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Abstract: The bio-oxidation of a series of aromatic amines catalyzed by T. versicolor laccase has been
investigated exploiting either commercially available nitrogenous substrates [(E)-4-vinyl aniline
and diphenyl amine] or ad hoc synthetized ones [(E)-4-styrylaniline, (E)-4-(prop-1-en-1-yl)aniline
and (E)-4-(((4-methoxyphenyl)imino)methyl)phenol]. At variance to their phenolic equivalents, the
investigated aromatic amines were not converted into the expected cyclic dimeric structures under T.
versicolor catalysis. The formation of complex oligomeric/polymeric or decomposition by-products
was mainly observed, with the exception of the isolation of two interesting but unexpected chemical
skeletons. Specifically, the biooxidation of diphenylamine resulted in an oxygenated quinone-like
product, while, to our surprise, in the presence of T. versicolor laccase (E)-4-vinyl aniline was converted
into a 1,2-substited cyclobutane ring. To the best of our knowledge, this is the first example of an
enzymatically triggered [2 + 2] olefin cycloaddition. Possible reaction mechanisms to explain the
formation of these products are also reported.

Keywords: biocatalyzed [2 + 2] olefin cycloaddition; T. versicolor laccases; anilines; bio-oxidation;
radical chemistry

1. Introduction

Laccases, blue copper oxidases [1], are enzymes whose natural function(s) are related
to their ability to catalyze polymerization and depolymerization processes. As examples,
fungal laccases are involved in lignin degradation, while in plants they are key players in
lignification processes and cell wall formation [2].

Generally speaking, laccases are regarded as “green tools” enabling the employment
of biocatalyzed processes in different fields of industrial interest [3,4]. While laccases’
main (bio)technological applications are usually found in the textile, pulp, paper, and
food industries [1,3,5], according also to the large number of patents filed during the last
years [6], the versatility and the surprisingly wide substrate scope of these enzymes makes
them appealing for the synthesis of fine chemical and for the development of novel and
green organic transformations, as we recently reviewed [7].

Radical chemistry is a trivial synthetic tool that, under the proper choice of reactants
and reaction media engineering, allows to obtain complex molecular skeletons in simple
one-pot processes. In this context, laccase–catalysis represents a convenient activation
protocol of a normally inert Csp2-H bond, requiring only molecular oxygen and ad hoc
designed aromatic substrates. Specifically, the laccase-mediated generation of reactive
radical intermediates can be efficiently exploited to build domino, cascade, and/or one-pot
ring closure processes to be applied to the preparation of heterocyclic compounds. It is
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noteworthy that no toxic, hazardous, and expensive metal-based chemical catalysts are
needed to perform these biocatalytic processes.

Multi-step sequences composed by, e.g., a series of (pseudo)quinones formations,
nucleophilic aromatic substitutions, and C-C and C-N radical couplings can be merged to
synthesize nitrogenous heterocycles starting from aromatic amines. It has been shown that
these transformations result in formal oxidative homo- and/or hetero-couplings involving
two molecules of the same substrate or of two different partners [8]. Scheme 1 summarizes
some of the results obtained by Sousa et al. in the biocatalytic oxidation of differently sub-
stituted anilines using the bacterial CotA-laccase (spore coat protein A, CotA) from Bacillus
subtilis as the biocatalyst for the facile synthesis of phenazines and phenoxazinones [9–11].
These elegant biocatalytic syntheses could represent a convenient entry to analogues of
bioactive phenazines [12–14].
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phenoxazinones (a) and phenazines (b,c) catalyzed by CotA-laccase.

Among the different species of laccases, the enzyme from T. versicolor, a common
polypore mushroom, has been widely exploited and characterized as a biocatalyst for the
development of synthetic processes based on radical chemistry and differently substituted
natural or ad hoc designed phenol substrates [7,15,16]. As for most of these enzymes, the
catalytic cycle of T. versicolor laccase involves the mono-electronic oxidation of four equiva-
lent of an organic (reducing) substrate forming radicals at the expense of molecular oxygen,
which is eventually reduced to two molecules of water. The core of the catalytic machinery
is represented by a four-membered copper cluster, which is the site of oxygen coordination
and reduction, water formation and release, as well as of substrate oxidation [1,3,17].

