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The physiological and pathological properties of the neural germinal stem cell niche
have been well-studied in the past 30 years, mainly in animals and within given limits
in humans, and knowledge is available for the cyto-architectonic structure, the cellular
components, the timing of development and the energetic maintenance of the niche, as
well as for the therapeutic potential and the cross talk between neural and immune cells.
In recent years we have gained detailed understanding of thepotentiality of neural stem
cells (NSCs), although we are only beginning to understand their molecular, metabolic,
and epigenetic pro�le in physiopathology and, further, more can be invested to measure
quantitatively the activity of those cells, to modelin vitrotheir therapeutic responses or to
predict interactions in silico. Information in this direction has been put forward for other
organs but is still limited in the complex and very less accessible context of the brain.
A comprehensive understanding of the behavior of endogenous NSCs will help to tune
or model them toward a desired response in order to treat complex neurodegenerative
diseases. NSCs have the ability to modulate multiple cellular functions and exploiting
their plasticity might make them into potent and versatile cellular drugs.

Keywords: neural stem cells, microenvironment, plasticity, metabolism, in�ammation, stroke, multiple sclerosis,
aging

INTRODUCTION

Although it has been thought for a long time that mammalian neurogenesis occurs only during
embryonic and perinatal stages, young neurons are continuously incorporated into the adult brain
as demonstrated by Altman and Das already in the early sixties(Altman, 1962; Altman and Das,
1965). Indeed, neural stem cells (NSCs), residing in the brain ofmost adult mammals in the
so-called “neurogenic niches,” sustain neurogenesis throughout life. It is estimated that 700 new
neurons are generated every day by the neuropoietic niche in an adult human hippocampus,
outlining one aspect of the plasticity/renewal capacity of NSCs (Knoth et al., 2010; Spalding et al.,
2013). As for other stem cells, the specialized microenvironmentof the neurogenic niche ensures
not only NSC self-renewal but also di�erentiation, mainly into neurons. However, neurogenesis
is not the only activity of NSCs in the adulthood. As a matter of fact, recent studies indicate that
adult NSCs residing within the sub-ventricular zone (SVZ) might physiologically exert alternative
functions to cell replacement, the so-called non-neurogenicfunctions (Martino et al., 2014), mainly
aimed at protecting CNS homeostasis, in both physiological and pathological conditions. They
regulate and are regulated by several signaling pathways (Faigle and Song, 2013) that, tuning
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the evolution of progenitor proliferation, division, and migration,
can per sealso impact the composition of the niche (Preston
and Sherman, 2011; Gattazzo et al., 2014). Neighboring cells,
the vasculature and the cerebrospinal �uid constitute the main
routes through which molecular signals reach NSCs and a�ect
their behavior.

Overall, knowing the physiological properties of NSCs and
what changes in pathological conditions opens up the possibility
of exploiting NSC plasticity for preventive/therapeutic purposes.

This review will primarily focus on (i) the properties
of precursors of the adult neurogenic niches of the central
nervous system (CNS); (ii) the mechanisms of inter- and intra-
cellular communication of NSCs and other cells, resident or
not in the niche, in physio- and patho-logical conditions,
with focus on multiple sclerosis (MS) and ischemic stroke,
neurodegenerative disorders of the brain that unfold acuteand
chronic consequences.

WHAT DEFINES A NSC AND A NSC NICHE?

At the onset of murine neurogenesis, at embryonic day 9.5, the
precursors in the CNS are neuroepithelial cells (NECs) that form
a tube with a central canal (Taverna et al., 2014). NECs are
highly proliferative and initially divide symmetrically toexpand;
afterwards they convert into radial glial cells (RGCs) that divide
both symmetrically and asymmetrically. Basal processes of RGCs
are used by newborn neurons as guiding sca�olds while they
migrate away from the germinal niche toward the pial surface.

Although most CNS regions largely extinguish their NSC
pool after development, discrete areas of the adult brain retain
NSCs and active neurogenesis throughout life (Ming and Song,
2005, 2011). Namely, the striatal subventricular zone (SVZ)
and the hippocampal dentate gyrus (DG, subgranular zone
SGZ) are the most extensively characterized adult neurogenic
niches. However, according to the most recent evidences, sites of
neurogenesis are present also in the ependyma (Alvarez-Buylla
and Lim, 2004; Bjornsson et al., 2015), near the third and fourth
ventricle, in the forebrain, in the striatum, in the amygdala, in
the hypothalamus, in the substantia nigra and in the subcortical
white matter or spinal cord root ganglia (Bernier et al., 2002; Lie
et al., 2002; Kokoeva et al., 2005; Chang et al., 2008; Ernst et al.,
2014; Muratori et al., 2015; Stolp and Molnar, 2015). Proliferating
cells from those regions, namely somatic NSCs, can be isolated
and established as virtually perpetual cell lines in response to
�broblast growth factor 2 (FGF-2) and epidermal growth factor
(EGF) similar to their embryonic counterparts (Temple, 2001).

In the adult neural stem cell niche, NSCs, immature neurons,
supporting astrocytes, blood vessels and epithelial ciliated cells
are in close contact and the vasculature with “leaky” features
supports adult neurogenesis (Butti et al., 2014). In the mouse, the
SVZ contains slowly dividing progenitors that can be subdivided
into two types: type B1 cells, in close contact with both the
cerebrospinal �uid (CSF) and the blood vessels of the SVZ, and
type B2 cells, closer to the striatum (Ihrie et al., 2011). B1 cells
give rise to transit amplifying cells (type C cells), located in
close proximity to blood vessels, and along with B2 cells, they
form a glial supportive sheath around their more di�erentiated
progeny and migrating neuroblasts, type A cells, that originate

from type C cells. Type A cells migrate tangentially to form the
rostral migratory stream (RMS) to the olfactory bulb for terminal
di�erentiation. Once in the olfactory bulb, the neuroblasts
defasciculate from the stream and migrate radially to their site
of terminal di�erentiation into neurons (Alvarez-Buylla et al.,
2000). SVZ-NSCs give rise also to oligodendrocyte precursors
and mature oligodendrocytes, continuously replenishing cells in
the corpus callosum (Menn et al., 2006).

The primary role of the neurogenic SGZ niche instead
is to generate new granule cells, primary excitatory neurons
that support hippocampus-dependent cognitive functions (Zhao
et al., 2008). Stem cells of the SGZ give rise to radial astrocytes
that convert into immature progenitors (Type 1, the counterpart
of type B in the SVZ) and eventually into neuroblasts (Type 2,
the counterpart of Type C-A cells in the SVZ) (Zhao et al., 2008).
Complete depletion either of type 2 or type C cells, respectively in
the SGZ and SVZ, (non-radial glia like cells) stops neurogenesis
(Doetsch et al., 1999; Ahn and Joyner, 2005), although, but
infrequently, dividing radial glia could sustain neurogenesis as
well (Seri et al., 2004). NSCs of the SGZ are also in close contact
with blood vessels and endothelial cells, that act as sca�olding
cells for NSCs (Palmer et al., 2000) and play a major role in
directing NSC speci�cation (Shen et al., 2004, 2008; Tavazoie
et al., 2008; Kokovay et al., 2010).

This is the conventional cell classi�cation for the mouse neural
germinal center, which has been better characterized.

