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A B S T R A C T

We are witnessing a widespread adoption of artificial intelligence in healthcare. However, most of the
advancements in deep learning in this area consider only unimodal data, neglecting other modalities. Their
multimodal interpretation necessary for supporting diagnosis, prognosis and treatment decisions. In this work
we present a deep architecture, which jointly learns modality reconstructions and sample classifications using
tabular and imaging data. The explanation of the decision taken is computed by applying a latent shift
that, simulates a counterfactual prediction revealing the features of each modality that contribute the most
to the decision and a quantitative score indicating the modality importance. We validate our approach in
the context of COVID-19 pandemic using the AIforCOVID dataset, which contains multimodal data for the
early identification of patients at risk of severe outcome. The results show that the proposed method provides
meaningful explanations without degrading the classification performance.
1. Introduction

In the last decade, the practice of modern medicine has started to
heavily rely on the utilization of data coming from multiple sources [1].
At the same time, artificial intelligence (AI) has achieved state-of-the-
art results in various domains [2], healthcare included. Nevertheless,
most of the deep neural networks applied to medical tasks consider only
one data modality, neglecting information available in other sources.
However, analyzing medical findings is multimodal by its very nature:
a characteristic that, in turn, asks for developing AI approaches able to
process data of different modalities [3,4]. This has fostered the rise of
multimodal deep learning (MDL) [4], which aims to develop learning
models able to process and link information gathered from different
modalities. MDL is a topic where researchers have investigated several
methods to learn together multimodal information via early, late, and
joint fusion [4], as it will be presented in Section 2.

With the goal of reaching high performance, many complex AI
models developed so far have a black-box nature [5], neglecting trust
and transparency [6], two features that are of particular importance in
biomedicine [7]. Indeed, a lack in explainability limits the application
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of AI models into the clinical practice. To overcome this limitation,
in the last years large research efforts have been directed towards
explainable AI (XAI), which aims to explain how a black-box model
produces its outcomes.

In healthcare, the need of multimodal models and of explainabil-
ity make multimodal explanations vital to develop robust and trust-
worthy AI models. This happens because multimodal models extract
more comprehensive information than the unimodal models, so that
their explanations could offer more insights into the available medical
data. The multimodal setting of XAI explores the complementary and
explanatory strengths of the different modalities, with the goal of
obtaining better explanations that localize the relevant features and
modalities [8]. Despite this relevance, to the best of our knowledge,
the biomedical literature lacks of explainable deep multimodal models.
For this reason we present a novel end-to-end multimodal architecture,
with intrinsic explanations, that jointly learns modality reconstructions
and multimodal classification using imaging and tabular modalities.
With this architecture we extract deep multimodal representations of
the data; then, we apply a latent shift to simulate a counterfactual
vailable online 24 July 2024
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prediction, thus obtaining an intrinsic explanation that reveals how and
why the model arrived at a particular decision.

We test our approach in the context of the COVID-19 pandemic
using the AIforCOVID public dataset [9] for three reasons. First, the
development of AI-based tools supporting COVID-19 prognosis exploit-
ing multimodal data is still an open research issue addressed by few
work in the literature [9–15], which will be discussed in Section 2.
Second, while there is a lack of multimodal XAI (MXAI) approaches in
general, no one has proposed multimodal explanations to gain trust and
transparency in COVID-19 prognosis. Third, the AIforCOVID dataset is
the largest publicly available repository containing chest X-ray (CXR)
images and clinical data collected at the time of hospitalization, further
to clinical outcomes stratifying patients into those with and without risk
of a severe disease progression [16]. It is worth noting that, in general,
images and clinical data are two important sources of information in
medicine. Indeed, the former allows radiologists to focus on visual
evidence for both diagnostic and prognostic purposes, whereas the
latter which are usually stores as tabular data, offer to clinicians a
concise and multi-dimensional assessment of patients’ health status.
Hence, having both the modalities should be important to test MDL and
MXAI approaches that would support the medical decision process.

The main contributions of our work are:

• The development of an intrinsic explainable architecture specifi-
cally designed for multimodal classification.

• The introduction of a joint learning approach that enables to
simultaneously train both the data reconstruction and the clas-
sification tasks using tabular and imaging data.

• The proposal of a novel latent space counterfactual method that
allows for explainability in both multimodal and unimodal con-
texts. It reveals the modalities and features that contribute the
most to the decision-making process.

• The effective application of the proposed approach in the context
of the COVID-19 pandemic to early identify patients at risk of
severe outcomes, using the publicly available AIforCOVID dataset.

• The validation of the proposed method, strengthened by a reader
study with four radiologists, showing that it provides meaningful
explanations without sacrificing the classification performance.

The rest of the manuscript is organized as follows. Section 2 in-
troduces the state-of-the art of both MDL and MXAI. Then, Section 3
presents our novel architecture and training procedure, and it explains
the MXAI method extracting multimodal explanations. In Section 4 we
describe the dataset used to validate the methods, the pre-processing
phase on the data, the implementation setup and the validation strategy
adopted. Section 5 presents and discusses the obtained results, whilst
Section 6 provides concluding remarks.

2. Background

In this section we first present the state-of-the-art of MDL in the
context of COVID-19 prognosis prediction by using images and tabular
clinical data, whereas the interested readers can deepen MDL in health-
care in recent surveys [1]. Indeed the literature is quite large and its
review is out of the scope of this work. Second, given the lack of MXAI
approaches in COVID-19 prognosis [17], we will summarize MXAI
research in healthcare, whilst the readers can refer to [18] for XAI
applications on unimodal data in COVID-19 imaging. We will conclude
this section by summarizing the motivations of this work.

2.1. MDL

There is a general consensus that medical images complemented
by clinical data can help physicians, and radiologist in particular,
better understanding the patient’s state, thus advancing to a more
informative decision making process [19]. In this respect, research in
the field of MDL has been increasing [4] since multimodal data give
2

the opportunity to train models that can learn the complex dynamics
behind a disease.

The level at which the fusion of input modalities occurs in the
network is usually distinguished into early, intermediate or late fu-
sion [4]. Early fusion combines raw data or extracted features by
the different modalities which are fed to a simple learner, whilst
late fusion combines at the decision level the outputs of networks
independently trained on each modality. Intermediate fusion learns a
joint representation of different modalities at a shared representation
layer, by propagating the loss back to the feature extractor network in
an end-to-end manner.

The application of AI in COVID-19 using medical imaging and
clinical data has mainly focused on discriminating patients suffering
from COVID-19 pneumonia from those which are healthy or affected
by different types of pneumonia [20]. Nevertheless, only four work
investigated patients’ stratification into mild and severe outcomes using
such multimodal data [9,13–15], which can be further divided in three
using computed tomography (CT) scans [13–15] and one using CXR
images [9].

In [13] the authors proposed a deep network using CT scans and 53
clinical features to detect the potential malignant progression of mild
patients. Via a multi-layer perceptron (MLP) processing the clinical fea-
tures only, their method gets an embedding that is then concatenated
in an early fusion approach with the flattened CT scan. This new vector
then fed a Long short-term memory (LSTM) network followed by a
fully-connected (FC) network, which produces the output. On a private
cohort of 199 patients, they obtained an accuracy of 79.20%. In [14]
the authors used 130 clinical features and CT scans to discriminate
between negative, mild and severe COVID-19 cases via an early fusion
of a VGG-16 and a 7-layer FC network. They used a private dataset
containing 1521 patients, achieving an accuracy equal to 81.10%.
Fang et al. applied joint fusion combining CT scans and 61 clinical
features, which fed a deep network to predict COVID-19 malignant
progression [15]. The approach extracts the abstract representations of
CT images using a 3D ResNet, and of the clinical data via a FC network.
These two embeddings are concatenated and given to an LSTM followed
by another FC network. The whole architecture is training in an end-
to-end modality. On a private dataset containing 1040 patients they
achieved an accuracy equal to 87.70%.

