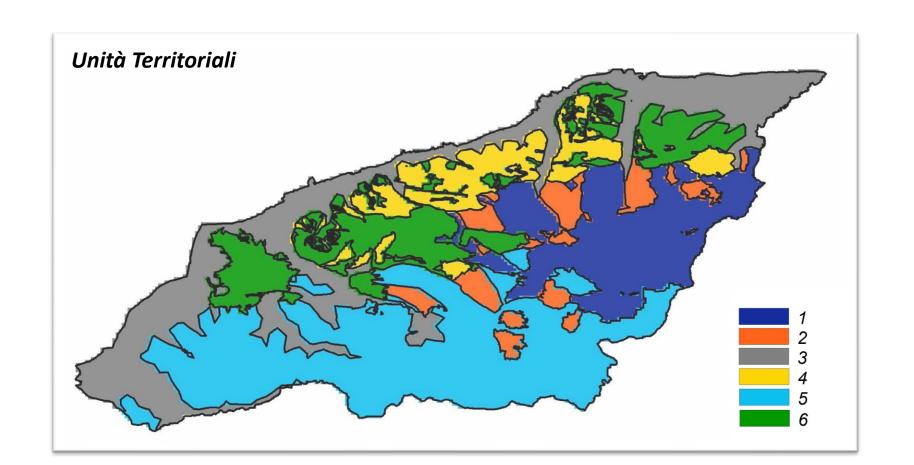
MODELLO PEDOCLIMATICO DI ZONAZIONE DELL'OLTREPÒ PAVESE PER PINOT GRIGIO, PINOT NERO, CROATINA E BARBERA

Gabriele Cola, Luigi Mariani, Alberto Bianchi, Osvaldo Failla

Dipartimento di scienze Agrarie e Ambientali - Università degli Studi di Milano

CONAVI 2022 - IX Convegno Nazionale di Viticoltura - 14 giugno 2022 - Conegliano (TV)



DIPARTIMENTO DI SCIENZE AGRARIE E AMBIENTALI - PRODUZIONE, TERRITORIO, AGROENERGIA

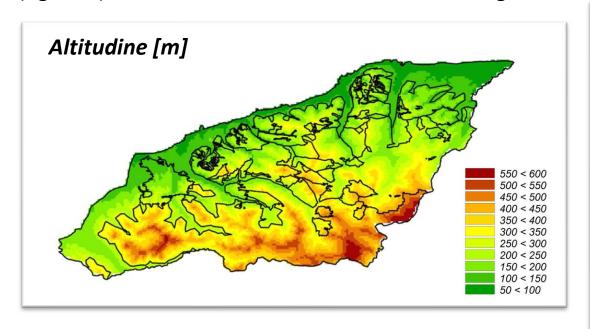
Obiettivo dello studio

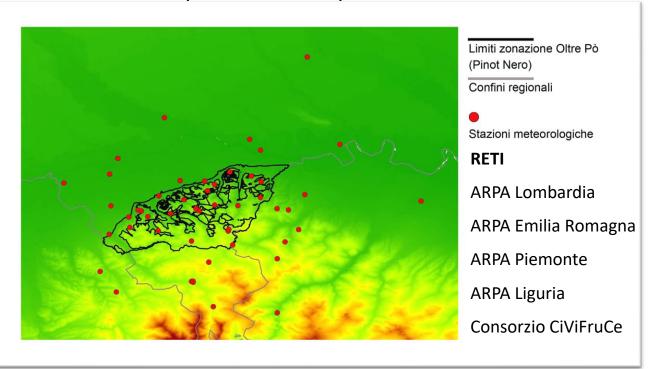
Questo lavoro muove dall'idea di aggiornare la zonazione dell'areale viticolo DOC Oltrepò pavese per **Pinot nero** (Scienza et al., 2008), estendendo la caratterizzazione ad altre varietà di particolare interesse quali **Pinot grigio**, **Croatina** e **Barbera**.

