinciding with the central 
value(s). It is the same situation that occurs with the normal distribution; the only differences are 
observed in the magnitude of the probabilities p

i
 and of the maximum point-polyserial correlation. 

For any value k examined here, the maximum of �
PP ,max

 for the logistic distribution is smaller than 
for the normal distribution.

Let us study the asymptotic behaviour of the maximal point-polyserial correlation with k in the 
case of equal-probability categories; in this case, the expression of the mixed moment (17) special-
izes into 

(17)�
c
(XX

d
) = −

k− 1∑
i=1

[F
i
⋅ log(F

i
∕(1−F

i
)) + log(1−F

i
)],

�
PP ,max

= −

k− 1�
i=1

[F
i
⋅ log(F

i
∕(1−F

i
)) + log(1−F

i
)]∕

������2

3

⎡⎢⎢⎣

k�
i=1

i
2
p
i
−

�
k�
i=1

ip
i

�2⎤⎥⎥⎦
,
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therefore, the maximal point-polyserial correlation is given by 

Now, for large k, the sum 
∑
k

i=1
i

k

lni + (1− i∕k)ln(k− i ) can be approximated by 
1

k

∫ k
0
x lnx + (k− x )ln(k− x )dx =

[
( − (k− x )2ln(k− x )+x ( − k+x lnx ))∕(2k)

]
k

0
= k(2lnk− 1)∕2 , from 

which �
(eq)

PP ,max
 can be approximated by (k− 1)lnk− klnk+k∕2√

�2(k2 − 1)

36

; therefore, its limiting value is 

lim
k→∞�

(eq)

PP ,max
= 3

√
2∕�2 ≈ 0. 9549.

Moving to OPT, inspection of Figure 9 and particularly the bottom panel reveals that the k-point 
probability distribution maximizing the correlation is symmetrical around zero for all k. For k ≥ 4, the 
optimal support values are unequally spaced; the optimal probabilities are different from the homolo-
gous probabilities in the CIS case; the resulting maximum correlation is (slightly) larger than for CIS.

We concisely summarize the main results for the logistic distribution in the following proposition.

Proposition 7.  Logistic distribution For a logistic distribution, the optimal solution to Problem (9) 
has symmetric probabilities: p

j
= p

k+1− j , j = 1,…, k. For the optimal solution to Problem (10), for the 
same k ≥ 4, the maximum value of correlation is slightly larger and is obtained through a symmetric distri-
bution with different values for the p

i
 and unequally spaced x

i
.

�
c
(XX

d
)
(eq) =

k− 1∑
i=1

(
ln

k

k− i
−
i

k

ln

i

k− i

)
=

k− 1∑
i=1

lnk− ln(k− i )−
i

k

lni+
i

k

ln(k− i )

= (k− 1)lnk−

k− 1∑
i=1

i

k

lni+ (1− i∕k)ln(k− i );

�
(eq)

PP ,max
=
(k− 1)lnk−

∑
k− 1
i=1

[
i

k

lni + (1− i∕k)ln(k− i )]
�

�2

3

k
2 − 1

12

.

F I G U R E  9   Solution to maximal point-polyserial correlation problem for logistic distribution for different values of k. In 
the top panel, we consider the CISs for the ordered categories; in the bottom panel, the support values (OPT) are determined 
along with the probabilities as a solution to the optimization problem.
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4.7  |  Power distribution

The CDF and the PDF of the power distribution with parameter 𝛼 > 0, which is a particular case of 
the Beta distribution, with the second shape parameter � equal to 1, are F (x ) = x� and f (x ) = �x� − 1 , 
0 < x < 1. When � = 1, it reduces to the uniform distribution (Section  4.3). The quantile of level u 
is x

u
= u1∕�. Recalling the expressions for the expectation and the variance of a Beta RV, we have 