It is worth noting that CXR helps indicating abnormal formations
of a large variety of chest diseases by using a very small amount of
radiation, whilst CT delivers a much higher detail level of the lungs’
structures. Furthermore, X-ray equipment is much smaller, less com-
plex, and with lower costs than CT scans; it also prevents other three
limitations of CT imaging, i.e., the lack of available machines’ slots, the
difficulty of moving bedridden patients, and the long sanitation times.
For these reasons, several authors indicated that CXR imaging fit well
with the needs of COVID-19 pandemic [21]. Let us now focus on the
only work that uses CXR images and clinical data for the COVID-19
prognosis [9]. There, the authors presented three different multimodal
AI approaches, offering also baseline performance on the AIforCOVID
dataset, which we will present in Section 4 together with the best
results attained. The first method, named as handcrafted approach,
computed first-order and texture features from the images, which are
then stacked in an early fusion fashion with the clinical features, then
feeding different learners among which the Support Vector Machine
resulted to be the best. The second approach, referred to as hybrid,
combines automatic features extracted by a convolutional neural net-
work with the clinical ones; then it runs a feature selection stage whose
output is given to the learner. The hybrid approach achieved the best
results using the GoogleNet and the Support Vector Machine classifier.
The third approach, named as end-to-end, performs intermediate fusion
of the two modalities by defining a multi-input network concatenating
hidden vectors of the two modalities. This architecture contains three
main branches: two process independently CXR scans and clinical fea-
tures to get a small number of relevant and abstract features, while the
third one concatenates such embeddings that is given to a FC network,

which outputs the prognosis.
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2.2. MXAI

High performing deep models are often black-boxes, which hide
their decision-making process, making it hard to understand why a
certain result is obtained. This has boosted the growth of XAI, and many
unimodal methods have been proposed to extract explanations on how
the model has interpreted the data [6] with applications to different
fields. In particular, many authors agree that explanations are strongly
recommended in medical applications [22], because this would help
mapping explainability with causability that, in turns, would allow
practitioners to understand why a model came up with a result.

The only available review on MXAI [23] surveys its applications in
computer vision and natural language processing, showing that MXAI
lacks in the medical field. This is confirmed by the position paper [24],
which states that in radiology there is a lack of integrative methods
that, combining imaging and tabular data, provide explanations on the
decisions taken. This confirms the need of multimodal explanations to
capture the complexity of all the factors underlying a disease. Indeed,
for a medical task to have a comprehensive global view of the data
and of the system, an ideal MXAI method should be able to identify
the importance of each modality and the importance of each unimodal
feature.

The MXAI review [23], even if it does not focus on the medical
field, is also interesting because it groups XAI algorithms adopting three
different criteria. First, it focuses on the stage at which the XAI can
be applied, identifying pre-modeling, during modeling and post-hoc
modeling explanations [23]. As their names explain, the pre-modeling
methods’ explainability is included before the model development,
during modeling include the models which are usually explainable by
design and employ intrinsic methods, and post-hoc modeling is applied
after the model is developed by extracting explanations via perturba-
tions or backpropagation methods [25]. Second, with reference to the
scope of the explanation, XAI models can be either local or global [23],
depending if the explanation regards a single instance or the model
as a whole. The third criterion deal with the dependency of the XAI
algorithm, so that it distinguishes model specific and model agnostic
explanations [23]. While the interested readers can deepen [23] to have
more details, on the basis of this survey we observe that there is a
lack in multimodal intrinsic explainability, i.e., methods able to return
multimodal local explanations.

As mentioned in the forewords of this section, the analysis of the
literature that uses multimodal data for COVID-19 prognosis shows
that, to the best of our knowledge, none has investigated MXAI in this
field yet.

2.3. Motivations

Multimodal settings have improved the predictive power of models
in many applications thanks to the interaction of different modalities,
via a richer representation with task-relevant features [8]. Neverthe-
less, this availability of information from different modality makes
explainability a key necessity to reduce the opacity of the multimodal
deep architectures [7]. This has recently fostered the raise of MXAI,
which has mainly focused on computer vision and natural language
processing. Indeed, the literature on XAI in medical applications has
concentrated more on unimodal attribution methods, struggling in hav-
ing explanations of neural networks working on multiple data sources.
Therefore, developing multimodal methods for explainability is an
urgent and open issue, also because the development of multimodal
deep architectures in different healthcare applications asks for novel
approaches to open such black boxes. In turn, this can help physicians,
patients and regulators to trust the decisions taken. Among the several
fields where MDL and MXAI can be applied, we test our methodology to
the early identification of COVID-19 patients at risk of severe outcome
using imaging and tabular data, because the survey of the literature pre-
sented hereinbefore shows that few work has addressed this challenge,
3

despite the disruptive impact of this disease worldwide.
3. Methods

In this section we present a novel architecture that exploits joint
learning, for which we design an intrinsic counterfactual MXAI ap-
proach to extract explanations of a classification task. In general,
counterfactual explanations refer to a type of explanation that aims
to comprehend the causes of an observed outcome by exploring al-
ternative scenarios, which helps in gaining a deeper understanding of
the causal relationships that led to the observed outcome [5]. Such
multimodal explanations will permit users to understand not only
the importance of each modality for each classification, but also the
features which contributed the most to the decision for every single
modality.

We first present the architecture of the multimodal model; second
we focus on the training approach and, third, we detail the intrinsic
MXAI method.

3.1. Notation

The notation used henceforth makes us of the following symbols:

• 𝑇 and 𝐼 are the tabular and the imaging modalities, respectively;
• 𝒙𝑇 and 𝒙𝐼 are the inputs for the tabular and imaging modality,

respectively;
• 𝐴𝐸 and 𝐶𝐴𝐸 are the autoencoder and convolution autoencoder

which receive as input 𝒙𝑇 and 𝒙𝐼 , respectively. Both are com-
posed of an encoder 𝐸𝐴𝐸 , 𝐸𝐶𝐴𝐸 and a decoder 𝐷𝐴𝐸 , 𝐷𝐶𝐴𝐸 ,
respectively;

• 𝒉𝑇 ∈ R𝑛 and 𝒉𝐼 ∈ R𝑚 are the latent vectors of the 𝐴𝐸 and the
𝐶𝐴𝐸, respectively. Their concatenation produces the multimodal
embedding 𝒉 ∈ R𝑛+𝑚;

• �̂�𝑇 and �̂�𝐼 are the outputs produced by the 𝐴𝐸 and the 𝐶𝐴𝐸,
respectively, representing the reconstruction of the inputs 𝒙𝑇 and
𝒙𝐼 ;

• 𝐶𝑀𝐿𝑃 is the multi-layer perceptron receiving the vector 𝒉 to
perform the classification;

• 𝒚 ∈ R𝑐 is the output vector of 𝐶𝑀𝐿𝑃 , which expresses the
predicted posterior probability, with 𝑐 being equal to the number
of classes;

• 𝐿𝑇 , 𝐿𝐼 , 𝐿𝐶 are the loss functions of the 𝐴𝐸, 𝐶𝐴𝐸 and 𝐶𝑀𝐿𝑃 ,
respectively, whose linear combination results in 𝐿, weighted by
the corresponding scalar parameters 𝛾𝑇 ∈ R, 𝛾𝐼 ∈ R, 𝛾𝐶 ∈ R;

• 𝒉𝜆𝑇 ∈ R𝑛, 𝒉𝜆𝐼 ∈ R𝑚 and 𝒉𝜆 ∈ R𝑛+𝑚 are the modified vector
embeddings of 𝒉𝑇 , 𝒉𝐼 and 𝒉, respectively, regulated by scalar
parameter 𝜆 ∈ R;

• �̂�𝜆𝑇 , �̂�𝜆𝐼 and 𝒚𝜆 ∈ R𝑐 are the outputs produced by 𝐷𝐴𝐸 , 𝐷𝐶𝐴𝐸 and
𝐶𝑀𝐿𝑃 , respectively, when the input is 𝒉𝜆𝑇 , 𝒉𝜆𝐼 and 𝒉𝜆, respectively;

• 𝛥𝑇 ∈ R and 𝛥𝐼 ∈ R express the resulting modality importance
comparing 𝒉𝑇 with 𝒉𝜆𝑇 and 𝒉𝐼 with 𝒉𝜆𝐼 , respectively;

• �̂�𝑇 ∈ R𝑛, �̂�𝐼 ∈ R𝑚 express the resulting unimodal feature
importance comparing �̂�𝑇 with �̂�𝜆𝑇 and �̂�𝐼 with �̂�𝜆𝐼 , respectively.

