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To gain a comprehensive understanding of a patient’s health, advanced analytics must be applied to the data collected by

electronic health record (EHR) systems. However, managing and curating this data requires carefully designed worklows.

While digitalization and standardization enable continuous health monitoring, missing data values and technical issues can

compromise the consistency and timeliness of the data. In this paper, we propose a worklow for developing prognostic models

that leverages the SMART BEAR infrastructure and the capabilities of the Big Data Analytics (BDA) engine to homogenize

and harmonize data points. Our worklow improves the quality of the data by evaluating diferent imputation algorithms and

selecting one that maintains the distribution and correlation of features similar to the raw data. We applied this worklow to a

subset of the data stored in the SMART BEAR repository and examined its impact on the prediction of emerging health states

such as cardiovascular disease and mild depression. We also discussed the possibility of model validation by clinicians in

the SMART BEAR project, the transmission of subsequent actions in the decision support system, and the estimation of the

required number of data points.

CCS Concepts: · Information systems→ Data management systems; · Computing methodologies→ Knowledge

representation and reasoning; · Applied computing→ Health informatics.

Additional Key Words and Phrases: Internet of Things, Electronic Health Records, Data Management, Continuous Learning

1 INTRODUCTION

Electronic Health Record (EHR) systems foster the systematic collection of patients’ data in digital format
via electronic devices and information systems. The beneits provided by the adoption of EHRs include both
organizational and clinical aspects [26]. Clinical decision support systems, computerized order entry systems,
and health information exchanges can improve in eiciency with EHRs [15]. Reduced medical errors, improved
ability to conduct research, and improved availability of information for patients and clinical staf are societal
beneits that EHRs can drive [33].

The acceleration of population aging is a global challenge for healthcare systems [38] and has led lawmakers
in the EU, US, and other countries to deine recommendations and standards that healthcare providers must
follow when implementing EHRs to improve eiciency [19, 40]. This trend is coupled with a growing interest in
mobile health (mHealth) monitoring systems. Along with advances in hospital infrastructure, mHealth is setting
the stage for the establishment of smart health ecosystems around the world, relying on the availability of data
from mobile, wearable, and IoT devices both inside and outside the hospital. These new smart health ecosystems
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enable the continuous collection of data from everyday life, which will be analyzed to provide the evidence
needed to ofer personalized interventions [9, 17].

With this convergence, EHR systems are becoming very large in terms of the volume and variety of data they
ingest and process, making data management a relevant challenge [6]. Efective data management requires a
data strategy and reliable methods to access, integrate, cleanse, store, and prepare data for analysis [25]. The
implementation of EHR systems imposes the deinition of complete data management procedures with data

quality and clinical signiicance as key pillars to drive the use of data in enhanced monitoring and diagnostic
procedures. This is particularly true for mHealth data, where records may be collected by multiple devices, at
diferent times, and with diferent levels of quality. Data transmission may be interrupted due to technical or
usability issues. Pairing or network issues can limit the availability of IoT devices [27]. Monitoring schedules may
be temporarily halted by patients who feel overloaded with their assignments [42]. Diferent temporal granularity
in the collection of observations leads to misaligned time series [14]. Gaps and missing values make time series
incomplete, threatening the validity of data analysis [28]. These aspects are well documented in the data quality
literature, which emphasizes the importance of implementing tests to verify the completeness, consistency, and
timeliness of data and methods to repair or improve data when these dimensions are low [16]. Authors in other
research domains are also addressing the data quality and management issue from diferent perspectives. For
instance, assurance and certiication techniques aim to prove that such complex (AI-based [3]) worklows behave
as expected and complies with non-functional requirements (e.g., in terms of fairness, accuracy [2, 4], which is out
of the scope of the current paper. Furthermore, the relevance of prognostic analytics ultimately depends on the
accuracy achieved by the predictive models and the signiicance of the samples used to train those models [35].
The design of a predictive model involves the evaluation of the complexity of the domain under study, the
steadiness of the domain or the size of the samples used to obtain the required accuracy. Ongoing evaluation of
models naturally provides the researcher with the means to assess the reproducibility of experimental results,
i.e. the extent to which consistent results are obtained when a model is evaluated. Data quality and clinical
signiicance of the data are then two central worklows that an EHR system has to deal with for continuous data
acquisition and model adaptation. A priori evaluation of these dimensions is no longer compatible with the goals
of today’s EHR infrastructures. Software and data management worklows must be designed accordingly.
In this paper, we report the results of the SMART BEAR project in deining a complete data management

pipeline for continuous learning in EHR systems. Our solution organizes several data management procedures
into automated and modular worklows, which we call the Data Quality Worklow and the Prognostic Model
Design Worklow, that allow organizations to foster a culture of continuous improvement. The paper is organized
as follows: Section 2 presents the SMART BEAR infrastructure in detail. Section 3 presents a proposed worklow
focused on improving data quality and a worklow for designing a predictive model while approaching the
sample size required for a valid machine learning (ML) model. In section 4, using the data collected by EHR in
the SMART BEAR project, two case scenarios, Cardio Vascular Disease and Mild Depression, are discussed and
the results of the implemented worklows are evaluated. We have concluded this paper with concluding remarks
and achievements.

2 THE SMART BEAR INFRASTRUCTURE

The SMART BEAR project1, presents an extensive framework for ongoing, long-term assessments and the
monitoring of the health status of elderly individuals. This is achieved through the utilization of wearable devices
including smart phones, smart watches, smart thermometers, smart scales, mobile apps, and periodic evaluations
conducted by trained personnel and physicians.

1https://www.smart-bear.eu/
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In complementing Electronic Health Record (EHR) systems, SMART BEAR facilitates continuous monitoring,
periodic assessments, data aggregation from various sources, and the provision of both descriptive and predictive
analyses.

Eforts to leverage medical/clinical data involve the harmonization of concepts and terms, making the informa-
tion comprehensible and usable for other clinicians and scientists. A proposed solution involves utilizing the
distinct LOINC2 and SNOMED-CT3 codes to deine observations, encounters, and biological considerations.

The data storage architecture in SMART BEAR adheres to standardized procedures for data acquisition outlined
in the "Mapping on Fast Healthcare Interoperability Resources (FHIR)" by [32]. FHIR facilitates the representation
and sharing of information among clinicians and organizations in a standardized manner, regardless of the local
Electronic Health Record’s representation or storage methods, thus advancing interoperability.