�(X ) = �∕(� + 1) and Var(X ) = �∕(�+1)2∕(� + 2).
It is then easy to derive the expression of the value of the mixed moment between a power RV of 

parameter � and a k-point discrete RV with tje CIS in the case of comonotonicity, which is given by 

The expression of the maximal point-polyserial correlation can be derived in a straightforward man-
ner. Figure 10 displays the results of its maximization for � = 2, with CIS (top panel) and OPT (bot-
tom panel). Focusing on the CIS, we note that for each of the values of k examined and for � = 2, the 
discrete distribution has increasing probabilities, thereby mimicking the increasingness of the PDF of 
the power RV. �

PP ,max
 converges to 1 quite quickly; when k = 10, it is equal to .9934, a value just slightly 

smaller than the corresponding value .9950 obtained for a uniform RV with the same k (Table 2).
Numerical experiments with other values of 𝛼 > 1 show that the optimal solution to (9) does not 

necessarily respect the condition p
i
< p

i+1 for all i ≤ k− 1 and for all k.
Under the equal-probability setting, the expression of the mixed moment for comonotonic RVs is 

and the maximal point-polyserial correlation is 

�
c
(XX

d
)=

k∑
i=1

i ∫
F
1∕�
i

F
1∕�
i − 1

x�x� − 1dx =�

k∑
i=1

i ∫
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1∕�
i

F
1∕�
i − 1

x
�
dx =

�

�+1

k∑
i=1

i

[
F
(�+1)∕�

i
−F

(�+1)∕�

i − 1

]
=

�

�+1

[
k−

k− 1∑
i=1

F
(�+1)∕�

i

]
.

�
c
(XX

d
)=

�

�+1

[
k−

k− 1∑
i=1

i

(
i

k

)
(�+1)∕�

]
,

(18)
max�

(eq)

PP
=

�

�+1

�
k−

k+1

2

−
∑
k− 1
i=1

�
i

k

�
(�+1)∕�

�

�
k
2 − 1

12

�

(�+1)2(�+2)

=

�
k∕2− 1∕2−

∑
k− 1
i=1

�
i

k

�
(�+1)∕�

�

�
k
2 − 1

12�(�+2)

.

F I G U R E  1 0   Solution to maximal point-polyserial correlation problem for a power distribution with parameter � = 2 for 
different values of k. In the top panel, we consider CISs for the ordered categories; in the bottom panel, the support values 
(OPT) are determined along with the probabilities as a solution to the optimization problem.
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To evaluate the limit of �(eq)
PP ,max

 for k tending to infinity, we can approximate the finite sum in the numerator 

with ∫ 1
0

(
x

k

)
(�+1)∕�

dx = �k∕(2� + 1). Then the limiting value can be calculated as 

Note that the limiting value is equal to 1 if and only if � = 1, i.e., if we consider a uniform distribution (see 
also Table 5 for a distribution summary). For all the other positive values of �, (19) is strictly smaller than 
1. Figure 11 displays (18) as a function of � for k = 3; 5;∞. As expected, for a fixed �, the maximal point-
polyserial correlation increases with k. For a given k, the maximal point-polyserial correlation, now regarded 
as a function of �, is attained at � = 1 (when the power distributions boils down to a standard uniform 
distribution).

Moving to OPT, Figure 10 makes evident that the optimal distribution has still increasing proba-
bilities for any k. Compared to the CIS, the (optimal) support values tend to cluster around the upper 
bound 1 when k is increasing, with decreasing values of the spacings between consecutive support 
points. In a symmetrical manner, if we considered a value of � smaller than 1, then we would notice 
that the (optimal) support values tend to cluster around the lower bound 0 when k is increasing, with 
increasing values of the spacings between consecutive support points. The gain in correlation with the 
continuous distribution, with respect to CIS, is, however, negligible. The asymmetry of the distribution, 
mitigated by the bounded support, does not preclude obtaining high correlation values.

We concisely summarize the main results for the power distribution in the following proposition.

