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Abstract
In this paper we introduce the notion of coalgebra symmetry for discrete sys-
tems. With this concept we prove that all discrete radially symmetric sys-
tems in standard form are quasi-integrable and that all variational discrete
quasi-radially symmetric systems in standard form are Poincaré–Lyapunov–
Nekhoroshev maps of order N− 2, where N are the degrees of freedom of
the system. We also discuss the integrability properties of several vector sys-
tems which are generalisations of well-known one degree of freedom discrete
integrable systems, including two N degrees of freedom autonomous discrete
Painlevé I equations and an N degrees of freedom McMillan map.

Keywords: coalgebra symmetry, discrete integrable systems,
algebraic methods in integrable systems, integrability indicators

(Some figures may appear in colour only in the online journal)

1. Introduction

In this paper we show how to use the coalgebra symmetry approach to build invariants for
discrete systems. In particular, we consider systems of second order difference equations:

xn+1 = F(xn,xn−1) , (1.1)
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where the unknown is a sequence of vectors {xn}n∈Z inRN with N ∈ N. Like in the continuous
case the coalgebra symmetry approach allows us to extend invariants from symplectic systems
with one degree of freedom to symplectic systems with N degrees of freedom, see for instance
the review [1].

Besides the general definition, we present some general results on the integrability through
the coalgebra symmetry approach of some classes of N degrees of freedom analog of the
systems in standard form [2]:

xn+1 + xn−1 = F(xn) , (1.2)

where {xn}n∈Z is the unknown function. Integrable examples include a generalisation of the
celebrated McMillan equation [3], one of the first integrable discrete systems ever discovered,
and of the autonomous discrete Painleve I equation. We underline that a two-degrees of free-
dom generalisation of the McMillan equation presented already in [4] by a brute-force com-
putation, and later understood in terms of discrete Garnier systems [5]. On the other hand, up
to our knowledge, the generalisations of the autonomous Painlevé I equation we present are
new.

The extension of the coalgebra approach to the discrete setting we present is a result that
paves the way to a systematic study of the integrability conditions for discrete systems with
more than one degree of freedom. Indeed, while almost all discrete systems with one degree
of freedom fall into the class of the aforementioned QRT maps, with some notable exceptions
[6–9], there is no general analog description for systems with more degrees of freedom. Partial
classification of systems in more than one degree of freedom has been given in [4, 10–12],
usually with the additional condition that the system possesses invariants of a given form, or
additional structures such as symplectic structures.

So, in this paper we present an efficient way to build discrete systems with N degrees of
freedom from those with one degree of freedom, which is something that is completely missing
in the discrete case. This gives a new evidence on how techniques developed in the continuum
setting can be extended proficiently to the discrete case. We also show that the access to a
very efficient integrability test such as the algebraic entropy [13], makes easier to predict the
behaviour of the obtained N-degrees of freedom systems.

The plan of the paper is the following: in section 2 we recall some general result on the
integrability of discrete systems. In section 3 we give the definition of coalgebra symmetry
for discrete Poisson maps. The great part of the construction follows the ideas used in the
continuous setting, see [1]. However, the definition we state is slightly different from the one
used in the continuous setting. In section 4 we present some general results on two classes
of discrete systems, namely the radially symmetric and the quasi-radially symmetric, show
their coalgebraic interpretation, and present explicit examples of it. In section 5 we discuss
two non-linear examples which generalise a well-known integrable system, the autonomous
discrete Painlevé I equation. In section 6 we discuss an N degrees of freedom generalisation
of the McMillan map. We show that this generalisation is not integrable, but it is only quasi-
integrable, while a particular case is quasi-maximally superintegrable. Finally, in section 7 we
give some conclusions and an outlook on future researches and developments.

2. Discrete systems and integrability

In this section we give a preliminary introduction on the concepts of integrability for finite-
dimensional discrete systems we are going to use throughout the paper. Differently from finite-
dimensional continuous integrable systems whose history can be traced back to the times of
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Liouville [14], the integrability of their discrete counterpart is a much more recent subject.
The history of such a subject can be traced back from the seminal paper of McMillan [3],
where the eponymous map was introduced, and had a great propulsion after the introduction
of the celebrated QRT maps [15, 16]. In particular, the theory of symplectic integrable maps
was developed in [17–19]. For a complete overview on the subject we refer to the mentioned
papers, the review [20], the book [21], and the introductory material in the thesis [22].

2.1. Invariants and integrability

Before considering the vector difference equations in the form (1.1) we consider the general
case: let {zn} ⊂ RM be a sequence of vectors, solving the first-order vector difference equation

zn+1 =K(zn) , (2.1)

where K=K(z) is a locally analytic function of its arguments. This is what we call an M-
dimensional difference equation. An invariant for such an equation is a locally analytic func-
tion I= I(z) such that I(zn+1) = I(zn). In such general case we give the following definition:

Definition 2.1. The first-order M-dimensional difference equation is algebraically integrable
if it admits M− 1 functionally independent invariants.

In general it is quite difficult to find invariant for difference equations. When the equation
is rational and invertible with a rational inverse there is an efficient algorithm we recall in
appendix A.

Definition 2.1 is very general, and works for arbitrary maps. If some additional structure is
present, the number of invariants needed for integrability can be lowered. Before proceeding
any further, we note that any first order difference equation (2.1) is equivalent to iterate a map
of the following form:

T : z ∈ RM 7→K(z) ∈ RM. (2.2)

We call this form the map form of a first-order difference equation. Since the iteration of the
map is equivalent to go from n to n+ 1 we use the shorthand notation T : n 7→ n+ 1, to denote
the map form of a difference equation.

A special, but relevant case is the one of Poisson maps:

Definition 2.2. Let us assume we are given an M-dimensional difference equation (2.1) and
its map form (2.2). Then:

2.2.1. A Poisson structure of rank 2r is a skew-symmetric matrix J= J(zn) of constant rank
2r such that the Jacobi identity holds:

n∑
l=1

(
Jli

∂Jjk
∂zn,l−1

+ Jlj
∂Jki
∂zn,l−1

+ Jlk
∂Jij

∂zn,l−1

)
= 0, ∀i, j,k. (2.3)

2.2.2. Given a Poisson structure J= J(zn) we define its associated Poisson bracket as:

{f,g}=∇f J(zn)∇gT, (2.4)

where f, g are locally analytic functions on RM, and ∇ denotes the gradient operator.
2.2.3. Two locally analytic functions f and g are said to be in involution with respect to a

Poisson structure J= J(zn) if {f,g}= 0.
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2.2.4. AnM-dimensional difference equation is aPoissonmap if it preserves the Poisson struc-
ture J(zn), i.e.:

∂zn+1

∂zn
J(zn)

(
∂zn+1

∂zn

)T

= J(zn+1), (2.5)

where ∂zn+1/∂zn is the Jacobian matrix of zn+1.

Remark 2.1. We can easily see that {zn,i−1,zn,j−1}= Jij(zn). Since this completely specifies
the Poisson structure, it is usual to give it in terms of the commutation relations of the depend-
ent variables zn.

Then we have the following characterisation of integrability for Poisson maps:

Definition 2.3 ([17–19]). AnM-dimensional Poisson map T : n 7→ n+ 1 with respect to a Pois-
son structure of rank 2r is Liouville–Poisson integrable if it possessesM−r functionally inde-
pendent invariants in involution with respect to the associated Poisson bracket.

Remark 2.2. The rank of a Poisson structure is such that 1⩽ r⩽ bM/2c. Sowe can distinguish
two extremal cases:

• Minimal rank r= 1: the number of invariants needed for Liouville–Poisson integrability is
maximal, that isM− 1. In this case Liouville–Poisson integrability is equivalent to algebraic
integrability, see definition 2.1.

• Maximal rank r= bM/2c: the number of invariants needed for Liouville–Poisson integrabil-
ity is minimal, that is M−bM/2c.

A relevant case is when the rank is maximal and the dimension is even, that is M= 2r.
In such case the Poisson structure is invertible; defining Ω= J−1 we call such a matrix a
symplectic structure, and a map preserving it is a symplectic map. In the full rank case the
number of invariants needed is exactly half of the dimension of the base spaceM/2. In such a
case the number N :=M/2 is called the number of degrees of freedom of the system.

The previous remark highlight a very special case of Liouville–Poisson integrability, which
we state as a separate definition:

Definition 2.4 ([17–19]). An 2N-dimensional (N degrees of freedom) symplectic map T : n 7→
n+ 1 is Liouville integrable if it possesses N functionally independent invariants in involution
with respect to the associated Poisson bracket.

Furthermore, we give some additional definition to cover the cases when there exist more
or less invariants than the number given in definitions 2.1 and 2.3.

Definition 2.5. Suppose we are given a Poisson map T : n 7→ n+ 1 (2.2), with associated Pois-
son structure of rank 2r. Then:

2.5.1. If T : n 7→ n+ 1 is Liouville–Poisson integrable, and possesses k additional functionally
independent invariants, with 0< k< r, then it is said to be superintegrable. Moreover:
2.5.1.a. if k= 1 the map is said to be minimally superintegrable,
2.5.1.b. if k= r− 2 the map is said to be quasi-maximally superintegrable,
2.5.1.c. if k= r− 1 the map is said to be maximally superintegrable.
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2.5.2. If T : n 7→ n+ 1 possesses κ commuting functionally independent invariants with 0<
κ <M− r, then it is said to be Poincaré–Lyapunov–Nekhoroshev (PLN) map of order
κ. Moreover:
2.5.2.a. if κ= 1 the map is said to be Poincaré–Lyapunov (PL) map,
2.5.2.b. if κ=M− r− 1 the map is said to be quasi-integrable.