Besides being largely exploited in the (bio)technological applications mentioned above,
T. versicolor laccase has been extensively employed in the development of green and con-
venient processes to afford oxygen-containing heterocyclic compounds starting from the
formal oxidative homocoupling of differently substituted phenols or ad hoc designed
phenolic synthetic derivatives [18–20]. These biocatalyzed multi-step, one-pot ring closing
reactions are usually guided by the structural features of the reacted substrates that can
control the profile of the molecular skeletons obtained. When novel stereocenters are
formed, no control of their absolute configuration is achieved, while steric hindrance and
thermodynamics drive their relative configuration.

Specifically, when vinyl phenols and stilbenoids, molecules structurally related to
the laccases’ natural substrates mono-lignols, are reacted in the presence of T. versicolor
laccase, three different groups of oxygenated heterocycles can generally be obtained, as
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trans-racemate, as described in Scheme 2: in the presence of an allylic alcohol (R = OH)
and of an alkyl substituent such as R’ bicyclic hexahydrofuro [3,4-c]furans, the core of the
natural product pinoresinol [21–24], are preferentially formed (a) while benzodioxanes (b)
and 2,3-dihydrobenzofurans (2,3-DHBs) (c) are obtained starting from vinyl catechols and
phenols, respectively.
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[3,4-c]furan (a), benzodioxane (b), and 2,3-dihydrobenzofuran (c) cores.

As we extensively reported [25–33], 2,3-DHBs are obtained as the main products
when the designed substrate (Scheme 2) is characterized by an R1 ‘spectator group’ (i.e.,
hydrogen, alkyl chains, substituted phenols) and by an R substituent that is either an alkyl
or an aryl group. From a mechanistic point of view (Figure 1), the ring closure occurs via a
sequence of phenol oxidation, C-C/O radical coupling, and 1,4-conjugate addition forming
two novel stereocenters. In particular, we exploited T. versicolor laccases for the convenient
chemo-enzymatic preparation of libraries of 2,3-DHB-based bioactive compounds or for
the one-pot, selective manipulation of valuable natural compounds [26,31,34].
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Figure 1. T. versicolor laccase-mediated domino process to 2,3-DHBs via a formal oxidative homocou-
pling. Examples of preparations of bioactive compounds: (A) δ-viniferin, a natural antioxidant able
to bind to human hemoglobin [34] and (B) synthetic inhibitor of Hsp90 variants potentially endowed
with antiproliferative activity [31].

As we previously discussed, while the use of laccases of different origins has been
reported for the synthesis of phenazine-like compounds or generic organic dyes possessing
the structure of Bandrowski’s base-like trimers (Scheme 1), [9–11,35] to the best of our
knowledge, laccase-catalysis has not been exploited yet for oxidation of the corresponding
vinyl or styryl anilines. Thus, we decided that it was worthy investigating whether T.
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versicolor laccase catalysis could be exploited to oxidize aromatic amines or imines to build
indoline, oxazole/isoxazole, or carbazole skeletons, as described in Scheme 3, using the
model substates 1–5, respectively. In the following, we report and discuss the obtained
results.
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2. Results
2.1. Synthesis of Substrates

Substrates 1, 2, and 4 are not commercially available and therefore they were chemi-
cally synthetized for the purpose of this study (Scheme 4).
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Scheme 4. Synthetic entries to substrates 1, 2 and 4.

The styryl aniline 1 was obtained via a sequence of Knoevenagel condensation, involv-
ing p-nitro benzoic acid and benzaldehyde working in the presence of piperidine as a base,
and the reduction of this nitro group mediated by metallic zinc.

The E-configured methyl vinyl aniline 2 was similarly obtained from the Zn-promoted
reduction of the corresponding nitro-derivative which, in turn, was prepared from the
decarboxylation of the commercially available (E)-3-(4-nitrophenyl)acrylic acid in the
presence of FeCl3.

Finally, imine 3 was easily afforded by the condensation of p-hydroxy benzaldehyde
and p-methoxy aniline in pure MeOH at room temperature.
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2.2. Laccases-Mediated Biooxidations
2.2.1. Substrate 1, 2, and 4

The biocatalyzed oxidations of aryl and alkyl substituted vinyl anilines 1 and 2 and of
imine 4 was explored via a series of small-scale reactions monitored by TLC analysis.