The data measured and collected with SMART BEAR devices, mobile applications called SB@App that collects
temperature and motion via sensors, and questionnaires will be stored in HAPI FHIR repositories using the
uniied codes. Regarding the integration of questionnaires on the FHIR repository, a generic model is deined in a
data model4. Moreover, SMART BEAR, takes advantage of HomeHub. The HomeHub is an integral component
of the SMART BEAR solution, encompassing both hardware and software aspects. It plays a pivotal role in the
deployment of home automation technology within people’s residences, serving as the central hub where various
devices and sensors can connect and be coordinated.

The main objectives of the SMART BEAR project are continuous and objective monitoring of quality of life of
elderly people and their ability to live independently [17]. Integrating of-the-shelf smart consumer and medical
devices to provide a Smart Health ecosystem, and increasing the eiciency of healthcare delivery while reducing
resource waste, are other goals of this project [1]. Considering these objectives, in order to implement eicient
and valid analytics in a continuous data acquisition environment, it is required to cure the received data in
multiple stages of the data management process [8].

Figure 1 presents the technical infrastructure of the SMART BEAR project [36]. All the data curation procedures
are supposed to happen in the Big Data Analytics (BDA) engine that is placed on the SB@Cloud. The SB@Cloud
is maintained using the Kubernetes cluster that orchestrates all the services. The cloud is able to run diferent
services including Analysis Worklows (Dashboard and BDA Engine), Data Repository, Decision Support Services,
and the Security Component.

The data curation procedures include worklows related to data quality assessment, data preparation, sample
size evaluation, and continuous learning.
The BDA engine is tailored to get scalability in terms of the addition of resources to the platform to support

the increase in workload. The coniguration and deployment of resources are easy and due to the execution on
Docker containers, it has high lexibility.
The BDA engine addresses the functionalities required for processing DAWs (Data Analysis Worklows) and

storing execution results. It uses a series of suitably conigured Open-Source components and a custom-developed
one that is responsible for piloting the execution of the various analyses available in the catalog for results storage
and presenting them in the dashboard.

In the input data, besides the received data from the SMART BEAR platform, the evaluation of the capability
of the infrastructure in integrating other European projects as synergy studies such as Smart4Health5 and
HOLOBALANCE6 have been a core objective. Smart4Health has been sharing device data and infrastructures
involved in low back pain prevention and treatment while the HOLOBALANCE rehabilitation platform is used

2https://loinc.org/
3http://www.snomed.org/snomed-ct/Use-SNOMED-CT
4https://www.hl7.org/fhir/questionnaireresponse.html
5https://smart4health.eu
6https://holobalance.eu
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Fig. 1. An overview of the SMART BEAR infrastructure as presented in [36]. It contains diferent components such as Big

Data Analysis Engine, Security Component, Decision Support System, Dashboard, and Data Repository. The received data

from home sensors and synergies are depicted on the right side of the picture.

to support participants with balance disorders by projecting a virtual holographic physiotherapist through the
Holobox to guide the patient to the daily exercise regime to carry out.

2.1 BDA engine components

The components used by the platform are as follows.

• Apache Hadoop7: From the Hadoop ecosystem, an exclusively distributed ile system (HDFS) is utilized for
storing the extracted data from the FHIR repository and transforming it in a tabular format appropriately.

• Apache Hive Metastore8: It contains all the information regarding the databases, the tables, and the
relationships between them. This is especially useful for handling data that is transformed and saved on
the distributed ile system. The Metastore allows interoperability between the various components that
need to access the data and enables to launch SQL-like queries using Trino and Spark.

• Apache Spark9: This is the component that allows data management, data engineering, and ML tasks on
a large dataset. Thanks to its abilities, the data are accessible through the Metastore considering the HDFS
data similar to tables in a SQL database, simplifying life for those who have to develop the analytics and
guaranteeing the necessary scalability for the platform.

• Trino10: It is a distributed SQL query engine designed to query large data sets distributed over one or more
heterogeneous data sources. It is designed to handle data warehousing and analytics: data analysis, aggre-
gating large amounts of data, and producing reports (OLAP). It could be leveraged for ETL transformations
without the overhead of Spark. Furthermore, Trino with the proper coniguration can run SQL queries
directly on tables stored in HDFS.

7https://hadoop.apache.org
8https://hive.apache.org
9https://spark.apache.org
10https://trino.io
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• Apache Airlow11: It can develop, schedule, and monitor batch-oriented worklows. Airlow’s extensible
Python framework enables us to build worklows using diferent technologies, combined with docker, it
can run custom images with all the tools needed to run analytic tasks.

• BDA API: It is internally developed for providing a REST-type interface to the dashboard and other
platform components in order to be able to interact with worklows and save/retrieve the results of previous
executions. The BDA API includes a catalog of atomic analytics that could be composed in worklows the
engine schedule automatically or in dependence on speciic events.

• Delta Lake12: It is an open-source storage framework that enables building a Lakehouse architecture [5]. It
is located on top of Hadoop providing ACID Transactions, and scalable metadata handling while unifying
streaming and batch data processing on top of existing data lakes like HDFS .

• Apache Zeppelin13: It is a Web-based tool that enables users to create interactive data analysis, prototype
some of the analytics that should be translated into a proper worklow, and share preliminary results in a
collaborative environment for the data scientist.

Fig. 2. The schematic view on the Big Data engine used for the analysis tasks of the SMART BEAR project. Components are

depicted hierarchically considering the layered steps to proceed from data extraction to BDA API.

2.2 Data storing and data management implemented by BDA

Exported data from various storage sources, such as the FHIR repository, is transformed through a series of steps
and stored in the format requested by Delta Lake. This format allows for building a Lakehouse architecture. The
Lakehouse is an open architecture that combines the best elements of data lakes and data warehouses. As some
of the key features of this kind of architecture, we can name: (i) ACID transactions, (ii) schema enforcement, (iii)
business intelligence support, (iv) openness, (v) support for diverse workloads, and (vi) support for structured
and unstructured data [11].

Through Delta Lake, we support all these requirements and ofer a real version management process for data
in our environment. With the Time Travel component we can specify the version of a table. This allows us to be
able to relaunch an analysis on a speciic version of the data in order to be able to make a comparison between
the results of diferent snapshots. It also provides a mechanism to replicate a result, and audit the data and the
obtained results.