In humans the SVZ di�ers from the one in rodents because
it organizes into four layers instead: the ependymal layer, the
hypocellular gap, the astrocytic ribbon, and the transitional
zone to the parenchyma, rich in myelin and oligodendrocytes
(Quinones-Hinojosa et al., 2006). Migrating neuron-like cells can
occasionally be found in the layers II and III as individual cells
(Sanai et al., 2004; Quinones-Hinojosa et al., 2006). In detail, layer
I consists of an ependymal monolayer lining the ventricular wall
with astrocytic processes contacting the ventricular wall.Layer
II, also known as the gap region, is rich in GFAPC processes,
with only some neuroblasts in the anterior regions. Ependymal
cells send basal processes into Layer II, making critical contacts
with the underlying basal lamina. Layer II may function as the
corridor for neuroblast migration. Layer III is the proliferative
region of the human SVZ, with GFAPC /Ki67C and CD133C cells.
Few neuroblasts are present in the human SVZ, compared to the
rodent, and are found mainly in Layer III. Some ependymal cells,
which typically comprise the epithelial barrier of the ventricles,
have motile cilia and are found in small clusters (4–14 cells) in
Layer III (Quinones-Hinojosa et al., 2006; Kam et al., 2009). Layer
IV represents the �rst portion of brain parenchyma away from
the parietal ventricle and where the �rst evidence of neuronsis
found.

EXTRACELLULAR CUES AND INTRINSIC
GENETIC PROGRAMS CONTROL THE NSC
FUNCTIONS IN PHYSIOLOGICAL
CONDITIONS IN THE ADULT BRAIN

Main feature of NSCs is their plasticity (Suh et al., 2009; Martino
et al., 2011). The two major adult stem neurogenic niches take
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advantage of di�erent mechanisms to exploit this property,
which manifests as self renewal capacity, quiescence, metabolic
modulation, homing, di�erentiation capacity, cellular cross-talk,
and immune surveillance (Figure 1A, Table 1).

The maintenance of the neurogenic niche itself and the
renewal capacity depends on active intrinsic genetic (Tirone et al.,
2013) and epigenetic (Liu et al., 2010; Yao et al., 2016) programs
along with microenvironment-dependent speci�c properties.
Autocrine regulators of NSC proliferation, such as transforming
growth factor a (Tropepe et al., 1997; Guerra-Crespo et al.,
2009) and b (Dias et al., 2014), amphyregulin, �broblast growth
factor-2 (FGF-2), insulin-like growth factor 2 (IGF2) (Marques
et al., 2011) are released from speci�c subsets of NSCs along
with leukemia inhibitory factor (LIF), ciliary neurotrophic factor
(CNTF) that promote proliferation (Emsley and Hagg, 2003; Lee
et al., 2013) and sphingosine-1-phosphate (S1P) or prostaglandin
D2 (PGD2) that instead maintain quiescence (Codega et al., 2014;
Chaker et al., 2016). The environment-contribution to NSCs
plasticity encompasses several elements as described below.

Close anatomical association between NSCs and the vascular
structure (vascular niche) is preserved both in the SVZ and
SGZ and vascular endothelial cells of the niche secrete Notch
ligands Jagged1, Jagged2, and Delta-like-4, crucial factors for
self-renewal and neurogenesis (Shen et al., 2004; Androutsellis-
Theotokis et al., 2010; Lu et al., 2011). Recent evidence supports
the hypothesis that the cross-talk between blood vessels and
NSCs is bi-directional: NSCs can indeed provide juxtacrine and
paracrine signals to drive endothelial cells (Chou and Modo,
2016) and promote angiogenesis (Hicks et al., 2013). Moreover,
vascular endothelial growth factor (VEGF) is a shared cue
both for angiogenesis and neurogenesis because on one side it
promotes the angiogenic development of capillaries, on the other,
the secretion of neurogenic molecules by proximal endothelial
cells (Jin et al., 2002; Cao et al., 2004; Kim et al., 2004; Udo
et al., 2008; Ruiz de Almodovar et al., 2009). Further, other cues
secreted from vascular endothelial cells such as neurotrophin
3 (NT3) or betacellulin (BTC) maintain quiescence or promote
proliferation of NSCs, respectively (Gomez-Gaviro et al., 2012;
Delgado et al., 2014), although there is evidence of NT3 e�ect
on di�erentiation (Shimazu et al., 2006), while stromal derived
factor-1 (SDF1) stimulates the motility of type A, B, and C
neuroblasts (Kokovay et al., 2010).

The extracellular matrix (ECM), a dynamic and complex
environmental element characterized by biophysical and
biochemical properties speci�c for each tissue and able to
regulate cell behavior, represents also an essential player in stem
cell niche (Gattazzo et al., 2014). Extensions of the extracellular
matrix known as fractones project from the blood vessels of the
subventricular plexus as thin, highly branching ECM stalks that
expand into bulbs where they contact the basal surface of the
ependymal layer (Mercier et al., 2002). Fractones are enriched
in laminin, heparan sulfate, perlecan, nidogen, and collagens.
Those associations are able to bind several growth factors,
suggesting that they may play a role in concentrating, activating,
and presenting trophic factors to cells within the niche (Kerever
et al., 2007).

NSCs receive inputs also from other cells such as microglia
which reside in close proximity to NSCs of the niche. Indeed,

resting microglia secrete factors that promote NSC niche
maintenance and, at the same time, astrocyte di�erentiation
of striatal NSCs via the Jak/Stat3 pathway (Zhu et al.,
2008). Moreover, microglia contribute to the development of
cytoarchitectonic and functional di�erences across cortical areas
of the brain, secreting growth factors, and cytokines that tightly
regulate the neurogenic process (Kim and de Vellis, 2005; Harry,
2013; Su et al., 2014). Conversely,in vitro, microglia promote
neuronal di�erentiation, but not maintenance or self-renewal
(Walton et al., 2006). On the other side, activated microglia
inhibit neurogenesis (Sierra et al., 2014) favoring gliogenesis
via tumor necrosis factor-a (TNFa) (Carpentier and Palmer,
2009), and when exposed to interleukin 4 (IL4) and interferon-
g (IFNg), they secrete insulin-like growth factor 1 (IGF1) and
promote neuronal di�erentiation of NSCs (Butovsky et al.,
2006). Conversely, NSCs can also in�uence microgliavia VEGF
that in turn modulates microglial activation, proliferationand
phagocytosis (Mosher et al., 2012).

Stem plasticity is modulated by other cell types as well, namely
astrocytes, residing in close proximity with NSCs both in the
SVZ and in the SGZ. Their contribution to NSC proliferation
is likely exploitedvia ATP release (Cao et al., 2013) while
Wnt3, neurogenesin-1 (NG1), thrombospondin-1 (TSP1) as
well as interleukin-1b (IL1b) and interleukin-6 (IL6) promote
hippocampal neurodi�erentiation (Ueki et al., 2003; Lie et al.,
2005; Barkho et al., 2006; Lu and Kipnis, 2010). Of note, when
FGF2-producing astrocytes age, neurogenesis is impaired (Shetty
et al., 2005).

Signals arising from the ependymal and meningeal cells and
released in the CSF may also in�uence NSC activity (Lim et al.,
2000; Siegenthaler et al., 2009). Indeed, NSCs possess primary
cilia which sense liquor morphogens, such as FGF2, IGF2
(e�ective at lower level postnatally), Wnt and Sonic Hedgehog
(SHH) (Corbit et al., 2005; Rohatgi et al., 2007; Breunig et al.,
2008; Kim et al., 2010; Ihrie et al., 2011; Lehtinen and Walsh,
2011) and, possibly, the CSF �ow itself. The latter indeed can,
via mechano-sensing signaling, promote proliferation and
di�erentiation (Li et al., 2011; Arulmoli et al., 2015; Jagielska
et al., 2017).

Moreover, cytoarchitectonic innervationvia GABA (g-
Aminobutyric acid)-, glutamin-, colin-, serotonin-, and
dopamin-ergic neurons sustains neurogenesis in the niche (Suh
et al., 2009; Song et al., 2012; Paez-Gonzalez et al., 2014; Young
et al., 2014; Alunni and Bally-Cuif, 2016; Chaker et al., 2016).
Conversely, it is not clear yet whether NSCs have an impact on
axons and neuronal circuitry (Zhang Y. et al., 2016).