Remark 2.3. We make the following observations:

• In the literature on superintegrable systems, see for instance [23], it is often omitted in the
definition of superingrability the requirement for the system to be Liouville–Poisson integ-
rable. In fact there are known examples in the literature where it is possible to find a huge
number of invariants, but not a full set of commuting ones, see [24]. So, to avoid the situ-
ation where a superintegrable system might not be a Liouville–Poisson integrable systems,
we prefer to stick to a definition where superintegrability requires Liouville–Poisson integ-
rability. We will see an example of discrete system with such a property in section 6.

• In the symplectic case (M= 2N) a symplectic map is:
– superintegrable when it is Liouville integrable and possesses N< k< 2N invariants,
– quasi-maximally superintegrable when it is superintegrable and possesses 2N− 2 invari-

ants,
– maximally superintegrable when it is superintegrable and possesses 2N− 1 invariants.
– quasi-integrable when it possesses N− 1 commuting invariants.

2.2. Variational discrete systems and their integrability

Given aM-dimensional difference equation (2.1), it is not easy to decide if there exists a com-
patible Poisson or symplectic structure. Some partial results were given in [25]. An important
particular case is when the equation is variational, that is when the system arises from a dis-
crete Lagrangian, see [17, 18, 26–28] for further details. In particular we also mention that the
relationship of variational structures with Liouville integrability was used in [10, 12] to prove
integrability of some four-dimensional difference equations.

Let us stick to our case of interest: a system of second-order difference equations of the
form (1.1) is variational if there exist a function

L= Ln(xn+1,xn), (2.6)

called the discrete Lagrangian, such that the system itself is equivalent to the Euler–Lagrange
equations:

∇xn [Ln(xn+1,xn)+ Ln−1(xn,xn−1)] = 0. (2.7)

Note that in general the Euler–Lagrange equations are a multi-valued function in xn+1 and
xn−1, see [21]. Then we have the following result:

Lemma 2.1 ([18, 21]). If the discrete Lagrangian L does not depend explicitly on n, then the
Euler–Lagrange equations (2.7) leave invariant the following symplectic structure:

Ω(xn,xn−1) =

(
ON ΛN(xn,xn−1)

−ΛN(xn,xn−1) ON

)
(2.8)

5
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where ON is the zero N×N matrix and:

ΛN(xn,xn−1) =



∂2L
∂xn,1∂xn−1,1

. . .
∂2L

∂xn,1∂xn−1,N

...
...

∂2L
∂xn,N∂xn−1,1

. . .
∂2L

∂xn,N∂xn−1,N


. (2.9)

For generalisations and proof of such a result we refer to [22].

3. Coalgebra symmetry for discrete systems

The coalgebra symmetry approach to (super)integrable systems is an approach that allows to
build a (classical) Liouville integrable system on the tensor product of N copies of a given
Poisson algebra A. The concept of coalgebra originated in Quantum Group theory and it was
not until the papers [29, 30] that its application to (classical) Liouville integrable was devised.
We note that besides these seminal applications the coalgebra symmetry approach has been
extended to many other cases, and many integrable and superintegrable systems have been
understood within this algebraic framework. For a comprehensive review containing several
explicit examples (for deformed coalgebras also), some generalisations of the method (such
as comodule algebras [31] and Loop coproducts [32]) and many references on the topic we
refer the reader to [1]. Additional examples, where other physical applications can be found
(also in the quantum mechanical setting), involve superintegrable systems defined on non-
Euclidean spaces [33–39], models with spin-orbital interactions [40], discrete quantum mech-
anical systems [41] and superintegrable systems related to the generalised Racah algebra R(n)
[42–45].

Roughly speaking, the general idea behind this algebraic approach is to reinterpret one
degrees of freedom dynamical Hamiltonian systems as the images, under a given symplectic
realisation, of some (smooth) functions of the generators of a given Poisson (co)algebra (A,∆).
Then, by using the (not necessarily primitive) coproduct, the method consists in extending the
one degrees of freedom system, originally defined on A, to a higher degrees of freedom one
defined on the tensor product of N copies of A. The main point resides in the fact that the
obtained higher degrees of freedom system is endowed with constants of motion arising as
the images of the coalgebra Casimir invariants through the application of the so-called mth
coproduct maps. In this section, we will recall the definition of coalgebra and then adapt it to
the study of (super)integrable discrete systems.

3.1. Definition of coalgebra and coproduct

We state the following main definition:

Definition 3.1 ([46, 47]). A coalgebra is a pair of objects (A,∆)whereA is a unital, associative
algebra and ∆: A→ A⊗A is a coassociative map, that is:

(∆⊗ Id) ◦∆= (Id⊗∆) ◦∆, (3.1)

6
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meaning that the following diagram is commutative:

and is an algebra homomorphism from A to A⊗A, i.e.∆(X ·Y) = ∆(X) ·∆(Y), for all X,Y ∈
A. The map ∆ is called the coproduct map.

As for definition 3.1 the base algebra A of a coalgebra (A,∆) can be any unital algebra.
However, following [30] we are interested to the case when the algebraA is a Poisson algebra.
We have then the following definition:

Definition 3.2. The pair (A,∆) is a Poisson coalgebra if A is a Poisson algebra and ∆ is a
Poisson homomorphism between A and A⊗A, i.e.:

∆
(
{X,Y}A

)
= {∆(X),∆(Y)}A⊗A ∀X,Y ∈ A , (3.3)

with respect to the standard Poisson structure on A⊗A given by:

{X⊗Y,W⊗Z}A⊗A := {X,W}A ⊗YZ+XW⊗{Y,Z}A, (3.4)

for all X,Y,Z,W ∈ A.

So, let (A,∆) be a Poisson coalgebra generated by the set {A1, . . . ,AK}, with K := dim(A).
In what follows we will denote by Ci = Ci (A1, . . . ,AK) for i = 1, . . . ,r the r functionally inde-
pendent Casimir functions of A.

Remark 3.1. We remark that also when A is a Poisson algebra, the definition of the coproduct
map might be non-trivial. However, for Lie–Poisson algebras with generators Ai, i = 1, . . . ,K,
the coproduct is primitive [48], i.e.:

∆(Ai) = Ai⊗ 1+ 1⊗Ai ∆(1) = 1⊗ 1, (3.5)

and for general elements it is defined by extension.

By recursion we can define themth coproduct∆(m) : A→ A⊗m, whereA⊗m =
⊗m

i=1A, as:

∆(m) :=


∆ if m= 2,( m−2︷ ︸︸ ︷
Id⊗ Id⊗ . . .⊗ Id⊗∆(2)

)
◦∆(m−1). if m> 2.

(3.6)

By induction on m, from the fact that ∆ is a Poisson map on A⊗A we have that the mth
coproduct ∆(m) is a Poisson map on A⊗m [1, 30] (see also [32]).

Using the mth coproduct it is possible to define elements on A⊗m by applying it to the
generators Ai of the original Poisson algebra A. This can be extended to functions h ∈ C∞(A)
through the following formula:

h(m) := ∆(m)(h)(A1, . . . ,AK) := h(∆(m)(A1), . . . ,∆
(m)(AK)). (3.7)

Clearly h(m) ∈ C∞(A⊗m).

7
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3.2. Coalgebra symmetry and Liouville integrability

The extension we just proposed can be performed to the Casimir elements to produce a set of
commuting invariants on a given realisation in N degrees of freedom. This is the first link of
the coalgebra structure with Liouville integrability.

To be more specific, let us take a N ∈ N fixed. Then we can consider a chain of tensor
products A⊗m for all m⩽ N with embedding:

jm : A ∈ A⊗m 7→ A⊗
N−m︷ ︸︸ ︷

1⊗ 1⊗ . . .⊗ 1 ∈ A⊗N, (3.8)

so that we can consider all the elements as lying in the final tensor product A⊗N. In particular,
see [49], we can consider all the Poisson brackets in A⊗N in the following way: let A ∈ A⊗m

and A ′ ∈ A⊗m ′
, then:

{A,A ′}A⊗N = {jm(A), jm ′(A ′)}A⊗N . (3.9)

We state the following:

Lemma 3.1 ([30]). Consider the following rN functions:

Fm,j := ∆(m)(Cj)(A1, . . . ,AK), m= 1, . . . ,N, j= 1, . . . ,r. (3.10)

Then the set Lr,N = {Fm,j}m=1,...,N,j=1,...,r is a set of Poisson-commuting functions on A⊗N.

Furthermore, they Poisson commute with∆(N)(Ai), i = 1, . . . ,K.

Proof. We refer the reader to [1, 30].

In the continuum case, one can use formula (3.7) to define a N-degrees of freedom
Hamiltonian starting from a one degree of freedom Hamiltonian. That is, taking a function
h ∈ C∞(A), we generate its N degrees of freedom extension by defining h(N) ∈ C∞(A⊗N)
from equation (3.7). A Hamiltonian constructed in this way is said to admit the coalgebra
symmetry, and by taking into account lemma 3.1, it is possible to show that Poisson commutes
with the functions Fm,j making them invariants (first integrals) of the associated dynamical
system of Hamilton equations [1, 30].