Proposition 8.  Power distribution. For a power distribution with parameter 𝛼 > 0, the optimal 
solution to Problem (9) has generally increasing (decreasing) probabilities p

i
 if 𝛼 > 1 (𝛼 < 1), at least for 

not too high values of k and not too extreme values of �. The optimal solution to Problem (10) has increasing 
(decreasing) probabilities p

i
 if 𝛼 > 1 (𝛼 < 1) for any k; its support values show decreasing (increasing) 

spacings if 𝛼 > 1 (𝛼 < 1). The improvement in the value of maximum correlation is, however, negligible 
moving from CIS to OPT.

5  |  EX A MPL E W ITH R EA L DATA

Quinn  (2004) considered measuring the (latent) political-economic risk of 62 countries for the year 
1987. The political-economic risk is defined as a country's risk in manipulating economic rules for its 
own and its constituents' advantage. Quinn (2004) used five mixed-type variables, namely, the black-
market premium in each country (continuous, used as a proxy for illegal economic activity), productivity 

(19)lim

k→∞
�
(eq)

PP ,max
=
√
3�(� + 2)∕(2� + 1).

T A B L E  5   Limits as k tends to +∞ of maximal point-polyserial correlation in case of equal-probability categories for k
-point ordinal RV with CIS.

Distribution limk→∞
�
(eq)

PP ,max
(k )

Uniform 1

Normal √
3∕�

Exponential √
3∕2

Pareto √
3�(� − 2)∕(2� − 1)

Logistic
3

√
2∕�2

Power √
3�(� + 2)∕(2� + 1)
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as measured by the natural logarithm of the real gross domestic product per worker at 1985 interna-
tional prices (gdpw2, continuous), the independence of the national judiciary (dichotomous; 1 if the 
judiciary is judged to be independent and 0 otherwise), and two ordinal variables (both with levels 
0 < 1 < 2 < 3 < 4 < 5) measuring the lack of expropriation risk (prsexp) and lack of corruption (pr-
scorr). The data set and a complete description thereof can be found in Quinn (2004) or in the R 
package MCMCpack (Martin et al., 2011). Kadhem and Nikoloulopoulos (2021) applied on this data set 
a factor model with bivariate copulas that link the latent variable (which can be interpreted as ‘political-
economic certainty’) to each of the observed variables.

Here, we just want to apply the results on maximal point-polyserial correlation to (a sample drawn 
from) a bivariate continuous-ordinal RV; we will consider gdpw2 as the continuous component and 
prsexp and prscorr as two possible ordinal components, which can be assumed to be the result 
of ordinalization/discretization of some latent continuous variable. Computations show that the point-
polyserial correlation between gdpw2 and prsexp is .4804; the point-polyserial correlation between 
gdpw2 and prscorr is .7250.

Plotting and considering the histogram and boxplot of the empirical distribution of gdpw2 and 
examining its summary statistics reveals that it is slightly left-skewed (sample skewness is about 
− 0. 433 ) and platykurtic (sample kurtosis is about 2.10). One can consider fitting a normal and a uni-
form distribution to these data. Implementing the Kolmogorov–Smirnov test for assessing normal-
ity/uniformity for a continuous variable, by adopting the Lilliefors correction to take into account 
the fact that the parameters must be estimated (Lilliefors, 1967; Novack-Gottshall & Wang, 2019), 
we obtain a p-value equal to .2066 and .034 respectively, which means that the distribution of the 
continuous variable can be hardly assumed to be uniform but can be more plausibly assumed to be 
normal.

