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A B S T R A C T

Background. Acute kidney injury (AKI) is a common clinical
condition directly associated with adverse outcomes. Several
AKI biomarkers have been discovered, but their use in clinical
and preclinical studies has not been well examined. This study
aims to investigate the differences between clinical and preclin-
ical studies on AKI biomarkers.
Methods. We performed a systematic review of clinical and pre-
clinical interventional studies that considered AKI biomarkers
in enrollment criteria and/or outcome assessment and described
the main differences according to their setting, the inclusion of

biomarkers in the definition of AKI and the use of biomarkers
as primary or secondary end points.
Results. In the 151 included studies (76 clinical, 75 preclinical),
clinical studies have prevalently focused on cardiac surgery
(38.1%) and contrast-associated AKI (17.1%), while the major-
ity of preclinical studies have focused on ether ischemia–
reperfusion injury or drug-induced AKI (42.6% each). A total of
57.8% of clinical studies defined AKI using the standard criteria
and only 19.7% of these studies used AKI biomarkers in the def-
inition of renal injury. Conversely, the majority of preclinical
studies defined AKI according to the increase in serum creatin-
ine and blood urea nitrogen, and 32% included biomarkers in
that definition. The percentage of both clinical and preclinical
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|studies with biomarkers as a primary end point has not signifi-

cantly increased in the last 10 years; however, preclinical studies
are more likely to use AKI biomarkers as a primary end point
compared with clinical studies [odds ratio 2.31 (95% confidence
interval 1.17–4.59); P ¼ 0.016].
Conclusion. Differences between clinical and preclinical studies
are evident and may affect the translation of preclinical findings
in the clinical setting.

Keywords: acute kidney injury, biomarkers, end points,
methods

I N T R O D U C T I O N

Acute kidney injury (AKI) is a common and serious clinical
condition with an overall incidence estimated to be� 2–3/1000
population, a rate very similar to that for myocardial infarction
[1]. Critically ill patients who develop AKI have worse out-
comes, such as higher mortality, prolonged hospitalization and
increased risk for progression to cardiovascular events and
chronic kidney disease (CKD) [2, 3]. Even small increases in
serum creatinine may greatly impact long-term outcomes [4].
Despite intense investigation, therapeutic interventions to limit
the development and impact of AKI have not been successful.
This may be related, at least in part, to the difficulties in iden-
tifying patients who are at high risk for AKI or to detect kidney
damage early when it may be more treatable [5]. Current AKI
definitions are based on changes in serum creatinine and urine
output—the 2012 Kidney Disease: Improving Global Outcomes
(KDIGO) criteria [6] for example. However, serum creatinine is
a late indicator of AKI and is often influenced by factors such as
age, muscle mass, protein intake and gender [7]. Urine output
may be more sensitive but is less specific for AKI unless severely
decreased. Over the last decade, there has been extensive re-
search for novel biomarkers of kidney injury for timely iden-
tification of AKI, to allow appropriate interventions and to
improve outcomes [8]. The most promising biomarkers can be
separated into different classes: (i) tubular cell enzymes released
after renal injury, (ii) inflammatory mediators or cytokines
released by kidney-specific cells or by inflammatory cells after
damage and (iii) low molecular weight proteins, which either
are filtered freely in the glomeruli and not adequately re-
absorbed or digested by injured tubular cells or are released by
injured tubular cells following acute damage. More recently, cell
cycle arrest biomarkers, like tissue inhibitor of
metalloproteinase 2 (TIMP-2) and insulin-like growth factor–
binding protein 7 (IGFBP7) have been validated as indicators of
renal damage and their product can predict the onset of severe
AKI within 12 h better than other known biomarkers [9]. AKI
biomarkers may help explain the molecular mechanisms of AKI
and could perhaps be used as phenotyping tools in clinical prac-
tice to identify patients with specific AKI etiologies or to predict
long-term outcomes [8, 10]. The adoption of novel AKI bio-
markers into clinical practice may depend in part on whether
therapies can be directly linked to biomarker signals. As such, it
is vital to understand whether these markers are being incorpo-
rated into clinical and preclinical studies. The purpose of this

systematic review is to evaluate the use of AKI biomarkers in
preclinical and clinical studies, analyzing the differences in how
these markers were used in different settings.

M A T E R I A L S A N D M E T H O D S

Data source and search strategy

This systematic review was performed in accordance with
the Preferred Reporting Items for Systematic Reviews and
Meta-analyses (PRISMA) statement. Two different databases
(PubMed and Ovid MEDLINE) were searched for articles with-
out language restriction up to February 2016 through a focused
search strategy (Supplementary data, Table S1). References
from relevant studies published on the same topic were
screened to identify additional studies. The search was designed
and performed by two authors (M.F. and J.A.K.).

Study selection

We included any clinical and preclinical interventional
study in which novel AKI biomarkers were used for enroll-
ment criteria and/or for outcome assessment. Preclinical inter-
ventional studies were defined as studies that tested a drug,
procedure or other medical treatment using in vivo (animals)
or in vitro models (cell culture) before trials were carried out
in humans. Clinical interventional studies are identified as
prospective studies or randomized clinical trials designed to
test the safety and effectiveness of a new drug, device or treat-
ment in humans. Studies were excluded if (i) AKI biomarkers
were evaluated as diagnostics, (ii) they did not focus on AKI,
(iii) they dealt with AKI but did not report data about AKI bio-
markers and (iv) they were not an interventional design. Case
reports, reviews, editorials and letters were excluded as well.
Study selection was independently performed by two authors
(M.F. and G.C.) using the EndNote bibliography manager to
screen the citations based on titles and abstracts and then to
evaluate the full text of the articles previously screened.
Discrepancies in judgment were solved collegially.

Data extraction and synthesis

Data extraction and analysis were performed by two authors
(M.F. and J.A.K.). The selected studies were divided into preclin-
ical and clinical and in each study we analyzed the following key
questions: (i) Are biomarkers used in the definition of AKI? (ii)
Are there differences in the setting in which clinical and preclin-
ical studies were based? (iii) Are biomarkers used as primary or
secondary end points in these studies? We also compared studies
with similar exposures and/or interventions but with divergent
outcomes between the preclinical and clinical setting. From each
study, the following information was extracted: first author, year
of publication, sample size, population or animal setting, defin-
ition of AKI and what biomarker was evaluated and how (pri-
mary or secondary end point). We evaluated the proportions of
studies that answered these specific questions and the compari-
son of their proportion between clinical and preclinical studies,
using the v2 test and logistic regression. Statistical analyses were
performed using SPSS (version 21; IBM, Armonk, NY, USA).
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R E S U L T S

Search results

The flow diagram of the study selection process is shown in
Figure 1. The primary search revealed 5622 publications from
the two databases (22 additional articles were found by searching
bibliographies), which were evaluated for eligibility by title and
abstract. First, 4996 articles were excluded because of search
overlap (n¼ 2435); because they were case reports, reviews, edi-
torials or letters (n¼ 1147) or because they did not deal with
AKI topics (n¼ 1017) or AKI biomarkers (n¼ 397). There were
626 publications evaluated in detail. Among these, 475 were
excluded because they were not based on an interventional de-
sign. A total of 151 studies were therefore included in this ana-
lysis (76 clinical, 75 preclinical studies). The majority of
preclinical studies focused on animals [n¼ 72 (96%)], while only
three studies (45) were performed using in vitro models [11–13].