As underlined in the previous section, in the discrete setting there is no exact discrete analog
of the Hamiltonian, so the construction we just explained does not extend trivially. However,
we consider the evolution of the generator of the Poisson algebraA under the flow of a discrete
dynamical system. In such a case to underline the discrete nature of the evolution we specify
the Poisson algebra as A= 〈A(n)

1 , . . . ,A(n)
K 〉, and work with a given symplectic realisation of

A. We then state the following definition:

Definition 3.3. A Poisson map T : n 7→ n+ 1 is said to possess the coalgebra symmetry with
respect to the Poisson coalgebra (A,∆) if for all N ∈ N the evolution of generators in a fixed
symplectic realisation in N degrees of freedom of the Poisson coalgebra is:

(i) closed in the Poisson coalgebra, that is:

A(n+1)
i = ai(A

(n)
1 , . . . ,A(n)

K ), i= 1, . . . ,K, (3.11)

with ai ∈ C∞(A),

8
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(ii) it is a Poisson map with respect to the Poisson algebra A, that is:

{A(n+1)
i ,A(n+1)

j }= T
(
{A(n)

i ,A(n)
j }
)
, i, j= 1, . . . ,K, (3.12)

(iii) admits the Casimirs {C(n)
1 , . . . ,C(n)

r } of the algebra A as invariants.

So, now note immediately that any invariant for the system (3.11) is an invariant for the
original Poisson map. This trivially follows noticing that the system (3.11) on N degrees of
freedom symplectic realisation of A is a consequence of the Poisson map itself: using the
coordinate realisation we are able to build the invariants in the original coordinates. This con-
struction, enables us to summarise our construction of the discrete coalgebra symmetry in the
following theorem:

Theorem 3.2. Consider a Poisson map T : n 7→ n+ 1with coalgebra symmetry with respect to
the coalgebra (A,∆). Then T : n 7→ n+ 1 admits a set of rN commuting invariantsLr,N (3.10).

Proof. The proof follows trivially applying the mth coproduct to the system (3.11), and
then considering the construction of the functions Fj,m (3.10). Commutation follows from
lemma 3.1.

3.3. Coalgebra symmetry and superintegrability

In what we discussed in the previous sections we applied recursively the map ∆(2) to define
themth coproduct maps∆(m). However, besides (3.6) another recursive relation can be defined
for the mth coproduct maps, i.e. [1]:

∆
(m)
R :=


∆ if m= 2,(
∆(2) ⊗

m−2︷ ︸︸ ︷
Id⊗ Id⊗ . . .⊗ Id

)
◦∆(m−1). if 2< m⩽ N.

(3.13)

Since the coproduct is coassociative, we have that for all N ∈ N fixed:

∆(N)(Ai) = ∆
(N)
R (Ai). (3.14)

However, when lower dimensional coproducts are considered, substantial differences arise.
In particular, lower dimensional leftmth coproducts with 2< m< Nwill contain objects living
on the tensor product space 1⊗ 2⊗ . . .⊗m, whereas lower dimensional right mth coproducts
will be defined on the sites (N−m+ 1)⊗ (N−m+ 2)⊗ . . .⊗N. This implies that coalgebra
symmetry not only generate a completely integrable Hamiltonian system but, in principle, a
superintegrable one. This is because besides the left Casimirs (3.10) we will also be able to
define the set Rr,N = {Gm,j}m=1,...,N,j=1,...,r composed by the functions

Gm,j := ∆
(m)
R (Cj)(A1, . . . ,AK), m= 1, . . . ,N, j= 1, . . . ,r (3.15)

called the right Casimirs. Analogously than lemma 3.1 we have that this set is composed by
rN functions in involution. Notice that because of the coassociativity property FN,j = GN,j,
j = 1, . . .r.

Summing up we obtain the following result:

Theorem 3.3. Consider a Poisson map T : n 7→ n+ 1 with coalgebra symmetry with respect
to the coalgebra (A,∆). Then T : n 7→ n+ 1 admits two set of rN commuting invariants: Lr,N

(3.10) andRr,N (3.15).

9
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Remark 3.2. We remark that the elements of the setsLr,N andRr,N in general do not commute
between themselves, see for instance [45] for the example of the sl2(R) Lie–Poisson algebra.

3.4. Final remarks on the coalgebra symmetry

Before discussing some concrete cases with explicit Lie–Poisson algebras we give some final
remarks on the procedure:

(i) Even in the continuum case it is not possible to tell a priori if a systemwith coalgebra sym-
metry is Liouville integrable, see [50]. This depends on the explicit symplectic realisation
of the coalgebra (A,∆) chosen and the number of functionally independent invariants that
is possible to extract from the set Lr,N. When we have N degrees of freedom it is enough
that the set Lr,N consists of N− 1 functionally independent invariants: the coalgebraic
Hamiltonian h(N) will yield the last one.

(ii) In all the examples we will present, even though the setLr,N consists of N− 1 functionally
independent invariants, it will not be enough to give integrability because of the lack of
the Hamiltonian. However, in most cases the additional missing invariants can be found
directly studying the system (3.11) with the methods discussed in appendix A.

4. General classes of additive differential systems and coalgebra

Consider the following system of second-order additive difference equations:

xn+1 + xn−1 = F(xn) . (4.1)

This system preserves the canonical R2N measure:

m= dxn ∧ dxn−1. (4.2)

The system (4.1) is not Lagrangian for all choices of the vector function F(xn). We note that,
if there exists a scalar function V= V(xn) such that ∇V(xn) = F(xn), then the system (4.1)
can be derived by the following Lagrangian:

L= xn+1 · xn−V(xn) . (4.3)

From lemma 2.1 we have that to the Lagrangian (4.3) corresponds the canonical (full-rank)
Poisson bracket:

{xn,i,xn,j}= {xn−1,i,xn−1,j}= 0, {xn,i,xn−1,j}= δi,j (4.4)

where δi,j is Kronecker delta.
We now pass to consider two particular cases of systems in the form (4.1) and prove that

they possess the coalgebra symmetry.

4.1. Radially symmetric systems and the sl2(R) algebra

Consider the following particular case of (4.1):

xn+1 + xn−1 = f(|xn|)
xn
|xn|

. (4.5)

This system has radial symmetry: if xn is a solution of (4.5) then Xn = Rxn with R ∈ SO(N)
is another solution. The system (4.5) is variational with the following Lagrangian:

L= xn+1 · xn−V(|xn|) , V(r) =
ˆ
f(r)dr. (4.6)

10
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From the general case we have that equation (4.5) preserves the canonical Poisson
bracket (4.4).

The following result follows from a trivial computation:

Lemma 4.1. A radially symmetric system (4.5) possesses the following N(N− 1)/2
invariants:

L(n)i,j = xn,ixn−1,j− xn−1,ixn,j. (4.7)

In total there are 2N− 3 functionally independent functions in formula (4.7).

The skewsymmetric invariants Li,j are the discrete analogue of the components of the angu-
lar momentum. It is well known that out of the 2N− 3 functionally independent invariant it is
possible to construct N− 1 functionally independent and commuting with respect to the Pois-
son bracket (4.4). We show how to construct this set of N− 1 commuting invariants with the
coalgebra symmetry approach, as it was proved in the in the continuum case in [1, 24]. This
is the content of the following proposition:

Proposition 4.2. A radially symmetric system (4.5) possesses coalgebra symmetry with
respect to the Lie algebra sl2(R) with the following N degrees of freedom symplectic
realisation:

J(n)+ = x2n, J(n)− = x2n−1, J(n)3 = xn · xn−1. (4.8)

Remark 4.1. The commutation relations of the Lie–Poisson algebra sl2(R) are (for sake of
simplicity when dealing with abstract properties we omit the superscript (n)):

{J+,J−}= 4J3, {J+,J3}= 2J+, {J−,J3}=−2J−. (4.9)

This algebra has a single Casimir given by

C= J+J− − J23. (4.10)

Proof. We have to prove that the three conditions of definition 3.3 hold. This can be done by
direct computation. For instance, using the explicit form of the recurrence (4.5) we prove that
the action on the generators of the sl2(R) algebra (4.8) form the following dynamical system:

J(n+1)
+ = f 2

(√
J(n)+

)
− 2J(n)3

f

(√
J(n)+

)
√
J(n)+

+ J(n)− , (4.11a)

J(n+1)
− = J(n)+ , (4.11b)

J(n+1)
3 =−J(n)3 +

√
J(n)+ f

(√
J(n)+

)
. (4.11c)

Then using the commutation relations (4.9) we prove that they are preserved (see also for-
mula (2.5)). Finally, it is trivial to see that the Casimir function (4.10) is preserved by the
evolution (4.11).

So, following the procedure outlined in section 3, and using the same reasoning in [1,
24], from the left and right Casimir functions of such an algebra we derive the following two
sets of functionally-independent invariants commuting with respect to the canonical Poisson
bracket (4.4):

C(n)
m =

∑
1⩽i<j⩽m

(
L(n)i,j

)2
, m= 2, . . . ,N, (4.12a)

11
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D(n)
m =

∑
N−m+1⩽i<j⩽N

(
L(n)i,j

)2
, m= 2, . . . ,N. (4.12b)

Notice that C(n)
N = J(n)+ J(n)− − (J(n)3 )2 =D(n)

N because of the coassociativity. This can be sum-
marised in the following theorem:

Theorem 4.3. A radially symmetric system (4.5) is quasi-integrable with one of the sets of
invariants:

L=
{
C(n)
2 , . . . ,C(n)

N

}
or R=

{
D(n)

2 , . . . ,D(n)
N

}
. (4.13)

Additionally, if we can find an additional invariant commuting either with L orR, then system
becomes Liouville integrable and moreover quasi-maximally superintegrable.

As we noted in section 3, the invariants of the system (4.11) are invariants of the radially
symmetric system (4.5). So, for a given function f studying the system (4.11) we can find the
Nth invariant mentioned in theorem 4.3. We now give an explicit example of this occurrence.