3.2. Architecture

Here we present the structure of the designed classification model
that works with 𝑇 and 𝐼 . The proposed multimodal architecture con-
sists of three blocks: an autoencoder (𝐴𝐸), a convolutional autoencoder
(𝐶𝐴𝐸), and a multi-layer perceptron classifier (𝐶𝑀𝐿𝑃 ). As shown in
Fig. 1, the network has two inputs and three outputs. The tabular
modality 𝒙𝑇 feeds the 𝐴𝐸, whereas the imaging modality 𝒙𝐼 is given to
the CAE. Both are composed of an encoder and a decoder, returning the
reconstruction of the respective modality, �̂�𝑇 and �̂�𝐼 . By concatenating
the two embeddings 𝒉𝑇 and 𝒉𝐼 we get 𝒉, which is given to the 𝐶𝑀𝐿𝑃
classifier that returns the classification vector 𝒚. The entire architecture

is trained in an end-to-end manner, via a linear combination of three
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Fig. 1. Schematic view of the multimodal deep architecture: for each instance, the input modalities 𝒙𝑇 and 𝒙𝐼 feed into their corresponding encoders 𝐸𝐴𝐸 and 𝐸𝐶𝐴𝐸 , obtaining
the unimodal embeddings 𝒉𝑇 and 𝒉𝐼 , respectively. These embeddings are then concatenated into the multimodal embedding 𝒉, which subsequently feeds into the decoders 𝐷𝐴𝐸 ,
𝐷𝐶𝐴𝐸 , and the classifier 𝐶𝑀𝐿𝑃 . The resulting outputs are the reconstructions �̂�𝑇 , �̂�𝐼 , and classification 𝒚, respectively. The model is trained by simultaneously minimizing the
reconstruction losses 𝐿𝑅𝑇 , 𝐿𝑅𝐼 , and the classification loss 𝐿𝐶 .
loss functions, two for reconstruction (𝐿𝑇 and 𝐿𝐼 ) and one for the
classification (𝐿𝐶 ).

This overview reveals that our framework jointly learns deep repre-
sentations of imaging and tabular data to perform a classification task.
Indeed, it learns a feature space with local modality structure able to be
used for reconstruction, and it manipulates the combined feature space
by incorporating a classification oriented loss.

Autoencoders. An 𝐴𝐸 and a 𝐶𝐴𝐸 are artificial neural networks which
learn an approximation to the identity function, with the goal of mini-
mizing the distance between the outputs �̂�𝑇 , �̂�𝐼 and the inputs 𝒙𝑇 , 𝒙𝐼 ,
respectively. The encoders 𝐸𝐴𝐸 and 𝐸𝐶𝐴𝐸 compress the corresponding
inputs 𝒙𝑇 , 𝒙𝐼 to a latent space representation 𝒉𝑇 and 𝒉𝐼 , using fully
connected layers in the 𝐴𝐸 and convolutional layers in the 𝐶𝐴𝐸,
respectively. The decoders 𝐷𝐴𝐸 and 𝐷𝐶𝐴𝐸 use the bottleneck latent
space representation 𝒉𝑇 and 𝒉𝐼 to reconstruct the inputs 𝒙𝑇 , 𝒙𝐼 in �̂�𝑇 ,
�̂�𝐼 , respectively. Therefore:

𝒉𝑇 = 𝐸𝐴𝐸 (𝒙𝑇 ) (1)

𝒉𝐼 = 𝐸𝐶𝐴𝐸 (𝒙𝐼 ) (2)

�̂�𝑇 = 𝐷𝐴𝐸 (𝒉𝑇 ) (3)

�̂�𝐼 = 𝐷𝐶𝐴𝐸 (𝒉𝐼 ) (4)

When training the 𝐴𝐸 and the 𝐶𝐴𝐸 we aim to minimize the distance
between its inputs and outputs over all samples, using as reconstruction
loss functions 𝐿𝑇 and 𝐿𝐼 for the tabular and imaging modalities,
respectively. We constrain the dimension of latent spaces 𝒉𝑇 and 𝒉𝐼
to be lower than input data 𝒙𝑇 and 𝒙𝐼 , respectively, forcing both the
𝐴𝐸 and the 𝐶𝐴𝐸 to capture the most salient features of the data. This
is a well-known approach to avoid identity mapping [26].

Classifier. The two embeddings 𝒉𝑇 and 𝒉𝐼 are concatenated in 𝒉 and
used as input to the fully connected 𝐶𝑀𝐿𝑃 , which performs the classi-
fication task returning 𝒚, So that:

𝒚 = 𝐶𝑀𝐿𝑃 (𝒉) (5)

The goal of this block is to minimize the classification error with a
classification loss 𝐿𝐶 . Note that the final layer of the 𝐶𝑀𝐿𝑃 uses the
Softmax activation function, such that
𝑐
∑

𝑖=1
𝒚𝑖 = 1 (6)

This implies that 𝒚 can be considered as an estimate of the posterior
4

probability.
End-to-end training. In this way, the network’s training can be back-
propagated in an end-to-end manner, via a linear combination of the
three loss functions:

𝐿 = 𝛾𝑇𝐿𝑇 + 𝛾𝐼𝐿𝐼 + 𝛾𝐶𝐿𝐶 (7)

where 𝛾𝑇 , 𝛾𝐼 , and 𝛾𝐶 are parameters, which regulate the importance of
each loss function.

This approach has the beneficial effect of being able to learn embed-
ded features in an end-to-end way, which are jointly used to perform
data reconstruction and classification, minimizing the reconstruction
loss of 𝐴𝐸 and the 𝐶𝐴𝐸 and the classification loss of the 𝐶𝑀𝐿𝑃 . Our
key idea is that the co-learning of the 𝐴𝐸, the 𝐶𝐴𝐸 and the 𝐶𝑀𝐿𝑃
is beneficial to learn features from the tabular and imaging modality
to obtain a classification and a good reconstruction useful for the
explainability, presented in Section 3.4.

3.3. Three-stage training

Given the complex structure of the architecture proposed, we train
the network with a three-stage procedure, which adapts the 𝛾𝑇 , 𝛾𝐼 , 𝛾𝐶
parameters in way to concentrate the training on different parts of the
network. The three stages are:

1. Setting 𝛾𝑇 = 1, 𝛾𝐼 = 0 and 𝛾𝐶 = 0 to train only the weights of the
𝐴𝐸;

2. Setting 𝛾𝑇 = 0, 𝛾𝐼 = 1 and 𝛾𝐶 = 0 to train only the weights of the
𝐶𝐴𝐸;

3. Setting 𝛾𝑇 = 1, 𝛾𝐼 = 1 and 𝛾𝐶 = 1 to train all the weights of
network.

The main idea is to help the training of the 𝐶𝑀𝐿𝑃 classifier, giving
initialization weights that constrict an optimal modality embedding for
reconstruction, expressing a good summary of the data. Notice also
that, given the architecture of the network, it is irrelevant if we invert
stage 1 and 2 since the 𝐴𝐸 and 𝐶𝐴𝐸 have no weights in common. In
step 3 we decided to set all the parameters to 1 so that all the tasks
would have equal weight.