11https://airlow.apache.org
12https://delta.io
13https://zeppelin.apache.org
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2.3 Data analysis tasks

Data analysis tasks are mainly performed using Spark and Python libraries that can operate on data in Delta
Lake format. Depending on the complexity of the worklows, these tasks could be composed of several steps. In
some cases, it is easier to query and prepare data through Spark and then use other more speciic libraries or
tools to perform the required analytics. With Apache Airlow we can create DAGs (Directed Acyclic Graphs)
composed of diferent tasks and use HDFS as a distributed ile system to save the data needed for the various
steps. Furthermore, with this lexibility, if necessary, it is possible to use also ready Docker images containing
all the necessary tools for creating models and performing analytics. The main requirement therefore always
remains to be able to read data from a distributed ile system such as HDFS.

2.4 Data flow management and workflow orchestration

The most complex job in data low management is querying the FHIR repository to export the data from the
repository and insert it into the tables in Delta Lake. The worklow, that runs each day, is therefore composed
of diferent tasks which can be roughly divided as follows: (i) export from FHIR, (ii) lattening of the data, and
(iii) upsert in Delta Table. To export the data, the possibilities ofered by the FHIR REST API are exploited, using
the Bulk Data Export API. Therefore it is also possible to request to export data that has been inserted/modiied
in the repository from the last time the export process was successful. The data exported in ndjson format are
then saved on HDFS, the next step is to bring them in a lat type format, i.e., as if they were data belonging to
a common SQL table. All of this is orchestrated using Apache Airlow as the main engine. Using Airlow, it is
possible to conigure the worklows to be executed according to predeined intervals, either with some already
predeined, or in very speciic cases it is possible to execute them also using schedules deined through an interval
deined through a Cron-type expression.

2.5 Data visualization

For the data visualization part, the BDA Engine mainly makes use of two diferent tools: Apache Echarts14 to
display the results of the analytics in the Dashboard interface and Apache Zeppelin to allow data scientists to
carry out data exploration and try to create examples of analytics which will be deployed in production. Apache
Echarts is an open-sourced JavaScript visualization tool that can run on Web Browser and mobile devices, it also
provides an excellent library of basic charts and the possibility to extend or customize according to the needs of
our output. There are many available components, among the most used there are certainly: (i) Datazoom that is
used for zooming a speciic area, which enables users to investigate data in detail, get an overview of the data,
or get rid of outlier points. (ii) Timeline which provides functions like switching and playing between multiple
Echarts. (iii) Toolbox that contains some functionalities like the export to PNG and zooming. (iv) Legend that
shows symbol, color, and name of diferent series. The user can click legends to toggle displaying series in the
chart.

2.6 Platform management

Since all the tools used in the BDA Engine have been containerized, to manage the entire platform the tool we
rely on is the deployment platform itself, i.e., Kubernetes (K8s). K8s is the system that we use to handle scaling,
automatic system deployment and manage all the containerized applications that we use in the Cloud [29]. All the
components described above have their basic conigurations saved as ConigMap inside the Smart Bear repository
dedicated to the BDA Engine while passwords and sensitive data are saved as Secrets. For some components,
it was decided to use Helm Charts 15 to deploy as the Spark cluster, while for others ad-hoc deployments are

14https://echarts.apache.org
15https://helm.sh
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used. Then the inal conigurations should be done using the WEB UI provided by the tool. These administration
UIs are not available to all users, but only to system administrators who can also modify the deployment of the
various tools and manage the resources needed to keep the infrastructure fast enough.

2.7 Analytics Orchestration

The analytics that can be performed with custom coniguration by clinicians through the dashboard is exposed
and managed through the BDA REST API. These APIs expose a catalog of the available analytics with their
various coniguration parameters and their default values. Each time an analytic is launched these parameters
are passed to Airlow which takes care of managing the execution. In the UI, the data scientists can therefore
create a new notebook or clinicians can use the already implemented notebooks to launch diferent analyses (or
perhaps even the same one, but with diferent parameters) and then analyze the results which are returned at the
end of the execution. In case of problems, the system administrator can always check the various runs using the
Airlow Web UI and check in the logs where the problem occurred, if it is due to a wrong coniguration, lack of
resources, or something else. Obviously, for the clinician or data scientist, the management of the platform is
totally transparent, in fact, the coniguration of the capacity of the scheduler and the number of workers available
are tasks left to the system administrator who must ind the right compromise between the available resources
and the speed of execution requested by the end user.

3 IMPLEMENTED WORKFLOWS

This section illustrates two major worklows supported by the SMART BEAR BDA engine. Each of them is
composed of sub-tasks and sub-worklows we discuss. Their implementation is realized to support continuous
learning and validation of prognostic models. SMART BEAR complements an EHR system by providing con-
tinuous monitoring, data gathering, and analysis. Newly arrived data must be ingested, veriied, and possibly
improved. Their temporal and domain validity must be checked. Data representation must be homogenized and
normalized to have a common representation format. A virtualized version of data must be made available in
sandbox environments allowing researchers to explore them without afecting the access to the storage. Data
imputation procedures are necessary to improve the completeness and standardization of the stored data sets.
The representativeness and signiicance of a data set in training a prognostic model must be veriied before
exploiting its recommendations to notify the users of the systems. The models stored in the system must be
continuously adapted to newly acquired data and their performance monitored.

3.1 Data uality Workflow

In general terms, data quality consists of multiple-step implementation taking care of diferent aspects to consider
for improving the accessibility, usability, and eiciency of analytic results [16]. We require our BDA to explore
diferent traits of data quality. In particular, considering the distribution of missing values, we will deine a
continuous method for learning this distribution and select, accordingly, the best imputation algorithm. The
execution of this worklow is a precondition for training accurate and reliable prognostic models.

• Step 1: Data Homogenization.
Clinical data are usually collected from a range of sources, and each data origin point has its unique structure
and format which requires much efort in unifying the concepts and terms to make the data understandable
and usable by both clinicians and scientists. As previously mentioned in Section 2.2, SMART BEAR creates
the interoperable data model for structural homogenization while for contextual homogenization purposes
takes advantage of the identiied LOINC16 and SNOMED-CT17 codes in deining observations, encounters,

16https://loinc.org
17http://www.snomed.org/snomed-ct/Use-SNOMED-CT
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and biological considerations that will be stored in FHIR repositories [12].
In the context of the SMART BEAR project, a data model for mapping the questionnaires according to the
FHIR principles has been developed. According to this model, an FHIR questionnaire template requires
resources where the URL, name, and title shall have a value while the version might have a value. This
way, the questionnaires are mapped on the FHIR data model.

