Universita degli Studi di Milano

Doctor of Philosophy in Computer Science
Cycle XXXV

Department of Computer Science "Giovanni degli Antoni"

Strength evaluation of cryptographic primitives to linear, differential
and algebraic attacks
R18

Candidate: Sergio Polese

Supervisor: Prof. Andrea Visconti

Course Coordinator: Prof. Roberto Sassi

A. A.2021-2022

Abstract

Cryptanalysis is an effective method for ensuring the security of cryptographic
primitives by attacking them with the most advanced techniques.

This thesis provides a deep investigation of three different kinds of crypt-
analysis for symmetric ciphers, differential, linear and algebraic, applying
them to several symmetric ciphers, from the older ones to the most modern.

The algebraic approach consists in solving a polynomial system of equa-
tions representing a cryptographic primitive and involves a careful choice of
the set of key variables to be fixed. The main instruments used to solve the
system are Sat solvers and Grobner basis of which a comparison is offered in
some cases. Particular focus has been paid to SHA1 hash function and on the
stream cipher EO, used in the Bluetooth protocol.

Samely, differential and linear cryptanalysis are applied to several sym-
metric ciphers. In particular, it is shown how to develop in Python an au-
tomatic tool for searching differential and linear trails with the constraint
programming language Minizinc.

Contents

Introduction
1.1 Notation e e

Algebraic cryptanalysis

Symmetric ciphers

1.1 Blockciphers.
1.1.1 Subtitution permutation networks

1.2 Streamciphers L oo oo

1.3 Hashfunctions
1.3.1 Birthdayattack,
1.3.2 Brute-forcing a preimage
1.3.3 Merkle-Damgérd construction

Algebraic attacks

2.1 The algebraic representation
211 Awuxiliaryvariableso 0L
2.1.2 Main operations and their algebraic representation

2.2 Attacks on cryptographic primitives
22.1 Fixingsomekeybits,
2.2.2 Choosing the set of variables tobe fixed
2.2.3 Consider simplified versions of a primitive

2.3 Possible solvingmethods
231 SATsolvers
2.3.2 Grobner basis based solvers

2.4 Guess and determine with Grobnerbases

Algebraic attack to E0

3.1 ThestreamcipherEO
3.2 Thealgebraic attackonEO
33 The83variablesset
34 Experimentalresults
3.5 Expected runtime of theattack

SHA1

41 Relatedworks L
42 Thehash functionSHA-1.
4.3 Modelling SHA-1 as a system of equations
44 The algebraic attackonSHA-1.

N =

g1

Contents

IT

45 Experimentalresults
4.6 Finalobservations

Differential and linear cryptanalysis

Differential cryptanalysis

1.1 Formal definitions
1.2 Differential analysis of main operators
13 Twostepsstrategy
1.4 Partial key-recovery differential attack

Linear cryptanalysis

21 Formaldefinitions. L.
2.2 Linear analysis of main operations
2.3 Partial key recovery linear attack

Automatic tool for differential and linear cryptanalysis

3.1 Constraint Programming (CP)
3.1.1 Solvingalgorithms
312 Globalconstraints
3.1.3 Practicalexample

3.2 CP constraints for the main operators in differential search . .
321 XOR e
3.2.2 Rotation/Shift.
3.2.3 Linear Layer/Mix Column
3.24 Sboxes/AND/OR

325 Modadd oo
3.3 Constraints and automatic tool for two steps strategy
331 XOR

332 Mixcolumn, .
3.4 CP constraints for the main operators in linear search
341 Branching
342 Shift o o
343 Modadd L
3.5 Experimentalresult

IIT Conclusion

1

Conclusion
1.1 Futuredirections

75

List of Figures

1.1
21
3.1
4.1

3.1
3.2

The Merkle-Damgard construction 12
Toy blockcipher, 16
EO keystream generation 31
SHA-1: round function 45
Sudokuexample.o o oL 73