1 - CARATTERIZZAZIONE DELLE RISORSE E DELLE LIMITAZIONI AMBIENTALI

2001-2020 + 2021

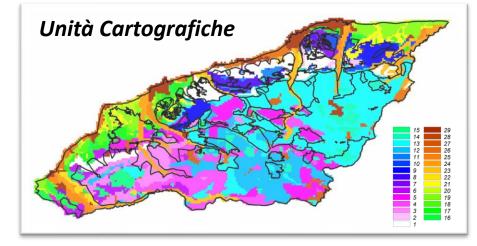
2 – CARATTERIZZAZIONE VEGETO PRODUTTIVA DEI VIGNETI CAMPIONE E RELAZIONE CON LE CONDIZIONI AMBIENTALI PER L'ANNO 2021


24 vigneti, 1 vigneto per varietà in ognuna delle 6 Unità Territoriali della precedente zonazione

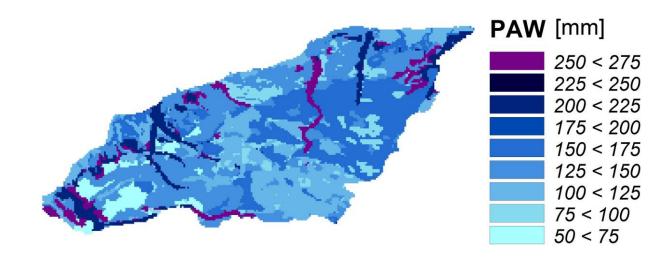

Gli indicatori agrometeorologici di cui al punto 1, sono stati calcolati anche per la stagione 2021 al fine di mettere in relazione il loro andamento con le caratteristiche vegeto produttive delle 4 varietà nei diversi areali al fine di valutare quali fossero i fattori più influenti sulla produzione.

3 - IPOTESI DI UNA NUOVA SUDDIVISIONE DELL'AREALE VITICOLO DELL'OLTREPÒ PAVESE

1 - CARATTERIZZAZIONE DELLE RISORSE E DELLE LIMITAZIONI AMBIENTALI


L'analisi agrometeorologica del territorio dell'Oltrepò pavese si basa su un modello digitale del terreno (DTM) con una risoluzione di 400 X 400 m, derivante dal ricampionamento del modello digitale a 90 m della Shuttle Topography Mission (figura 1). Dal dato altimetrico sono stati derivati gli strati informativi relativi a pendenza ed esposizione.

Produzione, mediante opportuni algoritmi geostatici, di campi meteorologici giornalieri relativi a radiazione solare, temperatura massima, temperatura minima e precipitazione per il periodo **2001-2020 + 2021**I dati sono stati sottoposti a controllo di qualità, ricostruzione dei dati mancanti e successiva elaborazione applicando le seguenti metodologie (Mariani L., et al., 2016):


- **TEMPERATURE**: omogenizzazione per quota ed esposizione dei dati con il punto incognito, spazializzazione mediante inverso del quadrato della distanza, correzione per quota ed esposizione.
- PRECIPITAZIONI: spazializzazione mediante inverso del quadrato della distanza.

La carta delle unità cartografiche presenta 29 unità. Fornisce una descrizione dei suoli sulla base di tessitura (secondo la Soil Taxonomy dello USDA), profondità, scheletro, reazione (pH), capacità di scambio cationico e drenaggio, che indica la velocità con cui un suolo si libera dell'acqua di percolazione (Scienza et al, 2008).

La PAW è stata ricavata dalle caratteristiche qualitative delle unità cartografiche applicando ad ogni classe le funzioni di pedo transfer di Saxton and Rowles (1986), considerando le differenti profondità dei suoli

Tale valore ha ovviamente significato territoriale e non rende conto delle differenze delle caratteristiche idrologiche dei suoli che si riscontrano a livello di singolo vigneto.