Time frame and settings of clinical and preclinical
studies

The majority of selected clinical trials or prospective studies
were dated after 2007, while only four studies before this date
considered AKI biomarkers in their analysis. Conversely, pre-
clinical studies are more equally distributed over time. The set-
tings in which the selected studies are focused varied
significantly between clinical and preclinical studies and are
summarized in Tables 1 and 2, respectively. Clinical trials and
prospective studies were mainly focused on surgical patients,
particularly in patients undergoing cardiac surgery [14–22] (car-
diopulmonary bypass [23–29], coronary artery bypass graft
[30–37], valvular heart surgery [38–40] or other invasive pro-
cedures [41–43]), accounting for 38.1% of the selected clinical
studies. Contrast-associated AKI was the next most common
focus of prospective studies or clinical trials (17.1%). Trials in
contrast-associated AKI examined volume expansion [74, 75],
N-acetylcysteine [50, 76] or sodium bicarbonate [42, 77] in pre-
venting or reducing AKI after procedures [78, 79] such as cor-
onary angiography [41, 80–85]. Other clinical studies focused

on drug-induced AKI (7.9%), particularly related to the nephro-
toxic effects of chemotherapic drugs (cisplatin, methotrexate)
[44–49] in critically ill patients [61–65], particularly septic pa-
tients (13.1 and 2.6%, respectively) [56, 66–70], kidney and liver
transplantation (7.8%) [51–55] or after specific procedures
(13.1) [58–60, 70–73, 86–89].

In contrast, animal models of AKI were frequently focused
on several models of renal ischemia–reperfusion injury (42.6%
of selected preclinical studies) [12, 13, 90–119]. The number of
preclinical studies using AKI models induced by nephrotoxic
agents (cisplatin, paraquat, gentamicin, vancomycin, herbicide,
anesthetic drugs, ketoprofen and other toxics) is significantly
greater than in clinical studies (42.6 versus 7.9%; P< 0.001)
[105, 112, 114, 120–149]. Similarly, a greater proportion of pre-
clinical studies focused on sepsis-associated AKI compared
with clinical studies (10.6 versus 2.6%; P¼ 0.04) [150–157].
However, relatively few preclinical studies considered AKI bio-
markers in the surgical setting (5 versus 39%; P< 0.001) [158,
159] or in contrast-induced models of AKI (2.6 versus 17.1%;
P¼ 0.003) [160, 161].

Definition of AKI

The definition of AKI was highly variable between interven-
tional studies in the clinical and preclinical setting. As described
in Table 3, 57.8% of clinical studies defined AKI according to
international consensus criteria, such as the KDIGO guideline
criteria [6], Risk, Injury, Failure. Loss and End-stage kidney dis-
ease (RIFLE) criteria [162] or Acute Kidney Injury Network
(AKIN) criteria [163]. A few clinical studies (23.6%) defined
AKI by the increment of blood urea nitrogen (BUN) or serum
creatinine that did not meet these criteria. The aim of these stud-
ies was to evaluate the possible role of these biomarkers in spe-
cific settings in which AKI diagnosis was performed using the
standard criteria. The use of AKI biomarkers in the definition of
renal damage was limited to 19.7% of these studies and neutro-
phil gelatinase–associated lipocalin (NGAL) was the main bio-
marker used in these studies to define AKI (11.3%). Balkanay et
al. [32] investigated the positive effect of dexmedotomidine on
renal injury in patients after coronary artery bypass graft
(CABG): in the early postoperative period, the development of
AKI, as determined by measurements of blood NGAL levels
(>149 ng/mL), was significant and dose dependent. Sahraei et al.
[55] analyzed the protective effects of N-acetylcysteine alone or
in combination with vitamin C to alleviate kidney injury in living
donor kidney transplantation by measuring interleukin-18 (IL-
18) and NGAL levels: no significant differences in delayed graft
function (DGF) or NGAL values were found between the two
groups. Coca et al. [14] analyzed the relationship between pre-
operative angiotensin-converting enzyme inhibitors and angio-
tensin receptor blocker use and AKI in patients undergoing
cardiac surgery. The authors defined AKI as functional (based
on changes in serum creatinine) or structural [diagnosed by
postoperative levels of four urinary biomarkers of tubular dam-
age, NGAL, IL-18, kidney injury molecule-1 (KIM-1) and liver-
type fatty acid–binding protein (L-FABP)] and described that
across three different levels of drug exposure there was an in-
crease in functional AKI while no differences in structural AKI
were found. Yousefshahi et al. [34] evaluated the effect ofFIGURE 1: Flow diagram for the study selection process.
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hypertonic saline infusion versus normal saline on serum NGAL
and cystatin C levels in 40 patients undergoing CABG: in this
study, AKI was defined by a > 0.3 mg/dL increase in serum cre-
atinine, by serum cystatin C levels > 1.16 mg/dL, or by a

significant increase in serum NGAL (>400 ng/mL). The authors
did not describe significant differences in NGAL levels between
the hypertonic saline group and the normal saline group. Ejaz
et al. [16] defined the effect of rasburicase, uric acid–lowering

Table 1. Summary of settings for clinical interventional studies

Clinical studies

Setting Study Year No. of patients Setting Study Year No.