MiniZinc Challenge 2020. 74

List of Tables

1.1

3.1
3.2
3.3
34

4.1
4.2

4.3

44

4.5
4.6
4.7
4.8

3.1

Operationsand symbols 3
GBvsSAT 38
GBdata. 38
BDD with BuDDY24 40
BDD with SYLVAN 40
preimage attackson SHA-1 44
Number of variables and equations for SHA-1 polynomial sys-

tem over [F» as a function of the number r of rounds. 46
Number of addition (Boolean XOR) and multiplication (Boolean
AND) for the system of equations of SHA-1. 47
Average times to reverse SHA-1 on the cluster with Crypto-
minisat. L. 49
Message words involved at differentrounds. 49
SAT-based attack on two unknown words. Time is in seconds. 50
Words w,_14 > w,_qfixed 50
Results for 80,96,112 bits free when fixing the last words . . . 51

Experimental results for differential and linear trails search
with the automatictool 84

Chapter 1

Introduction

In the digital era [30], internet security is necessarily becoming one of the
main concerns, especially because an exponential amount of private informa-
tion is stored online. Caring about protecting personal data is the equivalent
of worrying about not having a physical wallet stolen and cyber attackers are
the new pickpockets.

A big slice of modern internet security relies on symmetric cryptography
and it is likely that it will also be, at least in the near future. Indeed, even
the threats posed by quantum computing, that compromise irremediably the
security of the most common public-key ciphers, represent only a minor issue
for symmetric cryptography: it is enough to double the key sizes to stay safe
from the Grover quantistic algorithm [46]. In particular, cryptanalysis aims
at analysing new and old information systems to find possible security flaws
and promptly report them.

An additional concern is brought by the fact that we are often moving
from the use of desktop computers to small devices, such as smart cards,
industrial controllers, and others. This is the reason why in august 2018,
NIST published a call for algorithms [87] to be considered for lightweight
cryptographic standards.

The subject of this thesis is cryptanalysis on symmetric ciphers which will
be explored in three of the most commonly used techniques.

The first part addresses algebraic cryptanalysis, a cryptanalytic method
consisting in representing a cipher as a system of polynomial equations to
be used for attacking the key. Algebraic cryptanalysis is commonly adopted
and many examples can be found in the literature [4, 5, 20, 32, 48].

The first chapter provides a brief introduction to block and stream ciphers
and to hash functions. In the second, one can find a detailed description of
algebraic attacks, comprehending a tutorial on how to algebraically represent
common operations, an overview of some techniques one can apply, and an
introduction of two common methods used to solve the system: SAT solvers
and Grobner Bases. In the third and fourth chapters, the results obtained on
the common hash function SHA-1 and the Bluetooth cipher E0 are shown
extensively.

The first attack [9] tries to find a preimage of round-reduced versions of
the compression function of SHA-1 with two different approaches: leaving
more or less than 160 message bits free and fixing all the others. The resulting
polynomial system is solved with SAT solvers.

2 Chapter 1. Introduction

In the short keystream-based attack on EO [55], we provide a comparison
of the solving performances by SAT solvers, Grobner bases, and BDDs. We
also explain how to fix variables from the key in a smart way which permits
us to obtain very good results compared to the ones that can be found in the
literature.

The second part of the thesis focuses on linear and differential cryptanal-
ysis.

The latter, introduced in the first chapter, was first proposed by Biham
and Shamir in 1990 [13] to attack, among others, the Data Encryption Stan-
dard (DES). It studies the propagation of an input difference throughout the
cipher and exploits input/output difference couples holding with a high
probability to mount chosen-plaintext partial key-recovery attacks. In the
dissertation, the reader can find also a detailed analysis of how input differ-
ences propagate through the most common components of a cipher.

Linear cryptanalysis, firstly applied by Matsui to the FEAL cipher in 1992
[68], tries to find a linear relation involving only plaintext, key, and ciphertext
bits that is or isn’t satisfied particularly often. Similarly to the differential
case, an explanation of how to deal with common components and an outline
of the known plaintext partial key-recovery attack are provided.

In the last chapter of the thesis we present an automatic tool developed
in Python which let a user obtain automatically differential or linear trails for
any kind of cryptographic primitive. In an active cryptographic world that
is continuously developing and changing itself, having automatic cryptanal-
ysis procedures is of major importance.