The niche is also very much dependent on and prompt
to metabolic changes. While lipid metabolism maintains
proliferation and neurogenesis (structural and energy support),
glycolysis regulates NSCs development and di�erentiation
(Knobloch et al., 2013). The metabolic activity strongly depends
on oxidative saturation because in mammalian CNS oxygen
regulates the growth and di�erentiation state of stem cells
(De Filippis and Delia, 2011; Ivanovic and Vlaski-Lafarge,
2016; Sandvig et al., 2017). Dividing progenitor cells depend
more on glycolysis, whereas di�erentiated progeny relies on
energetically e�cient oxidative phosphorylation occurring at
low oxygen concentration. Apart from those, other important

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 May 2017 | Volume 5 | Article 52

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Ottoboni et al. NSCs in Steady-State and Disease

FIGURE 1 | Schematic representation of the interplay among cel ls of the neural stem cell niche of the subventricular zone (A ,B,C) , vascular endothelial
cells (EC), ependymal cells (E), differentiated oligodendrocytes (O), astrocytes (As), and neurons (N). Green is usedfor positive regulators of neural stem cell function,
red for inhibitory regulators. Mechanisms are in italic.(A) depicts mechanisms and factors in physiological conditions: in steady-state, B cells self renewal is promoted
by niche-derived factors such as CNTF, EGF, FGF2, LIF, PGD2, S1P, and TGFa, as well as by systemic-derived factors as VEGF, BDNF and SDF1. The cerebrospinal
�uid also contributes actively to niche homeostasisvia IGF1, Wnt and Shh that signal to B cellsvia their apical cilium. Aging increases neurogenesis-inhibitory factors
such as B2M, CCL2, CCL11, CCL19, while pro-neurogeneic factors as GDF11 decrease. The hypoxic milieu of the niche favorsB cell quiescence, while C and A
precursors rely on oxidative phosphorylation. In steady-state, astrogliogenesis is generally inhibited, while growing astrocytes secrete both pro-neurogeneic and
anti-neurogeneic mediators. Nonetheless, a basal level ofoligodendrogenesis and in particular neurogenesis occursalso during the steady state.(B) depicts
mechanisms and factors that are altered in the SVZ niche in the context of stroke. Ischemia increases Epo, Ang2 and VEGF as well as morphogens BMP, RA and
SHH, which stimulate neurogenesis. Moreover, chemotacticand growth factors produced within the lesion (e.g. CXCL12,CCL2) guide newly formed glial and
neuronal cells toward the ischemic area. Hypoxia and increased nitric oxide inhibit B cell cycling while low O2 promotes precursor differentiation. Direct

(Continued)
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FIGURE 1 | Continued
transdifferentiation (dashed arrow lines) from ependymalcells and astrocytes to neurons might also contribute to stroke-induced neurogenesis. Strokeper se
increases oligodendrogenesis and astrogliogenesis as well. In particular, SVZ-derived, Thbs4 positive astrocytes are pivotal in containing tissue damage and
preventing hemorrhagic transformation.(C) depicts mechanisms and factors that are altered in the SVZ niche in the context of MS. Neurogenesis in inhibited by IFNg,
Gal3 and upregulation of phoshorylated-SMAD (pSMAD) in neurogenic precursors. IFNg also inhibits oligodendrogenesisvia upregulation of Gli1. NSCs produce a
wide array of soluble mediators, including IL15 that attractNK cells, which in turn contribute to the neurogenic niche dysfunction observed in MS models.

metabolic pathways are active in neural stem cells, such as (i)
glycogen synthesis or glutamine/folate metabolism (Goodman
and Hajihosseini, 2015); (ii) phosphatidylinositol 3-kinase/AKT
(PI3K/AKT) growth factor pathway insulin-dependent; (iii)
mTOR pathway nutrient-dependent (Rafalski et al., 2012);
(iv) AMP-activated protein kinase (AMPK)/LKB1 pathway,
sensor of intracellular adenosine monophosphate (AMP) to
ATP ratios, and (v) the sirtuin pathway, metabolic sensors of
NAD (nicotinamide adenine dinucleotide) level and epigenetic
repressors (Folmes et al., 2012; Shyh-Chang et al., 2013).

Cell to cell contact has also been shown to play a role
in exploiting the plasticity of NSCs. Astrocytes of the niche
negatively control neuronal di�erentiation through astrocyte-
secreted factors such as insulin like growth factor bindingprotein
6 (IGFBP6) and decorin (Barkho et al., 2006; Wilhelmsson
et al., 2012), while astrocytic ephrin-B2 positively regulates
proliferation (Ashton et al., 2012).

Another peculiar property of NSCs consists in their capacity
to migrate where their replacement or bystander e�ect is
needed. Indeed, endogenous NSCs migrate out of the niche
at physiological rate to maintain brain homeostasis, either
di�erentiating or releasing tropic factors (Shen et al., 2004;
Kokaia et al., 2012). When transplanted during acute or
chronic neuroin�ammatory disorders, NSCs show remarkable
pathotropism: they follow the molecular gradient of chemotactic
in�ammatory factors (Muller et al., 2006) and reach the damaged
site where they start secreting a series of molecules (i.e.,bone
morphogenetic protein 4, noggin, Notch, Jagged, and SHH) to
recapitulate the microenvironment of the SVZ niche (atypical
ectopic perivascular niche) (Pluchino et al., 2003, 2010; Irvin
et al., 2004; Stidworthy et al., 2004; Martino and Pluchino,2006;
Bonaguidi et al., 2008).

Of note, beside communicationvia soluble factors, NSCs
sense and can release intracellular messengers wrapped in vesicles
(Cossetti et al., 2014). Although their role in adult NSCs is almost
unexplored (more is known for other types of stem cells), vesicles
can transfer information in the form of mRNA, ribosomal RNA,
long non-coding RNA, microRNA, DNA, protein, or lipids
(Thery et al., 2002; Huang et al., 2013; Batiz et al., 2015; Kirby
et al., 2015).

NSC FUNCTION IN
NEUROINFLAMMATION AND
NEURODEGENERATION. FOCUS ON
MULTIPLE SCLEROSIS AND ISCHEMIC
STROKE.

The peculiar plasticity of the CNS and of its NSCs manifests after
CNS injury, when (i) proliferation and di�erentiation of NSCs

is enhanced; (ii) striatal spiny interneurons and glutamatergic
neurons are ectopically found in the injured cortex and in
the striatum after stroke (Thored et al., 2007) while migrating
neuroblasts become oligodendrocytes in area of demyelination
after exiting the niche; (iii) ependymal cells behave as progenitors
(Luo et al., 2008) and directly convert into neurons (Carlen et al.,
2009); (iv) reactive astrocytes in ischemic brain injury exhibit self
renewal capacity and multipotency (Bu�o et al., 2008; Gabel et al.,
2016).

The fact that non-neurogenic precursors can convert into
neurogenic cells clearly highlights how exogenous factors can
trigger plasticity within and outside of the niche (Carlen et al.,
2009; Magnusson et al., 2014; Shetty and Hattiangady, 2016).
Moreover, during pathology and steady-state, NSCs also exert
trophic non-neurogenic functions which are crucial to maintain
brain homeostasis.

In the following section we will explore how NSC niches
function during CNS injury, with focus on stroke, multiple
sclerosis and their animal models (Figures 1B,C, Table 1).

Effect of Oxygen Supply on Neural Stem
Cell Plasticity, Connection with Stroke, and
Multiple Sclerosis
In physiological conditions, neural stem cells are exposed
to an oxygen concentration between 2.5 and 5.0%, which
promotes NSC self-renewalvia VEGF and erythropoietin (EPO)
production induced by hypoxia inducible factor 1a, HIF1a
(Pavlica et al., 2012; Li et al., 2014).