Standard oxidation conditions for T. versicolor laccase catalysis (acid pH, 27 ◦C) were
applied along with modified protocols in which the pH was moved up to neutral (7.0) and
slightly basic (up to 8.0) values. In all the cases (data not shown), starting materials and/or
a complex mixture of by-products were isolated.

Only in the case of substrate 2, traces of a trimeric structure already reported for
the laccase mediated bio-oxidation of similar aryl amines [35,36] were detected via mass
spectroscopy, but it was not possible to properly isolated it. According to the literature
references, the structure reported in Figure 2 might be hypothesized.
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Figure 2. Hypothesized structure of the trimeric Bandrowski’s base-like product 2a formed in traces
from 2 [36].

In conclusion, to our disappointment, no evidence of discrete dimeric products could
be observed with these three substrates.

2.2.2. Substrate 3

The bio-oxidation of compound 3 was at first investigated by selecting the proper
reaction medium and then optimized in terms of enzyme loading and general parameters
as reaction time or temperature. Control reactions were also performed to exclude the
presence of spontaneous oxidation in the investigated reaction media.

The optimized conditions for this biotransformation were identified as adding portion
wise T. versicolor laccase, 36 U per mmol of substrate, to an acetate buffer solution of vinyl
aniline.

The reaction, shaken at 24 ◦C, was followed using TLC attesting the disappearing
of the starting material and the formation of a main, more polar compound (Rf = 0.25 in
petroleum ether–ethyl acetate = 7:3), which was purified by flash column chromatography
on silica gel (FC). Product 3a was then characterized by means of NMR spectroscopy
and mass spectrometry and was identified as a dimeric structure corresponding to a 4,4′-
(cyclobutane-1,2-diyl)dianiline skeleton obtained as a putative trans-isomer (as a racemate)
in 40% of isolated yield (3a, Scheme 5).
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2.2.3. Substrate 5

As described for 3, a small-preparative scale bio-oxidation of substrate 5 was con-
ducted after a short investigation of the proper reaction medium and enzyme loading.

Specifically, 5 was reacted with T. versicolor laccase in a 30% v/v solution of dioxane in
acetate buffer in the presence of 1.5 U mL−1 of biocatalyst. The reaction was incubated for
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24 h at 27 ◦C and followed by TLC analysis until complete disappearance of the starting
material. A more polar compound (Rf = 0.34 in petroleum ether–ethyl acetate = 9:1) was
formed as a main product along with a complex mixture of apparently indistinguishable
spots. The main product was isolated by means of FC and fully characterized via NMR
spectroscopy and mass spectrometry. Based on these analyses, the structure of the obtained
chemical species (5a, Scheme 6) could be assigned to a 4-(phenylimino)cyclohexa-2,5-dien-
1-one skeleton obtained in a 10% of isolated yield.
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3. Discussion

As it has been described in the introduction, the CotA-laccase-catalyzed dimeriza-
tion of substituted anilines to give phenazines is a well-assessed methodology. Moreover,
the enzymatic oligomerization and polymerization of anilines is well-documented in the
literature, as it has been recently reviewed [36]. However, the structural characteriza-
tion of dimers and trimers formed during the early stages of the biocatalyzed oxidative
polymerization of these compounds is missing in most cases.

In an attempt to tackle this problem, at least with specific aniline derivatives, this
research was focused on the π-conjugated vinyl anilines 1–3, with the aim of verifying
whether these aromatic amines behaved like their oxygenated cognates, forming indole
skeletons under laccase oxidation [25–33]. Moreover, we also considered compounds 4
(an easily synthesized imine) and the aromatic secondary amine 5 as possible precursors
of cyclic nitrogen-containing heterocycles, respectively of oxazole/isoxazole or carbazole
skeletons (Scheme 3). Unfortunately, our approach failed to give the hypothesized results.
However, in two cases it was possible to isolate products with defined and unexpected
chemical structures.