Cardiac surgery Coca et al. [14]
De Seigneux et al. [15]
Ejaz et al. [16]
Foroughi et al. [17]
Lipcsey et al. [18]
Prowle et al. [19]
Tasanarong et al. [20]
Wagener et al. [21]
Zarbock et al. [22]
Matata et al. [23]
Basu et al. [24]
Meersch et al. [25]
Haase et al. [26]
Adademir et al. [27]
Ricci et al. [28]
Westhuyzen et al. [29]
Deininger et al. [30]
Gallagher et al. [31]
Balkanay et al. [32]
Dardashti et al. [33]
Yousefshahi et al. [34]
Barkhordari et al. [35]
Oh et al. [36]
Song et al. [37]
Choi et al. [38]
Kim et al. [39]
Torregrosa et al. [40]
Xinwei et al. [41]
Brulotte et al. [42]
Pedersen et al. [43]

2013
2012
2013
2014
2014
2012
2013
2008
2015
2015
2014
2014
2013
2012
2011
1994
2015
2015
2015
2014
2013
2011
2012
2015
2011
2013
2015
2009
2013
2012

1594
80
26
159
83
100
100
369
240
199
345 (children)
51 (children)
350
85
80 (children)
21
120
86
295
75
40
28
71
117
76
98
60
228
34
113 (children)

Drug-induced AKI Gaspari et al. [44]
Lin et al. [45]
Seker et al. [46]
Shahbazi et al. [47]
Ylinen et al. [48]
Shinke et al. [49]

2010
2013
2015
2015
2014
2015

24
33
42
24
20 (children)
11

Transplantation Ataei et al. [50]
Ojeda et al. [51]
Sureshkumar et al. [52]
Tsuchimoto et al. [53]
Coupes et al. [54]
Sahraei et al. [55]

2015
2013
2012
2014
2015
2015

80
20
72
31
40
84

Sepsis Leaf et al. [56]
Pickkers et al. [57]

2014
2012

67
36

General surgery Lahoud et al. [58]
Orsolya et al. [59]
Kharasch et al. [60]

2015
2015
1997

49
40
73

Critically ill patients Boldt et al. [61]
Lahiri et al. [62]
Nymo et al. [63]
Yang et al. [64]
Oh et al. [65]
Schilder et al. [66]
Srisawat et al. [67]
Endre et al. [68]
Mayeur et al. [69]

1996
2014
2012
2010
2014
2014
2011
2010
2010

28
52
1415
100
95
42
76
529
10

Shockwave lithotripsy Daggulli et al. [70]
Kardakos et al. [71]
Fahmy et al. [72]
Hatipoglu et al. [73]

2016
2014
2013
2014

29
37
60
60

Contrast-induced AKI Xinwei et al. [41]
Brulotte et al. [42]
Ribichini et al. [74]
Torigoe et al. [75]
Ataei et al. [50]
Poletti et al. [76]
Kooiman et al. [77]
Duan et al. [78]
Gok et al. [79]
Akrawinthawong et al. [80]
Katoh et al. [81]
Tasanarong et al. [82]
Yin et al. [83]
Igarashi et al. [84]
Ling et al. [85]

2009
2013
2013
2013
2015
2007
2015
2013
2013
2015
2014
2013
2013
2013
2008

228
34
38
122
80
87
511
60
144
63
25
130
204
60
150

Others Boertien et al. [86]
Fassett et al. [87]
Junglee et al. [88]
Oboho et al. [89]

2015
2012
2013
2013

27
82
10
132
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therapy, on the prevention of AKI in patients undergoing cardio-
vascular surgery: AKI was defined according to AKIN criteria or
by the increases in urinary NGAL levels and urinary IL-18.
While no differences in serum creatinine were found between
the two groups (rasburicase versus placebo), active treatment re-
sulted in less evidence of renal structural damage as shown by
urinary NGAL concentrations.

Cystatin C, IL-18 and KIM-1 were included in the AKI def-
inition in several clinical studies. Yin et al. [83] described the in-
cidence of contrast-associated AKI, defined as an increase in
serum cystatin C concentration of �10% from the baseline
value within 72 h after coronary intervention, and the prevent-
ive effect of probucol in this setting. Kardaros et al. [71] investi-
gated the impact of shockwave lithotripsy on acute renal

damage, considering the variations in NGAL, cystatin C and IL-
18 levels before and after the procedure as indicators of AKI.
Finally, a clinical trial analyzed the effect of remote ischemic
preconditioning in alleviating contrast-induced AKI in patients
with moderate CKD, using urinary L-FABP as an AKI indicator
[84].

When considering preclinical interventional studies
(Table 4), we found differences in the definition of AKI com-
pared with that in clinical studies. The majority of preclinical
studies, in fact, did not include standard AKI definitions previ-
ously reported (KDIGO, RIFLE or AKIN criteria) (9.3 versus
57.8%; P< 0.001 comparing preclinical versus clinical studies)
and 80% of these studies defined AKI by an unspecified incre-
ment of serum creatinine or BUN [13, 90–93, 97–99, 105, 112–

Table 2. Summary of settings for preclinical interventional studies

Preclinical studies

Setting Study Year No. Setting Study Year No.

Ischemia–reperfusion injury Zang et al. [12]
Koga et al. [13]
Zhang et al. [90]
Youssef et al. [91]
Visnagri et al. [92]
Speir et al. [93]
Mei et al. [94]
Duan et al. [95]
Calistro Neto et al. [96]
Si et al. [97]
Oron et al. [98]
Koo et al. [99]
Hang et al. [100]
Gardner et al. [101]
Bussmann et al. [102]
Woodson et al. [103]
Sohotnik et al. [104]
Zager et al. [105]
Sanchez-Pozos et al. [106]
Hosgood et al. [107]
Jochmans et al. [108]
Ko et al. [109]
Kim et al. [110]
Hu et al. [111]
Dennen et al. [112]
He et al. [113]
Zhou et al. [114]
Nitescu et al. [115]
Baker et al. [116]
Burne-Taney et al. [117]
Gueler et al. [118]
Seth et al. [119]

2014
2012
2015
2015
2015
2015
2015
2105
2015
2014
2014
2014
2014
2014
2014
2013
2013
2012
2012
2012
2011
2010
2010
2010
2010
2008
2006
2006
2006
2003
2002
2000

NRK-52E cells
Rats
50 rats
30 rats
Rats
24 rats
30 piglets
52 swine
40 rats
24 rats
54 rats
C57BL/6 mice
32 piglets
30 pigs
32 rats
58 rats
21 rats
84 rats
62 rats
Pigs
6 porcine
9 mice
30 rats
Rats
Mice
IL-18 BP Tg mice
167 rats
53 rats
42 pigs
Mice
54 rats
24 rats

Drug-induced AKI Zager et al. [105]
Dennen et al. [112]
Zhou et al. [114]
Kim et al. [120]
Shin et al. [121]
Tan et al. [122]
Luo et al. [123]
Wunnapuk et al. [124]
Cardenas et al. [125]
Hanna et al. [126]
Maguire et al. [127]
Chen et al. [128]
Sinha et al. [129]
Nozaki et al. [130]
Vinken et al. [131]
Efrati et al. [132]
Hosolata et al. [133]
Efrati et al. [134]
Groebler et al. [135]
Pawar et al. [136]
Dodiya et al. [137]
Lee et al. [138]
Raekallio et al. [139]
Kramer et al. [140]
Zhou et al. [141]
Naghibi et al. [142]
Negishi et al. [143]
Mishra et al. [144]
Ziai et al. [145]
Usuda et al. [146]
Xie et al. [147]
Yanagisawa et al. [148]
Guo et al. [149]