MODELLAZIONE **METEO GIORNALIERO** CV SPECIFICA 2001-2020 **BILANCIO IDRICO** Kc Prec **FENOLOGIA CARATTERISTICHE Tmax IDROLOGICHE PAW Tmin RISPOSTA TERMICA ORARIA**

OUTPUT - STATISTICHE

CLIMATOLOGIA

Tmin - media annua

Tmax - media annua

Prec - cumulo annuo

RISORSE RADIATIVE

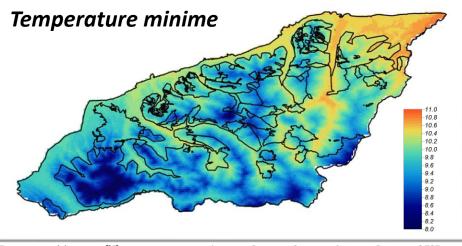
PPAR media annua

RISORSE TERMICHE

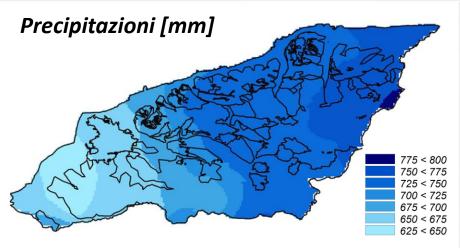
NHH - cumulo annuo

NHH – cumulo da post allegagione

HHH – cumulo annuo

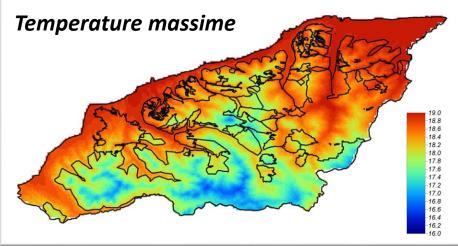

HHH – cumulo da post allegagione

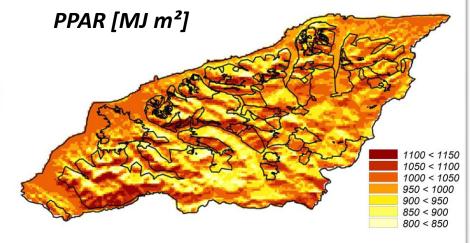
Indice di Winkler – Cumulo annuo


RISORSE IDRICHE

Giorni di stress idrico – cumulo annuo

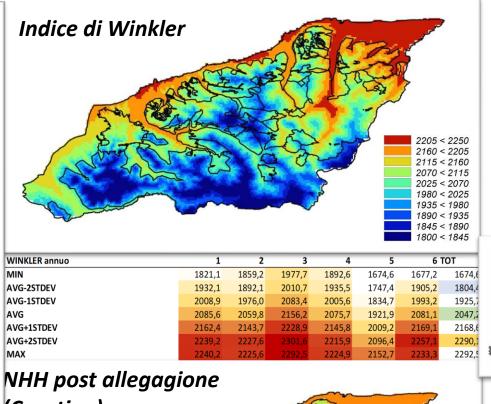
Giorno di esaurimento della riserva facilmente utilizzabile.


Temperatura minima annua [°C]	1	2	3	4	5	6	тот
MIN	8,7	8,9	9,1	8,8	7,6	7,9	7,6
AVG-2STDEV	9,2	9,1	9,3	9,1	8,3	9,0	8,7
AVG-1STDEV	9,6	9,5	9,7	9,5	8,8	9,4	9,2
AVG	9,9	9,9	10,1	9,8	9,3	9,8	9,7
AVG+1STDEV	10,3	10,2	10,5	10,1	9,8	10,2	10,3
AVG+2STDEV	10,7	10,6	10,9	10,5	10,3	10,6	10,8
MAX	10,7	10,6	10,8	10,6	10,5	10,6	10,8