1.1 Notation

Here we have a summary of the notations that will be used throughout the
paper.

Indexes representing the bits of a word will be put in square brackets.
Moreover, the indexes of the bits will always start from 0, with 0 representing
the most significant bit.

In table 1.1 one can find some operations or symbols that are used through-
out the dissertation.

1.1. Notation

Symbol Operation

@b Exclusive OR

A AND

Vv OR

K Left rotation

> Right rotation

< Left shift

> Right shift

| Addition mod 232

= Subtraction mod 232
IF} The binary field GF(2)

TABLE 1.1: Operations and symbols

Part 1

Algebraic cryptanalysis

Chapter 1

Symmetric ciphers

In this chapter we will give a brief overview of the main symmetric crypto-
graphic literature used in modern days: block ciphers, stream ciphers, and
hash functions.

1.1 Block ciphers

A block cipher is a symmetric cipher in which the plaintext is considered as
a number of concatenated blocks that are used, together with the key (and
some other inputs, at times), to produce ciphertext blocks of equal length.

Block ciphers find applications in network-based cryptography such as
windows drives, emails, and passwords. As a result, cryptanalysis on block
ciphers has been widely explored and is still a very active field of research.

As already stated, a block cipher operates on n-bit blocks of plaintext to
produce blocks of ciphertext of the same length. A "block" is a set of bits of
tixed length.

Technically, we have a bijective function

E(P):F} — FY,

where [F; is the binary field, that is, a permutation. Note that this function
has to be invertible so that a given ciphertext can be decrypted uniquely into
the original message. It is trivial to prove that 2"! such transformations are
possible.

A block cipher also needs some data, shared by the users, to select which
of these functions they are using to exchange messages. This is usually the
key. An ideal block cipher is a big substitution box represented by a table
containing the full transformation. In this case, the key would be the full table
and one can choose between all the possible transformations with the desired
length. In such a way, if the block size is big enough, one can avoid any
possible brute force or cryptanalytic attack. However, using such a cipher is
not practical.

Hence, the precise permutation is usually defined by the key, a word of k
bits known only by the users. Namely, a block cipher is

Ex(P) : F§ x F5 — F}.

8 Chapter 1. Symmetric ciphers

It is straightforward that the number of possible transformations a block ci-
pher can represent is 2X. k should be selected considering a security /effi-
ciency trade-off. The Advanced Encryption Standard (AES), which is widely
used nowadays, has three different versions with a block size of 128 bits and
three different key lengths: 128,192, and 256 bits.

A block cipher have some basic security requirements:

* It must be difficult to recover the key, even knowing a number of plain-
text/ciphertext couples. A brute force attack simply tries all the pos-
sible keys on some plaintext/ciphertext couples until the right one is
found. The attack is easily avoidable by taking a suitable key bit length;

It must be difficult to recover the plaintext from a ciphertext without
the knowledge of the key;

* Two different ciphertexts must be indistinguishable: having two differ-
ent ciphertexts and plaintexts, it shouldn’t be possible to associate them
with probability higher than 50%.

1.1.1 Subtitution permutation networks

A common strategy to design block ciphers is to iterate a simple encryption
function for a suitable number of rounds. Such a block cipher is called it-
erated block cipher. The round function should be applied every time with a
different key: usually the subkeys used in every round are derived using a
key schedule.

Substitution-Permutation Networks (SPNs) are iterated block ciphers with
a round function that is constituted by two kind of components:

* Substitution boxes (S5-Boxes): they are one-to-one correspondences be-
tween blocks of bits of fixed length. Common lengths are 4 or 8 for both
input and output. For security purposes, an S-Box should not only be
a permutation but should satisfy some properties. For instance, in a
good S-Box changing a bit in the input should change at least half of
the output. Moreover, every output bit ideally has to depend on every
input bit. Finally, it should have good resistence to linear and differen-
tial cryptanalysis (more in section 1 and 2);

¢ Permutation boxes (P-Boxes): they are permutations of all the bits of
the state. It is usually applied after the application of the S-Box.