2012
2010
2006
2016
2014
2015
2014
2014
2013
2013
2013
2013
2013
2012
2012
2012
2012
2012
2012
2012
2011
2011
2010
2009
2008
2007
2007
2004
2003
1998
2001
1998
2015

84 rats
Mice
167 rats
18 rats
Rats
Rats
15 rats
16 rats
36 rats
18 rats
120 rats
18 rats
18 rats
21 mice
50 rats
94 rats
24 rats
88 rats
Rats
8 mice
Rats
Mice
12 sheep
64 rats
Rats
Rats
Mice
35 mice
Rats
Rats
10 mice
30 rats
84 rats

Sepsis Otto et al. [150]
Wang et al. [151]
Lee et al. [152]
Zhou et al. [153]
Han et al. [154]
Knotek et al. [155]
Li et al. [156]
Wang et al. [157]

2015
2015
2013
2014
2012
2001
2008
2006

191 rats
12 mice
20 rats
60 rats
48 rats
Mice
30 mice
17 pigs

General surgery Li et al. [158] 2015 90 rabbits
Cardiac surgery Patel et al. [159] 2011 24 pigs

Contrast-induced AKI Li et al. [160]
Schultz et al. [161]

2014
1992

54 rats
44 rabbits

Others Bobek et al. [11]
Guo et al. [149]

2010
2015

In vitro
84 rats
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Table 3. AKI definition among clinical interventional studies

Clinical studies

Study Year No. of patients Study Year No.

International
consensus
criteria
RIFLE criteria Foroughi et al. [17]

Prowle et al. [19]
Meersch et al. [25]
Ricci et al. [28]
Dardashti et al. [33]
Torregrosa et al. [40]
Pedersen et al. [43]
Ataei et al. [50]
Lin et al. [45]
Yang et al. [64]
Mayeur et al. [69]
Orsolya et al. [59]

2014
2012
2014
2011
2014
2015
2012
2015
2013
2010
2010
2015

159
100
51 (children)
80 (children)
75
60
113 (children)
80
33
100
10
40

BUN Shinke et al. [49] 2015 11
AKI biomarkers
NGAL Coca et al. [14]

Ejaz et al. [16]
Adademir et al. [27]
Balkanay et al. [32]
Yousefshahi et al. [34]
Gaspari et al. [44]
Seker et al. [46]
Sahraei et al. [55]
Kardakos et al. [71]

2013
2013
2012
2015
2013
2010
2015
2015
2014

1594
26
85
295
40
24
42
84
37

AKIN criteria De Seigneux et al. [15]
Ejaz et al. [16]
Wagener et al. [21]
Deininger et al. [32]
Barkhordari et al. [35]
Song et al. [37]
Choi et al. [38]
Brulotte et al. [42]
Ataei et al. [50]
Gok et al. [79]
Shahbazi et al. [47]
Pickkers et al. [57]
Tsuchimoto et al. [53]
Orsolya et al. [59]
Junglee et al. [88]

2012
2013
2008
2015
2011
2015
2011
2013
2015
2013
2015
2012
2014
2015
2013

80
26
369
120
28
117
76
34
80
204
24
36
31
40
10

IL-18 Ejaz et al. [16]
Adademir et al. [27]
Ojeda et al. [51]
Kardakos et al. [71]

2013
2012
2013
2014

26
85
20
60

Cystatin C Yousefshahi et al. [34]
Torigoe et al. [75]
Poletti et al. [76]
Yin et al. [83]
Kardakos et al. [71]

2013
2013
2007
2013
2014

40
122
87
204
37

KDIGO criteria Coca et al. [14]
Tasanarong et al. [20]
Zarbock et al. [22]
Matata et al. [23]
Basu et al. [24]
Gallagher et al. [31]
Yousefshahi et al. [34]
Kim et al. [39]
Ribichini et al. [74]
Duan et al. [78]
Akrawinthawong et al. [80]
Katoh et al. [81]
Tasanarong et al. [82]
Nymo et al. [63]
Leaf et al. [56]
Lahoud et al. [58]

2013
2013
2015
2015
2014
2015
2013
2013
2013
2013
2015
2013
2013
2012
2014
2015

1594
100
240
199
345 (children)
86
40
98
60
38
63
130
130
1415
67
49

KIM-1 Ojeda et al. [51]
Hatipoglu et al. [73]

2013
2014

20
60

L-FABP Igarashi et al. [84] 2013 60

Serum creatinine Haase et al. [26]
Westhuyzen et al. [29]
Xinwei et al. [41]
Torigoe et al. [75]
Poletti et al. [76]
Kooiman et al. [77]
Ling et al. [85]
Gaspari et al. [44]
Ylinen et al. [48]
Shinke et al. [49]
Boldt et al. [61]
Endre et al. [68]
Sureshkumar et al. [52]
Coupes et al. [54]
Kharasch et al. [60]

2013
1994
2009
2013
2007
2015
2008
2010
2014
2015
1996
2010
2012
2015
1997

350
21
228
122
87
511
150
24
20 (children)
11
28
529
72
40
73

Not reported Lipcsey et al. [18]
Lahiri et al. [62]
Nymo et al. [63]
Oh et al. [65]
Schilder et al. [66]
Srisawat et al. [67]
Fahmy et al. [72]
Boertien et al. [86]
Fassett et al. [87]
Oboho et al. [89]

2014
2014
2012
2014
2014
2011
2013
2015
2012
2013

83
52
1415
95
42
76
60
27
88
132
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Table 4. AKI definitions among preclinical interventional studies

Preclinical studies

Study Year No. Study Year No.

Serum
creatinine Koga et al. [13]

Zhang et al. [90]
Youssef et al. [91]
Visnagri et al. [92]
Speir et al. [93]
Si et al. [97]
Oron et al. [98]
Koo et al. [99]
Gardner et al. [101]
Bussmann et al. [102]
Sanchez-Pozos et al. [106]
Hosgood et al. [107]
Jochmans et al. [108]
Dennen et al. [112]
He et al. [113]
Zhou et al. [114]
Nitescu et al. [115]
Baker et al. [116]
Burne-Taney et al. [117]
Gueler et al. [118]
Tan et al. [122]
Wunnapuk et al. [124]
Cardenas et al. [125]
Hanna et al. [126]
Chen et al. [128]
Sinha et al. [129]
Groebler et al. [135]
Lee et al. [138]
Kramer et al. [140]
Naghibi et al. [142]
Ziai et al. [145]
Usuda et al. [146]
Yanagisawa et al. [148]
Guo et al. [149]
Otto et al. [150]
Knotek et al. [155]
Li et al. [156]
Li et al. [158]
Patel et al. [159]

2012
2015
2015
2015
2015
2015
2014
2014
2014
2014
2012
2012
2011
2010
2008
2006
2006
2006
2003
2002
2015
2014
2013
2013
2013
2013
2012
2011
2009
2007
2003
1998
1998
2015
2015
2001
2008
2015
2011