In the quiescent state, NSC mitochondria are quite immature
with globular shape, do not depend much for energy on oxidative
phosphorylation (OXPHOS), rather on glycolysis, with high
lactate production (Zheng et al., 2016). Although glycolysis
produces less ATP than mitochondrial OXPHOS, the pathway
is very fast in NSCs (Ito and Suda, 2014). Their anaerobic
metabolism is sustained mainly by mitochondria uncoupling
protein 2 (UCP2), high level of hexokinase II and low pyruvate
dehydrogenase to keep under control the production of reactive
oxygen species (ROS) (Madhavan et al., 2006; Zheng et al.,
2016). In this way, DNA and proteins of the cells are protected
from ROS-dependent potential damage. Further, ROS, produced
in limited amount in physiological conditions and normally
neutralized, are also bene�cial because they trigger self-renewal
and neurogenesis (Le Belle et al., 2011). Conversely, di�erentiated
cells present elongated, crystae-rich mitochondria, higherratio
of mitochondrial glucose oxidation (OXPHOS) over glycolysis
as metabolic support (Zhang et al., 2014; Marcialis et al., 2016).
Moreover, NSCs increase Krebs' cycle functionality and decrease
lactate production, concurrent with increased number and total
mitochondrial mass (Sola et al., 2013).
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TABLE 1 | Evidences from the literature are schematically repo rted.

Molecule Physio-pathology Source Outcome References

Acetylcholine Physiology (ChAT) (C)
neurons

neurogenesis
(synergizing with FGF2)

Paez-Gonzalez et al., 2014

Angiopoietin 2 Stroke SVZ neuroblasts, endothelial
cells

NSC and neuroblast
migration

NSC neurogenic
differentiation

Cui et al., 2009; Liu et al., 2009

ANKYRIN3 Physiology Ependymal cells neuroblasts Paez-Gonzalez et al., 2011

ATP Physiology Astrocytes NSC proliferation Cao et al., 2013

B2M Aging (increases) Blood neurogenesis Smith L. K. et al., 2015

BDNF Physiology and stroke NSC differentiation Chen et al., 2005

Betacellulin (BTC) Physiology Endothelial cells NSC proliferation Gomez-Gaviro et al., 2012

BMP4 Physiology Ependymal cells glial differentiation Gajera et al., 2010

CCL11 Aging Blood neurogenesis Villeda et al., 2011

CNTF Steady-state A subtype of B cells of the
SVZ, other?

NSC self-renewal
NSC neurogeneic

differentiation

Emsley and Hagg, 2003; Lee
et al., 2013

Decorin Steady-state Astrocytes NSC neurogeneic
differentiation

Barkho et al., 2006

Delta-like-4 Steady-state Endothelial cells NSC proliferation Androutsellis-Theotokis et al.,
2010

Dickkopf-1 Aging NSCs neurogenesis Seib et al., 2013

Dopamine Physiology Dopaminiergic neurons neurogenesis
(synergizing with with EGF)

O'Keeffe et al., 2009

Ephrin-B2 Steady-state Astrocyte NSC proliferation
neurogenesis

Ashton et al., 2012

EPO Hypoxia, stroke Endothelial cells, Blood NSC proliferation and
survival

Pavlica et al., 2012

FGF2 Physiology Astrocytes NSC proliferation and
survival

Shetty et al., 2005; Widera et al.,
2006

GABA Physiology Young neuroblasts NSC proliferation and
neuronal differentiation

Liu et al., 2005

GDF11 Aging (decreases) Blood neurogenesis Katsimpardi et al., 2014

Galectin-3 MS SVZ NSC proliferation James et al., 2016

Glutamate Physiology Tissue neuroblast survival Platel et al., 2010

Gonadotropin- releasing
hormone (GrH)

Aging Hypothalamic cells proliferating activity of
hypothalamic NPC

Zhang et al., 2013

IFNg Stroke, MS, steady-state Immune cells, NSCs NSC proliferation
Differentiation

Pluchino et al., 2008; Li et al.,
2010b; Kulkarni et al., 2016

IGF1 Steady-state, aging Microglia, endothelial cells NSC proliferation
NSC neuronal

differentiation
glial development

Butovsky et al., 2006; Joseph
D'Ercole and Ye, 2008;
Llorens-Martin et al., 2009

IGF2 Steady-state, CNS tumor,
development, aging

Cerebrospinal �uid NSC proliferation Lehtinen and Walsh, 2011

IGFBP6 Steady-state Astrocytes neurogenic differentiation Barkho et al., 2006

IL10 Steady-state, stroke Treg NSC proliferation
neurogenic differentiation

Perez-Asensio et al., 2013;
Wang et al., 2015

IL1b Stroke, MS Microglia, NSCs,
monocyte/macrophages?

NSC proliferation
NSC apoptosis
gliogenic differentiation

Wu et al., 2013 Widera et al.,
2006; Guadagno et al., 2015

IL6 Infections, stroke NSCs, microglia NSC proliferation
neuroblast survival

Gallagher et al., 2013;
Chucair-Elliott et al., 2014; Meng
et al., 2015

Jagged1 Steady-state, MS Astrocytes neurogenesis
differentiation

OPC proliferation

Stidworthy et al., 2004;
Wilhelmsson et al., 2012

LIF Steady-state ? NSC proliferation Bonaguidi et al., 2005

(Continued)
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TABLE 1 | Continued

Molecule Physio-pathology Source Outcome References

MCP-1/CCL2 Stroke, aging, epilepsy,
CNS tumors

Immune cells? Microglia?
Astrocytes?

NSC migration
neuronal differentiation and

neuritic formation of
mesencephalic NSCs

glial differentiation of NT2
NSCs

Vrotsos et al., 2009;
Colucci-D'Amato et al., 2015;
Osman et al., 2016

Neuregulin 1 and 2 Steady-state Neuroblasts, GFAPC NSCs in
the SVZ

NSC proliferation
neuroblast migration

Ghashghaei et al., 2006

Neurotrophin 3 (NT3) Steady-state Endothelial cells NSC quiescence
neurogenic differentiation

Shimazu et al., 2006; Delgado
et al., 2014

NGF Steady-state, MS, stroke? SVZ NSC proliferation
neurogenic differentiation

Calza et al., 1998; Triaca et al.,
2005

Noggin Steady-state Ependymal cells, subgranular
zone

NSC proliferation
neurogenesis

Lim et al., 2000; Bonaguidi et al.,
2008

Oxygen (2-5%) Steady-state, stroke NSCs NSC self renewal
NSC differentiation

Santilli et al., 2010

Oxygen (< 1%) Stroke, MS NSCs NSC self renewal
NSC differentiation

Fel�y et al., 2011

PDGF Physiology GFAP-positive cells NSC proliferation Jackson et al., 2006

PGD2 Steady-state ? NSC proliferation Codega et al., 2014

Retinoic acid (RA) Stroke, steady -state Meninges, other? neurogenesis Plane et al., 2008; Siegenthaler
et al., 2009

ROS Steady-state, stroke? NSCs NSC self renewal
neurogenesis

Le Belle et al., 2011

S1P Steady-state ? NSC proliferation Codega et al., 2014

SDF-1/CXCL12 Stroke, MS, steady-state,
traumatic brain injury

NSCs, meninges, endothelial
cells, immune cells, tumor
cells

NSC migration
NSC survival
NSC differentiation

Reiss et al., 2002; Imitola et al.,
2004; Itoh et al., 2009; Carbajal
et al., 2010; Li et al., 2012

Serotonin Physiology 5-HT neurons neurogenesis Brezun and Daszuta, 1999

SHH Development,
steady-state, MS

Ventral forebrain neurons NSC speci�cation
neurogenesis OPC

differentiation

Breunig et al., 2008; Ihrie et al.,
2011; Samanta et al., 2015

Surivivin Aging Astrocytes neurogenesis Miranda et al., 2012

TGFa Steady-state, stroke NSCs? neurogenesis Tropepe et al., 1997;
Guerra-Crespo et al., 2009

TGFb Steady-state, development NSCs Temporal regulation of
neurogenesis and potency of
NSCs

Dias et al., 2014

Thbs4 Stroke SVZ NSCs SVZ-NSC astrogenesis (via
Notch signaling)

glial scar formation

Benner et al., 2013

TNFa Stroke, MS? Microglia, astrocytes,
monocyte/macrophages?