3.4. MXAI

We use a gradient update, also referred to as latent shift, that
can transform the latent representation of the inputs to exaggerate or
curtail the features used for prediction. Via the latent shift explanations
we obtain both modality importance and feature importance for each
prediction.
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Fig. 2. Schematic view of the MXAI framework: once the model is trained, each instance’s multimodal embedding 𝒉 feeds into the decoders 𝐷𝐴𝐸 , 𝐷𝐶𝐴𝐸 , and the classifier 𝐶𝑀𝐿𝑃 ,
according to colors that specify that portion of ℎ is given to each network. The decoders and the classifier provide the original reconstructions �̂�𝑇 , �̂�𝐼 , and classification 𝒚. Via
the latent-shift method we obtain a 𝜆 > 0, which gives us a flip in the classification 𝒚𝜆 by feeding the shifted multimodal embedding 𝒉𝜆 to 𝐶𝑀𝐿𝑃 . By feeding this new embedding
to 𝐷𝐴𝐸 and 𝐷𝐶𝐴𝐸 , we obtain new reconstructions �̂�𝜆

𝑇 and �̂�𝜆
𝐼 . By comparing 𝒉 with 𝒉𝜆, �̂�𝑇 with �̂�𝜆

𝑇 , and �̂�𝐼 with �̂�𝜆
𝐼 , we obtain the corresponding multimodal and unimodal

explanations, respectively.
Latent shift. The only requisite to apply latent shift to a network is of
having all the network components, which receive the latent vector 𝒉,
to be differentiable. With the 𝐴𝐸, a 𝐶𝐴𝐸 and a 𝐶𝑀𝐿𝑃 we satisfy this
requisite and, in addition, they are simple to implement and train. Once
these components are trained, we extract the explanation as shown in
Fig. 2. Multimodal input instances 𝒙𝑇 and 𝒙𝐼 are encoded producing
the multimodal latent representations 𝒉𝑇 and 𝒉𝐼 , which are combined
into 𝒉, as already described. Perturbations of this latent embedding are
computed via

𝒉𝜆 = 𝒉 − 𝜆
𝜕𝐶𝑀𝐿𝑃 (𝒉)

𝜕𝒉
(8)

where 𝜆 ∈ R is a parameter establishing how much the original
embedding is modified. With 𝜆 > 0, we expect that 𝐶𝑀𝐿𝑃 (𝒉𝜆) would
provide a prediction 𝒚𝜆 so that

max(𝒚) ≥ 𝒚𝜆(arg max(𝒚)) (9)

This implies that, as 𝜆 increases, we expect a flip of the predicted class.
In other words, guided by the direction of variation of the output in
the latent space determined by the gradient of network output, we are
interested in determining the 𝜆 value for which a classification label
flip occurs. With too small values of 𝜆, for the smoothness principle, the
difference between the original modality input and the reconstruction
will not be large enough to change the prediction of the model. On the
contrary, too large values of 𝜆 would distort the reconstruction so much
that it will not be useful for explainability. Thus, to find the value of
𝜆 where the class flip occurs, we use an iterative search that, starting
from 𝜆 = 0, and using a fixed step heuristically set to 10, increases 𝜆
until 𝒚𝜆 ≠ 𝒚.

We produce 𝜆-shifted counterfactual multimodal reconstructions 𝒙𝜆𝑇 ,
𝒙𝜆𝐼 and output probabilities 𝒚𝜆 defined as:

�̂�𝜆𝑇 = 𝐷𝐴𝐸 (𝒉𝜆𝑇 ) (10)

�̂�𝜆𝐼 = 𝐷𝐶𝐴𝐸 (𝒉𝜆𝐼 ) (11)

𝒚𝜆 = 𝐶𝑀𝐿𝑃 (𝒉𝜆) (12)

where 𝒉𝜆𝑇 and 𝒉𝜆𝐼 are given by:

𝒉𝜆 = 𝒉𝑇 − 𝜆
𝜕𝐶𝑀𝐿𝑃 (𝒉) (13)
5

𝑇 𝜕𝒉𝑇
𝒉𝜆𝐼 = 𝒉𝐼 − 𝜆
𝜕𝐶𝑀𝐿𝑃 (𝒉)

𝜕𝒉𝐼
(14)

so that 𝒉𝜆 is the concatenation of 𝒉𝜆𝑇 and 𝒉𝜆𝐼 .
It is worth noting that finding an informative latent space relies on

the quality of the 𝐴𝐸 and 𝐶𝐴𝐸. This justifies even more the use of the
three-stage training, facilitating the training of the 𝐴𝐸 and 𝐶𝐴𝐸.

Modality importance. Since the multimodal embedding 𝒉 is composed
by the concatenation of the unimodal embeddings 𝒉𝑇 and 𝒉𝐼 , we know
to which modality each element of 𝒉 is associated to. Once calculated
𝒉𝜆𝑇 and 𝒉𝜆𝐼 , we compute the modality normalized absolute differences,
to understand how much each element has been shifted:

𝛥𝑇 =
‖𝒉𝑇 − 𝒉𝜆𝑇 ‖1

𝑛
(15)

𝛥𝐼 =
‖𝒉𝐼 − 𝒉𝜆𝐼‖1

𝑚
(16)

where 𝑛 and 𝑚 denote the number of elements in each vector, and
‖.‖1 denotes the 𝑙1-𝑛𝑜𝑟𝑚. Hence, 𝛥𝑇 and 𝛥𝐼 express the importance of
each modality: the more a modality embedding has changed, the more
important it is for the classification of a given sample.

Feature importance. Similar to the modality importance, we now focus
on an approach to reveal which features per modality are more im-
portant for the classification of a certain instance. Using the shifted
reconstructions �̂�𝜆𝑇 and �̂�𝜆𝐼 , we compute the absolute differences with
the original reconstructions �̂�𝑇 and �̂�𝐼

�̂�𝑇 = |�̂�𝑇 − �̂�𝜆𝑇 | (17)

�̂�𝐼 = |�̂�𝐼 − �̂�𝜆𝐼 | (18)

Note that �̂�𝑇 and �̂�𝐼 make us understand for each feature how much it
has changed for the classification shift. The more a feature changes,
the more important it is for the classification. This works for both
modalities, resulting 𝜟𝑇 to be an importance vector for the tabular
modality and 𝜟𝐼 to be an importance matrix for the imaging modality.

Putting our method in the taxonomy. Following the taxonomy intro-
duced in Section 2 and originally presented in [23], our proposal is an
hybrid between during and post-hoc modeling as it exploits a specific
network architecture using both perturbations and backpropagation
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methods to extract the explanations. In particular our method uses
counterfactual explanations, specifying the minimal desired changes
required to flip the decision, mapping the class-specific and discrimina-
tive features of each modality. In addition, our MXAI method is local,
since we are interested in explaining how the model functions at in-
stance level. Finally, our method is model-specific since its architecture
is constructed in a way to output the explanations.

4. Experimental configuration

In this section we introduce the used dataset and how the two
modalities are pre-processed to train the network. Then, we deepen the
validation phase of the proposed MXAI method where we conducted a
reader study with four COVID-19 expert radiologists.

4.1. Dataset

For the last two years the world has been struck by the COVID-
19 pandemic causing millions of cases and deaths. During this period,
many researchers practitioners and companies have developed novel AI
methods and tools to combat the rising of the pandemic by deepening
the virus’s understanding. Many studies have focused their attention
on unimodal data using CXR, CT or clinical examinations to replace
or to supplement the reverse transcriptase-polymerase chain reaction
tests. But given the multimodal nature of medicine, both imaging data
and clinical information can help radiologists and practitioners on
determining the source of symptoms, stratifying the disease severity,
and establishing the best treatment plan for the patient’s specific needs.