As described in the previous paragraph, the bio-oxidation of 2 gave only traces of the
trimeric compound 2a, previously reported in the literature [36], as attested by the mass
spectrum reported in Figure S1 (M* = 293.2 Da).

The elucidation of the structure of compound 5a, obtained by the laccase-catalyzed
oxidation of diphenyl amine 5, was not straightforward. The mass spectrum (Figure S2),
with a molecular value of 184.1 Da, suggested the presence of an oxygenated substituent.
A careful inspection of the signals of the 1H NMR spectrum and the exploitation of bidi-
mensional techniques (Figure S2) allowed to identify the structure 5a, formed according to
the following hypothesized mechanism (Scheme 7).
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Even more puzzling was the characterization of the main product obtained by the
laccase-catalyzed oxidation of 4-vinyl aniline (3), isolated in 40% yield. Its exact molecu-
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lar mass at 239.15410 Da was compatible with a dimeric structure with a brute formula
C16H10N2. Its 1H NMR spectrum, far from being trivial (Figure S3), was deeply inves-
tigated and, besides aromatic systems, no signs of the original Csp2-H olefinic protons
could be identified. In place of those signals, a multiplet centered at 3.36 ppm could be
identified. Given the nature of the reacted substrate, the molecular mass of the product
obtained, and the identification of novel signals in the region of Csp3-H protons, we hy-
pothesized that 3a could be a disubstituted cyclobutane skeleton. To identify the obtained
regioisomer, we carefully looked in the literature for reports of 1H-NMR characterization
of 1,2 and 1,3-substituted cyclobutane rings. The 1H spin system characterizing this family
of cyclobutane rings can be described as AA’BB’XX’, where X and X’ are the isochronous
methine nuclei. In these systems, the width at half height of the signal of the XX’ nuclei
depends essentially on the sum of the vicinal coupling constants (J), e.g., J(AX) and J(BX)
for X, since the J across the four bonds are small (about 1 Hz) in four membered rings. In
cyclobutanes, vicinal J are usually found between 7 and 10 Hz. Thus, the width of the
XX’ signal of a 1,2-disubstituted cyclobutane should measure 15–20 Hz (only one adjacent
methylene) while 1,3-disubstituted cyclobutanes could reach values greater than 30 Hz (two
adjacent methylenes). These considerations allowed us to identify 3a as a 1,2-disubstituted
cyclobutane as the width of the signal at 3.36 ppm (corresponding to XX’ nuclei) was
found to be 17.0 Hz, in perfect agreement with that reported by Raza et al. in the 1H NMR
characterization of diphenyl cyclobutanes [37]. As far as the relative stereochemistry of
3a concerns, we hypothesize a trans-configured cyclobutane due to the similarity of the
fine structure of the NMR spectrum with that of the 1,2-trans-diphenylcyclobutane [37] and
the fact that generally laccases-mediated dimerization reactions are driven by thermody-
namic factors which generally lead to the formation of the more stable and less hindered
trans-systems [7].

This structure was quite an unexpected molecular skeleton to be formed under laccase
catalysis. As a possible rationale, we propose the following mechanism (Scheme 8) for the
formation of 3a, which relies on the well-documented [2 + 2] photochemical cycloadditions
of olefins [38].
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via a radical-cation activated species [39–41].

The isolation of 3a represents, to the best our knowledge, the first example of a
biocatalytic [2 + 2] cycloaddition of olefins. In this reaction, T. versicolor laccase is expected to
act as an initiator by activating the fully conjugated π-system of vinyl aniline 3 to the radical
cation 3*+, an intermediate reported as pivotal in this kind of cyclization reactions [39–41].

Interestingly, the same cyclobutane dimeric structures were not isolated with the vinyl
anilines 1 and 2. It could be possible to argue that steric hindrance or ring-tension by the
additional presence of phenyl and methyl substituents in the position C-2 and C-4 could
have prevented the cycloaddition reaction. However, several reports can be found in the
literature dealing with the preparation of tri- and tetra-substituted cyclobutanes exploiting
protocols of metal-catalyzed [2 + 2] olefin photocycloadditions [38,42–44]. For all these
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reasons, a detailed investigation of this laccase-mediated process will be conducted by us,
using different fully conjugated π-systems as substrates.