NSC proliferation
NSC apoptosis
Gliogenic differentiation

Widera et al., 2006; Guadagno
et al., 2013

TSP1 Steady-state Astrocytes NSC proliferation
neurogenesis

Lu and Kipnis, 2010

VEGF Steady-state, Stroke NSCs; astrocytes; endothelial
cells

NSC proliferation and
maintenance

neurogenic differentiation
NSC migration

Kojima et al., 2010; Kirby et al.,
2015

Wnt3 Steady-state Astrocytes neurogenesis Okamoto et al., 2011

On the other side, the �rst consequence of the blood
�ow occlusion in brain ischemia is hypoxic injury that causes
extensive neural cell death (Niquet et al., 2003). Nonetheless and
surprisingly, hypoxia, while being detrimental in the acute phase
of stroke, in a second step, contributes to promote neurogenesis
(Arvidsson et al., 2002; Tonchev et al., 2003; Jin et al., 2006;Macas

et al., 2006; Minger et al., 2007; Wang et al., 2011; Zhang and
Chopp, 2016), to support replenishment of neurons in the RMS,
migration in the region of ischemic brain injury, and growthof
oligodendrocyte progenitors that disperse to the gray and white
matter (Zhang et al., 2001, 2012; Parent et al., 2002; Minger et al.,
2007; Li et al., 2010a; Zhang and Chopp, 2016).
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Hypoxia has recently emerged as a concurrent complication of
disease progression also in MS. Indeed, important lack of oxygen,
occurring as a consequence of in�ammation, has been measured
in brain gray matter regions of MS patients, where it canper se
be considered co-causative for neurodegeneration (Haider et al.,
2014; Yang et al., 2015). Since hypoxia and in�ammation are
strictly linked, it is still di�cult to tease apart their respective
contributions in MS (Sun et al., 1998; Lassmann, 2003; Davies
et al., 2013). It looks like hypoxia can occur in MS patients as a
consequence of increased oxygen demand. When this request is
not satis�ed, hypoxia can be further detrimental for surrounding
neural stem cells (Trapp and Stys, 2009).

Effect of In�ammation on Neural Stem Cell
Plasticity, Connection with Stroke, and
Multiple Sclerosis
It has been well-documented that the brain cannot be
simplistically considered an immune privileged site (Kleine and
Benes, 2006) and actually immune system activation in the brain
exerts both damaging and bene�cial e�ects on CNS functions
(Martino, 2004), depending on the onset of the in�ammation, on
the cell types involved in the process and on the chronicity of the
response (Crutcher et al., 2006; Kyritsis et al., 2012).

NSCs share with the immune system an array of secreted
mediators and receptors, which are all relevant for the
maintenance of the neurogenic niche and, at the same time,
represent the prerequisite for the interaction of NPCs with the
microenvironment, especially during neuroin�ammation (De
Feo et al., 2012; Kokaia et al., 2012).

Indeed, in�ammation,via its associated cues (i.e. cytokines,
chemokines, chemical species....), strongly impacts structure
and function of the stem cell niche, acts directly on NSCs
and a�ects tissue restoration/regenerationvia microglia and
astrocyte activation (Ekdahl et al., 2003; Pluchino et al., 2008;
Pourabdolhossein et al., 2017).

In homeostatic conditions, microglia are rami�ed in shape
to maintain surveillance. Upon pathogen invasion or insults,
they retract the protrusions, become amoeboid, increase their
migratory behavior, and secrete cytokines. IL6, TNFa, IL1b, and
complement 1 subunit q (C1q) are among the most potent
microglia–derived cytokines, able to compromise the niche
environment, inhibit neurogenesis (Vallieres et al., 2002; Monje
et al., 2003), induce oligodendrogenesis (Valerio et al., 2002) and
a subtype of reactive astrocytes (Liddelow et al., 2017). Further,
while NSC-derived nitric oxide synthase promotes release of
small amounts of nitric oxide (NO) with neurogenic properties
(Carreira et al., 2010; Luo et al., 2010), abundant NO released
by microglia or astrocytes in in�ammatory conditions (i) inhibits
proliferation of NSCs acting on the EGF receptor (Carreira et al.,
2014) or on the transcription factor complex Neuron-Restrictive
Silencer Factor /RE1-Silencing Transcription factor, NRSF/REST
(Bergsland et al., 2014) and (ii) promotes gliogenesis (Bergsland
et al., 2014).

IFNg, a pleiotropic cytokine, has a central role in regulating
NSCs proliferation and quiescence (Kulkarni et al., 2016). In
in�ammatory conditions, such as experimental autoimmune

encephalomyelitis (EAE), the preclinical model of MS, IFNg
dramatically decreases progenitor proliferation (Pluchino et al.,
2008; Pereira et al., 2015) and inhibits the recruitment of
newborn neurons to the olfactory bulb (OB). IFNg might also
play a crucial role in regulating glioma-associated oncogene
homolog-1 (Gli1), a Shh-induced trasncription factor that drives
the oligodendroglial fate of NSCs (Wang et al., 2008; Li et al.,
2010b; Samanta et al., 2015).

The complement system also inhibits NSC activity as
demonstrated with complement receptor 2 (Cr2) knock out
mice that have increased basal neurogenesis (Moriyama et al.,
2011). Moreover, lipid modi�ers present in in�ammation, such
as leukotriene, can negatively regulate NSC proliferation likely
via TNFa and IL1b (Bonizzi et al., 1999; Wu et al., 2013). Of
note, montelukast, a leukotriene receptor blocker protects from
this event (Marschallinger et al., 2015).

IL6 is another crucial mediator of NSC function and
its induction, e.g., during maternal infection and stroke,
permanently perturbs NSC proliferation and neurogenesis
(Gallagher et al., 2013; Chucair-Elliott et al., 2014; Meng etal.,
2015).

Conversely, the anti-in�ammatory interleukin-10 (IL10) in
rodents keeps NSCs in an undi�erentiated proliferation state,
rather than promoting di�erentiation (Ben-Hur et al., 2003;
Perez-Asensio et al., 2013; Wang et al., 2015).

Nevertheless, as anticipated, in�ammation can be also
bene�cial for NSCs. First, the immune system in general
and T cells in particular are involved in maintaining niche
neurogenesis, as indeed genetic T-cell depleted mice present
compromised cognitive functions (Ziv et al., 2006). Moreover,
chemokines such as monocyte chemoattractant protein 1
(MCP1) or SDF1, released in in�ammatory conditions, promote
migration of NSCs to site of injury and local TNFa or IL1b
trigger their proliferative capacity (Widera et al., 2006). Second,
injection of moderately activated microglia can regulate brain
homeostasis and neurogenesis (Butovsky et al., 2006; Bachstetter
et al., 2011).