Example 1. Consider the following linear system:

xn+1 + xn−1 = αxn. (4.14)

This system is radial with f(ρ) = αρ (hence it is variational), and the associated dynamical
system (4.11) is:

J(n+1)
+ = α2J(n)+ − 2αJ(n)3 + J(n)− , J(n+1)

− = J(n)+ , J(n+1)
3 =−J(n)3 +αJ(n)+ . (4.15)

This system is linear and we find the invariant:

H(n) = J(n)+ −αJ(n)3 + J(n)− . (4.16)

From theorem 4.3 we consider the set of invariants:

S =
{
H(n),C(n)

2 , . . . ,C(n)
N

}
. (4.17)

Functional independence and involutivity in this set can be proved by induction. So, we proved
that the linear system (4.14) is Liouville integrable. Moreover, since there are 2N− 3 function-
ally independent elements of the discrete angular momentum that are invariants, we have that
the system (4.14) is quasi-maximally superintegrable.

Remark 4.2. We remark that, with respect to the rank 2 Lie–Poisson bracket (4.9) the sys-
tem (4.15) is Poisson–Liouville integrable. Indeed, it possesses the Casimir (4.10), and one
invariant (4.16).

Remark 4.3. The linear system (4.14) is actually maximally superintegrable. Indeed it
possesses the following invariants:

H(n)
k = x2n,k−αxn,kxn−1,k+ x2n−1,k, k= 1, . . . ,N. (4.18)

The set

S ′ =
{
H(n)

1 , . . . ,H(n)
N ,C(n)

2 , . . . ,C(n)
N

}
(4.19)

is a set of 2N− 1 functionally independent and commuting invariants. This is easily seen by
induction because the invariants are polynomial and they all depend on different xn,k. Indeed,
the system is a discrete analog of an isotropic harmonic oscillator, which is a well known
maximally superintegrable system.

12
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4.2. Quasi-radially symmetric systems and the h6 algebra

Consider the following system that is a particular case of (4.1):

xn+1 + xn−1 = f(|xn|)
xn
|xn|

+ g(xn)β, (4.20)

where g is a scalar function and β is a constant vector. Since when g≡ 0 equation (4.20)
reduces to (4.5) we call such a system of difference equations a quasi-radially symmetric
system.

The following result follows from a trivial computation:

Lemma 4.4. A quasi-radially symmetric system of the form (4.20) possess the following
N(N− 1)(N− 2)/6 invariants:

K(n)
i,j,k = βiL

(n)
j,k +βjL

(n)
k,i +βkL

(n)
i,j , 1⩽ i < j < k⩽ N. (4.21)

In total there are 2N− 5 functionally independent functions in formula (4.21).

Quasi-radial systems are not always variational. We give the following characterisation
(whose proof follows from direct computations):

Lemma 4.5. A quasi-radially symmetric system (4.20) preserves the canonical Poisson
bracket (4.4) if and only if the g(xn)≡ h(β · xn), that is:

xn+1 + xn−1 = f(|xn|)
xn
|xn|

+ h(β · xn)β. (4.22)

In such case, the system is variational with Lagrangian:

L= xn+1 · xn−V(|xn|)−H(β · xn) , H(ρ) =

ˆ
h(ρ)dρ, (4.23)

and V is defined as in equation (4.6).

We show how to construct a set ofN− 2 commuting invariants with the coalgebra approach.
We will use the functions Ki,j,k as building blocks of the invariants. This is the content of the
following proposition:

Proposition 4.6. A variational quasi-radially symmetric system (4.22) possesses coalgebra
symmetry with respect to the two-photon algebra h6 with the following N degrees of freedom
symplectic realisation:

A(n)
+ = β · xn, A(n)

− = β · xn−1, M(n) = β2,

B(n)
+ = x2n, B(n)

− = x2n−1, K(n) = xn · xn−1 −
β2

2
. (4.24)

Remark 4.4. In the h6 Lie–Poisson algebra the elementM is central, while the other have the
following commutation table [1, 24, 51]:

{ , } A+ A− B+ B− K
A+ 0 −M 0 −2A− −A+

A− M 0 2A+ 0 A−
B+ 0 −2A+ 0 −4K− 2M −2B+

B− 2A− 0 4K+ 2M 0 2B−
K A+ −A− 2B+ −2B− 0

. (4.25)

13
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This Lie–Poisson algebra has two Casimirs, one is the central element M, while the other is
the quartic function:

C0 =
[
MB+ −A2

+

][
MB− −A2

−
]
−
[
MK−A+A− +M2/2

]2
. (4.26)

However, since in the expression (4.26) M can be factorised, we can lower the degree of the
Casimir by one, and consider the cubic function C= C0/M, i.e.:

C=MB+B− −B+A
2
− −B−A

2
+ −M(K+M/2)2 + 2A−A+(K+M/2). (4.27)

Proof. We have to prove that the three conditions of definition 3.3 hold. This can be done by
direct computation. For instance, using the explicit form of the recurrence (4.22) we prove that
the action on the generators of the h6 algebra (4.8) form the following dynamical system:

A(n+1)
+ = A(n)

+

f

(√
B(n)
+

)
√
B(n)
+

+M(n)h(A(n)
+ )−A(n)

− , (4.28a)

A(n+1)
− = A(n)

+ , (4.28b)

B(n+1)
+ = f 2

(√
B(n)
+

)
+ 2

[
A(n)
+ h(A(n)

+ )−K(n) − M(n)

2

] f(√B(n)
+

)
√
B(n)
+

+
[
M(n)h(A(n)

+ )− 2A(n)
−

]
h(A(n)

+ )+B(n)
− ,

(4.28c)

B(n+1)
− = B(n)

+ , (4.28d)

K(n+1) =−K(n) −M(n) +A(n)
+ h(A(n)

+ )+

√
B(n)
+ f

(√
B(n)
+

)
. (4.28e)

M(n+1) =M(n). (4.28f )

Then, using the commutation relations (4.25), we prove that they are preserved (see also for-
mula (2.5)). Finally, it is trivial to see that the central element M(n) and the Casimir func-
tion (4.26) is preserved by the evolution (4.28).

So, following the procedure of section 3, and using the same procedure as in [1, 24] we
derive the following two sets of functionally independent invariants commuting with respect
to the canonical Poisson bracket (4.4):

I(n)
m =

∑
1⩽i<j<k⩽m

(
K(n)
i,j,k

)2
, m= 3, . . . ,N, (4.29a)

J (n)
m =

∑
N−m+1⩽i<j<k⩽N

(
K(n)
i,j,k

)2
, m= 3, . . . ,N. (4.29b)

Notice that I(n)
N = J (n)

N because of the coassociativity. This can be summarised in the fol-
lowing theorem:

14
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Theorem 4.7. A variational quasi-radially symmetric system (4.22) is a PLN map of order
N− 2 with one of the sets of invariants:

L=
{
I(n)
3 , . . . ,I(n)

N

}
or R=

{
J (n)

3 , . . . ,J (n)
N

}
. (4.30)

Additionally:

• if we can find one additional invariant commuting either with L or R, then the system
becomes quasi-integrable;

• if we can find two additional invariant commuting either with L orR, then system becomes
Liouville integrable and moreover superintegrable with 2N− 3 invariants.

As we noted in section 3, the invariants of the system (4.11) are invariants of the vari-
ational quasi-radially symmetric system (4.22). So, for given functions f and h, studying the
system (4.11) we can search for the (N− 1)th and the Nth invariant mentioned in theorem
(4.7). We now give an explicit example of both cases.

Example 2. Consider the following linear system:

xn+1 +α0xn+ xn−1 = (1+α1β · xn)β. (4.31)

This system is clearly variational quasi-radial with f(ρ) =−α0ρ, and h(σ) = 1+α1σ.
The associated dynamical system is:

A(n+1)
+ = (α1M

(n) −α0)A
(n)
+ +M(n) −A(n)

− , (4.32a)

A(n+1)
− = A(n)

+ , (4.32b)

B(n+1)
+ = α2

0B
(n)
+ +α0

[
2K(n) +M(n) − 2

(
A(n)
+

)2
α1 − 2A(n)

+

]
+α2

1

(
A(n)
+

)2
M(n) + 2α1

(
M(n) −A(n)

−

)
A(n+1)
+ +M(n) − 2A(n)

− +B(n)
+ ,

(4.32c)

B(n+1)
− = B(n)

+ , (4.32d)

K(n+1) = α1

(
A(n)
+

)2
−α0B

(n)
+ +A(n)

+ −K(n) −M(n), (4.32e)

M(n+1) =M(n). (4.32f )

Besides the central element M(n) and the Casimir C(n), arising from (4.27) through the real-
isation (4.24), the system (4.32) has two additional functionally independent invariants:

H(n)
1 = α1A

(n)
− A(n)

+ −α0K
(n) +A(n)

− +A(n)
+ −B(n)

− −B(n)
+ , (4.33a)

H(n)
2 = α0

(
A(n)
− A(n)

+ −K(n)M(n)
)
+
(
A(n)
−

)2
+
(
A(n)
+

)2
−
(
B(n)
− +B(n)

+

)
M(n). (4.33b)

So, following theorem 4.7, we consider the set of invariants

S =
{
H(n)

1 ,H(n)
2 ,I(n)

3 , . . . ,I(n)
N

}
. (4.34)

Functional independence and involutivity in this set can be proved by induction. So, we proved
that the linear system (4.31) is Liouville integrable, and moreover superintegrable with the
2N− 3 functionally independent invariants, considering the Ki,j,k from lemma 4.4.
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Remark 4.5. We remark that, with respect to the rank 4 Lie–Poisson bracket (4.25) the
system (4.32) is Poisson–Liouville integrable. Indeed, it possesses a central element, one
Casimir (4.27), and two commuting invariants (4.33).