• Step 2: Data Organizing and Restructuring.
The common input format of data analytics and machine learning procedures is a �-dimensional vector
where each dimension is a measurable piece of data, a.k.a feature or attribute. As discussed in Section 2.4,
in the FHIR repository, semi-structured data are stored in JSON format and contain both arrays and nested
objects. In order to bring them into a tabular format compatible with the vectors ingested by data analytic
algorithms, an ad-hoc script is created using Apache Spark consists of the following steps:
ś Flatten all the properties, which means that each property and object nested in the JSON creates a column
by concatenating the name of the properties with those that are children of the main property.

ś Create a new row for each element of an array if the element contains arrays within the structure. In this
case, a new row is created in the resulting table for each element of this array.

• Step 3: Data Transformation.
To move data into a common data set, users require three operations: Extraction, Transformation, and
Loading (ETL). By extraction, we query and gather the required data in the original data set; while by
Transformation we could apply multiple changes such as Data Filtering, Data Mapping, Data Deduplication,
Data Cleansing, Derived Variables, Data Sorting, or Ordering. All these operations are needed to proceed
incrementally as the SMART BEAR is running and new data is arriving. For Extraction and Loading
purposes, the BDA engine takes advantage of the Trino and Delta lake as we mentioned in the BDA engine
components Section 2.1

• Step 4: Data Virtualization.
Data virtualization creates a layer where users can access, retrieve, and manipulate data as needed. It brings
all the information together in one virtual location, allowing real-time access with no need to perform
ETL. Data virtualization is often more cost-efective and accurate. SMART BEAR uses the Apache Zeppelin
environment for this purpose. Zeppelin is a web-based notebook that enables data-driven, interactive data
analytics and collaborative documents. Using Zeppelin data scientists can implement step 3 and proceed
with the rest of the procedure serving the homogenization and organizing while exploring the available
data. Notebooks created in this way are a prototype to obtain feedback and then move on to the analytics
deployment phase in the system. After the notebook is inalized by the experts we can start to use the code
and test it, the accepted code can be released and included in the BDA catalog to make it accessible via
the BDA API. Through Zeppelin, it is possible to launch Python, Spark, SQL Query, or R scripts. This is
possible by the diferent interpreters that are provided by the system and that are launched using Docker
images containing the required components and libraries already conigured to execute the snippets.

• Step 5: Data Normalization.
Data normalization is the organizing of data to make them more similar in form and scale across all
records and ields. It increases the cohesion of entry types leading to the cleansing the unstructured data,
redundancies, and duplicates. Data normalization is basically the mapping functions unifying the scales of
numerical values without loss of generality. For example, normalization by max/min values and z-score are
advised regarding the scope of analytics.

• Step 6: Data imputation.
The sparse multivariate temporal series collected by smart devices in smart-health projects requires speciic
methodologies to leverage feature sparsity by efectively studying the correlation between features, the
achieved data quality levels, and appropriate techniques for illing the missing values to be adopted. The

ACM Trans. Internet Technol.
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Fig. 3. Schamtic view on data quality workflow

proportion of missing data only provides limited information about the bias and eiciency gains that can
be made from data imputation. The recent literature clariied that data imputation needs to be anticipated
by correlation analysis to verify the pattern followed by missing values [20, 23, 24, 30, 37]. This implies
that researchers should consider whether all the variables related to missingness can plausibly be included
in the imputation model to limit bias and improve accuracy.
An additional challenge of imputation techniques in longitudinal studies is related to the consistent
integration of temporal series and scalar features in imputation models [7]. Figure 3 illustrates the steps of
this worklow schematically.

3.2 Workflow for designing a prognostic model

The healthcare delivery system relies on complex decision-making, and various modeling tools are proposed to
assist in ensuring optimal patient care. Prognostic models, among these tools, aim to improve predictions based
on retrospective data, aiding clinicians in decision-making.

However, designing a prognostic model is a challenging issue, particularly in cases where data are insuicient
or incomplete. In such cases, continuous learning is crucial to ensure the accuracy of models over time, as newly
arrived data can improve the assigned weights of existing features and adjust data imputation procedures. This
ongoing learning process also helps to validate the consistency of a trained model as time passes. To address
these issues, a worklow has been developed that fulills the requirements for designing a prognostic model. This
worklow involves multiple steps that can be executed separately, with a validation step proposed at the end to
ensure the accuracy of the model. The steps followed for designing a diagnostic model are illustrated in Figure 4
and presented below.
Step 1: Feature extraction. The extraction of suitable features is crucial in managing the complexity of a problem
when dealing with heterogeneous data types in machine learning (ML) models. This involves unifying a dataset
containing diverse data types like time series, categorical data (e.g., gender), and numerical data (e.g., age). The
goal is to create a uniied form and temporal dimension for these inputs in a d-dimensional feature space required
for ML model training. Various algorithms are available, including those extracting static statistical features and
others based on embedding algorithms that maintain the temporal relevance of data points while abstracting
records.[7].

Step 2: Sample size approximation . Predicting the volume of needed data points for validating the ML model
is one of the crucial aspects of initiating a study with limited resources. The SMART BEAR project proposes a
three-stage procedure for deining, implementing, and validating prognostic models. The irst stage involves

ACM Trans. Internet Technol.
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Fig. 4. Schematic view on workflow for designing a diagnostic model

homogenizing multidimensional data into a single-valued representation. The second stage employs correlation
analysis to identify patterns in missing data, aiding integration into ML models for imputation and predictions.
The third stage studies the fraction of missing information to predict its impact on prognostic models.

The sample size must be evaluated with a temporal plan to deine a credible timing for getting realistic volumes
of data. We cannot plan using complex models if the data size is not appropriate. For example, experimental
evidence from the literature [41] shows Random Forest is reliable with a sample size of 200 times the number of
features in the feature space. This means once we know the sample size, we can also identify the dimension of
the feature space to be used and the modeling tool to select.

• Feature selection (the variables to be used in the learning process): for a speciic model, we need to select
speciic features out of the existing measurements that are carried out in the SMART BEAR project.