Taking the two continuous and marginal distributions as assigned, one can compute the maximal 
(sample) point-polyserial correlation by simply computing the correlation between the two samples 
sorted in ascending order (Demirtas & Hedeker, 2011) (so that the two variables are made comonotonic); 

F I G U R E  1 1   Maximal point-polyserial correlation between a continuous power RV and a discrete RV with the CIS as a 
function of the parameter �, for k = 3; 5;∞, in the case of constant probabilities. The dotted horizontal line indicates the limit, 
for k and � both tending to ∞, of the maximal point-polyserial correlation (18).
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see also Figure 12; we obtain .9704 and .9531. These values are quite close to the maximum value ob-
tained between a normal RV and a discrete RV with six categories, which is .9692 (Figure 3); they are 
slightly smaller than the maximum point-polyserial correlation between a uniform RV and a discrete RV 
with six categories, which is .9860 (Table 2).

6  |  M A XIMUM POINT-POLYSER I A L COR R EL ATION 
AS A BASIS FOR DEFINING A k - POINT DISCR ETE 
A PPROXIM ATION OF A CONTINUOUS R A NDOM 
DISTR IBUTION

The oldest and most popular criterion for constructing a k-point discrete approximation of an absolutely 
continuous RV X , with PDF f (x ), CDF F (x ), expectation �, and variance �2, is based on moment-
matching, i.e., matching as many moments as possible of the continuous RV (provided they exist and are 
finite). Through a discrete RV sitting on k points, it is possible to match the first 2k− 1 positive integer 
moments; the algorithm that can be used for determining the discrete distribution satisfying this match-
ing is described, for example, in Golub and Welsch (1969); a software implementation, easily adaptable 
to any continuous distribution, is provided in Toda (2021).

Another way of constructing a k-point discrete approximation is optimal quantization (Lloyd, 1982), 
which is based on the minimization of the expected squared distance between X  and the closest of the 
k points. Given k values x

1
< x

2
<⋯ < x

k
, we define the expected squared distance or mean squared 

error (MSE) as 

MSE(x
1
, x
2
,…, x

k
) = 𝔼 min

x
1
,…,x

k
∈ℝ

(x − x
i
)
2 = ∫

ℝ

min

x
1
,…,x

k
∈ℝ

(x − x
i
)
2
f (x )dx .

F I G U R E  1 2   Analysis of real data: scatter plots between continuous and the two ordinal variables before (top panel) and 
after (bottom panel) reordering. In the latter case, the two pairs of variables are made comonotonic.
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The optimal quantizers x̃
1
<⋯ < x̃

k
 are the values minimizing MSE(x

1
,…, x

k
) and can be obtained by 

rewriting the MSE after introducing k + 1 thresholds or cut-points c
i
, i = 0, 1,…, k: 

where the cut point c
i
 is the midpoint between x

i
 and x

i+1, ci = (xi + xi+1)∕2 for i = 1,…, k− 1, and 
c
0
= −∞, c

k
= +∞. The k optimal quantizers are also known as principal points  (Flury, 1990). To each 

optimal x̃
i
 the probability p̃

i
= ∫ ci

c
i − 1
f (x )dx remains naturally associated. In Section 4, we proved that 

the problem of finding the optimal quantizer was fundamentally equivalent to the maximum correlation 
Problem (10). For more details, one can refer to the recent work by Chakraborty et al. (2021), where the k 
principal points (k = 2,…, 8) of several families of random distributions were computed with high numer-
ical precision.

Barbiero and Hitaj (2023) proposed constructing the optimal k-point approximation to a continuous 
random distribution as the discrete distribution sitting on k distinct values that minimizes a discrepancy 
measure (the Cramér, Cramér–von Mises, or Anderson–Darling distance) between the two CDFs; their 
work is based on that of Kennan (2006), where the author distinguishes the case where the approximat-
ing points are assigned a priori, and one needs to compute only the optimal probabilities, from the case 
were the approximating values are not assigned a priori but must be determined jointly with their prob-
abilities. Barbiero and Hitaj  (2021) proposed a similar criterion for constructing a discrete analogue, 
which is supported over a lattice: ℤ if the continuous RV is real or ℕ if it is positive.