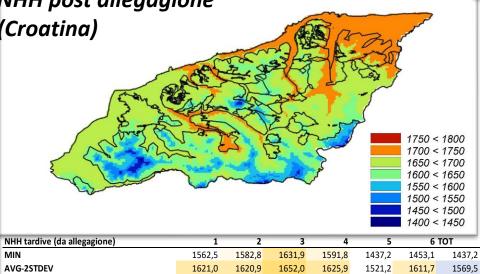

Precipitazioni annue medie [mm]	1	2	3	4	5	6	тот
MIN	735,8	705,1	630,8	672,0	630,9	646,8	630,8
AVG-2STDEV	732,0	718,4	611,9	706,2	629,7	648,2	638,9
AVG-1STDEV	742,6	731,3	655,1	720,3	665,8	682,1	677,4
AVG	753,1	744,2	698,3	734,4	701,9	716,0	716,0
AVG+1STDEV	763,7	757,0	741,6	748,5	737,9	749,9	754,5
AVG+2STDEV	774,2	769,9	784,8	762,6	774,0	783,8	793,1
MAX	782,2	774,3	772,3	769,6	758,3	761,3	782,2

Temperatura massima annua [°C]	1	2	3	4	5	6 TC	T
MIN	17,3	17,4	17,8	17,6	16,6	16,8	16,6
AVG-2STDEV	17,8	17,5	18,2	17,8	16,9	17,7	17,2
AVG-1STDEV	18,1	17,9	18,5	18,1	17,3	18,1	17,7
AVG	18,4	18,3	18,8	18,4	17,7	18,4	18,3
AVG+1STDEV	18,8	18,7	19,1	18,7	18,1	18,8	18,8
AVG+2STDEV	19,1	19,1	19,4	19,0	18,5	19,2	19,4
MAX	19,1	19,0	19,3	19,0	18,6	19,0	19,3

PPAR [MJ m-2]	1	2	3	4	5	6	тот
MIN	748	840	730	730	675	712	675
AVG-2STDEV	886	910	907	827	808	854	851
AVG-1STDEV	934	956	947	905	892	920	918
AVG	981	1002	988	983	977	987	984
AVG+1STDEV	1029	1048	1029	1061	1062	1053	1050
AVG+2STDEV	1076	1094	1070	1139	1146	1120	1116
MAX	1113	1113	1132	1205	1205	1186	1205