We use the AIforCOVID imaging archive [9] because it is the only
publicly available multimodal dataset on COVID-19 stratification, as
shown in the survey [16]. The archive includes clinical data (tabular
modality) and CXR scans (imaging modality) of 820 patients recorded
from six different Italian hospitals. In particular, there are 120, 104,
31, 139, 101, and 325 patients per hospital. The interested readers can
refer to [9,27–30] for further details.

The patients’ data were collected at the time of hospitalization
if the TR-PCR test resulted positive to the SARS-CoV-2 infection. All
the patients were assigned to the mild or severe class, on the basis
of the clinical outcome. The mild group includes 384 patients who
were either sent back to domiciliary isolation or hospitalized without
any ventilatory support, whereas the severe group is composed of 436
patients who required non-invasive ventilation support, intensive care
unit admission, or those who died. Furthermore, any AI model trained
on the AIforCOVID dataset is exposed to a diverse range of patient
populations since it incorporates data from multiple centers, which
should help ensure that the model is more generalizable and applicable
to a wider extent.

4.2. Pre-processing

We applied the same pre-processing procedure and validation ap-
proach presented in [9] to avoid any performance bias, which are now
briefly summarized for the sake of presentation.

Tabular data. We use the 34 clinical descriptors indicated in [9] which
are not direct indicators of the prognosis. Missing data were imputed
using the mean and the mode for continuous and categorical variables,
respectively. A min–max scaler was applied along the variables to have
the features all in the same range [0, 1].

maging data. This modality consists of CXR scans, which were pro-
essed by extracting the segmentation mask of lungs, using a U-Net
rained on two non-COVID-19 lung datasets [31,32]. The mask was
sed to extrapolate the minimum squared bounding box containing
oth lungs. The extracted box was then resized to 224 × 224 matrix,
nd normalized with a min–max scaler bringing the pixel values in the
ange [0, 1].
6

.3. Implementation setup

Here we describe the architectures of the three blocks of the model,
s well as the parameters and settings used during training.

The AE’s input and output layers consist of 34 (one for each fea-
ure) and 2 (one for each class) neurons, respectively. Its encoder and
ecoder are composed of fully connected hidden layers activated by
eLU functions. We opted to use such architectures since these feed-

orward networks are able to learn a low-dimensional representation
efore being fused with the other modality [33]. Both 𝐸𝐴𝐸 and 𝐷𝐴𝐸
ave 6 hidden layers and 𝑛 = 8. The loss function 𝐿𝑇 is the mean
quared error (MSE).

The 𝐶𝐴𝐸 is a 2D ResNet101 [34], which we selected because of the
kip connections that mitigate the problem of the vanishing gradient,
nsuring high fidelity image reconstruction. Both the input and the out-
ut of the network have a 224 × 224 dimension, so that the dimension
f the embedding is 𝑚 = 4608. The dimensions the embeddings of both
he 𝐴𝐸 and the 𝐶𝐴𝐸 were chosen small enough to prevent the curse
f dimensionality. To facilitate the reconstruction training, this model
as pre-trained trained on 4 different CXR datasets [35], that in total
ccount for a total of 674 525 scans. For consistency, the corresponding
oss function 𝐿𝐼 is the MSE.

Let us now focus on the 𝐶𝑀𝐿𝑃 classifier: its input and output layers
consist of 4616 and 2 neurons (one for each class), respectively. It
is composed of 7 fully connected hidden layers (with 512, 256, 128,
64, 32, 16, 8 neurons, respectively) activated by ReLU functions, with
a Softmax activation in the output layer. We design this structure to
gradually learn the classification from the multimodal embedding. The
loss function 𝐿𝐶 is the cross-entropy.

For all the three stages of the training, introduced in Section 3.3,
we adopt the same training procedure of [9], now summarized. To
prevent overfitting of the 𝐶𝐴𝐸, we applied the following image random
transformations: horizontal or vertical shift (−20 ≤ pixels ≤ 20), random
zoom (0.9 ≤ factor ≤ 1.1), vertical flip, random rotation (−15◦ ≤ angle

15◦), and elastic transform (20 ≤ 𝛼 ≤ 40, 𝜎 = 7). No augmentation
as applied on the tabular data. The loss functions 𝐿𝑇 , 𝐿𝐼 , 𝐿𝐶 and

𝐿 are regulated by an Adam optimizer with an initial learning rate of
0.001, which is scheduled to reduce by an order of magnitude every
time the minimum validation loss does not change for 10 consecutive
epochs. To prevent overtraining and overfitting we fixed the number of
maximum epochs to 300, with an early stopping of 25 epochs on the
validation loss.

4.4. Validation approach

To understand the robustness of the model we trained the network
in 10-fold stratified cross-validation (CV), and leave-one-center-out CV
(LOCO), following the same experimental procedure described in [9],
thus ensuring a fair competition between the approaches. In CV, the
fold distribution of the training, validation and testing sets is 70%-
20%–10%, respectively. In LOCO validation we study how the models
generalize to different data sources, since in each fold the test set
contains all the samples belonging to only one of the six hospitals that,
of course, are not in the training and validation sets.

All the experiments were performed using a batch size of 16 on a
NVIDIA TESLA A100 GPU with 32 GB of memory, using PyTorch as the
deep learning library.

4.5. Sanity check

To study the validity of the proposed MXAI method, we conducted
a reader study with four radiologists assessing the prognosis of 96
patients randomly extracted. Each radiologist has more than 10 years
of experience. The radiologists 𝑅1, 𝑅2, 𝑅3, 𝑅4 were presented with
a survey that has two aims. The first is to compare our method’s
classification performance with the one of human experts. The second
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Table 1
Classification performance.
Model Validation Accuracy (%) Sensitivity (%) Specificity (%)

Our proposal (three-stage training)
CV 76.75 ± 5.32 78.58 ± 6.48 74.55 ± 5.86
LOCO 74.21 ± 6.08 76.73 ± 18.88 68.40 ± 15.46
Survey 76.77 78.54 74.57

AIforCOVID [9] CV 76.90 ± 5.40 78.80 ± 6.40 74.70 ± 5.90
LOCO 74.30 ± 6.10 76.90 ± 18.90 68.50 ± 15.50

𝑅1 Survey 68.75 43.75 93.75
𝑅2 Survey 72.92 70.83 75.00
𝑅3 Survey 76.04 70.83 81.25
𝑅4 Survey 72.92 62.50 83.33

Our proposal (one-stage training)
CV 70.38 ± 1.78 72.57 ± 1.72 68.62 ± 1.12
LOCO 68.35 ± 1.17 70.92 ± 1.08 62.16 ± 1.89
Survey 70.48 72.51 68.67
.
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Table 2
Reconstruction performance.

Model Validation Modality MSE

Our proposal
(three-stage training)

CV 𝑇 0.04 ± 0.01
LOCO 𝑇 0.05 ± 0.02
Survey 𝑇 0.04

CV 𝐼 0.03 ± 0.01
LOCO 𝐼 0.04 ± 0.02
Survey 𝐼 0.03

Our proposal
(one-stage training)

CV 𝑇 0.09 ± 0.04
LOCO 𝑇 0.11 ± 0.05
Survey 𝑇 0.09

CV 𝐼 0.07 ± 0.02
LOCO 𝐼 0.09 ± 0.03
Survey 𝐼 0.07

Table 3
𝜌 (on the lower triangular) and the corresponding t-test 𝑝-value (upper triangular) of the
modality importance, computed for each pair between our model and the radiologists

Our proposal 𝑅1 𝑅2 𝑅3 𝑅4

Our proposal – 0.26 0.50 0.37 0.42
𝑅1 0.78 – 0.28 0.32 0.45
𝑅2 0.84 0.90 – 0.35 0.50
𝑅3 0.77 0.82 0.78 – 0.41
𝑅4 0.79 0.77 0.83 0.85 –

is to understand if the importance metrics 𝛥𝑇 , 𝛥𝐼 , �̂�𝑇 and �̂�𝐼 , returned
by our method, are coherent with the ones selected by the radiologists,
which we denote as 𝛥𝑅𝑖

𝑇 , 𝛥𝑅𝑖
𝐼 , �̂�𝑅𝑖

𝑇 and �̂�𝑅𝑖
𝐼 . In particular, 𝛥𝑅𝑖

𝑇 , 𝛥𝑅𝑖
𝐼 are

the modality importance for the 𝑖th radiologist, and �̂�𝑅𝑖
𝑇 , �̂�𝑅𝑖

𝐼 are the
nimodal feature importance vector and matrix for the 𝑖th radiologist.
he survey was executed in double-blind, where no interaction between
he radiologists was permitted.