The idea behind SPNs is essentially that the S-Boxes spread even a simple
change in their inputs to many output bits guaranteeing the diffusion prop-
erty by Shannon [81], and the P-Boxes spread the changes to many of the
other S-Boxes guaranteeing the confusion property. In a few rounds, every
output bit is linked to every input bit.

1.2. Stream ciphers 9

1.2 Stream ciphers

One of the main alternatives to block ciphers in symmetric cryptography is
stream ciphers. Both kinds of ciphers have many real-world applications.
The main features of stream ciphers are:

* Speed: they are usually faster than other forms of encryption, including
block ciphers;

¢ Low complexity: they are usually quite easy to study and implement;

* Progressive encryption: they encrypt a message one byte, or bit, at a
time making it the best kind of ciphers for certain applications. This
can be a big advantage even when decrypting: one can decide to de-
crypt only the first 5 bits of the message instead of decrypting the full
ciphertext.

Stream ciphers are widely applied in the real world: web browsers, mobile
communications, and Bluetooth.

To encrypt the message, the plaintext is simply XORed with the keystream,
a pseudorandom stream of bits. The ideal case would be to have a com-
pletely random keystream whose bit length is equal to the one of the mes-
sage, known to both users in advance. This can be achieved by exchanging
this secret through a secure and independent channel but it’s highly imprac-
tical to do so when the data traffic is very large. Hence, the keystream is
generated with a key-dependent algorithm that should be cryptographically
strong and efficient. In this way, the sender and the receiver have to share a
much smaller key, used as a seed to an algorithmic procedure to generate a
keystream of the desired length.

Formally, we could write again the stream cipher as a function:

E:F} x FS — F}
(P,K) — Ex(P) =P @K,

where K; is the keystream.
But actually, the strength of the cipher comes from the pseudorandom
generator of the keystream that is a function:

E:F5 - TF;
K — K,

where k is the bit length of the key.

Similarly to block ciphers, also the stream ciphers have to be secure against
a key recovery attack. Moreover, the pseudorandom generator should be un-
predictable, so that, for instance, an attacker cannot predict a certain keystream
bit even when knowing all the previous ones.

10 Chapter 1. Symmetric ciphers

1.3 Hash functions

A hash function is a function that accepts as input a block of data M of any
size and produces a hash value H(M) of fixed length, often called the "mes-
sage digest". More formally:

H:Fj T}
M — H(M)

is a hash function with a n-bits output.
Definition 1. A hash function H() satisfies the following points:

e it maps an arbitrary length message m to a fixed n-bit message digest MD;
e given a message m, it is easy to compute MD = H(m);
* H() does not require secret data to be computed;

Additionally, for a hash function to be "good", a) images should be evenly
distributed and apparently random and b) the output should change with
high probability if a bit or some bits of the input are changed. Hash functions
that are used in cryptography are referred to as cryptographic hash functions.

Definition 2. A cryptographic hash function H() satisfies the following points:

e (Collision-resistance) A hash function H() is collision-resistant if it is dif-
ficult to find messages my and my such that H(my) = H(my).

* (Preimage-resistance) Given a digest M D, it is difficult to find a message m
such that H(m) = MD.

* (Second preimage-resistance) Given a message my, it is difficult to find m,
such that H(my) = H(my).

It should be noted that collisions exist and that preimages of a given hash
value are many. Actually, being the input of any length we have an infinite
number of collisions and preimages to a given digest. However, finding them
should be computationally impossible.

Hash functions have many applications. Here we have some of them:

* Storing passwords: users’ passwords in a database should not be kept
in plain text. To protect them, after being concatenated with a string
called "salt", they are usually hashed. When a user wanting to access
a website inserts his password, to check if it matches the stored one, it
suffices to hash the given value and the right salt and check if the digest
matches the one saved in the database;

* Data integrity: files can be accidentally damaged or modified when
downloading from the internet or sending them on a channel. Attach-
ing to them their hash let the receiver check if the file was in some
way modified. Collision rarity is what guarantees this method to work

properly;

1.3. Hash functions 11

* Message autehentication: it is quite similar to data integrity but this
time we want to defend the data from a malicious third person who
wants to modify it. Since in this case it is not enough to just hash the
tile because the adversary could do the same, a message authentication
code (MAC), also known as keyed hash function, is used, namely a
cryptographic hash function where the digest is dependent also from a
key.