• Target deinition (the variables to be predicted): as we will discuss more speciically the target of the model
should be deined, in other words, which is the output of the model.

• Sample size continuous evaluation and drift detection: in a running project, we repeatedly run the sample
size approximation since new data brings new insight into the feature space.

Step 3: Validation. Regarding the ML models, the new dataset could play the test set role while the validation
to ind the appropriate parameters leverages the k-fold cross-validation algorithm. As an external validation,
temporal validation is also could be proposed. Besides the validation, in projects such as SMART BEAR, accuracy
is not the only assessed parameter as it may be biased and some approval from the clinicians is a requirement.
The rationale behind this decision is the active exchanges with the clinicians, for the adoption of a speciic model
or sample size not only the accuracy of the model should be stable on all cross-validated folds (low-variation) but
the clinicians should approve the suitability of the output and the extracted information’ relevance.

4 PRACTICAL IMPLEMENTATION OF WORKFLOWS IN THE SMART BEAR EXPERIMENTAL

RESULTS

The SMART BEAR project assesses and evaluates the proposed worklows using the initial dataset derived from
assessments, observations, questionnaires, and devices in the Pilot of the Pilots (PoP). The Pilot of the Pilots (PoP)
is a smaller subset of one of the pilots recruiting participants for the SMART BEAR project in which more than
100 patients have been recruited and monitored to demonstrate the project concept feasibility before the kick-of
of the large-scale ones. It had the main objective to test the irst release of the SMART BEAR infrastructure as a
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prerequisite for the additional ive pilots, and to show the synergies implemented with other European projects as
recommended by the European Commission, highlighting cooperation and interaction between complementary
solutions that are evolving at diferent paces.
By focusing on elements unique to continuous data collection scenarios, our discussion now shifts to the

critical areas of data imputation and sample size evaluation. Delving into these aspects allows us to address
the nuances and challenges inherent in continuous data collection scenarios. By exploring the intricacies of
data imputation, we aim to improve our understanding of how to efectively impute missing or incomplete
data to ensure the robustness and reliability of our datasets. At the same time, sample size assessment becomes
paramount, providing insight into the adequacy of our data collection eforts for meaningful statistical analyses.

4.1 Data Imputation in SMART BEAR

In the SMART BEAR project, like other worklows, imputation is a recurrent process as new data sets are
added to repositories. This iterative implementation enhances accuracy by updating values based on dynamic
measurements. Considering the dataset’s diverse values (numerical, categorical, ordinal), homogenization steps
are followed. Numerical values undergo z-score normalization using mean and standard deviation. Categorical
values are mapped to numerical values, treating null values as an extra category through a mapping function.
For instance, with a one-to-one mapping function, ‘yes/no/null’ becomes ‘0/1/2’. Following imputation, reverse
mapping and one-hot encoding are applied to the dataset for training machine learning models.

Various algorithms for data imputation have been proposed in the literature. Considering the type of data, the
distribution and proportion of missing values, and the sensitivity of the data, we need to choose an algorithm that
returns values closest to the real ones. Considering the inaccessibility of the ground truth data, the evaluation of
the selected algorithm could be a big challenge for a data scientist.

4.1.1 Proposed approaches for data imputation. In this worklow, considering the size of the received data set
and the correlation matrix of existing variables, we propose two generic approaches in order to select the proper
algorithm for data imputation:

• Heuristic: While the literature has clariied it is not easy to classify the distribution of missing data and it
requires having a deep understanding of the domain but most of the methods start from the assumption
that distribution is Missing At Random (MAR) and a correlation with other observed data is possible. In
this approach, diferent “Multivariate" algorithms will be performed on the data set imputing the missing
values, such as regression, stochastic regression, XGboost, MICE, and miss forest are considered for the
imputation purpose.

• Experimental: A priori classiication of the distribution of missing data is not only diicult but also
impossible once there are multiple sources of missingness. Therefore, testing experimentally the diferent
methods seems a necessity. In the experimental approach, as is depicted schematically in Figure 5, we
proposethe following. 1) Compute the correlation matrix in the data set. 2) Apply multiple methods of
data imputation considering the correlated variables. 3) Verify which one is producing the correlation
matrix most similar to the original correlation matrix or in other words the absolute diference of two
correlation matrices before and after imputation is converging to zero. 4) Using it apply again multiple
methods. 5) Iterate until the variation of the correlation matrix before and after imputation is negligible.
The pseudo-code that has generated this approach is described in detail in Algorithm 1.

ACM Trans. Internet Technol.
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Algorithm 1 Experimental continuous imputation worklow

Require: N-column data frame ({�� }), Threshold (�0), List of Univariate algorithms (� ), List of Multivariate algorithms (�)

Ensure: Calculate correlation matrix (�� � )

for � <= � do

if �� � < �0 then

apply Univariate methods

for � ∈ � do

Calculate the sum of absolute diferences of correlation row for the �th variables before and after imputation (abs

dif(�� ))

end for

Choose the�� with least abs dif(�� )

else

apply Multivariate methods

for � ∈ � do

Calculate the sum of absolute diferences of correlation row for the �th variables before and after imputation (abs

dif(�� ))

Choose the�� with least abs dif(�� )

end for

end if

end for

Fully imputed data frame

for � <= � do

Return �� to its original form, keep the rest imputed

Calculate correlation matrix (�′� � )

if �′� � < �0 then

apply Univariate methods

for �′ ∈ � do

Calculate the sum of absolute diferences of correlation row for the �th variables before and after imputation (abs

dif(�′� ))

end for

Choose the�� with least abs dif(�′� )

else

apply Multivariate methods

for � ′ ∈ � do

Calculate the sum of the absolute diference of correlation row for the �th variables before and after imputation

(abs dif(� ′� ))

end for

Choose the�� with least abs dif(� ′� )

end if

end for

Multivariate
imputation

Evaluation

Fake Missing
 values

selecting the
imputation

 technique

Multivariate
imputation

Evaluation

1. absolute
 diffference
 correlation
 testing
2.Fake Missing
 values

selecting the
imputation
 technique

 Correlation 

Multivariate
imputation

Fig. 5. A schematic view on the heuristic (let) and experimental (right) data imputation workflow.
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4.1.2 Algorithm selection based on the absolute diference of correlation matrix: In this method, the fact that the
data distribution should not be changed by the imputation process is veriied by comparing the data correlation
before and after the imputation. Figure 6 shows an example of changes in the correlation matrix due to imputation
over a set of features from the SMART BEAR repository. According to this example, even though systolic and
diastolic blood pressure are highly correlated, the applied imputation algorithm does not change this correlation,
so this could be a trustworthy solution.