Example 3. Consider the following nonlinear system:

xn+1 +α0xn+ xn−1 =
[
1+α1β · xn+ ε(β · xn)2

]
β. (4.35)

This system is variational quasi-radial with f(ρ) =−α0ρ and h(σ) = 1+α1σ+ εσ2. This sys-
tem is a non-integrable deformation of the linear system (4.31). We can claim that the system
is non-integrable because it is a polynomial system of degree higher than one, so the sequence
of degrees is either linear or exponential [13, 52]. By a quick computation it is easy to see that
the degrees of iterates of (4.35) is dn = 2n, so that the associated algebraic entropy is positive.
However, we will prove using the coalgebra symmetry that it is quasi-integrable.

The associated dynamical system is:

A(n+1)
+ = [α1(M

(n) + εA(n)
+ )−α0]A

(n)
+ +M(n) −A(n)

− , (4.36a)

A(n+1)
− = A(n+1)

+ , (4.36b)

B(n+1)
+ = α2

0B
(n)
+ +α0

[
2K(n) +M(n) − 2

(
A(n)
+

)2
α1 − 2A(n)

+

]
+α2

1

(
A(n)
+

)2
M(n) + 2α1

(
M(n) −A(n)

−

)
A(n+1)
+ +M(n) − 2A(n)

− +B(n)
+

+ 2ε(A(n)
+ )2 ×

{
(α1M

(n) −α0)A
(n)
+ −A(n)

− +M(n)
[
1+ ε(A(n)

+ )2
]}
, (4.36c)

B(n+1)
− = B(n)

+ , (4.36d)

K(n+1) = α1

(
A(n)
+

)2
−α0B

(n)
+ +A(n)

+ −K(n) −M(n) + ε
(
A(n)
+

)3
, (4.36e)

M(n+1) =M(n). (4.36f )

Besides the central element M(n) and the Casimir (4.26) realised through (4.24), the sys-
tem (4.32) has one additional invariants, given by formula (4.33b). So, following theorem 4.7,
we consider the set of invariants

S ′ =
{
H(n)

2 ,I(n)
3 , . . . ,I(n)

N

}
. (4.37)

Functional independence and involutivity in this set can be proved by induction. So, we proved
that the linear system (4.31) is quasi-integrable. Notice, however that despite being non-
integrable the system possess a galore of invariants: 2N− 4 total invariants, considering the
Ki,j,k functions from lemma 4.4.

We notice that from a computational point of view the (real) orbits of equation (4.35),
for ε= 0 and ε 6= 0, are very similar even for O(1) values of ε. To this end, see figure 1
where we compare two cases with ε= 0 and ε= 10, but same initial conditions (x0,x−1) =
(0.1,0.1,0.1,0.1,0.1,0,0,0.1), and parameters α0 = 0.2, α1 = 0.5, β = (0.05,0.2,0.1,0.25).

Remark 4.6. Wemight wonder if we can hope for the existence ofmore functionally independ-
ent invariants for the system (4.36). In this case algebraic entropy comes to our aid: computing
the degrees of the iterates of the system (4.36) we get the following sequence of degrees:

1,5,13,29,61,125,253,509,1021,2045,4093,8189,16381 . . . . (4.38)
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Figure 1. Orbits of equation (4.35) for ε= 0 (left, equivalent to (4.31)) and
equation (4.35) for ε= 10 (right).

The growth of this sequence is clearly exponential, as it is readily shown by the generating
function:

g(z) =
2z+ 1

(z− 1)(2z− 1)
, (4.39)

which implies S= log2. Since the algebraic entropy is less than the maximal value log5 we
have some form of regularity, expected by the preservation of the rank 4 Lie–Poisson bracket,
and the existence of one central element, one Casimir (4.27), and two commuting invari-
ants (4.33). In short, we have that the system (4.36) cannot be Poisson–Liouville integrable,
but it is enough regular to provide us one additional invariant.

5. Vector extensions of the autonomous discrete Painlevé I

Consider the autonomous version of the discrete Painlevé equation (shortly aut-dPI) [20, 53]:

xn+1 + xn+ xn−1 =
α

xn
+β, (5.1)

where α,β ∈ R are arbitrary constants. This system admits the following discrete Lagrangian
[26]:

L(1)I = xn+1xn+
x2n
2
−α logxn−βxn, (5.2)

and leaves invariant the following QRT biquadratic:

B(n) = x2nxn−1 + xnx
2
n−1 −α(xn+ xn−1)−βxnxn−1. (5.3)

We wish to generalise this equation to N degrees of freedom. A simple observation can be
made to notice that we can do this easily by considering the Lagrangian, rather the equation
itself. Indeed, we can introduce the following two Lagrangians:

L(N)I,a = xn+1 · xn+
x2n
2
−α log |xn| −β · xn, (5.4a)

L(N)I,b = xn+1 · xn+
x2n
2
−κ logα · xn−β · xn, (5.4b)

where α,κ ∈ R and α,β ∈ RN.
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The associated Euler–Lagrange equations are the following:

xn+1 + xn+ xn−1 =
α

|xn|2
xn+β, (5.5a)

xn+1 + xn+ xn−1 = κ
α

α · xn
+β. (5.5b)

For 2⩽ N⩽ 4 the heuristic calculation of the algebraic entropy for the system (5.5a) gives
the following degree of growth:

1,3,7,15,25,39,55,75,97,123,151,183,217,255 . . . . (5.6)

The associated generating function is given by:

ga (z) =
1+ z+ z2 + 3z3

(1+ z)(1− z)3
, (5.7)

which readily implies the growth (5.6) is quadratic.
In the same way, for 1⩽ N⩽ 4 the heuristic calculation of the algebraic entropy for the

system (5.5b) gives the following degree of growth:

1,2,4,8,13,20,28,38,49,62,76,92,109 . . . . (5.8)

The associated generating function is given by:

gb (z) =
1+ 2z3

(1+ z)(1− z)3
, (5.9)

which readily implies the growth (5.8) is quadratic.
These two results gave us the indication that two systems (5.5) are integrable. In what

follows, we will prove that these two systems are actually superintegrable, by building their
invariants.

5.1. Superintegrability of the system (5.5a)

In this section, we will prove that the system (5.5a) is Liouville integrable for all N ∈ N. We
start noticing that the system (5.5a) is quasi-radially symmetric and variational. So, from the-
orem 4.7 we have that to prove Liouville integrability and superintegrability we need to find
two additional invariants.

Now, to build the additional invariants, we use the same strategy we employed in the
examples in section 4. From the proof of proposition 4.6 the associated dynamical system
on the generators of the h6 algebra is:

A(n+1)
+ = α

A(n+1)
+

B(n+1)
+

+M(n) −A(n+1)
− −A(n+1)

+ , (5.10a)

A(n+1)
− = A(n)

+ , (5.10b)

B(n+1)
+ =

(
M(n) −α

)(
2B(n)

+ −α
)
+ 2α

(
A(n)
+ −K(n)

)
B(n)
+

+B(n)
+ +B(n)

− + 2
(
K(n) −A(n)

+ −A(n)
−

)
, (5.10c)

B(n+1)
− = B(n)

+ , (5.10d)
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K(n+1) = α+A(n)
+ −B(n)

+ −K(n) −M(n), (5.10e)

M(n+1) =M(n). (5.10f )

Heuristically, the computation of the algebraic entropy of the dynamical system (5.10) gives
the degree sequence (5.8). So, we expect to find two more commuting invariants besides the
trivial central element M(n) and the Casimir (4.27). Using the method of appendix A we find
the two commuting invariants:

H(n)
1 =

(
α+B(n)

+ − 2K(n) −M(n)
)
A(n)
− +

(
α+B(n)

− − 2K(n) −M(n)
)
A(n)
+

+K(n)
(
2K(n) + 3M(n)

)
− 2B(n)

+ B(n)
− (5.11a)

H(n)
2 =

(
K(n) −A(n)

− −A(n)
+ +

B(n)
− +B(n)

+

2

)(
α2 +B(n)

− B(n)
+

)
− 2α

(
K(n)

2
+
M(n)

4

)[
B(n)
− +B(n)

+ − 2
(
A(n)
− +A(n)

+

)]
− 2α

[
K(n) +

3M(n)

2

]
K(n) +M(n)B(n)

− B(n)
+ . (5.11b)

So, following theorem 4.7, we consider the following set of invariants:

SI,a =
{
H(n)

1 ,H(n)
2 ,I(n)

3 , . . . ,I(n)
N

}
. (5.12)

Functional independence and involutivity in this set can be proved by induction. So, we proved
that the system (5.5a) is Liouville integrable and moreover superintegrable with the 2N− 3
functionally independent invariants, considering the Ki,j,k from lemma 4.4.

Remark 5.1. We note that the same construction holds also for N= 1, even though the coal-
gebra structure in the invariant (5.3) is not immediately clear. Indeed, for N= 1 we have:

H(n)
1 = β1

(
B(n) +M(n)

)
, (5.13)

proving that (5.5a) is a bona fide coalgebric extension of the autonomous discrete Painlevé I
equation (5.1).

Now, we consider the case β = 0:

xn+1 + xn+ xn−1 =
α

|xn|2
xn (5.14)

which is special because the system becomes radially symmetric. The system is clearly integ-
rable, but we will prove it using its coalgebra symmetry with respect to the sl2(R) algebra:
from theorem 4.3 if we can find an additional invariant the system becomes quasi-maximally
superintegrable.

From the proof of proposition 4.2 the associated dynamical system on the generators of the
sl2(R) algebra is:

J(n+1)
+ =

α

J(n)+

(
α− 2J(n)3

)
+ 2J(n)3 − 2α+ J(n)− + J(n)+ ,

J(n+1)
− = J(n)+ , J(n+1)

3 = α−
(
J(n)3 + J(n)+

)
. (5.15)
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Using the method of appendix A we find the Casimir (4.10), and one additional invariant:

H(n)
1 (β = 0) =

(
J(n)+ + J(n)− + 2J(n)3

)(
J(n)+ J(n)− +α2

)
− 2α

[
2J(n)+ J(n)− +

(
J(n)+ + J(n)−

)
J(n)3

]
.