AVG-1STDEV


AVG+1STDEV


AVG+2STDEV

AVG

MAX

1647,5

1674,0

1727,0

1673,6

1695,3

1738,6

1729,2

1650,7

1675,6

1700,4

1725,3

1570,2

1619,1

1668,1

1717,0

1715,7

1643,7

1675,7

1707,8

1739,8

1724,9

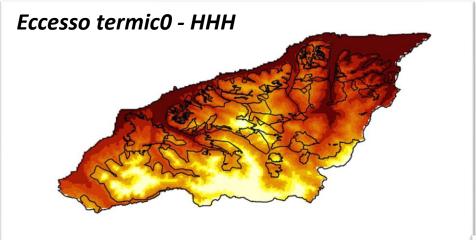
1647,2

1673,4

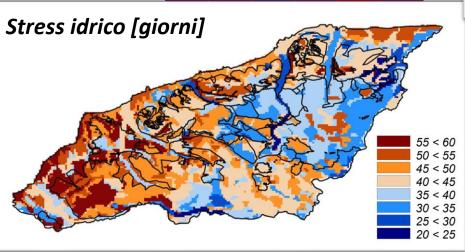
1699,6

1725,8

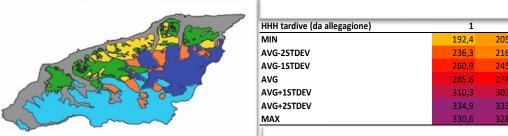
1719,6

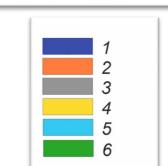

1615,7

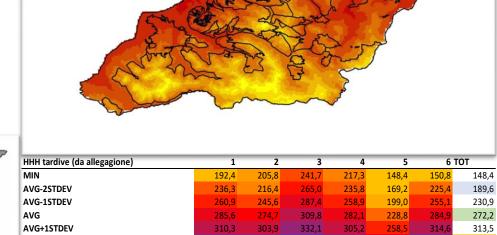
1661,9 1708,2


1754,4

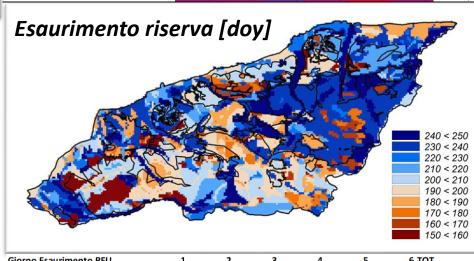
1729,2


	- NH					2700 · 2650 · 2600 · 2550 ·	< 2800 < 2750 < 2750 < 2650 < 2600 < 2550
	~			A SC		2400 · 2350 · 2300 · 2250 ·	< 2500 < 2450 < 2400 < 2350 < 2300 < 2250
NHH medie annue	1	2	3	4	5	2400 · 2350 · 2300 · 2250 · 2200 ·	< 2450 < 2400 < 2350 < 2300
NHH medie annue MIN	1 2327,9	2 2358,6	3 2464,2	4 2376,6	5 2156,4	2400 · 2350 · 2300 · 2250 · 2200 ·	< 2450 < 2400 < 2350 < 2300 < 2250
						2400 · 2350 · 2300 · 2250 · 2200 · 6	< 2450 < 2400 < 2350 < 2300 < 2250
MIN	2327,9	2358,6	2464,2	2376,6	2156,4	2400 - 2350 - 2300 - 2250 - 6 - 2171,3	< 2450 < 2400 < 2350 < 2300 < 2250 TOT 2156,4
MIN AVG-2STDEV	2327,9 2427,6	2358,6 2411,8	2464,2 2499,2	2376,6 2440,5	2156,4 2252,9	2400 - 2350 - 2300 - 2250 - 2200 - 6 - 2171,3 2408,9	< 2450 < 2400 < 2350 < 2300 < 2250 TOT 2156,4 2318,1
MIN AVG-2STDEV AVG-1STDEV AVG AVG+1STDEV	2327,9 2427,6 2496,2 2564,9 2633,6	2358,6 2411,8 2482,3 2552,8 2623,4	2464,2 2499,2 2564,0 2628,8 2693,6	2376,6 2440,5 2502,7 2565,0 2627,2	2156,4 2252,9 2339,5 2426,0 2512,6	2400 · 2350 · 2300 · 2250 · 2200 · 6 · 2171,3 2408,9 2487,0 2565,1 2643,2	< 2450 < 2400 < 2350 < 2300 < 2250 TOT 2156,4 2318,1 2426,6 2535,2 2643,7
MIN AVG-2STDEV AVG-1STDEV AVG	2327,9 2427,6 2496,2 2564,9	2358,6 2411,8 2482,3 2552,8	2464,2 2499,2 2564,0 2628,8	2376,6 2440,5 2502,7 2565,0	2156,4 2252,9 2339,5 2426,0	2400 · 2350 · 2300 · 2250 · 2200 · 6 · 2171,3 · 2408,9 · 2487,0 · 2565,1	< 2450 < 2400 < 2350 < 2300 < 2250 TOT 2156,4 2318,1 2426,6




HHH medie annue	1	2	3	4	5	6 TC	DΤ
MIN	211,0	223,0	257,2	235,0	166,1	172,9	166,
AVG-2STDEV	255,1	233,1	282,9	255,6	187,8	244,0	206,
AVG-1STDEV	280,5	263,7	306,9	279,2	217,4	274,6	249,
AVG	306,0	294,2	330,9	302,8	247,0	305,1	292,
AVG+1STDEV	331,4	324,8	354,9	326,4	276,6	335,7	334,
AVG+2STDEV	356,8	355,3	378,9	349,9	306,2	366,3	377,
MAX	353,2	350,8	373,3	351,0	319,4	352,7	373,