Fig. 6. Algorithm selection based on the absolute diference of correlation matrix

4.1.3 Algorithm selection based on the minimum error evaluating fake missing values. After applying several
imputation algorithms, in order to decide which one has the best accuracy on each dataset, we need to evaluate
how accurately they predict the missing values. Since the ground truth data are missing, for evaluation purposes
wemanually try to exclude some existing real data points called fake missing values and predict them by comparing
them with the real values and calculating the root mean square error (RMSE), mean absolute error (MAE) and
absolute error (AE). Figure 7 shows the calculated error types in terms of diferent proportions of fake missing
values.
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Fig. 7. Using the HearBeat data from SMART BEAR data repository, we have imputed themissing values using state-of-the-art

algorithms. Considering the diferent proportions of fake missing values (on the x-axis), we evaluate the absolute error, Root

mean square error and, Mean average error between the predicted data and the ground truth data.

4.1.4 Continuous Learning. Implementing continuous learning, or in other words, ensuring that worklows run
frequently during the SMART BEAR study, is critical to the success of the pilots. With the arrival of new data
sets, there is an opportunity to use them to modify trained models and ine-tune relevant hyperparameters. As
previously discussed in the context of the imputation worklow, it is essential to evaluate imputed values while
maintaining the assumption that the distribution of the fully imputed dataset is the same as the initial one. In line
with this assumption, we have automated this worklow to select the best algorithm based on minimizing the
deviation of the feature correlation. As a result, the analytics ofered by the SMART BEAR dashboard can now
delineate the trajectories that patients follow as they improve or deteriorate in speciic capacities. They are also
critical in identifying risk thresholds. This insight is invaluable for making informed decisions and improving
patient care outcomes.
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4.2 Designing a prognostic model

In this section, we illustrate the steps we take to design predictive models. Sample size approximation can be
performed as an automatic step that runs periodically as new data is collected.

4.2.1 Feature extraction. Due to diferent data types, such as numerical and time series, we need to unify the
input data to run an ML model. To do this, we map the time series to a set of static numerical features. Using the
Time series feature extraction algorithms such as tsfresh18, a list of features of the given time series is returned,
sorted by the importance weight of them in forming the trend. For the current study, due to the lack of data
points, we limit the number of time series features to avoid over-itting in model training. Table 1 represents
a short list of features proposed by tsfresh, sorted by the importance value assigned by the algorithm for the
systolic blood pressure time series with a time interval of 12 hours (twice a day). Combining these features
with the main variables, we can proceed with the modeling of ML algorithms. As we will discuss later in the
implementation section, adding time series features can increase the accuracy of the models. An important aspect
we need to consider is the imputation of missing values in the time series. Since we have already discussed the
data imputation process in section 4.1, we also need to ind the best imputation algorithms for time series. For
this purpose, assuming that the distribution of values should remain unafected by imputation, we investigate
whether the weight of the extracted features changes signiicantly before and after imputation. In Table 1, the
third and fourth columns show the value of the corresponding features, while the last column shows the absolute
error (AE) caused by the imputation process.

List of time series

features
feature

value before

imputation

value after

imputation
AE

1
Systolic_blood|_pressure_variance

_larger_than_standard_deviation
1 1 0

2
Systolic_blood_pressure_has

_duplicate_max
0 0 0

3
Systolic_blood_pressure_has

_duplicate_min
0 0 0

4
Systolic_blood_pressure_has

_duplicate
1 1 0

5
Systolic_blood_pressure_sum

_values
1148 15740.8 1452.8

Table 1. Sample of extracted features by tsfresh and the comparison of values before and ater data imputation.

4.2.2 Sample size approximation. Similarly to the data imputation approaches, we take two approaches for
sample size approximation:

• Heuristic: Due to the fact that the ML algorithms need a large amount of data to train reasonably accurate
models, and according to the existing literature, at least 200 times the number of features is needed as
training data set for Random Forest classiiers [41]. Considering simple models with few features, it would
be possible to train an ML model, although there is a trade-of between model accuracy and overitting
with very few (or very large) data.

• Experimental: In studies such as SMART BEAR, which contains many features, it is not feasible to acquire
such a large dataset with limited resources to recruit many participants. In this sense, we propose an
experimental approach to approximate the sample size needed to train ML models. In this approach, as
schematically shown in Figure 8, we consider the following steps. 1) We start by imputing the dataset using
the best imputation algorithms evaluated and mentioned above . 2) We augment the dataset to reach a
secondary, extended data set. 3) We execute an Automated Machine Learning (AutoML) procedure. AutoML
tools are designed to automate the time-consuming and complex aspects of machine learning, allowing

18https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
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users to build and deploy models more eiciently. These tools leverage algorithms and heuristics to search
through the model space, selecting the best-performing models for a given task. By reducing the need for
extensive manual intervention, AutoML enables individuals without deep machine learning expertise to
harness the power of machine learning for their speciic applications. 4) For validation purposes, we take
advantage of internal validation, such as cross-validation, and external like temporal validation using the
dataset of the SMART BEAR project with diferent time intervals 5) Once clinicians approve the accuracy
of the model, we stop augmentation and extract the most important features. Going back to the inspiration
of the heuristic approach, multiplying the number of features by 200 and roughly calculating the number
of data points needed for the accurate model. 6) In case that clinicians do not approve the accuracy of the
model we continue with the augmentation to reach the aimed accuracy.

Fig. 8. A schematic view on the sample size approximation workflow.

4.3 Use case scenarios

To design a prognostic model that uses the available features in the dataset to predict a possible outcome and to
evaluate the role of features in the inal state, we propose to study the usability of our worklows on practical use
case scenarios. In this way, the efectiveness of implemented steps on individual features will be well represented
in the holistic evaluation score. In the literature, some studies prove the correlations between features and inal
states of patients [34]. Instead of testing a single hypothesis, once we have a handful of features to consider, we
use ML algorithms to train a model and predict the inal state.