Rats
50 rats
30 rats
Rats
24 rats
24 rats
54 rats
C57BL/6 mice
30 pigs
32 rats
62 rats
Pigs
6 pigs
Mice
IL-18 BP Tg mice
167 rats
53 rats
42 pigs
Mice
54 rats
Rats
16 rats
36 rats
18 rats
18 rats
18 rats
Rats
Mice
64 rats
Rats
Rats
Rats
30 rats
84 rats
191 rats
Mice
30 mice
90 rabbits
24 pigs

BUN Koga et al. [13]
Zhang et al. [90]
Youssef et al. [91]
Visnagri et al. [92]
Speir et al. [93]
Si et al. [97]
Oron et al. [98]
Koo et al. [99]
Zager et al. [105]
Dennen et al. [112]
He et al. [113]
Zhou et al. [114]
Baker et al. [116]
Tan et al. [122]
Efrati et al. [134]
Lee et al. [138]
Zhou et al. [141]
Naghibi et al. [142]
Li et al. [158]

2012
2015
2015
2015
2015
2015
2014
2014
2012
2010
2008
2006
2006
2015
2012
2011
2008
2007
2015

Rats
50 rats
30 rats
Rats
24 rats
24 rats
54 rats
C57BL/6 mice
84 rats
Mice
IL-18 BP Tg mice
167 rats
42 pigs
Rats
88 rats
Mice
Rats
Rats
90 rabbits

AKI biomarkers
NGAL Zang et al. [12]

Mei et al. [94]
Calistro Neto et al. [96]
Si et al. [97]
Woodson et al. [103]
Sohotnik et al. [104]
Kim et al. [110]
Luo et al. [123]
Efrati et al. [132]
Pawar et al. [136]
Mishra et al. [144]
Guo et al. [149]
Otto et al. [150]
Lee et al. [152]
Han et al. [154]
Li et al. [160]

2014
2015
2015
2014
2013
2013
2010
2014
2012
2012
2004
2015
2015
2013
2012
2014

NRK-52E cells
30 pigs
40 rats
24 rats
58 rats
21 rats
30 rats
15 rats
94 rats
8 mice
35 mice
84 rats
191 rats
20 rats
48 rats
54 rats

International
consensus
criteria
RIFLE criteria Duan et al. [95]

Hang et al. [100]
Dennen et al. [112]
Wang et al. [151]
Zhou et al. [153]

2015
2014
2010
2015
2014

52 swine
32 piglets
Mice
17 pigs
60 rats

KIM-1 Sohotnik et al. [104]
Luo et al. [123]
Vinken et al. [131]
Lee et al. [138]
Li et al. [158]

2013
2014
2012
2013
2012

21 rats
15 rats
50 rats
20 rats
90 rabbits

AKIN criteria Hang et al. [100]
Kim et al. [120]

2014
2016

32 piglets
18 rats

L-FABP Negishi et al. [143] 2007 Mice

KDIGO criteria Hang et al. [100] 2014 32 piglets Klotho Hu et al. [111] 2010 Rats
Cystatin C Mei et al. [94]

Si et al. [97]
Oron et al. [98]
Woodson et al. [103]
Efrati et al. [132]
Efrati et al. [134]

2015
2014
2014
2013
2012
2012

30 pigs
24 rats
54 rats
58 rats
94 rats
88 rats

Not reported Bobek et al. [11]
Ko et al. [109]
Shin et al. [121]
Maguire et al. [127]
Nozaki et al. [130]
Hosolata et al. [133]
Dodiya et al. [137]
Raekallio et al. [139]
Xie et al. [147]
Wang et al. [151]

2010
2010
2014
2013
2012
2012
2011
2010
2001
2006

In vitro
9 mice
Rats
120 rats
21 mice
24 rats
Rats
12 sheeps
10 mice
12 mice

NA, not available.
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|114, 116, 122, 134, 138, 141, 142, 150, 158]. Renal histology was

used in 59 preclinical studies (78.6%) to assess the presence and
the severity of renal damage. About one-third of preclinical
studies included novel biomarkers in the definition of AKI,
although this difference compared with clinical studies did not
reach statistical significance (32 versus 19.7%; P¼ 0.06).
Calistro-Neto et al. [96] evaluated the effect of parecoxib on
renal function by measuring serum NGAL in an ischemia-
induced AKI model in the rat. Luo et al. [123] analyzed
gentamicin-induced nephrotoxicity in rats, focusing on the ex-
pression of KIM-1 and NGAL: repeated administration of gen-
tamicin resulted in a dose- and time-dependent increase in
these two markers of acute renal damage and a correlation be-
tween histopathological alterations and changes in gene and
protein expressions was found. Han et al. [154] investigated the
temporal variations in NGAL levels in a rat model of AKI
induced by lipopolysaccharide, showing a significant up-
regulation in NGAL mRNA that correlated with urinary NGAL
and the degree of renal injury. Bussmann et al. [102], by meas-
uring plasma NGAL, urinary NGAL, KIM-1, IL-18 and serum
creatinine, did not find a protective effect of allopurinol on kid-
ney function in uninephrectomized rats subjected to ischemia–
reperfusion injury. Sohotnik et al. [104] demonstrated the
nephroprotective effects of tadalafil, a phosphodiesterase-5 in-
hibitor, in an experimental model of renal ischemia–
reperfusion injury, showing significant differences in functional
(glomerular filtration rate, urinary NGAL and KIM-1) and
histological parameters of acute kidney damage between un-
treated and treated groups.

Furthermore, preclinical studies mainly evaluated the differ-
ences in biomarker levels between baseline and after specific
interventions and did not use specific cut-offs to define AKI.
Conversely, about half of clinical studies reported specific cut-
off values, although cut-offs were not consistent between
studies. For example, Balkanay et al. [32] defined AKI as serum
NGAL >149 ng/mL [32], while Yousefshahi et al. [34] used a
cut-off that was much higher (>400 ng/mL).

We also compared preclinical and clinical studies in specific
settings; in studies on sepsis (eight preclinical, two clinical),
only three preclinical studies included biomarkers in the defin-
ition of AKI [150, 152, 154]. Among studies focused on a spe-
cific drug exposure (cisplatin-associated AKI; 13 preclinical and
5 clinical), only 3 preclinical studies considered AKI biomarkers
in the AKI definition [131, 143, 144] and no clinical study did.
Focusing on studies on contrast-associated AKI with the same
exposure (iodinated contrast media) and interventions (hydra-
tion and N-acetylcysteine for preventing AKI; one preclinical
and four clinical), we found that two clinical and one preclinical
study addressed this point [75, 76, 160]. Among these studies,
focusing on studies that analyzed the same biomarker (urinary
NGAL) and with divergent outcomes (one preclinical [160] and
two clinical studies [77, 82]), differences in the definition of
AKI are evident (the two clinical studies used serum creatinine
and KDIGO criteria to define AKI, while the preclinical study
included urinary NGAL).