STRESS IDRICO [giorni]	1	2	3	4	5	6	тот
MIN	22	22	24	23	18	24	18
AVG-2STDEV	25	24	26	28	26	28	25
AVG-1STDEV	31	31	35	36	36	36	34
AVG	37	38	45	44	45	44	43
AVG+1STDEV	42	44	55	52	55	53	52
AVG+2STDEV	48	51	64	60	64	61	62
MAX	54	55	77	72	75	73	77



HHH post allegagione

(Croatina)

354,5

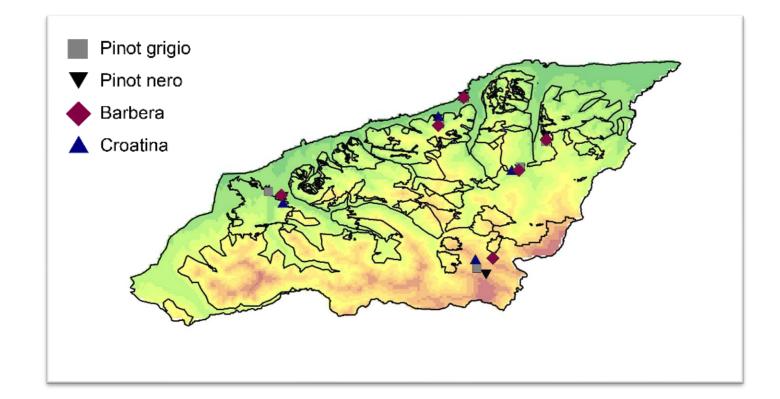
328,4

354,8

Giorno Esaurimento RFU	1	2	3	4	5	6	тот
MIN	150	156	102	119	104	102	102
AVG-2STDEV	186	176	162	152	136	156	152
AVG-1STDEV	208	200	189	178	167	183	181
AVG	230	225	216	205	197	211	211
AVG+1STDEV	252	249	243	231	228	238	241
AVG+2STDEV	274	274	270	257	258	265	270
MAX	245	244	257	243	245	244	257

2 - CARATTERIZZAZIONE VEGETO – PRODUTTIVA

Individuazione dei vigneti di riferimento:


- Un vigneto per varietà per ognuno dei 6 areali della precedente zonazione;
- All'interno di ciascun vigneto una parcella di 20 campate;
- In ogni parcella 3 sub-parcelle di 2 campate ciascuna;

Metodologia del «point quadrat»:

- Dimensione della parete vegeto-produttiva
- Spazi pieni
- Strati fogliari
- Grappoli esterni ed interni
- sintomi di appassimento

Campionamento componente produttiva:

- Acini rappresentativi (settimanalmente)
- 6 grappoli in pre-vendemmia

Analisi di laboratorio:

tramite strumentazione Foss per la determinazione di zuccheri, pH, acidità totale, acido malico, acido tartarico.

La raccolta di queste informazioni da ciascun vigneto campionato è stata utile per la determinazione di una serie di indici:

- percentuale dei grappoli esterni alla parete vegeto-produttiva [%]
- peso medio dei grappoli [Kg]
- resa espressa [t/ha]
- superficie fogliare [m²/parcella]
- Indice di equilibrio vegeto-produttivo [m² superficie fogliare/kg uva]

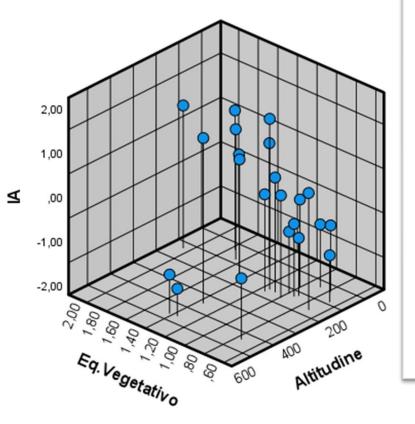
ELABORAZIONE DELLE CURVE DI MATURAZIONE

Definizione dell'indice di precocità IP e dell'indice indice di accumulo IA, calcolati normalizzando la quantità di zucchero presente nei succhi analizzati in laboratorio.