In the survey, each radiologist observed both data modalities at the
ame time for each patient and performs the prognosis task. Afterwards,
he radiologists have to attribute an importance score, on a scale from

to 5, indicating how much significant each modality was for the
rognosis task. The grading of the scores are: 1 insignificant, 2 a bit
ignificant, 3 neutral, 4 significant, 5 important. A Softmax activation
s applied constraining such values on the range [0, 1], where 0 means
hat the considered modality has no importance and 1 attributes the
aximum importance. As mentioned before, these modality importance

re denoted as 𝛥𝑅𝑖
𝑇 , 𝛥𝑅𝑖

𝐼 . The radiologist has the possibility to attribute
he same importance to each modality if he/she believes that, for that
atient, both modalities had the same impact in the decision.

Then, to understand the most important features for each modality,
e asked the radiologist to select the clinical variables and to segment

he areas of interest in the X-ray image most useful to stratify the
atient, collecting �̂�𝑅𝑖

𝑇 and �̂�𝑅𝑖
𝐼 , which are boolean, where elements

qual to 1 correspond to important features. On both �̂�𝑅𝑖 and �̂�𝑅𝑖
7

𝑇 𝐼 v
a min–max normalization is applied on each instance, putting the
elements on the range [0, 1], where 0 means that the considered feature
has no importance and 1 attributes the max importance.

In the case of modality importance, we would expect a high inter-
section between the information reported by the radiologists 𝛥𝑅𝑖

𝑇 and
𝛥𝑅𝑖
𝐼 with the output of our method 𝛥𝑇 and 𝛥𝐼 , respectively; the same
olds in the case of unimodal feature importance, when comparing �̂�𝑅𝑖

𝑇
nd �̂�𝑅𝑖

𝐼 with �̂�𝑇 and �̂�𝐼 , respectively.
The surveys were executed on Google Forms, and the tool utilized

o show and to segment the CXR scans was ITK-SNAP [36].

.6. Statistical analysis

The accuracy, the sensitivity and the specificity are the evaluation
etrics used to assess the classification performance, as in [9]. To asses

f there exists a difference between the performance of our model and
he baseline model we apply the one-way ANOVA and, to interpret
he statistical significance, we used the pairwise Tukey test with a
onferroni 𝑝-value correction at 𝛼 = 0.05.

As described at the end of the previous section, we validate the
XAI modality importance 𝛥𝑇 , 𝛥𝐼 and the feature importance �̂�𝑇 , �̂�𝐼 ,

omparing them with the importance proposed by the radiologists 𝛥𝑅𝑖
𝑇 ,

𝑅𝑖
𝐼 and �̂�𝑅𝑖

𝑇 , �̂�𝑅𝑖
𝐼 , respectively.

For the modality importance, we calculate the Pearson correlation
, and the paired sample t-test between the vector of importance
odality (𝛥𝑇 and 𝛥𝐼 ) over the instances given by our method, with the

orresponding importance (𝛥𝑅𝑖
𝑇 and 𝛥𝑅𝑖

𝐼 ) vector reported by the radi-
logists. With the resulting statistics we can comprehend the measure
f dependency between our method and the radiologists. The higher
, the more our explanations are coherent with the importance scores
eported by the radiologists, if the resulting t-test is not statistically
ignificant (𝑝-value > 0.05).

Turning our attention to the feature importance, we compute the
ntersection over union (IoU) between the feature importance proposed
y the radiologists (�̂�𝑅𝑖

𝑇 and �̂�𝑅𝑖
𝐼 ) and the importance resulting from the

atent shift (�̂�𝑇 and �̂�𝐼 ), respectively. For the tabular modality 𝐼𝑜𝑈𝑇 ,
e take the important features presented by the radiologists �̂�𝑅𝑖

𝑇 and
he binarized feature vector �̂�𝑏

𝑇 (such that the values of �̂�𝑇 which are
0.5 are set to 0 and the ones ≥ 0.5 are set to 1), and compute

𝑜𝑈𝑇 =
�̂�𝑅𝑖
𝑇 ∩ �̂�𝑏

𝑇

�̂�𝑅𝑖
𝑇 ∪ �̂�𝑏

𝑇

(19)

he higher the metric, the more concurrences there are between our
ethod and the human annotation. Similarly, when analyzing the

maging modality 𝐼𝑜𝑈𝐼 we take the segmented mask returned by the
adiologists �̂�𝑅𝑖

𝐼 and the binarized attribution map �̂�𝑏
𝐼 (such that the

̂
alues of 𝜟𝐼 which are < 0.5 are set to 0 and the ones ≥ 0.5 are set to
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Table 4
𝐼𝑜𝑈𝑇 (lower triangular) and the 𝐼𝑜𝑈𝐼 (upper triangular) of the feature importance, computed for each pair between our model and the
radiologists.

Our proposal 𝑅1 𝑅2 𝑅3 𝑅4

Our proposal – 59.62 ± 3.13 62.97 ± 2.61 63.77 ± 2.25 64.63 ± 2.76
𝑅1 52.37 ± 3.12 – 60.56 ± 2.78 63.42 ± 3.39 61.81 ± 3.28
𝑅2 54.72 ± 2.86 52.37 ± 2.78 – 60.98 ± 3.76 62.44 ± 2.99
𝑅3 53.52 ± 3.21 54.69 ± 3.42 51.23 ± 2.98 – 63.36 ± 3.64
𝑅4 51.31 ± 2.69 52.73 ± 3.31 54.66 ± 2.79 55.43 ± 3.05 –
s
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Table 5
Comparison of 𝐼𝑜𝑈𝑇 and 𝐼𝑜𝑈𝐼 of the feature importance, computed between XAI
methods and the radiologists. The values in the table are the mean and standard
deviation of 𝐼𝑜𝑈 across all radiologists.

XAI method 𝐼𝑜𝑈𝑇 𝐼𝑜𝑈𝐼

Our proposal 52.98 ± 2.97 62.75 ± 2.69
Integrated gradients 53.10 ± 3.05 63.20 ± 2.83
LIME 52.70 ± 3.22 62.90 ± 2.98
SHAP 53.05 ± 3.12 63.10 ± 2.91

1), and compute

𝐼𝑜𝑈𝐼 =
�̂�𝑅𝑖
𝐼 ∩ �̂�𝑏

𝐼

�̂�𝑅𝑖
𝐼 ∪ �̂�𝑏

𝐼

(20)

As before, the higher the metric, the more concurrences there are
between our method and the human annotations.

5. Results and discussion

In this section we present the results obtained, dividing the discus-
sion into five subsections that, in order, deal with the classification and
reconstruction performance, the three-stage training assessment, MXAI
performance, an ablation study and forthcoming clinical applications.