4.3.1 Cardio Vascular Disease case study. In the SMART BEAR project, the understudied cohort includes par-
ticipants with cardiovascular disease (CVD). To enhance analysis eiciency, clinicians provide a list of key
measurements related to CVD development, enabling the training of a classiier for predicting CVD. This example
evaluates our imputation worklow’s classiier accuracy. Despite the limited data points at this early stage of
collection, the results, while not deinitive, suggest the potential utility of our proposed data imputation worklow
for Electronic Health Record (EHR) analysis. Following the steps in Section 3.1, we obtain a normalized and fully
imputed dataset using an algorithm with minimal error in the presence of simulated missing values. Table 2
presents scoring metrics from training an XGBOOST algorithm with the H2O package AutoML models [22].
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Before imputation After imputation

Metric threshold value threshold value

max f1 0.79406 0.90909 0.4124311 0.960000

max f2 (weighted harmonic

mean of precision and recall)
0.45997 0.95238 0.4124311 0.9836066

max accuracy 0.79406 0.86666 0.5211698 0.933333

max precision 0.86615 1.0 0.9482347 1.0

max recall 0.45997 1.0 0.4124311 1.0

max speciicity

(True Negative Rate)
0.86615 1.0 0.9482347 1.0

max absolute_mcc 0.79406 0.70710 0.5211698 0.8291562

max min_per_class_accuracy 0.79406 0.83333 0.5211698 0.9166667

max mean_per_class_accuracy 0.79406 0.91666 0.5211698 0.9583333

max True Negative Rate 0.86615 1.0 0.9482347 1.0

max False Negative Rate 0.86615 0.91666 0.9482347 0.9166667

max False Positive Rate 0.45997 1.0 0.2188251 1.0

max True Positive Rate 0.45997 1.0 0.4124311 1.0

Table 2. Evaluation metrics resulted from training XGBOOST classifier using AutoML on the normalized data set before

and ater imputation. Considering the chosen threshold, the values of metrics are reported in column value on the test set.

Employing H2O ensures hyperparameter tuning consistency. The ROC curve [18] in Figure 11 illustrates model
performance before and after the imputation process, showcasing the impact on predictive accuracy.

Fig. 9. Comparison of ROC curves resulted from the same data set, using H2O, before (a), and ater (b) imputation.

4.3.2 Mild Depression case study. Since there are very few solutions on the market dedicated to early detection
and/or prevention in the ield of mental health, we actively focus on the depression factors that could be considered
as early signs or risk factors of clinical depression, before the older person enters full-blown depression. Similar
to the CVD case scenario, we are implementing our model in close exchange with clinicians based on their
suggested features. Regarding the Mild Depression case study, we try to evaluate the importance of sample size
by following the worklow proposed in section 3.2. In this worklow, starting from the already fully computed
dataset resulting from the data quality worklow in section 3.1, we add 10% to the data. The following table shows
a comparison of evaluation metrics during the data augmentation process to approximate the appropriate sample
size for the speciied model accuracy. As an intermediate validation check, if the acquired accuracy is acceptable
to the clinicians, we stop the augmentation at this step, otherwise we continue the procedure by adding another
10% (Table 3) to the dataset. After reaching agreement with the clinicians on the level of accuracy, we extract the
most important features of the model. Likely in our scenario, they are 10, then looking at the heuristic approach,
we need 200 times the number of features for a valid model. The summary of the process is reported in Table
3, where the evaluation matrices of the trained model on the data set before augmentation, augmented by 10%,
20% and 40% are presented. During the augmentation process, we not only observed an increase in the average
accuracy, but also in most of the validation folds, the improvements are clear. Figure 10 shows the ROC curves
resulting from the classiier. An insightful step after training the classiier is feature extraction which not only
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Fig. 10. Comparison of the improvements in the prediction problem using Gradient Boost Machine considering the diferent

proportions of augmentation of the original dataset.

helps in explainability but also in following the reproducibility of models during the augmentation process in our
worklow and during data collection in the real case scenarios. Figure 11, contains four stages of augmentation
using the SHAP values. With these sub-igures, we witness the most important features are quasi-ixed during
the augmentation process which could be proof of the choice of the augmentation method that does not change
the weight of the features in the original dataset. The highly feature values are colored in red while moving
toward blue color, features losing their signiicance. Regarding the SHAP values, the more the values the more
the feature has added a value in the output of the model.

Evaluation matrices on 5-fold cross-validated before augmentation

metrics mean cv_1 cv_2 cv_3 cv_4 cv_5

accuracy 0.78823 ± 0.1288 0.82352 0.94117 0.82352 0.76470 0.58823

f1 0.54272 ± 0.2111 0.4 0.8 0.4 0.75 0.36363

precision 0.4111 ± 0.2053 0.25 0.66666 0.33333 0.6 0.22222

recall 0.9 ± 0.2236 1.0 1.0 0.5 1.0 1.0

Evaluation matrices on 5-fold cross validated after augmentation by 10%

accuracy 0.83976 ± 0.135 0.89473 0.94736 0.94736 0.63157 0.77777

f1 0.67142 ± 0.126 0.66666 0.85714 0.66666 0.66666 0.5

precision 0.67435 ± 0.3071 0.5 1.0 1.0 0.53846 0.33333

recall 0.825 ± 0.2091 1.0 0.75 0.5 0.875 1.0

Evaluation matrices on 5-fold cross validated after augmentation by 20%

accuracy 0.89047 ± 0.1087 0.95238 0.95 0.9 0.7 0.95

f1 0.77619 ± 0.0887 0.85714 0.85714 0.66666 0.7 0.8

precision 0.86060 ± 0.1911 1.0 1.0 0.66666 0.63636 1.0

recall 0.72222] ± 0.05196 0.75 0.75 0.66666 0.77777 0.66666

Evaluation matrices on 5-fold cross-validated after augmentation by 40%

accuracy 0.91449 ± 0.05328 0.91666 0.91666 0.95652 0.82608 0.95652

f1 0.85396 ± 0.02286 0.83333 0.85714 0.85714 0.83333 0.88888

precision 0.84670 ± 0.14132 0.71428 0.75 1.0 0.76923 1.0

recall 0.89181 ± 0.114289 1.0 0.8 1.0 0.90909 0.8

Table 3. The output of a Gradient Boost Machine, used as a classifier from the H2O algorithms. The mean and standard

deviation of matrices and each fold from a 5-fold cross-validated data set are presented. From the top, the results are related

to before augmentation, and ater the augmentation process respectively the initial data set is augmented by 10%, 20%, and

40%.
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(a)

(b)

(c)

(d)

Fig. 11. Important features of the GBM classifier to predict the state of Mild Depression in the patients using proposed

features by clinicians. On the top let, the chart refers to the cases before augmentation, and on the top right to the case

with 10% augmentation. On the second row-let 20% augmentation while on right the case with 40% augmentation features

is presented.