Si è proceduto alla normalizzazione del contenuto zuccherino secondo la formula $z = (x-\mu)/\sigma$.

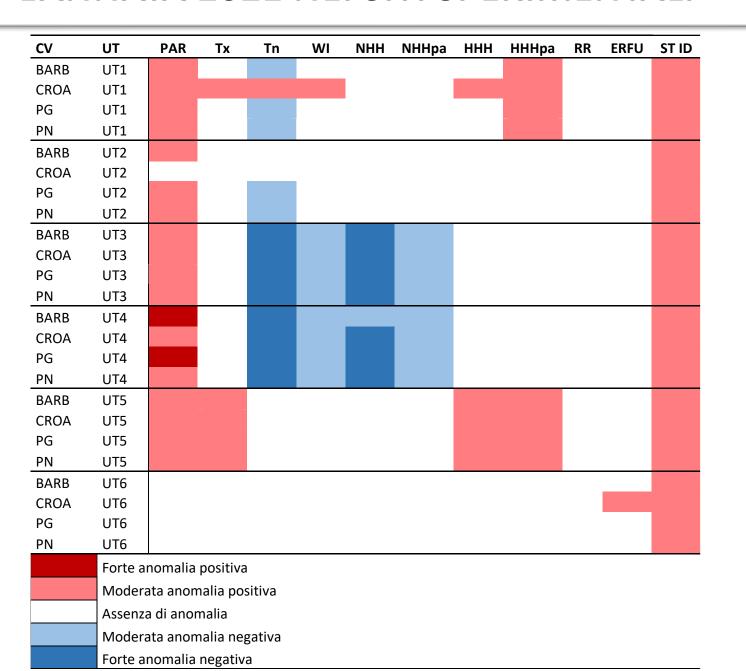
IP = punteggio z medio delle due date di campionamento postinvaiatura. L'indice assume valori positivi in caso di maggiore precocità e valori negativi per maggior tardività.

IA = punteggio z dell'ultima data di campionamento. L'indice assume valori positivi in caso di maggiore accumulo zuccherino valori negativi per minor accumulo.

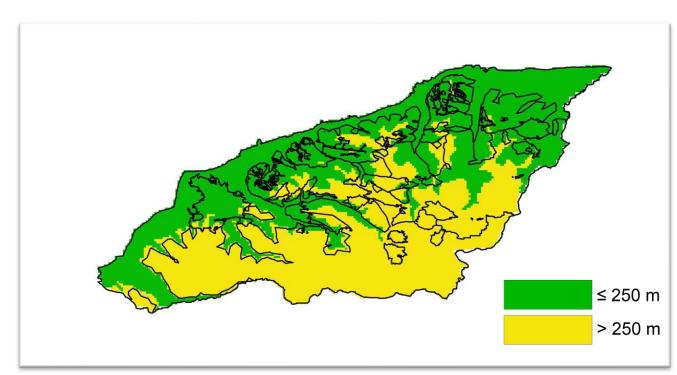

Vitigno	UT	IP	IA	Vitigno
BARB	UT1	-0,63	-0,59	PG
BARB	UT2	0,51	0,41	PG
BARB	UT3	-1,14	-0,73	PG
BARB	UT4	0,78	0,58	PG
BARB	UT5	1,31	1,50	PG
BARB	UT6	-0,83	-1,17	PG
CRO	UT1	-1,16	0,08	PN
CRO	UT2	0,14	-0,04	PN
CRO	UT3	-0,53	-0,81	PN
CRO	UT4	0,91		PN
CRO	UT5	-0,75	-0,85	PN
CRO	UT6	1,40	1,62	PN

Vitigno	UT	IP	IA
PG	UT1	-0,91	-0,83
PG	UT2	0,16	0,36
PG	UT3	0,83	0,92
PG	UT4	0,72	0,46
PG	UT5	-1,54	-1,61
PG	UT6	0,73	0,71
PN	UT1	-0,54	0,99
PN	UT2	0,25	1,01
PN	UT3	0,85	0,52
PN	UT4	0,25	-0,92
PN	UT5	-1,73	-1,35
PN	UT6	0,93	-0,25