Overall, the number of studies including biomarkers in the
definition of AKI increased in the last 6 years in both the clinical
and preclinical setting, reaching 20–30% of the selected studies

by year (Figure 2). The odds of including biomarkers in the def-
inition of AKI in preclinical studies is 2.14 times higher than in
clinical studies [95% confidence interval (CI) 1–4.6; P¼ 0.04],
while no significant increase over the years was described.

Use of AKI biomarkers as primary or secondary end
points

The incidence of AKI, AKI mortality and recovery at
specified time points were often used as primary end points
in clinical trials or prospective studies focusing on AKI. In
these studies, AKI biomarkers were often included in second-
ary outcomes (48.6% of selected studies) to test their associ-
ations with specific conditions, such as cardiac surgery–
associated AKI and sepsis-induced AKI. Zarbock et al. [22]
investigated whether remote ischemic preconditioning
reduced the rate and severity of AKI in cardiac surgical pa-
tients: the primary end point was the rate of AKI, while sec-
ondary end points were need of dialysis, mortality and
change in AKI biomarkers. They found that remote ischemic
preconditioning significantly reduced AKI incidence as well
as ameliorated the increase in NGAL and TIMP-2 � IGFBP7
after cardiac surgery. Similarly, Gallagher et al. [31] investi-
gated the effect of remote ischemic preconditioning in 86 pa-
tients with AKI undergoing cardiac surgery, evaluating the
incidence of AKI as the primary end point and the compari-
son with several biomarkers of renal injury as the secondary
outcome. Tasanarong et al. [20] examined the role of erythro-
poietin (EPO) in reducing the incidence of cardiac surgery–
associated AKI and evaluated possible reductions in urinary
NGAL levels in patients who received the treatment. Prowle
et al. [164] tested whether short-term perioperative atorvasta-
tin administration could reduce AKI incidence: the primary
outcome was the detection of a limited increase in postopera-
tive serum creatinine after atorvastatin therapy, while second-
ary outcomes included AKI incidence, changes in urinary
NGAL, the need for renal replacement therapy (RRT), length
of hospitalization and mortality.

More than half of clinical interventional studies included
AKI biomarkers in the primary end point of the study (51.4% of
selected studies) (Table 5). Kooiman et al. [77] analyzed KIM-1
and NGAL in patients with CKD enrolled in a trial on hydra-
tion regimens to prevent contrast-induced AKI and found
that the excretion of these biomarkers was unaffected by con-
trast medium in patients with and without AKI. DeSeigneux
et al. [15] tested the hypothesis that different doses of EPO
administered to patients in the intensive care unit after car-
diac surgery would reduce the incidence of AKI: the primary
outcome was the change in urinary NGAL concentration
from baseline and 48 h after EPO administration, while sec-
ondary outcomes were changes in traditional renal function
markers (serum creatinine). Oh et al. [65] analyzed the effect
of high-dose statin in patients hospitalized for acute heart
failure: the primary outcome was the change in the level of
biomarkers related to inflammation and renal injury (cystatin
C). Choi et al. [38] found no significant differences in AKI in-
cidence in 76 patients undergoing valvular heart surgery ran-
domly assigned to either remote ischemic preconditioning or
a control group. In this study, the primary end points were
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|comparison of biomarkers of renal injury, including serum

creatinine, cystatin C and NGAL, while the secondary end
points were the evaluation of myocardial enzyme release and
pulmonary parameters.

A higher percentage of preclinical interventional studies
included AKI biomarkers in the primary end point compared
with clinical studies (68 versus 51.4%; P¼ 0.03) (Table 6).
Recently, Kim et al. [120] investigated the role of urinary Klotho
and NGAL for differentiating pre renal (volume-depleted
model) and intrinsic AKI (obtained by injections of cisplatin) in
rats and showed a significant reduction of urinary Klotho in pre
renal AKI and no differences in NGAL levels between the two
groups. Wang et al. [151] analyzed the different expressions of
NGAL and other pro-inflammatory cytokines (IL-6, TNF-a)
between septic (obtained by cecal perforation) and nonseptic
AKI in 17 pigs. Pawar et al. [136] determined that NGAL ex-
pression in renal tissue, as well as urinary levels, was signifi-
cantly higher in mice with nephrotoxic nephritis as compared
with control mice and a tight correlation was observed between
these levels and renal histopathology.

We also compared preclinical and clinical studies in specific
settings: comparing studies on sepsis (eight preclinical and two
clinical studies), the majority of preclinical studies (87.5%) used
biomarkers as the primary end point [150–152, 154–157], while
the two clinical studies used them as the secondary end point

[56, 57]. In 18 studies on cisplatin-associated AKI (13 preclinical
and 5 clinical), 11 preclinical [105, 112, 114, 120, 121, 128, 130,
131, 133, 143, 144] and all the clinical studies [44–47, 49] used
AKI biomarkers as the primary end point. Conversely, among
five studies focusing on contrast-associated AKI with the same
exposure and specific strategy to prevent AKI (hydration and N-
acetylcysteine; one preclinical and four clinical), one preclinical
[160] and three clinical studies [75, 77, 82] used the biomarkers
as the primary end point. Considering studies that analyzed the
same biomarker (urinary NGAL), but with divergent outcomes
(one preclinical and two clinical studies [77, 82]), the three stud-
ies used the biomarker as the primary end point.

Overall, there was not an increasing trend in the number of
studies using AKI biomarkers as the primary end point in the
last 10 years and the percentage of these studies has ranged
from 20 to 55.6% of the selected studies by year (Figure 3).
Preclinical studies are more likely to use biomarkers as the pri-
mary end point compared with clinical studies [odds ratio 2.31
(95% CI 1.17–4.59); P¼ 0.016].

D I S C U S S I O N

Failure to translate basic discoveries in AKI pathophysiology
into clinical treatments has been a major impediment to

FIGURE 2: Number of studies including biomarkers in the definition of AKI in (a) clinical and (b) preclinical studies.
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progress in clinical medicine [164, 165]. Differences between
clinical and preclinical studies may represent one of the most
important barriers to successful translation into clinical practice.
With the present study, we analyzed the differences between
clinical and preclinical studies on AKI biomarkers based on the
setting and the etiologies on which they are focused, the inclu-
sion of biomarkers in the definition of AKI and their use as pri-
mary or secondary end points in interventional studies.