4. Materials and Methods

All reagents were of the highest purity grade from commercial suppliers: Merck (St
Louis, MO, USA) or VWR (Radnor, PA, USA).

Laccase from Trametes versicolor was from Sigma-Aldrich. The enzyme was used based
on their respective activities evaluated according to literature assay based on the ABTS
(2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) as model substrate. [32]

Biotransformations were performed in a G24 Environmental Incubator New Brunswick
Scientific Shaker (Edison, USA) or in a Thermomixer Comfort (Eppendorf, DE).

Reactions were monitored by thin-layer chromatography (TLC) (precoated silica gel
60 F254 plates (Merck, DE)); development with UV lamp, Komarovsky reagent (1 mL 50%
ethanolic H2SO4 with 10 mL 2% methanolic 4-hydroxybenzaldehyde), a 20% solution of
H2SO4 in ethanol or a molybdate reagent ((NH4)6Mo7O24·4H2O, 42 g; Ce(SO4)2, 2 g; H2SO4
conc., 62 mL; made up to 1 L of deionized water). Flash chromatography: silica gel 60
(70–230 mesh, Merck, DE).

NMR spectra were recorded with a Bruker AC spectrometer (400 or 500 MHz) in
[D4]MeOH, [D6]DMSO or [D1]CHCl3. Mass spectra were recorded with a Bruker Esquire
3000 Plus spectrometer.

High-resolution mass spectra (HRMS) were conducted on FT-Orbitrap mass spectrom-
eter in positive electrospray ionization (ESI).

4.1. Synthesis of Dubstrates
4.1.1. (E)-1-nitro-4-styrylbenzene

As we previously reported for the synthesis of this compound [31], a solution of
benzaldehyde (100 mg, 0.9 mmol, 1 eq) and 4-nitrophenylacetic acid (0.51 g, 2.8 mmol,
3 eq) was prepared with 15 mL of CH2Cl2 at r.t. Piperidine (280 mL, 2.8 mmol, 3 eq) was
added and the resulting mixture was gradually heated to 130 ◦C, distilling the solvent. The
resulting neat mixture was left reacting at 130 ◦C for 24–48 h. After that, the crude residue
was analyzed by TLC (CHCl3-acetone = 95:5) and purified by flash column chromatogra-
phy (petroleum ether-EtOAc = 96:4), obtaining the desired (E)-stilbene as a yellow solid
(190 mg, 89% yield). 1H-NMR (400 MHz; [D4]MeOH, r.t.): δ 8.22–8.19 (AA’BB’ system, 2H),
7.74–7.71 (AA’BB’ system, 2H), 7.49–7.47 (AA’BB’ system, 2H), 7.34 (d, J 16.4 Hz, 1H), 7.10 (d,
J 16.4 Hz, 1H), 6.84–6.81 (AA’BB’ system, 2H); 13C-NMR (101 MHz; [D4]MeOH, r.t.): δ 146.9,
143–9, 136.3, 133.4, 129.0, 129.9, 127.1, 126.9, 126.4, 124.2. MS, m/z ESI = 264.0 [M + Na]+.

4.1.2. (E)-4-styrylaniline (Substrate 1)

Zinc power (72 mg, 1.1 mmol, 5 eq) and ammonium chloride (60 mg, 1.1 mmol,
5 eq) were added to a stirred solution of p-nitrostilbene (50 mg, 0.2 mmol, 1 eq) in EtOH
(0.52 mL). The resulting reaction mixture was heated to 90 ◦C for 6 h, monitored by TLC
(petroleum ether–EtOAc = 9: 1). The reaction mixture was cooled to r.t., filtered through
a celite® pad, and volatiles were evaporated under reduced pressure. The crude residue
was diluted with EtOAc (20 mL) and washed with a solution of NaHCO3 (3 × 10 mL) and
brine (3 × 10 mL), dried over Na2SO4 and the solvent evaporated under reduced pressure
to afford the desired product as a white foam (32 mg, 90% yield). 1H-NMR (400 MHz;
[D4]MeOH, r.t.): δ 7.48 (AA’BB’ system, 2H), 7.22 (t, J 7.4 Hz, 1H), 7.03 (d, J 16.3, 1H), 6.93 d,
J 16.3, 1H), 6.68 (d, J 8.5, 1H), 3.74 (brs, 2H). 13C-NMR (101 MHz; [D4]MeOH, r.t.): δ 146.3,
138.1, 129.0, 128.7, 127.0, 126.2, 125.2, 115.3. MS (ESI): calcd for [C14H14N]+ 196.1126, found
169.1225.