Another alternative to constructing a k-point approximation to a continuous RV X  consists of con-
sidering the discrete distribution sitting on the first k natural values that maximizes the maximal point-
polyserial correlation with X , Problem (9), which we discussed in this work.

However, rather than considering CISs as the support values, one can adopt an appropriate positive 
linear transformation thereof, which thus preserves the correlation value. It is reasonable to apply a lin-
ear transformation that matches the first two moments of the underlying continuous RV X . Taking this 
into account, in Table 6, just as a first comparison, for a standard normal RV, we report the k = 7 opti-
mal values and corresponding probabilities of the k-point ordinal RV maximizing the point-polyserial 
correlation with X , of the RV obtained as the optimal quantizer of X  (the optimal values are directly 
taken from Chakraborty et al., 2021, table 1, A.9), and of the discrete RV obtained by moment match-
ing  (Golub & Welsch, 1969), which preserves the 2 ⋅ k− 1 = 13 moments of the parent distribution. 
Analogously, for an exponential RV with unit rate parameter, we report the seven optimal values and 
probabilities calculated according to the three different approaches (again, for quantization, the optimal 
values are taken directly from Chakraborty et al., 2021, table 2, A.9). For both continuous distributions, 
differences across values and probabilities can be easily appreciated and after all were expected, since 
the criteria behind the different approximations (in particular, if we compare the latter to the former 

MSE(x
1
, x
2
,…, x

k
) =

k∑
i=1

∫
c
i

c
i − 1

(x − x
i
)
2
f (x )dx ,

F I G U R E  1 3   Graphs of CDF of standard normal RV (left panel) and of exponential RV with unit parameter (right 
panel), along with step-wise CDFs of their seven-point approximations derived by maximizing the point-polyserial correlation 
in case of CIS (PP-CIS) and OPT (PP-OPT) and by moment matching (MM). The last three points of the MM approximation 
for the exponential RV do not appear in the right panel because they fall outside the x-axis.

−4 −2 0 2 4

cd
f

PP−CIS
PP−OPT
MM

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cd
f

PP−CIS
PP−OPT
MM

 20448317, 0, D
ow

nloaded from
 https://bpspsychub.onlinelibrary.w

iley.com
/doi/10.1111/bm

sp.12362 by A
lessandro B

arbiero - U
niversita'D

egli Studi D
i M

ila , W
iley O

nline L
ibrary on [24/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://bpspsychub.onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2Fbmsp.12362&mode=


34  |      BARBIERO

two) are significantly different. Moment matching produces discrete RVs with a larger range and tends 
to assign very small probabilities to extreme values: One can just look upon the values in the last column 
of Table 6. To effectively compare the three approximations, Figure 13 displays the CDF of the contin-
uous standard normal (left panel) and exponential RV (right panel) along with the step-wise CDFs of 
the discrete RVs.

7  |  CONCLUSION

The objective of this work was to study the range of the point-polyserial correlation for several 
(non-normal) bivariate distributions and, in particular, determine the maximum attainable value 
as a function of the distribution parameters of the continuous RV and of the number k of ordered 
categories of the discrete RV. Finding the expression of the maximal point-polyserial correlation is 
often possible since its derivation is related to the availability of closed-form expressions for partial 
moments of the continuous distribution. Just as easily, one can find the maximum value of the maxi-
mal point-polyserial correlation, for a given k, numerically (but potentially with precision as high as 
desired), by using standard constrained optimization routines available in most mathematical and 
statistical software packages, such as R. Several examples concerning well-known parametric con-
tinuous distributions are detailed and indicate that the maximum point-polyserial correlation, com-
puted over all k-point discrete distributions sitting on {1, 2,…, k}, is attained at a distribution whose 
probability values are strictly connected to the continuous random distribution examined: If the 
continuous distribution is unimodal and symmetrical (e.g., normal and logistic distribution), then 
the corresponding discrete distribution is unimodal and symmetrical, too; if the continuous distri-
bution is uniform, then the corresponding discrete distribution is a discrete uniform distribution; in 
the case of a monotone decreasing/increasing PDF (exponential, Pareto, …), then the k probabilities 
(under some circumstances) are monotone decreasing/increasing as well. From the numerical ex-
periments, it turns out that whatever the continuous distribution is, the maximum point-polyserial 
correlation always tends to 1 as the number of categories tends to infinity. We also focused on the 
equal-probability setting and determined the limiting value of the maximal point-polyserial correla-
tion as the number of categories tends to infinity: We find that in all cases, except – as expected – for 
the uniform distribution, this limiting value is strictly smaller than 1.