Further, NSCs directly produce in�ammatory chemokines
(Covacu et al., 2009), promoting a feed forward loop at sites
of tissue damage (Imitola et al., 2004; Belmadani et al., 2006;
Widera et al., 2006; Wang et al., 2007). NSCs can also directly
change in�ammatory responses through immunomodulatory
factors (Pluchino et al., 2005; Ben-Hur, 2008; Yong and Rivest,
2009; Butti et al., 2012) or trophic factors (Huang et al., 2014).
In particular, SVZ-NSCs can protect striatal neurons from the
excitotoxic damage occurring in stroke and epilepsy, releasing
endogenous endocannabinoids, likely upon in�ammatorystimuli
(Butti et al., 2012). Endogenous NSCs also secrete MCP1, VEGF,
IL4, and interleukin-15 (IL15), the latter known to retain NK
cells in the chronic phase of EAE in mice and of MS in humans.
Indeed, in the SVZ, NK cells contribute to the dysfunction of
the neurogenic niche observed in EAE by killing stem cells (Liu
et al., 2016). Moreover, in�ammatory cytokines lead to metabolic
reprogramming of the arginase pathway in NSCs ultimately
impacting on the NSC mediated anti-proliferative e�ect on T
cells (Drago et al., 2016). Further, it has been reported that human
NSCs hinder the di�erentiation of myeloid precursor cells into
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immature dendritic cells and the �nal maturation into functional
antigen presenting cells (Pluchino et al., 2009).

In stroke, immune cell in�ltration and in�ammation take
place as secondary events to hypoxic injury, which is responsible
of the massive neuronal death. Upon brain injury, the blood-
brain barrier (BBB) is disrupted, its permeability increases,
migrating immature neurons associate with the angiogenic
fenestrated endothelium, thus mimicking the neurogenic niche
structure (Ohab et al., 2006; Ohab and Carmichael, 2008).
Neutrophils and innate immune cells are the �rst players,
although also T and B cells cross the damaged-BBB, inducing
a rapid adaptive autoimmune response to neuronal antigens
(Chamorro et al., 2012). As consequence of in�ammation,
neurogenesis is activated in stroke (Wang et al., 2011; Katajisto
et al., 2015) supported by soluble factors such as bone
morphogenic protein (Forni et al., 2013), retinoic acid (Plane
et al., 2008), sonic hedgehog (Cheng et al., 2015), C-C motif
chemokine Ligand 2 (CCL2) (Osman et al., 2016) along with
SDF1 and angiopoietin-2 (Ang2) that home NSC progenitors
to the site of injury (Thored et al., 2006), where they improve
functional recovery (Guzman et al., 2008) and di�erentiate into
neurons (Darsalia et al., 2007). Nevertheless, they present only
limited reparative properties because matured neurons tend to
die (Arvidsson et al., 2002; Marti-Fabregas et al., 2010; Kazanis
et al., 2013). Moreover, given that NSCs themselves express and
release respectively C-X-C motif chemokine receptor 4 (CXCR4)
and SDF1, they might play a role in regulating axonal remodeling
in ischemic brain. On the other hand, SVZ-derived astrocytes
have a crucial role in ischemic stroke: photothrombotic cortical
ischemia induces a strong gliogenic, Notch1-dependent response
in the SVZ, which generates thrombospondin-4 (Thbs4)-positive
astrocytes. Thbs4 astrocytes are essential components of the glial
scar and their proliferation might be favored over neurogenesis
after cortical injury (Benner et al., 2013). Conversely, it has
also been reported that in�ammation can promote neurogenesis
in dormant neural progenitors in nonconventional neurogenic
regions (Jiao and Chen, 2008).

Further, stroke increases generation of oligodendrocyte
precursor cells (OPCs) from NSC in the ischemic brain, although
it remains to be de�ned whether NSC-derived OPCs, beside
oligodendrogenesis, help with brain repair, likely communicating
with cerebrovasculature and other brain parenchyma cells (Itoh
et al., 2015).

Overall, according to several evidences, in�ammation in
stroke can be bene�cial for NSCs, nonetheless other reports,
evaluating microglia function, claim that activated ED1C

microglia impair basal neurogenesis (Ekdahl et al., 2003) likely
via TNFa/TNFR1 signaling (Iosif et al., 2008; Chen and Palmer,
2013; Gebara et al., 2013). In humans, a de�nitive robust
evidence of clinical post-stroke neurogenesis remains a matter
of investigation as analysis of autopsy tissue provided positive
results (Ekonomou et al., 2012) which are instead lacking when
labeling newly born neurons with14C (Huttner et al., 2014).

In MS preclinical models, it is important to distinguish
among experimental conditions since they in�uence the
experimental evidence. Nonetheless, either chemically (LPC),
focal (site injection of TNFa-IFNg combined with subclinical

immunization) or immune-mediated (EAE) demyelination
causes reduced neuroblast proliferation in the olfactory bulb of
mice, while neutralization of immune mediators, such as IFNg
and Galectin3 in�ammatory cytokines, restores neurogenesis
both in vitro (Pluchino et al., 2008; Tepavcevic et al., 2011) and
in vivo (Monje et al., 2003; James et al., 2016). Indeed, in human
samples, the SVZ of post-mortem MS brains is altered, with
reduced number of neuroblasts in the SVZ of the lateral ventricle.
Conversely, neuroin�ammation increases neurotrophin levels
(e.g., nerve growth factor-NGF) in the SVZ (Calza et al.,
1998; Triaca et al., 2005), likely counteracting the inhibitory
e�ect of proin�ammatory molecules. Further, demyelination is
able to boost proliferation of NSCs in the neurogenic niches
promoting their di�erentiation (Pluchino et al., 2005; Menn
et al., 2006). Only in conditions of acute cytokine exposure,
either by focal intrathecal cytokine injection or as a consequence
of strong microglia activation, the proliferative capacity of
the niche is inhibited. In terms of gliogenic di�erentiation,
in�ammatory conditions may increase the percentage of Olig2C

cells originating from the SVZvia modulation of bone
morphogenetic protein (BMP) signaling (Tepavcevic et al., 2011).
The transcription factor Gli1 seems to be a key regulator of SVZ
oligodendrogenesis and may be a promising target for reparative
strategies in MS, as pharmacological inhibition of Gli1 during
EAE promotes remyelination and improves clinical outcome
(Samanta et al., 2015).

Leveraging the regenerative potential of NSCs and their
immunomodulatory and trophic functions, NSC transplant
has been proposed as therapeutic strategy for in�ammatory
diseases of the CNS. In stroke, transplanted NSCs directly
modulate neuronal circuit plasticity (Zhang et al., 2009) through
the expression of developmental molecules such as guidance
molecules (i.e., slit, thrombospondin-1 and -2) and trophic factor
such as VEGF (Andres et al., 2011). In fact, transplanted NSCs
in stroke stimulate the proliferation of endogenous neural stem
cells (Zhang et al., 2011; Hassani et al., 2012; Mine et al.,
2013), increase endogenous angiogenesis after stroke (Jiang et al.,
2005), scavenge the neurotoxic molecules (Emsley et al., 2004)
and contribute both directly and indirectly (via astrocytes) to
glutamate clearance (Bacigaluppi et al., 2009, 2016).

In EAE, transplanted NSCs directly inhibit both T cell
and myeloid cell immune responses. In the CNS, they block
in�ammatory cell recruitment, T cell proliferation and promote
the apoptosis of brain-reactive T cells (Einstein et al., 2003;
Pluchino et al., 2005). In peripheral secondary lymphoid organs
of EAE mice, antigen-speci�c proliferation of T cells, dendritic
cell antigen presentation and chemotactic gradients are impaired
by NSCs transplanted either subcutaneously or intravenously.
As an example, NSC-secreted LIF, on one hand, stimulates
endogenous remyelination in the CNS (Laterza et al., 2013), on
the other, inhibits Th17 cell di�erentiation in the periphery (Cao
et al., 2011).

Overall, the current literature shows that a controlled use of
in�ammation in CNS injury could be of help in regenerative
approaches when NSC proliferation needs to be boosted and
in�ammatory tweaking can have bene�cial outcomes. An option
could consist in reducing NSC sensitivity to in�ammatory
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mediators and, at the same time, increasing the therapeutic
e�cacy of NSCs when transplanting engineered cells.