4.1.3. (E)-1-nitro-4-(prop-1-en-1-yl)benzene

A mixture of 4-nitro cinnamic acid (290 mg, 1.5 mmol, 1 eq), DTBP (2-(tert-butylperoxy)-
2-methylpropane, 550 µL, 3 mmol, 2 eq), FeCl3 (81 mg, 0.3 mmol, 20 mol%), and DMSO
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(10 mL) was stirred in a round-bottom flask under nitrogen atmosphere at 130 ◦C overnight.
After that, the mixture was poured into EtOAc (10 mL) and washed with water (25 mL).
The aqueous phase was extracted with EtOAc (15 mL). The combined organic layers were
dried over Na2SO4 and the solvent evaporated under reduced pressure. The crude product
was purified by purified by flash column chromatography (petroleum ether-EtOAc = 97:3),
obtaining the desired compound as a sightly yellow solid (43 mg, 17% yield). 1H-NMR
(400 MHz; [D4]MeOH, r.t.): δ 8.14 (AA’BB’ system, 2H), 7.43 (AA’BB’ system, 2H), 6.46 (s,
2H), 1.94 (d, J 4.9 Hz, 3H). 13C-NMR (101 MHz; [D4]MeOH, r.t.): δ 146.5, 144.5, 131.4, 129.6,
126.3, 124.0, 18.84. MS, m/z ESI = 186.0 [M + Na]+.

4.1.4. (E)-4-(prop-1-en-1-yl)aniline (Substrate 2)

Following the same reduction protocol applied for the preparation of (1), substrate 2
was obtained as a white foam (93% isolated yield, 80 mg) starting from 106 mg of (E)-1-
nitro-4-prop-l-en-1-yl)benzene. 1H-NMR (400 MHz; [D4]MeOH, r.t.): δ 7.14 (AA’BB’ system,
2H), 6.62 (AA’BB’ system, 2H), 6.62 (d, J 8.5, 1H), 6.30 (dd, J 15.7, 1.4 Hz, 1H), 6.30 (dq, J 15.7,
6.6 Hz, 1H), 3.60 (bs, 1H), 1.84 (dd, J 6.6 Hz, 1.4 Hz, 3H). 13C-NMR (101 MHz; [D4]MeOH,
r.t.): δ 145.3, 130.8, 128.9, 126.9, 122.0, 115.3, 18.4. MS (ESI): calcd for [C9H12N]+ 133.0891,
found 133.0892.

4.1.5. (E)-4-(((4-methoxyphenyl)imino)methyl)phenol (Substrate 4)

p-Hydroxy benzaldehyde (100 mg, 0.8 mmol, 1 eq) and p-methoxy aniline (101 mg,
0.8 mmol, 1 eq) were dissolved in pure EtOH (4.1 mL). The obtained solution was stirred
under reflux for 3 h observing the formation of a yellow precipitate, which was isolated
by filtration and crystallized from pure EtOH affording the desired imine (80% yield).
1H-NMR (400 MHz; [D6]DMSO, r.t.): δ 10.03 (s, 1H), 8.47 (s, 1H), 7.75 (AA’BB’ system, 2H),
7.33–7.11 (AA’BB’ system, 2H), 7.04–6.89 (AA’BB’ system, 2H), 6.87 (AA’BB’ system, 2H),
3.77 (s, 3H). 13C-NMR (101 MHz; [D4]MeOH, r.t.): δ 160.8, 160.0, 159.0, 144.4, 131.2, 130.7,
129.8, 122.4, 116.2, 116.1, 116.0, 115.6, 55.8. MS (ESI): calcd for [C14H13NO2 + 1]+ 278.0946,
found 278.0944.