In our main analysis, we first assumed that the k ordered categories of the ordinalized RV were as-
signed the first k CISs. This seemed to be a natural choice, as ordinal variables are standardly handled 
in this way when it comes to implementing any statistical analysis. However, this can be questioned, and 
one could consider allowing the scores of the k categories to be unknown and to treat them as additional 
variables to be optimized (OPT) in order to determine the maximum value of the maximal point-
polyserial correlation. We discovered that when this is done, the problem becomes equivalent to finding 
the optimal k quantizer or the k principal points of the assigned continuous RV. Using OPT instead of 
CISs can substantially increase the maximum value of the maximal point-polyserial correlation, espe-
cially if the continuous probability distribution is highly skewed. Moreover, the optimal solution in the 
case of OPT more closely resembles the behaviour of the continuous distribution in terms of increasing 
or decreasing trends of the PDF/probabilities.

We emphasize that since the scope of this work was to determine the maximum attainable point-
polyserial correlation between a continuous and an ordinal/discrete RV, our results do not require any 
assumption about the bivariate continuous RV hypothetically underlying them. If instead one is inter-
ested in investigating the attenuation ratio between polyserial and point-polyserial correlations, as pur-
sued in Bedrick (1995) and Demirtas and Vardar-Acar (2017), then one must fully specify the bivariate 
joint distribution or presume some relationship between the two correlations, whose subsistence needs, 
however, to be carefully checked.

With this in mind, future research will investigate the properties of the k-point discrete distribution, 
supported on consecutive integer scores, that maximizes the (maximal) point-polyserial correlation with 
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an assigned continuous distribution: Are there any cases (in addition to the uniform distribution) for 
which the probabilities of this discrete distribution can be determined analytically and not just numer-
ically? Can these probabilities be determined analytically as k→∞? Can this discrete distribution be 
regarded as a valid k-point approximation of the parent continuous distribution? What are the main dif-
ferences between this method and other k-point approximations available in the literature, particularly 
with optimal quantization, which can be regarded as a generalization thereof?

Another future direction stemmig from this contribution will consider the determination of the min-
imum attainable point-polyserial correlation, following the same lines of investigation as in Sections 3 
and 4. Such complementary work could be helpful for random generation routines involving mixed-type 
data by providing a lower and an upper bound to the correlation between ordinal and continuous vari-
ables, which can be required when constructing a huge array of artificial scenarios for the assessment of 
some mixed-type data analysis technique, where the level of dependence between two random variables 
(typically expressed through the correlation coefficient, which remains the most used dependence mea-
sure even for mixed-type data, which recur in psychological, educational, and other behavioural sciences 
studies) is assigned different values. Being aware of the bounds of the point-polyserial correlation is also 
obviously useful if one wants to correctly interpret its sample value on a real data set: Caution is required 
when interpreting it when the ordinal variables consist of a few categories.

In a nutshell, the utility of this work is twofold. First, it supports the assessment of the maximum 
attainable correlation between a continuous and an ordinal RV within a modelling/simulation context; 
second, it provides a possible discrete approximation of a continuous RV, to be used in any application 
where it is expedient to deal with discrete rather than continuous random distributions.
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