Effect of Aging on Neural Stem Cell
Plasticity, Connection with Stroke, and
Multiple Sclerosis
Aging is a common feature of both stroke and progressive
multiple sclerosis and loss of niche integrity, depletion of the
stem cell pool, cellular senescence, defect in cell-cell contact in
the niche or metabolic changes are all shared characteristics that
contribute to the demise of the aging neurogenic niche (Oh et al.,
2014).

The most signi�cant consequence of age in the SVZ consists
in the alteration of the niche cytostructure and in reduction
of the neuroblast population, with reduced proliferation and
neurogenic capacity (Kerever et al., 2015). On the contrary,
oligodendrogenesis is substantially not a�ected by aging, rather
oligodendrocyte recruitment and di�erentiation are impaired
(Sim et al., 2002; Franklin and Ffrench-Constant, 2008; Conover
and Todd, 2016). The latter is indeed a causal pathogenic
characteristic of chronically demyelinated MS lesions in humans
(Kuhlmann et al., 2008).

Concurrently, given that senescence does not spare the
vasculature (Farkas and Luiten, 2001), the environment of
the niche may enrich for toxic factors which further sustain
exhaustion, reduce neuroplasticity and cause cognitive decline
(Villeda et al., 2011). Potential therapeutic strategies to
counteract the decline of adult stem cells may involve the
promotion of a rejuvenating environment (Katsimpardi et al.,
2014) or the prevention of premature exhaustion of long-lived
self-renewing NSC populations. Neurogenic decline in aged SVZ
can occur because of the accumulation of damaged DNA and
both nuclear and mitochondrial DNA are susceptible to age-
related changes (Bailey et al., 2004). Upon sensing DNA damage,
SVZ cells upregulate the inhibitor of cyclin kinase to post-pone
cell cycle entry and reduce proliferation of NSCs (Molofsky et al.,
2006).

NSC age-dependent cell plasticity is also in�uenced by
metabolic changes (Rabie et al., 2011; Chaker et al., 2015). As
far as nutrient sensing pathways, growth di�erentiation factor-11
(GDF11), has been identi�ed as one of the extrinsic circulating
youth signals that maintain neurogenesis (Katsimpardi et al.,
2014), although those �ndings are currently matter of further
validation (Egerman et al., 2015; Smith S. C. et al., 2015). It is still
unknown whether the e�ect is direct onto NSCs or indirectvia
improved microvascular network. IGF1, another critical growth
factor,per sestimulates proliferation and di�erentiation of NSCs
(Aberg, 2010), but decreases with aging (Sonntag et al., 2005).
Nonetheless, it is also life–long exposure to IGF1 that with
age causes decline of neurogenesis (Chaker et al., 2015). Along
the same line, NADC and AMP levels, which re�ect cellular
energy state, decline with age in the hippocampus, in parallel
with reduction of di�erentiation and self-renewal capacity of
NSCs, because their regulatory enzyme decreases (Liu et al., 2012;
Stein and Imai, 2014). As far as oxygen-dependent e�ect, those
are linked to failure in maintaining appropriate mitochondrial

regulations. Indeed, accumulation of mutations in mitochondrial
DNA (mtDNA) occurs during aging and comes along with
abnormal accumulation of toxic by-products (Siqueira et al.,
2005) because mtDNA lacks protective histones and is located
close to the major source of ROS, the electron transport chain
(Park and Larsson, 2011).

In�ammation is another comorbidity factor associated with
aging. The immune molecules C-C motif chemokine-11 (CCL11)
and b2-microglobulin (B2M), as well as CCL2, C-C motif
chemokine-19 (CCL19) and haptoglobin, contribute to low-
grade of in�ammation in aging (in�ammaging) (Franceschi
and Campisi, 2014), and negatively a�ect neurogenesis (Villeda
et al., 2011; Wyss-Coray, 2016). Indeed, heterochronic parabiosis
between aged and young mice rejuvenates and reverses stem cell
aging in numerous tissues (Conboy et al., 2005) or administration
of plasma from young mice can ameliorate cognitive impairment
in aged mice (Villeda et al., 2014).

Last, it is worth mentioning that also the cellular environment
of the niche sustains aging features. Astrocytes of the niche,
with age, reduce release of Wnt3 (Lie et al., 2005; Okamoto
et al., 2011), that in turn down regulates Survivin expression
and increases release of Dickkopf-related protein 1 (DKK1), a
canonical Wnt signaling inhibitor. The �nal e�ect is induced
quiescence on one side (Miranda et al., 2012) and negative
regulation of NSC neurogenesis (Seib et al., 2013) on the other.
This is paired with physical changes of the extracellular matrix,
which also a�ect senescence of the niche (Gattazzo et al., 2014).
Conversely, it is also possible that NSCs e�ciently graft theSVZ
and well di�erentiate in both young and aged hippocampus,
suggesting that advanced age of the host at the time of grafting
has no major adverse e�ects on engraftment, migration, and
di�erentiation of SVZ-NSCs (Shetty and Hattiangady, 2016).

Age is an independent risk factor for brain ischemia (Marinigh
et al., 2010; Roger et al., 2012) and stroke models using aged
animals are clinically very relevant (Popa-Wagner et al., 2007).
From work on animals, it has been reported a 50% decline
in neurogenesis in the SVZ of elder compared with young–
adult animals (Darsalia et al., 2005; Macas et al., 2006; Ahlenius
et al., 2009). Unfortunately, although endogenous neurogenesis
has been observed even in aged humans, it is still not clear
to what extent newly formed neurons are functionally relevant
for stroke recovery in human patients. Thus, cell therapies
have been implemented to address this question. An open-
label, single-site, dose-escalation study was performed on 13
aged patients after ischemic stroke, transplanting by stereotaxis
the neural stem cell line CTX0E03 in the ipsilateral putamen.
After 2 years, improvement in the disability score scale (NIHSS)
ranging from 0 to 5 (median 2) points has been recorded
(Borlongan, 2016; Kalladka et al., 2016). Similarly, studies in
animal models examined whether exogenous NSC delivery might
restore neurogenesis in the DG of old rodents. Both embryonic
and fetal derived NSCs stimulated neurogenesis in young or old
animal models. Likely the e�ect was exertedvia suppression
of microglia/macrophage activation (Jin et al., 2011). Of note,
inhibition of microglial activation has also been reported in
ischemic mice following systemic delivery of mouse NSCs
(Bacigaluppi et al., 2009).
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Those data suggest that the problem with NSCs in
ischemic stroke is to some extent cell autonomous, because
the environment of the aged brain does not preclude NSC
engraftment.

In MS, loss of myelin, a specialized membrane produced
by oligodendrocytes, essential for normal CNS function, isa
characteristic feature. Aging impairs not only the neurogenic
but also the oligodendrogenic properties of the brain germinal
niches as a consequence of longer cell cycle length of NSCs
and of their progeny, loss of growth factors and upregulation of
inhibitors (Hamilton et al., 2013). Iron accumulation (Andersen
et al., 2014), linked in cascade to oxidative alteration and
to mitochondrial dysfunction (Mahad et al., 2015) are other
recognized characteristics of neurodegeneration in progressive
aged MS individuals. A direct impact also on neural stem cells
has not been experimentally proven (Crabbe et al., 2010) but can
reasonable be speculated.