(5.16)

So, following theorem 4.3, we consider the following set of invariants:

SI,a (β = 0) =
{
H(n)

1 (β = 0) ,C(n)
2 , . . . ,C(n)

N

}
. (5.17)

Functional independence and involutivity in this set can be proved by induction. So, we proved
that the system (5.14) is Liouville integrable and moreover quasi-maximally superintegrable
with the 2N− 2 functionally independent invariants, considering the independent components
of the discrete angular momentum Li,j from lemma 4.1.

5.2. Superintegrability of the system (5.5b)

Consider the matrix R ∈ SO(N) such that RTα̂= (1,0, . . . ,0)T, where α̂=α/ |α|. So, the
linear transformation xn = Ryn maps the system (5.5b) into:

y1,n+1 + y1,n+ y1,n−1 =
κ

y1,n
+β ′

1, (5.18a)

Yn+1 +Yn+Yn−1 = B, (5.18b)

where Yn = (y2,n, . . . ,yN,n)
T, β ′ = Rβ, and B= (β ′

2, . . . ,β
′
N). Clearly, this preserves the vari-

ational structure with the following Lagrangian:

ℓ
(N)
I,b = yn+1 · yn+

y2n
2
−κ logy1,n−β ′ · yn. (5.19)

The system is clearly a superposition of an autonomous discrete Painlevé I equation (5.1)
in the variable y1,n and a linear quasi-radial system of the form (4.31) with α0 = 1 and α1 = 0.
From theorem 4.7, we derive the following set of invariants:

SI,b =
{
B(n) (y1,n,y1,n−1) ,E(n)

1 ,E(n)
2 ,K(n)

2 , . . . ,K(n)
N−1

}
, (5.20)

where:

E(n)
i =H(n)

i (Yn,Yn−1,B,α0 = 1,α1 = 0) , i= 1,2, (5.21)

with H(n)
i given in equation (4.33), and

K(n)
i = I(n)

i (Yn,Yn−1,B,α0 = 1,α1 = 0) , i= 2, . . . ,N− 1, (5.22)

with I(n)
i given in equation (4.29a). The functional independence and the commutation of the

invariants in the set SI,b can be proven by induction. Moreover, from lemma (4.4) for N− 1 we
obtain 2N− 5 functionally independent invariants. So, in total we have (by induction) a set of
2N− 4 functionally independent invariants, which makes the system (5.18) superintegrable.

So, applying the inverse transformation yn = R−1xn we obtain that the original
system (5.5b) is superintegrable with 2N− 4 functionally independent invariants.
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Remark 5.2. We remark that there is another candidate coalgebra symmetry for the sys-
tem (5.5b). That is, consider the Lie–Poisson algebra A10 generated by

A(n)
+ =α · xn, A(n)

− =α · xn−1, B(n)
+ = β · xn, B(n)

− = β · xn−1, C(n)
+ = x2n,

C(n)
− = x2n−1, K(n) = xn · xn−1, M(n)

α =α2, M(n)
β = β2, M(n)

αβ =α ·β, (5.23)

defined with respect to the canonical Poisson bracket (4.4). Here the elements
{M(n)

α ,M(n)
β ,M(n)

αβ} are central, while the other elements realise the following commutation
table:

{ , } A(n)
+ A(n)

− B(n)
+ B(n)

− C(n)
+ C(n)

− K(n)

A(n)
+ 0 M(n)

α 0 M(n)
αβ 0 2A(n)

− A(n)
+

A(n)
− −M(n)

α 0 −M(n)
αβ 0 −2A(n)

+ 0 −A(n)
−

B(n)
+ 0 M(n)

αβ 0 M(n)
β 0 2B(n)

− B(n)
+

B(n)
− −M(n)

αβ 0 −M(n)
β 0 −2B(n)

+ 0 −B(n)
−

C(n)
+ 0 2A(n)

+ 0 2B(n)
+ 0 4K(n) 2C(n)

+

C(n)
− −2A(n)

− 0 −2B(n)
− 0 −4Kn 0 −2C(n)

−
K(n) −A(n)

+ A(n)
− −B(n)

+ B(n)
− −2C(n)

+ 2C(n)
− 0

. (5.24)

So, A10 represents the Poisson analogue of a non-semisimple Lie algebra whose Levi
decomposition is given by:

A10 = 〈A(n)
+ ,A(n)

− ,B(n)
+ ,B(n)

− ,M(n)
α ,M(n)

β ,M(n)
αβ〉⊕S 〈C(n)

+ ,C(n)
− ,K(n)〉. (5.25)

Note that 〈C(n)
+ ,C(n)

− ,K(n)〉 ' sl2(R).
We were able to prove that the dynamical system associated with the generators (5.23) and

the evolution (5.5b) is closed. Furthermore, we can prove that this associated system is integ-
rable both according to the algebraic entropy criterion and the Liouville–Poisson definition.
However, the search for Casimir invariants of this Lie–Poisson algebra is still an open problem.

Moreover, we note that the algebra can be extended to the algebraA2(2k+1) for every k ∈ N
in the following way:

A(n)
i,+ =αi · xn, A(n)

i,− =αi · xn−1, K(n) = xn · xn−1,

Q(n)
+ = x2n, Q(n)

− = x2n−1, M(n)
αiαj

=αi ·αj,
(5.26)

where i = 1, . . . ,k and j = i, . . . ,k. A Levi decomposition similar to (5.25) holds. The algebra
A2(2k+1), its Casimir(s), associated discrete dynamical systems and construction of the invari-
ants will be subject of future works.

5.3. Continuum limits

The autonomous discrete Painlevé equation (5.1) has this name because under the following
coordinate scaling:

xn = 1+
A
3
h2X(t), α=−3− AB

3
h4, β = 6, t= nh, (5.27)

in the limit h→ 0 reduces to:

Ẍ=−AX2 −B, (5.28)
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whose deautonomisation is the Painlevé I equation [54]. Notice that, since we are in the
autonomous case, this differential equation is related to the differential equation solved by
the Weiestraß ℘-function [55]:

[℘ ′ (z)]
2
= 4℘3(z)− g2℘(z)− g3, z,g2,g3 ∈ C. (5.29)

Therefore, we can suppose that a similar scaling holds in the N degrees of freedom case.
However, it is possible to prove by direct computation that no scaling of the form

xn = x0 +
A
3
hγX(t), α= α(h), β = β(h), x0 ∈ SN, γ ∈ N, (5.30)

where α(h) and β(h) are analytic functions of their argument, balances the terms in the
systems (5.5).

So, at the moment, the nontrivial problem of the continuum limit of both systems (5.5) is
still open and we cannot relate those systems to vector extensions of theWeierstraß differential
equations (5.29).

6. Vector extension of the McMillan map

Consider the so-called McMillan map [3]:

xn+1 + xn−1 =
αxn+β

1− x2n
. (6.1)

This a famous discrete integrable system, admitting the following biquadratic invariant:

B(n) = x2nx
2
n−1 − x2n− x2n−1 +αxnxn−1 +β (xn+ xn−1) . (6.2)

Historically, this was one of the first discrete systems ever introduced, and it is an example of
a QRT map. This system has the following discrete Lagrangian:

LII = xn+1xn−
[
α+β

2
log(xn− 1)+

α−β

2
log(xn+ 1)

]
. (6.3)

Remark 6.1. The McMillan equation (6.1) is also known to be the autonomous limit of the
discrete Painlevé II equation, as it was found in [53], through the so-called singularity con-
finement method.

An obvious N degrees of freedom generalisation of the McMillan map is given by the
following system of equations:

xn+1 + xn−1 =
αxn+β

1− x2n
. (6.4)

Note that the discrete Lagrangian (6.3) does not generalise to a Lagrangian for the system (6.4).
Unfortunately, due to the lack of general theorems for discrete Lagrangians of system of second
order equations we cannot claim that this system does not possess a Lagrangian at all.

Moreover, the algebraic entropy test applied to this system for 2⩽ N⩽ 4 gives us the fol-
lowing degree sequence:

1,3,9,21,45,93,189,381,765,1533,3069,6141,12285,24573 . . . , (6.5)

which has the following generating function:

g(z) =
(z+ 2)(z+ 1)
(z− 1)(z− 2)

. (6.6)

22



J. Phys. A: Math. Theor. 56 (2023) 205205 G Gubbiotti et al

This suggests that the algebraic entropy of the system (6.4) is S= log2> 0. That is, the algeb-
raic entropy test suggests that the system (6.4) is not integrable. Notice that the algebraic
entropy is not maximal (because the map associated to (6.4) has degree 3). This immediately
suggests the existence of some commuting invariants.

On the other hand, consider the case β = 0:

xn+1 + xn−1 =
αxn

1− x2n
. (6.7)

We now have for 2⩽ N⩽ 4 the following growth of degrees:

1,3,9,19,33,51,73,99,129,163,201,243,289,339,393,451,513 . . . . (6.8)

This growth is clearly sub-exponential. Indeed, computing the generating function we obtain:

g(z;β = 0) =
3z2 + 1
(1− z)3

, (6.9)

which implies that the growth is quadratic. For all N ∈ N the system (6.7) is radial and pos-
sesses the following Lagrangian:

L(N)II = xn+1 · xn+
α

2
log
(
1− x2n

)
. (6.10)

Remark 6.2. We remark that the system (6.7) was introduced for N= 2 in [4] searching for
explicit invariants for a general map in standard from (4.1) with a given continuum limit. The
N degrees of freedom generalisation was suggested from radial symmetry, and proved to be
a reduction of a discrete analogue of the Garnier system in [5]. These systems were further
generalised in [56], by considering symplectic maps related to systems defined on symmet-
ric spaces. For a general review on these topics we refer to [57, chapter 25]. Finally, notice
that a different generalisation of the McMillan map was presented in [58] in the context of a
N-dimensional generalisation of the QRT construction.