ACM Trans. Internet Technol.



20 • Bellandi et al., Valerio Bellandi, Paolo Ceravolo, Jonatan Maggesi, and Samira Maghool

5 RELATED WORKS

Nowadays, due to the drastic increase in the volume of data, the incorporation of modeling tools for decision-
making in the healthcare domain is becoming inevitable. ML models for clinical studies mostly rely on supervised
learning. In supervised learning, the model is developed using gold standards deined by a clinical expert, for
example, a chart review containing 1000 patients with and without Cardio Vascular Diseases (CVD), aiming
to identify the existing pattern between patients with CVD vs those without it. In this process, while some
hypotheses are claimed by clinicians the researcher tries to prove those hypotheses using ML algorithms but
rejecting them needs more clinical and theoretical validation and evidence [10]. On the other hand, unsupervised
ML models can also be used when there is a need to phenotype multiple conditions. These models are not
generally as accurate as supervised models but enable high-throughput variables over a handful of thousands of
them with improved accuracy. Moreover, unsupervised models have been used to build clinical models to predict
disease courses, optimize diagnostics, and target treatment. Moreover, unsupervised pattern recognition analyses
identify subgroups of patient-patient similarity in a high-dimensional or graph-based space. Whilst EHR systems
are constantly producing and recording data, leveraging Machine Learning algorithms for creating prognostic
and predictive models has implications for patients, caregivers, and healthcare facilities for cost management
purposes. In this direction, one crucial point to take into account is the quality of collected data from EHR
systems that several studies focused on it. Detecting the issues systematically is an interesting problem that
is explored in [39]. The authors have found patterns in the condition domain and investigated the processes
that shape them suggesting data quality issues inluenced by system-wide factors that afect individual concept
frequencies. The most general patterns identiied in the literature are Missing Not At Random (MNAR), Missing
At Random (MAR), and Missing Completely At Random (MCAR) [21]. MNAR, means there is a relationship
between the propensity of a value to be missing and its values. For example, people with the lowest education
are not answering questionnaires including the questionnaire on their educational courses. MAR, means missing
values are not related to other missing values but are related to observed values. For example, men are more
likely to report their weight than women. MCAR, means there is no relationship between missing values and
any other values. Nothing makes some data more likely to be missing than others. For example, blood pressure
records are missing randomly, due to user ignorance or of charge battery. Recent studies found that, compared
to restricting the analysis to individuals with complete data, imputation techniques improved the accuracy of
predictions at any proportion of missing data [23]. This implies that researchers should consider whether all the
variables related to missingness can plausibly be included in the imputation model to limit bias and improve
accuracy. While in the longitudinal studies topics covered include reliability, validity, sampling, aggregation, and
the correspondence between theory and method; more speciic, practical issues in longitudinal research, such as
the drop-out problem and issues of conidentiality are also addressed [13, 31], the automation of this procedure
is still missing. Moreover, due to the sensitivity of the health care domain, not only a deep knowledge of the
process is needed but also continuous evaluation of the curation strategy should be considered.

6 CONCLUSIONS

The paper focuses on the potential challenges of continous learning in today’s EHR. To address this issue,
we leveraged the capabilities of the SMART BEAR BDA engine to develop two worklows: the Data Quality

Worklow and the Worklow for Designing a Prognostic Model. These worklows enable continuous and automated
data curation, as well as sample size approximation, to ensure that valid machine learning (ML) tasks can be
implemented in the BDA engine. To evaluate the efectiveness of our proposed worklows, we ran prediction
problems in two case scenarios using data from the SMART BEAR Pilot of Pilots (PoP).
Our main goal was to improve the quality of the dataset, making it more applicable to valid models, while

also investigating the clinical signiicance of the models by providing explainable results. The diagram in Figure
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12 presents the applicability of our methodology as a worklow consisting of diferent passages of the dataset
collected from patients to provide useful insights to them.
Our results suggest that using these worklows not only increases the accuracy of ML tasks, but also allows

us to reduce the feature space of a problem, thus avoiding overitting and improving model performance. By
extracting the available dataset from the SMART BEAR PoP, we were able to demonstrate the efectiveness of
our worklows in achieving higher quality datasets for use in valid models.

Considering the case scenario of cardiovascular disease (section 4.3.1), as an approach to test the efectiveness
of the proposed data quality worklow before and after its implementation, we proposed a classiication model
to predict cardiovascular disease status. For this model, we queried the relevant measurements suggested by
clinicians in the SMART BEAR project. Using the XGBoot model, we observed (in Table 2) the performance
improvements in most of the evaluation metrics. Moreover, considering the case scenario of Mild Depression
(section 4.3.2), in Figure 7, the ROC curve has been improved after the implementation of this worklow. It should
also be noted that although we observe improvements in the performance of the predictive models since the
dataset is still small, we have studied the performance after increasing the dataset and the results still prove our
statement.
In order to communicate the required number of participants for reliable results in the resource-constrained

SMART BEAR project, we increase the robustness of the results by extending the data set to avoid potential
overitting. This ensures validation of results by accepting results when samples are suicient and rejecting
them when the model lacks generalizability to the extended dataset. This experimental approach contrasts with
heuristic methods that rely on the number of classes or features in the feature space to determine correctness.
Overall, this work represents a signiicant step forward in automating the data curation process and sample

size approximation, which are critical components of efective continuous machine learning. By continuously
improving the quality of the dataset and continuously validating the generated models, we can ensure more
accurate, reliable, and clinically meaningful results. Given the ongoing nature of the SMART BEAR project, we’re
expanding worklow automation as new datasets come in. Future plans include additional validation methods,
including temporal validation, using automated worklows that ensure model reproducibility. As we explore
diferent scenarios, such as frailty, we envision implementing other predictive models in future eforts.

Fig. 12. Data Flow: From patient to patient; a schematic view of the flow of data generated by patients, developed by

technical partners, and analyzed by data scientists. The output is validated by clinicians and sent to the decision support

system to notify patients when interventions are needed.
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