In the context of demyelination, work by Crawford et al.
demonstrated responsiveness of OPCs to demyelination,
although remyelination and susceptibility to aging is regionally
dependent: in chemically-induced demyelination of the corpus
callosum in aged animals, dorsal SVZ-NSCs are e�ciently
recruited to lesions and their di�erentiation into OPCs is
impaired, whereas ventral NSCs are recruited more slowly
but di�erentiate rapidly into OPCs; similarly, while in aged
animals the percentage of di�erentiated OPCs from dorsal
NSCs is half of the one seen in young animals, the percentage
of ventral NSCs di�erentiating into OPCs remained constant
(Crawford et al., 2016). This evidence has signi�cant implications
for the progressive form of MS, for which age is the current
best associated risk factor (Minden et al., 2004; Scalfari et al.,
2011). As disease progresses with age, repair, remyelination
and other physiological functions become less robust. Animal
models have shown that while OPC recruitment toward lesions
remains intact, di�erentiation into myelinating oligodendrocytes
decreases with age with a slower and less e�ective remyelination
process compared to young rats (Rist and Franklin, 2008;
Ruckh et al., 2012). Similarly, elder human subjects showed
reduced remyelinating capabilities. Multiple hypotheses can
explain these �ndings, including either extrinsic factors or
intrinsic characteristics such as epigenetic changes knownto be
modulated during aging and thus to impact OPC maturation
(Rist and Franklin, 2008).

HOW DO NEURAL PRECURSORS FROM
INDUCED PLURIPOTENT STEM CELLS
STAND?

The technology of somatic cell reprogramming (induced
pluripotent stem cells, iPSCs) that developed in the last
10 years (Takahashi et al., 2007), represents an invaluable
alternative strategy to obtain, in large scale and inde�nitely,
neural precursors, unfolding new research and clinical avenues.
Expandable intermediate neural precursors can be obtained
with published protocols (Falk et al., 2012; Reinhardt et al.,
2013) and the cells resemble most of the speci�c properties of

endogenous plastic cells. To treat neurodegenerative conditions,
both iPSC-derived NSCs or terminally di�erentiated neurons
have been transplanted in preclinical models. Early on, it has
been demonstrated that those cells are able to survive and
adequately integrate into the host brain (Oki et al., 2012; Tornero
et al., 2013; Qi et al., 2017), and recently it was reported
that transplanted human iPSC-derived cortical neurons can
be incorporated also into injured cortical circuits and could
contribute to functional recovery (Tornero et al., 2017). Beside
reparative activity, transplanted cells can improve the brain
functional outcome, directly waking up brain plasticityvia
their bystander e�ects. Indeed, transplanted cells promote the
formation of new synapses among existing neurons or preserve
axonal integrity releasing trophic factor for myelinating cells as
described in ischemic stroke and in a preclinical model of MS
(Oki et al., 2012; Espuny-Camacho et al., 2013; Laterza et al.,
2013; Tornero et al., 2013).

In addition, the release of soluble factors by (neural) stem
cells along with cell-cell interactions supports angiogenesis that,
beside self organizing blood vessels (Kusuma et al., 2013),
guarantees trophic support for proper integration of neuronal
cells and sustains synaptogenesis. Further, the bystander e�ect
is exploited also in terms of (i) inhibition of neutrophil
and peripheral dendritic cell activation and recruitment, (ii)
inhibition of e�ector T- and B-cells, (iii) attenuation of BBB
damage, or (iv) stimulation of the M2 microglial phenotype
(Drago et al., 2013). Similar evidence of the (neuro)-protective,
regenerative, and angiogenic properties of iPSCs is not available
yet from their complete secretome, nonetheless it can be
reasonably predicted.

As of now, while work by Jensen et al. reported no iPSC-
mediated improvement in behavioral function in stroke (Jensen
et al., 2013), several others, as previously mentioned, show that
also direct iPSC transplantation improves neurological score,
motor, sensory and cognitive functions, already within the �rst
week after transplantation, when migration, maturation, synaptic
integration, and paracrine release into the host brain is completed
(Oki et al., 2012; Polentes et al., 2012; Tornero et al., 2013,2017;
Yuan et al., 2013; Tatarishvili et al., 2014).

Similarly, transplant of iPSC-derived neural precursors in
the MS context dramatically reduced T cell in�ltration and
ameliorated white matter damage in treated EAE mice (Laterza
et al., 2013; Zhang C. et al., 2016), both via improved
di�erentiation toward cells of the oligo-glial lineage andvia
soluble factor release (Laterza et al., 2013).

Experimental validation in humans, both for stroke and MS,
could be useful in the future but regulatory guidelines for safe
clinical trial are awaited.

CAN WE GUIDE NEURAL STEM CELL
PLASTICITY TOWARD A DESIRED
RESPONSE?

Taking advantage of their plasticity, stem cells can generate,
repair, and change nervous system functions. Fine-tuning of the
in�ammatory responses or proper modulation of the hypoxic
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and aging conditions should provide a permissive milieu for an
e�ective reparative process. In this sense, the perspective that
aged hippocampus licenses e�cient and functional engraftment
(Shetty and Hattiangady, 2016) puts forward the possibility
that grafted niches can continuously generate new neurons and
glia which, in turn, are expected to improve the plasticity and
function of aged brain tissue.

As engineering and reprogramming approaches advance,
transplant of exogenous human NSCs are optimized and
better understanding of NSC regulation in physio- pathological
conditions is achieved, it will be possible to fully take advantage
of the therapeutic potential of those cells and successfully exploit
their plasticity.

So far, it is possible to (i) engineer NSCs to deliver
extrinsic stem cell fate determinants or intrinsic factorsthat
allow the development of biomimetic environmental cues
to control stem cell fates (Michailidou et al., 2014; Karimi
et al., 2016); (ii) culture and expand stem cells outside of
their native environments (Komura et al., 2015); (iii) perform
localized delivery of microspheres to speci�cally di�erentiate
endogenous stem cells (Gomez et al., 2015); (iv) engineer
somatic cells to obtain induced NSCs with reparative functions
(Hargus et al., 2014); (v) engineer human stem cells to obtain
inde�nitely expandable lines for clinical purposes (Pollock et al.,
2006); (vi) snapshot the metabolic pro�le of cells in physio-
pathological conditions (Bystrom et al., 2014; Dislich et al.,
2015).

Systems biology will likely represent a fundamental tool to
discover novel drugs to modulate NSC plasticity, as it can
integrate and analyze in a quantitative manner several aspects
of NSC behavior (e.g., di�erentiation potential and self-renewal)
(Wells et al., 2013; Hussein et al., 2014).

CONCLUSIONS AND FUTURE OUTLOOK

Neural progenitor cells represent an underdeveloped therapeutic
resource in clinical settings. Although their paracrine and
endocrine bystander potential is well-known, much of their

plasticity still needs to be properly manipulated for therapeutic
purposes.

On one end, cells can be expanded and bioengineering
approaches are becoming available to further potentiate their
availability (Bressan et al., 2014; Bouzid et al., 2016; Gardin
et al., 2016). For instance,in vitro preconditioning with low
oxygen tension might enhance NSC survival as it mimics
the oxygen supply normally found in brain tissues (Hawkins
et al., 2013; Sandvig et al., 2017). Nonetheless, it is this
same plasticity that could threaten their therapeutic capacity,
because the manipulation of cells themselves or of the
trophic microenvironment, might induce unwanted side-e�ects,
such as senescence from over-stimulation. Thus, it might be
worth increasing the knowledge on (i) the in�uence of cell
metabolism on NSC behavior during CNS diseases; (ii) the
ex-vivomaintenance of NSCs; (iii) the most suitable window
time for transplant to best leverage graft survival and disease
speci�c environmental conditions. Indeed engraftment e�ciency
strongly correlates with therapeutic bene�ts.

Furthermore, this additional knowledge should shed light on
the age-related decline of the stem cell niche, which contributes
to neurodegeneration in both chronic and acute diseases.
Last, careful analysis of the microenvironment is warrantedto
overcome complications and to improve the e�cacy of cell
therapy approaches.
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