There is an important disconnect between studies concerning
the setting in which they evaluated AKI. A significant percentage
of clinical studies analyzed AKI in patients undergoing

cardiothoracic surgery or with contrast-associated AKI, while
ischemia–reperfusion injury and drug-associated AKI predomi-
nating in preclinical studies. These differences may help explain
the limited reproducibility of results obtained by experimental
analyses in clinical studies since AKI in the clinical setting is
related to multiple conditions and may involve different patho-
genic features. A host of cellular and molecular pathways involving
injury, regeneration and repair have been implicated [164, 166,
167]. To be useful, a model organism must recapitulate the clinical
and molecular (subclinical) features of the disease in question. For
AKI, these features are limited to changes in function (e.g.

Table 5. Use of AKI biomarkers as primary or secondary end points in clinical interventional studies

AKI
biomarker

Study Year AKI
biomarker

Study Year AKI
biomarker

Study Year

Primary
end point

NGAL Coca et al. [14]
Lipcsey et al. [18]
Balkanay et al. [32]
Dardashti et al. [33]
Yousefshahi et al. [34]
Ribichini et al. [57]
Kooiman et al. [77]
Akrawinthawong
et al. [80]
Tasanarong et al. [82]
Lin et al. [45]
Seker et al. [46]
Shahbazi et al. [47]
Ylinen et al. [48]
Shinke et al. [49]
Schilder et al. [66]
Sahraei et al. [55]
Daggulli et al. [70]
Kardakos et al. [71]
Lahoud et al. [58]
Orsolya et al. [59]
Junglee et al. [88]
Oboho et al. [89]

2013
2014
2015
2014
2013
2013
2015
2015
2013
2013
2015
2015
2014
2015
2014
2015
2016
2014
2015
2015
2013
2013

NGAL Bobek et al. [11]
De Seigneux et al. [15]
Adademir et al. [27]
Ricci et al. [28]
Barkhordari et al. [35]
Choi et al. [38]
Gaspari et al. [44]
Yang et al. [64]
Fassett et al. [87]

2010
2012
2012
2011
2011
2011
2010
2010
2012

KIM-1 Coca et al. [14]
Ribichini et al. [74]
Kooiman et al. [77]
Duan et al. [78]
Shinke et al. [49]
Lahiri et al. [62]
Daggulli et al. [70]
Fahmy et al. [72]
Lahoud et al. [58]

2013
2013
2015
2013
2015
2014
2016
2013
2015

NAG Shinke et al. [49]
Lahiri et al. [62]
Daggulli et al. [70]
Fahmy et al. [72]
Oboho et al. [89]

2015
2014
2016
2013
2013

Cystatin C Ricci et al. [28]
Dardashti et al. [33]
Yousefshahi et al. [34]
Choi et al. [38]
Torigoe et al. [75]
Duan et al. [78]
Ylinen et al. [48]
Oh et al. [65]
Mayeur et al. [69]
Kardakos et al. [71]
Fassett et al. [87]

2011
2014
2013
2011
2013
2013
2014
2014
2010
2014
2012

L-FABP Coca et al. [14]
Katoh et al. [81]
Igarashi et al. [84]
Daggulli et al. [70]

2013
2014
2013
2016

Cytokines Mayeur et al. [69] 2010

Secondary
end point

NGAL Ejaz et al. [16]
Foroughi et al. [17]
Prowle et al. [19]
Tasanarong et al. [20]
Zarbock et al. [22]
Matata et al. [23]
Basu et al. [24]
Deininger et al. [30]
Gallagher et al. [31]
Oh et al. [36]
Kim et al. [39]
Brulotte et al. [42]
Pedersen et al. [43]
Ataei et al. [50]
Gok et al. [79]
Nymo et al. [63]
Leaf et al. [56]
Pickkers et al. [57]
Ojeda et al. [51]
Sureshkumar et al. [52]
Tsuchimoto et al. [53]
Coupes et al. [54]
Boertien et al. [86]

2013
2014
2012
2013
2015
2015
2014
2015
2015
2012
2013
2013
2012
2015
2013
2012
2015
2012
2013
2012
2014
2015
2015

NGAL Wagener et al. [21]
Ling et al. [85]
Srisawat et al. [67]

2008
2008
2011

IL-18 Ejaz et al. [16]
Gallagher et al. [31]
Brulotte et al. [42]
Ling et al. [85]
Pickkers et al. [57]
Sureshkumar et al. [52]
Coupes et al. [54]

2013
2015
2013
2008
2012
2012
2015

TIMP2 3
IGFBP7 Zarbock et al. [22]

Meersch et al. [25]
2015
2014

KIM-1 Deininger et al. [30]
Gallagher et al. [31]
Brulotte et al. [42]
Leaf et al. [56]
Pickkers et al. [57]
Coupes et al. [54]
Hatipoglu et al. [73]
Boertien et al. [86]

2015
2015
2013
2015
2012
2015
2014
2015

Cystatin C Basu et al. [24]
Gallagher et al. [31]
Song et al. [37]
Kim et al. [39]
Pedersen et al. [43]
Poletti et al. [76]
Gok et al. [79]
Yin et al. [83]
Srisawat et al. [67]

2014
2015
2015
2013
2012
2007
2013
2013
2011

L-FABP Deininger et al. [30]
Boertien et al. [86]

2015
2015

GGT Endre et al. [68] 2010

NAG Brulotte et al. [42]
Gok et al. [79]
Kharasch et al. [60]

2013
2013
1997

Cytokines Westhuyzen et al. [29]
Xinwei et al. [41]
Boldt et al. [61]
Leaf et al. [56]
Pickkers et al. [57]

1994
2009
1996
2015
2012

NAG, N-acetyl-glucosaminidase; a-GST, alpha-glutathione S-transferase; MCP-1, monocyte chemotactic protein 1; TIMP-2, tissue inhibitor metalloproteinase 2; GGT, gamma-glu-
tamyl transpeptidase; NA, not available.
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increased serum creatinine) and evidence of damage (e.g. changes
in biomarkers). Histologic changes are also relevant, but to a far
lesser extent, because renal tissue is rarely obtained from humans
with AKI.