IP **ALTITUDINE** 2,00 -2.00 **EQ. VEG-PROD**


RELAZIONE CON LE CONDIZIONI AMBIENTALI

L'altitudine svolge un ruolo significativo come fattore iniziale sulla sintesi zuccherina, mentre sull'accumulo finale giocano un ruolo significativo le pratiche gestionali

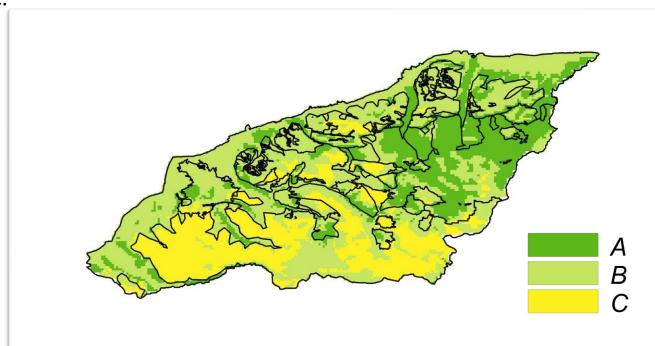


Usando come variabile dipendente come indipendenti l'altitudine e l'indice di **equilibrio vegeto-produttivo** si è visto come al di sotto di **250 m** un ruolo prioritario sia svolto dalle **pratiche gestionali**, mentre come al di sopra abbia un ruolo significativo anche l'altitudine (condizioni ambientali.

L'ANNATA 2021 NEI SITI SPERIMENTALI

3 – NUOVA IPOTESI DI ZONAZIONE

Le analisi dei dati vegeto-produttivi raccolti nei 24 vigneti campione nel corso del 2021 hanno portato a distinguere in prima istanza due aree: la fascia altimetrica inferiore a 250 m e quella al di sopra di tale limite.


In particolare, nella fascia altimetrica inferiore, la produzione è risultata fortemente influenzata dall'indice di equilibrio vegeto-produttivo e di conseguenza dalle pratiche gestionali aziendali.

Nella seconda fascia altimetrica si osserva invece l'influenza della quota sull'accumulo zuccherino. Quota che è ovviamente molto correlata con la disponibilità radiativa, l'accumulo di risorse termiche, lo stress da caldo e il livello evapotraspirativo.

3 – NUOVA IPOTESI DI ZONAZIONE

L'analisi degli strati informativi agrometeorologici sul periodo 2001-2020 suggerisce la possibilità di semplificare la suddivisione dell'areale, riducendo il numero delle Unità Territoriali.

Si propone un modello che, considerando la disponibilità di risorse termiche utili allo sviluppo della vite (accumulo medio annuo di NHH) e le condizioni di stress idrico (numero medio annuo di giorni di stress), suddivida l'areale in tre zone A, B e

Sottozona A: nessuna condizione limitante; NHH medio per il periodo 2001-2020 > 2500 e stress idrico < 40 giorni

Sottozona B: un fattore limitante presente;

Sottozona C: entrambi i fattori limitanti presenti.

Va segnalato che il livello di tali limitazioni non pregiudica in nessun caso la produzione viticola all'interno di tali aree, una volta che venga definito il miglior modello vitivinicolo.

SVILUPPI FUTURI

- Le considerazioni qui fatte evidenziano l'opportunità di procedere nei prossimi anni ad un monitoraggio più accurato della fascia altimetrica superiore.
- Il 2021 non è risultato essere caratterizzato da particolari fattori di stress, né termici né idrici, persiste la necessità del monitoraggio della fascia altimetrica inferiore al fine di valutare la risposta del territorio ad annate più estreme dal punto di vista dei possibili stress ambientali.
- L'analisi della relazione fra andamento vegeto produttivo e variabili ambientali ripetuto su più anni consentirà l'analisi della stabilità dei diversi areali

GRAZIE PER L'ATTENZIONE