5.1. Classification and reconstruction performance

Table 1 shows the classification performance and its columns spec-
ify: the learning model (human radiologists included), the validation
approach (CV, LOCO or the reduced set of images used for the survey),
the evaluation metrics employed, i.e., accuracy, sensitivity and speci-
ficity, for which we show the mean and the standard deviation of the
metric in CV and in LOCO. The table is organized into four horizontal
sections: the first, the second and the fourth report the performance
attained by learning models, whereas the third shows the performance
of the four radiologists. In particular, the first section shows results of
our proposal and the second includes the best baseline model presented
by [9], which were attained by the hybrid approach.

Given that our method aims to increase the explainability of the
model and not necessarily increase the performance, we first verify that
with the co-learning we do not have a drop in performance with respect
to the baseline [9]. The results show that our model, even if it co-learns
two tasks at once, obtains a performance similar to [9]. In fact, the
differences between our model and the baseline on all metrics, in both
CV and LOCO, are not statistically significant (𝑝-value > 0.05). This
suggests that our method is resilient to the notion that a decrease in
performance is required to obtain better explanations.

We now compare our results with those of the radiologists: our
proposal provides larger accuracy and sensitivity, while the specificity
is lower. This happens because predicting the prognosis of a patient
affected by COVID-19 is a difficult task, giving a hint that AI could aid
practitioners in the decision-making process.

Let us recall that our method is jointly trained to classify and
reconstruct the inputs via the autoencoders: for this reason in Table 2
we show the MSE of 𝐴𝐸 and 𝐶𝐴𝐸, i.e., the two autoencoders working
8

with the 𝑇 and 𝐼 modalities, respectively. As in Table 1, here we have
a similar row-column organization. Turning our attention to the first
section of this table, it is worth noting that the small values of the MSE
confirm the high quality of the reconstruction for both modalities. This
ensures that our MXAI method can provide good interpretability since
it relies on the quality of such reconstructions.

5.2. Three-stage training assessment

To validate the three-stage training introduced in Section 3.3, we
compare the classification and reconstruction performance with those
attained adopting a one-stage training, which consists of skipping
phases 1 and 2 of our method and directly train, in an end-to-end
manner, the entire network with the combined loss 𝐿, without any
pre-training. The corresponding results are shown in the last section
of Tables 1 and 2. In the case of classification performance (Table 1),
we observe that the one-stage training provides lower performance
than our three-stage proposal, whatever the performance metric and
whatever the validation approach. Furthermore, such performance dif-
ferences are all statistically significant (𝑝-value < 0.01). Similar con-
iderations hold in the case of reconstruction performance (Table 2).
hese results confirm the usefulness of the three-stage training proce-
ure, which aids the multimodal joint model in converging to a better
olution.

.3. MXAI performance

We now focus on validating the explanations provided by our
roposal. Specifically, using the patients included in the survey, we
ompare the modality and feature explanations of our model to the
mportance reported by the radiologists.

Before going deep with the results, let us recall that in Section 3.4,
e formally put in relationship the counterfactual explanations with

he data (Eqs. (15), (16), (17), (18)). Indeed, in the case of modality
mportance (𝛥𝑇 and 𝛥𝐼 ), a counterfactual explanation highlights how
arge is the perturbation of the abstract representation of the clinical
eatures or of the images caught by the latent space (Eqs. (15) and
16)). In the case of the importance of each feature (�̂�𝑇 and �̂�𝐼 ), a coun-

terfactual explanation works at level of each descriptor: for clinical data
it represents how large is the variation between the original and the
reconstructed clinical information (Eq. (17)), whereas for imaging data
it measures pixels variations (Eq. (18)). The quantities defined in such
four equations are then considered in the sanity check (Section 4.5),
which we introduced to validate the MXAI method.

According to Section 4.6, where we explain how we quantitatively
compare the explanations provided by the model and those provided
by the four radiologists, Table 3 shows the Pearson correlation 𝜌 and
the corresponding t-test 𝑝-values computed between the importance
vector of a modality reported by our method and the importance
vector reported by each radiologist. These results reveal a high measure
of dependency between our method and the radiologists and among
the radiologists, suggesting that our model gives reasonable modality
importance while producing the prognosis.

Let us now consider the unimodal feature importance: in this case
Table 4 shows the 𝐼𝑜𝑈𝑇 and 𝐼𝑜𝑈𝐼 for each possible pair between our
model and the radiologists. As mentioned in Section 4.6, these metrics
permit us understand the coherence between the returned feature
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Table 6
Classification performance in the ablation study.
Model Validation Modality Accuracy (%) Sensitivity (%) Specificity (%)

Our proposal

CV 𝑇 75.78 ± 0.75 76.63 ± 0.71 74.74 ± 1.02
LOCO 𝑇 73.48 ± 3.20 69.87 ± 3.11 79.56 ± 8.60
Survey 𝑇 75.69 76.65 74.71

CV 𝐼 74.14 ± 1.03 74.57 ± 1.78 73.96 ± 1.21
LOCO 𝐼 70.46 ± 1.06 72.03 ± 1.02 69.55 ± 1.61
Survey 𝐼 74.32 74.42 73.88

AIforCOVID [9]

CV 𝑇 75.70 ± 0.80 76.00 ± 0.70 75.40 ± 1.10
LOCO 𝑇 73.40 ± 4.40 69.90 ± 15.80 79.50 ± 13.60

CV 𝐼 74.20 ± 1.00 74.80 ± 1.90 73.80 ± 1.30
LOCO 𝐼 70.50 ± 1.00 72.00 ± 1.10 69.60 ± 1.50
f
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Table 7
Reconstruction performance of the ablation study.

Model Data Modality MSE

Our proposal

CV 𝑇 0.03 ± 0.01
LOCO 𝑇 0.04 ± 0.02
Survey 𝑇 0.03

CV 𝐼 0.02 ± 0.01
LOCO 𝐼 0.03 ± 0.02
Survey 𝐼 0.02

importance. These scores not only show that the radiologists have a
fairly high degree of intersection of important features among each
other, but also that the degree of intersection is of the same magnitude
even with our proposal. This implies that our model concentrates on
the relevant features of each modality when making the decision on
the prognosis.

As stated in Section 2, there is currently a lack of multimodal XAI
methods in the literature. Therefore, to further validate the perfor-
mance of our explanations, we compared the unimodal explanations
generated by our method with other well-established XAI methods,
namely Integrated Gradients, LIME, and SHAP [6]. We selected these
methods because they can be applied to both tabular and imaging
modalities, they are model-agnostic, i.e., they can be used with any
model irrespective of its underlying architecture, and they all offer
local explanations. Specifically, we extract the explanations by utilizing
the 𝐶𝑀𝐿𝑃 , 𝐸𝐴𝐸 , and 𝐸𝐶𝐴𝐸 modules for each modality, respectively.
In Table 5, we present the average 𝐼𝑜𝑈𝑇 and 𝐼𝑜𝑈𝐼 across the feature
importance scores from all the radiologists for both our proposal and
the competing methods. The results demonstrate that our unimodal
explanations are not statistically different from these XAI methods
(𝑝-value > 0.05), indicating that our approach is coherent with state-
of-the-art methods from a unimodal perspective. Furthermore, it is
worth noting that our proposed method not only introduces unimodal
explanations but also incorporates multimodal explanations, a novel
feature that is not available in existing XAI techniques.