6.1. Invariants of the system (6.4)

In this section we will prove that the system (6.4) is not Liouville integrable for all N ∈ N, but
it possesses many invariants.

We start noticing that the system (6.4) is quasi-radially symmetric, but not variational. How-
ever, from lemma 4.2, we have that the system (6.4) possesses the N(N− 1)(N− 2)/6 invari-
ants Ki,j,k (4.21) and their Poisson-commuting combinations (4.29) (these can be defined even
without a Poisson structure).

Moreover, we have that the system (6.4) admits the coalgebra symmetry with respect to the
h6 algebra. Indeed, we have the following associated dynamical system:

A(n+1)
+ =

αA(n)
+ +M(n)

1−B(n)
+

−A(n)
− , (6.11a)

A(n+1)
− = A(n)

+ , (6.11b)

B(n+1)
+ = B(n)

− −
α2 + 2αK(n) +αM(n) + 2A(n)

−

1−B(n)
+

+
α2 + 2αA(n)

+ +M(n)(
1−B(n)

+

)2 , (6.11c)

B(n+1)
− = B(n)

+ , (6.11d)
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K(n+1) =
αB(n)

+ +A(n)
+

1−B(n)
+

−K(n) −M(n), (6.11e)

M(n+1) =M(n). (6.11f )

The system is clearly closed in h6. By direct computation it is possible to show that the
Lie–Poisson bracket of h6 is preserved, and finally that the central element M(n) and the
Casimir (4.27) are preserved by (6.11).

Heuristically, the computation of the algebraic entropy of the dynamical system (6.11) gives
the degree sequence (6.5). So, we do not expect the system to be integrable, but besides the
central element M(n) and the Casimir (4.27), we obtain the following invariant:

B(n) = B(n)
+ B(n)

− −B(n)
+ −B(n)

− +α

(
K(n) +

M(n)

2

)
+A(n)

+ +A(n)
− . (6.12)

Note that the invariant B (6.12) is a direct coalgebraic generalisation of the biquadratic (6.2).
Thus, summing up these results, we get the following set of N− 1 invariants:

SII =
{
B(n),I(n)

3 , . . . ,I(n)
N

}
. (6.13)

It is possible to prove by induction on the degrees of freedom that these invariants are func-
tionally independent.

The set (6.13) does not contain enough invariant to prove integrability, especially because
the system is lacking a Poisson structure. Considering the 2N− 5 invariants coming from
lemma 4.4 we have a total of 2N− 4 independent invariants (this can be proven again by
induction). However, we will see later that the behaviour of the system is very regular.

6.2. Quasi-maximal superintegrability of the β = 0 case (6.7)

The Liouville integrability of theβ = 0 case follows from the general caseβ 6= 0, noticing that
all the invariants are analytic in the neighbourhood of β = 0 and the system becomes radially
symmetric.

However, here we give a short proof using the coalgebra symmetry sl2(R) and theorem
4.3: if we find an additional commuting invariant then the system becomes quasi-maximal
superintegrable. The associated dynamical system (4.11) is:

J(n+1)
+ = J(n)− −

2αJ(n)3

1− J(n)+

+
α2J(n)+(

1− J(n)+

)2 , J(n+1)
− = J(n)+ , J(n+1)

3 =−J(n)3 +
αJ(n)+

1− J(n)+

. (6.14)

Heuristically, the computation of the algebraic entropy of the dynamical system (6.14) gives
the degree sequence (6.8), implying integrability. If we search for invariants of this system,
besides the Casimir (4.10), we obtain the following invariant:

M(n) = J(n)+ + J(n)− − J(n)3

(
α+ J(n)3

)
. (6.15)

Note that the invariant M(n) (6.15) is a direct coalgebraic generalisation of the biquadratic
B̃(n) = B(n) (xn,xn−1;β = 0), with B given by (6.2).

So, from theorem 4.3 we build the set of invariants:

PII (β = 0) =
{
M(n),C(n)

2 , . . . ,C(n)
N

}
. (6.16)
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Functional independence and involutivity in this set can be proved by induction. So, we proved
that the system (6.7) is Liouville integrable, and then it is quasi-maximally superintegrable.

6.3. Continuum limits

It is known that the McMillan map (6.1) has a cubic oscillator as continuum limit, see for
instance [59] for the associated non-autonomous case. For its N degrees of freedom general-
isation (6.4) we have an analogous property. The case β = 0 was considered in [4, 5].

To be more precise, consider the following scaling:

xn = hX(t) , α= 2+ h2A, β = h3B, t= nh, h→ 0. (6.17)

Substituting into the left hand side of equation (6.4) we get:

xn+1 + xn−1 = h
[
2X(t)+ h2Ẍ(t)

]
+O

(
h4
)
. (6.18)

For the right hand side we have:

αxn+β

1− x2n
= 2hX(t)+ h3

[(
A+X2

)
X+ 2B

]
+O

(
h4
)
. (6.19)

So, comparing the two sides and balancing the terms in h we obtain the system:

Ẍ=
(
A+X2

)
X+ 2B. (6.20)

This vector system is a vector non-linear cubic oscillator, a natural generalisation of the one
degree of freedom cubic oscillator. Such a system possesses the following Lagrangian:

LII =
1
2
Ẋ2 − 1

2

(
A+X2

)
X2 − 2B ·X. (6.21)

A trivial invariant is the energy (which coincides up to Legendre transformation with the
Hamiltonian):

E=
1
2
Ẋ2 +

1
2

(
A+X2

)
X2 + 2B ·X. (6.22)

In the integrable case (6.7) we can also consider the continuum limit in the Lagrangian (6.3):

LII = h4LII (B= 0)+O
(
h5
)
. (6.23)

Therefore, we can see clearly a drastic difference between the continuum and the discrete case:
the continuum case is always variational and the variational structure itself yields ‘for free’ the
invariant (6.22).

Let us now discuss the invariants. Under the scaling (6.17) the elements of the discrete
angular momentum become:

L(n)i,j = h3ℓi,j+O
(
h4
)
, ℓi,j =−XiẊj+ ẊiXj, (6.24)

while the invariants Ki,j,k become:

K(n)
i,j,k = h6κi,j,k+O

(
h7
)
, κi,j,k = Biℓj,k+Bjℓk,i+Bkℓi,j. (6.25)

Following for instance [1], we have that these can be used to build the commuting set of
invariants:

Im =
∑

1⩽i<j<k⩽m

κ2
i,j,k, m= 3, . . . ,N, (6.26a)

Jm =
∑

N−m+1⩽i<j<k⩽N

κ2
i,j,k, m= 3, . . . ,N. (6.26b)
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Figure 2. Orbits of equation (6.20) (left) and (6.4) after applying the scaling (6.17)
(right).

In the same way the invariant (6.12) is related to the energy integral (6.22):

B(n) = h4E+O
(
h5
)
. (6.27)

The set of invariants Q= {E, I3, . . . , IN}, makes the system quasi-integrable.
In the quasi-maximally superintegrable case β = 0, we have that this property is preserved

by the continuum limit, which clearly correspond to put B= 0. To see this, just notice that
E(B= 0) stays an invariant, and that we can construct the left and right Casimirs of sl2(R)
from formula (4.12) as:

Cm =
∑

1⩽i<j⩽m

ℓ2i,j, m= 2, . . . ,N, (6.28a)

Dm =
∑

N−m+1⩽i<j⩽N

ℓ2i,j, m= 2, . . . ,N. (6.28b)

So, the set of invariants Q(B= 0) = {E(B= 0) ,C2, . . . ,CN}, make the system Liouville
integrable, and the existence of the additional non-commuting invariants (6.24) make it quasi-
maximally superintegrable.

To conclude this section we show some pictures highlighting the numerical validation
of the continuum limit we just presented. In particular we compare the orbits of the con-
tinuous case, ODE (6.20), with its discrete counterpart, equation (6.4) after applying the
scaling (6.17). The two equations are solved in four degrees of freedom with initial values
(x0,x−1) = (0.1,0.1,0.1,0.1,0.1,0,0,0.1), α=−2, h= 0.5 and β = (0.05,0.2,0.1,0.25). In
figure 2 the numerical orbits are plotted. In particular we note that both orbits look very close
to an integrable one. Incidentally, this result exhibits another limit of the ‘orbit method’ to
identify integrability, see for instance [60, 61]. Finally, figures 3 and 4 show the values of
B(n)
+ = β · xn and C(n)

+ = x2n for the continuous case and the discrete case. These two figures
highlight a simple oscillatory behaviour, which in both cases mimic the behaviour of the sys-
tem with one degree of freedom.
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Figure 3. B(n)
+ = β · xn for the continuous case (left) and the discrete case (right).

Figure 4. C(n)
+ = x2n for the continuous case (left) and the discrete case (right).

7. Conclusions

In this paper we presented a discrete analogue of the coalgebra approach to generate systems
inN degrees of freedom as extensions of integrable systems in one degree of freedom.We gave
two general results on the integrability properties of two classes of systems of second order
difference equation in standard form. Namely, we proved in theorem 4.3 that all radially-
symmetric systems (4.5) are quasi-integrable, and in theorem 4.7 that all quasi-radially sym-
metric systems are PLN maps of rank N− 2. Up to our knowledge, this is the first time that
quasi-integrable discrete systems are produced. Then we considered the following explicit
examples of systems in N degrees of freedom:

(i) A maximally superintegrable radially-symmetric linear equation (4.14) in N degrees of
freedom.