4.2. Biooxidations with T. versicolor Laccase
4.2.1. Oxidation of Vinyl Aniline (Substate 3)

Vinyl aniline (30 mg, 0.3 mmol) was dissolved in 1.5 mL of sodium acetate buffer
(pH 5, 50 mM) and incubated with T. versicolor laccase (36 U mmol−1

substrate) overnight
at 27 ◦C and 180 rpm in an orbital thermoshaker. After attesting the formation of a more
polar UV-visible spot in TLC analysis (petroleum ether–EtOAc = 1:1), an additional aliquot
of enzyme was added doubling its concentration and the mixture was left reacting for
6 h. The reaction mixture was then extracted with EtOAc and the combined organic layers
were dried over Na2SO4 and concentrated in vacuo affording a crude mixture. The more
polar spot (compound 3a, Rf = 0.25 in petroleum ether–EtOAc = 7:3) was isolated by means
of flash column chromatography on silica gel (petroleum ether–EtOAc = 7:3→ 4:6) and
fully characterized (isolated yield = 40%). 1H-NMR (400 MHz; CDCl3, r.t.): δ 7.01 (AA’BB’
system, 2H), 6.61 (AA’BB’ system, 2H), 3.42–3.34 (m, 1H), 2.25–2.19 (m, 1H), 2.06–2.02 (m,
2H). 13C-NMR (101 MHz; CDCl3, r.t.): δ 144.3, 135.1, 127.5, 119.5, 115.1, 47.9, 25.9. MS (ESI):
calcd for [C16H10N2]+ 239.15428, found 239.15410.

4.2.2. Oxidation of Diphenyl Amine (Substate 5)

Diphenyl amine (100 mg, 0.6 mmol) was dissolved in 2.5 mL of dioxane and added
5.8 mL of acetate buffer (pH 5, 50 mM) containing T. versicolor laccase (1.5 U mmol−1

substrate)
and incubated overnight at 27 ◦C and 180 rpm in an orbital thermoshaker. After attesting the
formation of a more polar UV-visible spot in TLC analysis (petroleum ether–EtOAc = 9:1)
and the disappearance of the starting material, the reaction mixture was then extracted
with EtOAc, and the combined organic layers were dried over Na2SO4 and concentrated
in vacuo affording a crude mixture. The polar spot (compound 5a, Rf = 0.34 in petroleum



Int. J. Mol. Sci. 2023, 24, 3524 10 of 12

ether–EtOAc = 9:1) was isolated by means of flash column chromatography on silica gel
(petroleum ether–EtOAc = from 95:5 to 90:10) and fully characterized (isolated yield = 10%).
1H-NMR (400 MHz; CDCl3, r.t.): δ 7.41 (t, J 7.8 Hz, 1H), 7.31 (dd, J 10.0, 2.6 Hz, 1H),
7.27–7.22 (m, 1H), 7.09 (dd, J 10.3, 2.6 Hz, 1H); 6.89 (d, J 10.1 Hz, 1H), 6.70 (dd, J 10.1, 2.1
Hz, 1H), 6.54 (dd, J 10.3, 2.1 Hz, 1H). 13C-NMR (101 MHz; CDCl3, r.t.): δ 187.7, 157.5, 149.6,
142.0, 133.7, 133.0, 192.2, 128.4, 126.6, 120.8. MS (ESI): calcd for [C12H10NO]+ 184.0762,
found 184.0764.

5. Conclusions

The laccase-catalyzed oxidation of a series of aromatic amines has been described. At
variance of their phenolic equivalents, it was not possible to isolate the expected nitrogenous
cyclic dimeric structures and the oxidation proceeded to give complex oligomeric and
polymeric products.

Interestingly, while diphenyl amine gave an unexpected but trivial oxidized prod-
uct, the laccase-mediated oxidation of vinyl aniline resulted in the isolation a 1,2-trans-
disubstituted cyclobutane, possibly via a radical-cationic [2 + 2] olefin cycloaddition. This
unexpected but highly valuable result represents the first biocatalyzed example of this
reaction, which is presently a hot topic in photo and organometallic catalysis, based on the
number of reports published just in the last five years. While this work concludes our long
journey on the laccase-catalyzed oxidation of vinyl derivatives to give heterocyclic com-
pounds, at the same time it opens a novel investigation on this laccase-mediated annulation
reaction.
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