5.4. Ablation study

We now discuss what happens when only one modality is available.
To this end, we ran two experiments: in the first we removed the 𝐴𝐸
and we trained again the other part of the model, i.e., we worked only
with the imaging modality disregarding the tabular clinical data. In
the second we flipped the ablation, removing the 𝐶𝐴𝐸 and, thus, we
did not consider the images. Table 6 shows the results we achieved in
the case of experiments ran in CV, LOCO and using the survey images.
Furthermore, the third columns specifies the modality used. As before,
we also show the hybrid baseline model presented in [9], which is
trained only on one modality. The results of our proposal shows that
using only the tabular clinical data or only the imaging data provides
similar results, which do not statistically differ from each other, what-
ever the performance score considered (𝑝-value > 0.05). Furthermore,
9

in comparison with the performance of the full multimodal approach
(first section of Table 1), we notice that both unimodal models report a
statistically significant drop in performance (𝑝-value < 0.01), whatever
the validation approach or the performance score. As before, we notice
that our model, even if it co-learns two tasks at once, obtains similar
performance to the hybrid model, i.e., the best baseline model of [9].
In fact, the difference between our model and the baseline model on all
metrics, in both CV and LOCO, is not statistically significant (𝑝-value
> 0.05).

For completeness, Table 7 shows the reconstruction results in terms
of MSE for each modality. In comparison with Table 2, as expected, we
notice that the reconstruction error has significantly decreased (𝑝-value
> 0.05) because the model can focus on one modality at a time, making
it easier to learn an efficient embedding mapping.

As before, we also investigate the results in terms of explainability.
Straightforwardly, in this case the modality importance does not make
sense, so that Table 8 reports the 𝐼𝑜𝑈𝑇 and the 𝐼𝑜𝑈𝐼 of new unimodal
eature importance. These results show that, even if we have a drop
n classification and reconstruction performance, the explanations are
onsistent between the radiologists and between our method and the
adiologists, suggesting that the MXAI method is robust to a missing
odality [37,38].

.5. Clinical perspective and case studies

In a clinical practice scenario, we believe that our AI system can
erve as a precursor to subsequent multimodal research for predicting
he evolution of COVID-19. Its classifications and explanations can
ssist radiologists in performing prognosis tasks.

Indeed, on the one side, in [39] the authors showed that the rise
f X-ray severity over the course of COVID-19 infection increases the
ensitivity of COVID-19 detection using CXR over time (55% at ≤ 2
ays to 79% at > 11 days), whilst it decreases the specificity (83% at
2 days to 70% at > 11 days). On the other side, as Table 1 shows, our

roposal provides a larger sensitivity than the radiologists, suggesting
hat it can anticipate the evolution of positive COVID-19 cases, that is in
n initial phase of the disease when the patient accesses the emergency
epartment, our approach achieves a sensitivity (78.56%) equal to that
hich the X-ray alone shows after several days.

Furthermore, the proposed architecture has the beneficial feature
o offer transparent decisions since, for each patient, the radiologists
an observe at the same time the original data (both the clinical
eatures and the X-ray image), the modality importance 𝛥𝑇 and 𝛥𝐼 ,

and the unimodal feature importance �̂�𝑇 and �̂�𝐼 . With 𝛥𝑇 and 𝛥𝐼 ,
the radiologists would be guided to understand on which modality to
concentrate more on. Instead, with �̂�𝑇 and �̂�𝐼 we guide the radiologist
to concentrate on certain clinical characteristics and on specific areas
of the X-ray scan.

Fig. 3 presents four case studies. It is organized in four columns:
the first two show the feature importance indicated by our proposal
(�̂�𝑇 and �̂�𝐼 ), whereas the third and the fourth show the corresponding
important features indicated by radiologists (�̂�𝑅𝑖 and �̂�𝑅𝑖 ), for the
𝑇 𝐼
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Table 8
𝐼𝑜𝑈𝑇 (lower triangular) and the 𝐼𝑜𝑈𝐼 (upper triangular) of the feature importance for models trained in ablation, computed for each pair
between our model and the radiologists.

Our proposal 𝑅1 𝑅2 𝑅3 𝑅4

Our proposal – 60.31 ± 2.98 62.45 ± 2.31 63.57 ± 2.49 64.22 ± 3.58
𝑅1 53.63 ± 2.45 – 60.56 ± 2.20 62.10 ± 3.10 61.90 ± 2.98
𝑅2 54.65 ± 2.95 52.45 ± 3.21 – 61.07 ± 3.30 62.90 ± 3.20
𝑅3 54.49 ± 3.03 53.99 ± 3.32 50.89 ± 3.00 – 62.88 ± 3.50
𝑅4 50.40 ± 3.01 52.41 ± 3.40 52.54 ± 3.11 55.30 ± 2.87 –
Fig. 3. Four case studies: for each we show the feature importance indicated by our proposal (�̂�𝑇 and �̂�𝐼 ) and the corresponding important features indicated by radiologists
(�̂�𝑅𝑖

𝑇 and �̂�𝑅𝑖

𝐼 ) for the tabular and the imaging modalities, respectively. The rows show examples of patients with mild (first and third row) and severe (second and fourth row)
outcomes, for both success (first and second row) and failure cases (third and fourth row) of our model.
tabular and the imaging modalities, respectively. The tabular clinical
data importance �̂�𝑇 is represented as a bar-plot on the �̂�𝑇 column, so
that the longer the bar, the more important the clinical variable is. For
the sake of visualization, we only show the features part of �̂�𝑏

𝑇 , keeping
the magnitude of the importance computed according to Eq. (17). The
X-ray image importance map �̂�𝐼 is shown as a heatmap on the original
scan, which represents the relevance of each pixel in the image for the
prognosis task on a color scale ranging from blue (low importance) to
red (high importance) on the �̂�𝐼 column. Looking at the figure by row,
the first group of rows shows two success cases, where our classifier
correctly classifies the patient’s outcome, whereas the second group of
rows shows two failure cases, where our classifier incorrectly classifies
10
the patient’s outcome. In both cases of classification success or failure,
we present an example from both the mild and severe classes. Note that
all these cases have been correctly classified by the radiologist. In the
success examples, we note a strong agreement between our proposal
and the radiologist for both modalities. Specifically, in both mild and
severe cases, the tabular features are the same, and the most important
pixels for the model largely overlap with the area of interest segmented
by the radiologist. In the failure cases, our model assigns importance
to tabular features and to image regions that are different from those
highlighted by the radiologist. We speculate that this may be the reason
for the model incorrect predictions. In particular, in the mild case, only
three out of five most important tabular features coincide with those
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suggested by the human expert, whilst for the severe case there is no
overlap. Additionally, if we turn our attention to the images, both the
mild and severe cases exhibited a very low intersection between the
most important regions for the models and the manually segmented
areas.

6. Conclusion

In this work we presented an end-to-end multimodal architecture
that jointly learns modality reconstructions and multimodal classifi-
cation using tabular clinical and imaging data. With respect to the
literature using such modalities for medical tasks, we deem that our
method is the only one which offers intrinsic model-specific local
multimodal explanations. In particular, multimodal explanations are
computed by exploiting the latent space learnt by jointly training the
end-to-end architecture and using a latent shift-based counterfactual
method. We tested our approach in the context of the COVID-19
pandemic using the AIforCOVID public dataset, which includes both
X-ray and clinical data. The extensive quantitative experimentation
shows that the latent space retains features useful to succeed both
in a reconstruction and classification task and, thus, resulting in an
informative space for the latent-shift method. Moreover, the sanity
check, although very time-consuming, was very useful since it showed
a high intersection between the explanations provided by the method
and those of the radiologists, both for the modality and the feature
importance.

A reflection on this work highlights two main limitations. The
first is that the reliability of the explanations the method produces
is constrained by its reliance on the classification and reconstruc-
tion performance of the model. As all components of the method are
data-driven and there is no dedicated module for explainability, the
generalizability of the explanations could be limited by the quality of
the data. In this respect, we plan to evaluate the effectiveness of our
methodology on different datasets from different domains and with
different data types. The second limitation stems from noticing that,
although our proposal identifies the importance of each modality and
the importance of each unimodal feature per sample, it does not find
out high-level concepts, including those expert-based. To cope with
this issue we deem that concept knowledge mining [40,41] could be
a viable solution that we plan to investigate in future work to enable
human experts to better understand how the prediction is identified by
the model.
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