As previously described [7, 8, 10], the AKI definition was an
important source of heterogeneity. In our analysis, only �20%
of all clinical interventional studies actually included novel bio-
markers of renal injury, while about one-third of preclinical
studies used them. Many studies deviated from standard criteria
to define AKI and one of the most frequent deviations, was to

ignore the urinary output criteria altogether. In most studies,
particularly in the preclinical setting, AKI was based only on
serum creatinine elevations, despite this marker’s well-known
deficiencies. Differences in biomarker results and ‘AKI’ may be
explained in part by the lack of sensitivity for serum creatinine.
Indeed, false positives (true tubular damage, but negative serum
creatinine) or false negatives (no significant tubular injury, but
an increase in serum creatinine related to prerenal AKI or due
to other confounding variables) were observed. In such scen-
arios, it will be important for future studies to investigate

Table 6. Use of AKI biomarkers as primary or secondary end points in preclinical interventional studies

AKI
biomarker

Study Year AKI
biomarker

Study Year AKI
biomarker

Study Year

Primary
end point

NGAL Zang et al. [12]
Visnagri et al. [92]
Mei et al. [94]
Duan et al. [95]
Calistro Neto
et al. [96]
Si et al. [97]
Bussmann et al. [102]
Woodson et al. [103]
Sohotnik et al. [104]
Hosgood et al. [107]
Jochmans et al. [108]
Ko et al. [109]
Kim et al. [120]
Shin et al. [121]
Luo et al. [123]
Hosolata et al. [133]
Pawar et al. [136]
Mishra et al. [144]
Otto et al. [150]
Lee et al. [152]
Han et al. [154]
Wang et al. [157]
Li et al. [160]

2014
2015
2015
2015
2015
2014
2014
2013
2013
2012
2011
2010
2016
2014
2014
2012
2012
2004
2015
2013
2012
2015
2014

KIM-1 Visnagri et al. [92]
Bussmann et al. [102]
Sohotnik et al. [104]
Ko et al. [109]
Shin et al. [121]
Luo et al. [123]
Cardenas et al. [125]
Chen et al. [128]
Nozaki et al. [130]
Vinken et al. [131]
Hosolata et al. [133]
Kramer et al. [140]
Zhou et al. [141]
Lee et al. [152]
Li et al. [158]

2015
2014
2013
2010
2014
2014
2013
2013
2012
2012
2012
2009
2008
2013
2015

Inflammatory
cytokines

Visnagri et al. [92]
Zager et al. [105]
Hosgood et al. [107]
Dennen et al. [112]
Gueler et al. [118]
Shin et al. [121]
Hanna et al. [126]
Nozaki et al. [130]
Yanagisawa
et al. [148]
Wang et al. [151]
Han et al. [154]
Knotek et al. [155]
Li et al. [156]
Wang et al. [157]

2015
2012
2012
2010
2002
2014
2013
2012
1998
2015
2012
2001
2008
2006

IL-18 Duan et al. [95]
Bussmann et al. [102]
He et al. [113]
Nozaki et al. [130]

2015
2014
2008
2012

L-FABP Duan et al. [95]
Jochmans et al. [108]
Negishi et al. [143]

2015
2011
2007

Osteopontin Xie et al. [147] 2001 uFetuin-A Zhou et al. [114] 2006
a-GST Chen et al. [128] 2013 Klotho Hu et al. [111]

Kim et al. [120]
2010
2016

Cystatin C Youssef et al. [91]
Mei et al. [94]
Si et al. [97]
Oron et al. [98]
Woodson et al. [103]
Wunnapuk et al. [124]

2015
2015
2014
2014
2013
2014

NAG Hosolata et al. [133]
Raekallio et al. [139]
Zhou et al. [141]
Usuda et al. [146]

2012
2010
2008
1998

GGT Naghibi et al. [142] 2007

Secondary
end point

NGAL Speir et al. [93]
Hang et al. [100]
Gardner et al. [101]
Kim et al. [110]
Tan et al. [122]
Sinha et al. [129]
Efrati et al. [132]
Guo et al. [149]
Zhou et al. [153]

2015
2014
2014
2010
2015
2013
2012
2015
2014

KIM-1 Speir et al. [93]
Hang et al. [100]
Sanchez-Pozos
et al. [106]
Maguire et al. [127]
Sinha et al. [129]
Groebler et al. [135]

2015
2014
2012
2013
2013
2012

Cystatin C Hang et al. [100]
Efrati et al. [132]
Efrati et al. [134]
Zhou et al. [153]

2014
2012
2012
2014

IL-18 Patel et al. [159] 2011
uClusterin Dodiya et al. [137] 2011 Inflammatory

cytokines
Koga et al. [13]
Zhang et al. [90]
Speir et al. [93]
Gardner et al. [101]
Nitescu et al. [115]
Burne-Taney
et al. [117]
Seth et al. [119]
Tan et al. [122]
Efrati et al. [134]
Lee et al. [138]
Li et al. [156]

2010
2015
2015
2014
2006
2003
2000
2015
2012
2011
2008

NAG Hang et al. [100]
Baker et al. [116]
Sinha et al. [129]
Ziai et al. [145]
Schultz et al. [161]

2014
2006
2013
2003
1992

MCP-1 Koo et al. [99] 2014

NAG, N-acetyl-glucosaminidase; a-GST, alpha-glutathione S-transferase; MCP-1, monocyte chemotactic protein 1; TIMP-2, tissue inhibitor metalloproteinase 2; GGT, gamma-glu-
tamyl transpeptidase; NA, not available; uClusterin, urinary clusterin; uFetuin-A; urinary fetuin-A.
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clinical outcomes (including long-term outcomes) for patients
who appear to develop subclinical AKI (biomarker positive but
serum creatinine negative). AKI diagnosis and staging based on
standard criteria developed for humans (e.g. RIFLE) have been
applied to both laboratory animals [112, 153] and veterinary pa-
tients [100, 151]. NGAL and KIM-1 were first identified in ani-
mals and then validated in humans and, recently, the cell cycle
arrest biomarker TIMP-2 � IGFBP7, the only FDA-approved
biomarker for AKI, was validated in animals [168]. Thus we be-
lieve that AKI definitions and biomarkers can be used across
species. The question is whether they have been and to what
extent.

Overall, only a limited number of studies have investigated
biomarkers for AKI severity and long-term outcomes (renal
recovery, progression to CKI, cardiovascular events and mor-
tality), mainly as secondary end points [43, 67, 68, 122, 164].
Few studies examining AKI biomarkers have suggested their
potential role to distinguish patients at risk of severe AKI
requiring RRT and the available data are not sufficient to con-
clude that biomarkers should be used for the clinical decision

to begin RRT. For this reason, the identification of new bio-
markers or novel ways to use known biomarkers, such as ro-
bust clinical prediction models that integrate biomarkers and
clinical variables, need to be developed to increase their use in
clinical practice. A critical need is to improve the design of pre-
clinical and clinical studies in AKI settings to identify potential
therapeutic targets and translate findings in preclinical studies
in humans for the prevention and treatment of AKI. Future
directions in preclinical research should aim to improve ani-
mal models to better reproduce human AKI and its character-
istics. Table 7 summarizes the main findings of the present
study, as well as recommendations for future AKI biomarkers
research.

In conclusion, this study highlights the main differences in
terms of settings and the inclusion of novel biomarkers in the
definition of AKI and in the assessment of outcomes between
clinical and preclinical interventional studies focused on AKI
biomarkers. Overcoming this disconnect could be fundamental
to improving our understanding of the pathophysiology of AKI
and the potential therapeutic options.

FIGURE 3: Percentages of (a) clinical and (b) preclinical studies with AKI biomarkers as primary and secondary end points.
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