(ii) A superintegrable quasi-radially-symmetric linear equation (4.31) in N degrees of
freedom.

(iii) A quasi-integrable deformation of the previous system (4.35).
(iv) Two different N degrees of freedom generalisations of the autonomous discrete Painlevé

I equation (5.5).
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(v) A non-integrable N degrees of freedom generalisation of the McMillan map (6.4) with
many invariants.

(vi) A quasi-maximally superintegrable radially-symmetric N degrees of freedom generalisa-
tion of a special case of the McMillan map (6.7).

In particular, the system (4.35) remarkably shows the entropy gap: as soon as ε 6= 0 the Nth
invariant is missing and the algebraic entropy becomes positive. Despite this the (real) orbits
of the system are very regular. Furthermore, we remark that, while some of the systems we
considered were known in the literature, up to our knowledge the vector generalisation of the
autonomous discrete Painlevé I equation (5.5a) is new.

As usual in discrete systems theory, the discrete case ismore complicated than its continuum
counterpart: while in the continuum case an N degrees of freedom system is built on top of the
Nth coproduct of a function, the Hamiltonian, in the discrete setting we define a Poisson map
to admit a coalgebra symmetry when the evolution of the generators of the algebra is closed in
the algebra and preserves the Casimir of the algebra itself. The last requirement is fundamental
since it allows us to prove the existence of the invariants (3.10), and then use the construction
to generate systems with N degrees of freedom with a given number of invariants.

The three conditions of definition 3.3 can be used to build systems admitting the coalgebra
symmetry out of general ones. In particular, we highlight with an example that the Casimir
condition can greatly help us. For sake of simplicity consider a variational difference equation
of standard form (4.1) for N= 2 with xn = (xn,yn)T and the algebra sl2(R). Computing the
evolution of the generators of sl2(R) we obtain:

J(n+1)
+ =

[
xn−1 −

∂V
∂xn

(xn,yn)

]2
+

[
yn−1 −

∂V
∂yn

(xn,yn)

]2
, (7.1a)

J(n+1)
− = J(n)+ , (7.1b)

J(n+1)
3 = xn

[
xn−1 −

∂V
∂xn

(xn,yn)

]2
+ yn

[
yn−1 −

∂V
∂yn

(xn,yn)

]2
. (7.1c)

We have that the commutation relations of the sl2(R) are preserved for all V, while it is not
trivial to understand if the right hand side of the expressions in (7.1) are in sl2(R). However, it
is pretty simple to check if the Casimir (4.10) is preserved. Computing the difference between
C(n+1) and C(n) we obtain the simple expression:(

xn
∂V
∂yn

− yn
∂V
∂xn

)[
xnyn−1 − xn−1yn−

1
2

(
xn
∂V
∂yn

− yn
∂V
∂xn

)]
= 0. (7.2)

Since the second factor cannot be zero because V= V(xn,yn), the first factor gives us a linear
PDE for V. Solving it we obtain V= V

(√
x2n+ y2n

)
. With such value of V we have that the

right hand side of the system (7.1) lies in sl2(R). This reasoning can be extended to N> 2,
and we obtain that the only variational difference equation of standard form (4.1) admitting
the coalgebra symmetry with respect to the Lie–Poisson algebra sl2(R) are exactly the radial
difference equations (4.5). Note that in this reasoning the variational structure is not restrictive
because we are interested in studying integrability. Note that this idea was already extended
in [62] where a classification of a broader class of variational difference equations admitting
coalgebra symmetry with respect of the sl2(R) Lie–Poisson algebra was presented.

We remark that in all the examples we presented the associated dynamical system on the
generators of the algebra (3.11) is a fundamental tool in studying the integrability of the ori-
ginal difference equation. In this sense the system (3.11) plays a role even more fundamental
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than the N degrees of freedom Hamiltonian which gives only one additional invariant. This is
particularly evident in the case of equation (5.5a) where, due to the presence of the two-photon
h6 coalgebra, one should have constructed the second invariant with other methods, see [24].
In particular, our examples seem to suggest that the integrability properties of an underlying
Poisson map are completely governed by those of the associated dynamical system on the
generators of the algebra (3.11). To be more precise, we make this statement rigorous in the
following conjecture:

Conjecture. A Poisson map T : n 7→ n+ 1 admitting a coalgebra symmetry (A,∆), is
Liouville integrable if and only if the evolution of the generators (3.11) is Poisson–Liouville
integrable.

This conjecture can be used as a guiding criterion to findmore integrable cases, starting from
instance from a given coalgebra structure. As we mentioned in the introduction, integrable
discrete systems in one degree of freedom are almost completely understood in terms of QRT
mappings [15, 16]. QRT mappings have been classified in nine canonical forms in [63]. The
additive form (1.2) is the first of these nine canonical forms. We plan to address to the problem
of finding the N degrees of freedom version of these maps admitting some notable coalgebra
symmetry, like the sl2(R) algebra or the h6 algebra.

We also note that the production of many examples of discrete integrable systems in N
degrees of freedom could help to understand the geometric mechanism behind integrability
for systems with many degrees of freedom. Indeed, while for one degree of freedom discrete
integrable systems almost all properties can be explained in terms of involution on elliptic
curves and fibrations [7, 64, 65], it is known that integrable systems inmore degrees of freedom
are not always related to elliptic fibrations, see [10, 61, 66].

Finally, we also plan to address to the problem of finding non-autonomous versions of the
coalgebraic integrable systems, e.g. with the singularity confinement method [53], and prove
rigorously their growth properties with the approach from [67].
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Appendix A. Algorithm to find integrals of discrete systems

In this appendix we recall briefly a method for finding invariants of birational maps presented
first in [68] and recently reprised in [69], where such a result was interpreted in terms of
discrete Darboux polynomials.

In the case when a M-dimensional difference equation (2.1) is rational we can transform
its map form into a projective map by homogenising the variables. To use all the advantages
of projective and algebraic geometry we usually consider the projective space to be defined
on the complex field, that is we consider the complex projective space of dimensionM, CPM,
with coordinates [X1 : . . . : XM+1]. In such a case, we denote the map by φ : CPM → CPM. In
the case when the map possess an inverse ψ : CPM → CPM which is a rational map too then
the map is said to be birational [70]. Due to birationality the following relations hold:

ψ ◦φ= κId, φ ◦ψ = λId, κ,λ ∈ Ch [x1, · · · ,xn+1] . (A.1)

The polynomials κ and λ admit a possibly trivial factorisation of the form:

κ=

Kκ∏
i=1

κ
dκ,i

i , λ=

Kλ∏
i=1

λ
dλ,i

i . (A.2)

The map φ is ill-defined on the singular locus Vφ = {κ= 0}, while the map φ is ill-defined on
the singular locus Vψ = {λ= 0}. The singular loci form an algebraic variety of codimension
one and measure zero.

In this picture an invariant is a homogeneous function I= I(X1, . . . ,XM+1) such that the
pullback

φ∗(I)(X1, . . . ,XM+1) := I(φ(X1, . . . ,XM+1)), (A.3)

satisfies φ∗(I) = I. Now, if the invariant is a ratio of homogeneous polynomials, that is
I ∈ Ch(X1, . . . ,XM+1), we can write I= P/Q, with P,Q ∈ Ch[X1, . . . ,XM+1]. Equation (A.3)
implies:

φ∗(P) = aP and φ∗(Q) = aQ (A.4)

for some polynomial factor a ∈ Ch[X1, . . . ,XM+1]. That is the polynomials P,Q are covariant.
To find covariant polynomials we use the fact that the polynomial a must be composed

by the factors of the polynomial κ, see [68, lemma 4.1]. So, we can search for invariants
imposing the form of P, then searching for the appropriate cofactors, building them from the
factorisation (A.2). We get an invariant when we obtain more than one solution for the same
a. By taking ratios of the solutions we obtain the invariants.

The disadvantage of this algorithm is that it is not bounded as we do not know a priori the
degree of P. However, in practice this approach is quite useful for the explicit computation of
the invariants, since the conditions in (A.4) are linear, even though their number can become
huge as deg(P) and M grow.

Appendix B. Algebraic entropy

An integrability criterion unique to birational systems with discrete degrees of freedom is low
growth condition [13, 52, 68]. To be specific, we state the following criterion of integrability:
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Definition B.1 (Algebraic entropy [13]). Consider an M-dimensional difference
equation (2.1). If the associated projective map φ : CPM → CPM is birational, then we say
that equation (2.1) is integrable in the sense of the algebraic entropy if the following limit

Sφ = lim
k→∞

1
k
logdegφk, (B.1)

called the algebraic entropy is zero for every initial condition.

Algebraic entropy is an invariant of birational maps, meaning that its value is unchanged up
to birational equivalence. Practically algebraic entropy is a measure of the complexity of a map,
analogous to the one introduced by Arnol’d [71] for diffeomorphisms. In this sense growth is
given by computing the number of intersections of the successive images of a straight line with
a generic hyperplane in complex projective space [52].

In principle, the definition of algebraic entropy in equation (B.1) requires us to compute
all the iterates of a birational map φ and take the limit as k→∞. However, in the majority
of applications, the asymptotic behaviour of the sequence of degrees can be inferred by using
generating functions [72]:

g(z) =
∞∑
n=0

dkz
k, dk = degφk. (B.2)

A generating function is a predictive tool which can be used to test the successive members of
a finite sequence. It follows that the algebraic entropy is given by the logarithm of the smallest
pole of the generating function, see [73, 74]. A birational map (or its avatar difference equation)
will then be integrable if all the poles of the generating function lie on the unit circle.
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