* Proof-of-Work in a blockchain: they are used as a way of ensuring com-
putational work has been done to add a block to the chain.

1.3.1 Birthday attack

The brute-force complexity for finding a collision in a hash function with a
n-bit hash value is 2"/ thanks to the so-called "birthday attack". This name
comes from the birthday paradox which states that taking at random 23 peo-
ple the probability that at least two of them have the same birthday is about
50%. If we take 75 the probability becomes 99.9%. This might sound strange
and counter-intuitive and thus is considered a "paradox".

The generic probabilistic problem is:

Problem 1. Given k different objects, we draw m samples at random with replace-
ment. What is the probability to take the same object twice?

We can compute that the solution to 1 is

m(m—1)

p(mk)~1—e 2 . (1.1)

Proof. We will work on the complementary probability, i.e. no object is drawn

twice:
—— 1 2 m—1
p(m,k) =1 x (1_E> X (1—%) X e X (1—7)

Using Taylor expansion we have the approximation e* ~ 1 + %, getting

m—1 _ 142+44m—1 m(m—1)
k

=e k =e 2k

- e

[]

In order to find a collision for a hash function we may apply the following
procedure:

1. Choose 2""/2 random messages: My, ..., M, /»;
2. Fori=1,...,2"? compute t; = H(M;) € {0,1}";

3. Check if, for any i # j, t; = t;. If not so, go back to the first step;

12 Chapter 1. Symmetric ciphers

In this specific case, we have that the objects are all the possible hash values,
therefore k = 2".

In order to get probability p(m,k) in 1.1 higher than 0.5, if k is not too
small, we have to set m ~ v/k. In our case, m = 2""/2.

Although collisions exist, they are not easily findable by regular or mali-
cious users, because the process of computing 2""/? message digests is a very
time-consuming operation. Usually, # is chosen in such a way that the prob-
ability to find a collision by brute force is negligible.

1.3.2 Brute-forcing a preimage

Similarly, we can brute-force against preimage and second preimage resis-
tance. Given a digest D and, in the case of a second preimage, a first preim-
age M, the following algorithm can find a (another) message hashing to that
digest:

1. Choose 2" random messages: My, ..., My;
2. Fori=1,...,2" compute t; = H(M;) € {0,1}";
3. Check if, for any i, we have t; = D. If not so, go back to the first step;

The probability to get a specific digest D is 5 and the number of messages
expected to be analysed is 2".

1.3.3 Merkle-Damgard construction

The most common approaches to build cryptographic hash functions are the
Merkle-Damgard construction [69], sponge construction [86] and Haifa con-
struction [12]. In addition, researchers adopt block ciphers in different ways
to design a hash function [6].

We will explain in detail only the first one (for more, see [73]) since it is
one of the most commonly used (see e.g. MD5, SHA-1, SHA-2) and one of
the results of my research was an algebraic attack on SHA-1 which relies on
it. Merkle-Damgird construction is based on a one-way compression function
(i.e. a function, difficult to invert, whose input bit length is bigger than the
output bit length) and a padding scheme (see figure 1.1).

| Message |
}

Message Message | | Message Length
block 1 block 2 ! ! | blockn padding

R Hash
2y S ey NN iy T |_>_>value

FIGURE 1.1: The Merkle-Damgird construction

1.3. Hash functions 13

The padding scheme is needed to have a fixed-length binary string that
is then split into blocks of fixed size which are processed by the compression
one at a time. However, they are not hashed separately since the output of a
block is combined with the following block in the compression function.

15

Chapter 2

Algebraic attacks

2.1 The algebraic representation

The algebraic representation of a primitive is its representation as a system
of boolean equations. More specifically, every bit of the inputs and outputs
of the function (e.g. plaintext, key, ciphertext, hash digest) is represented by
a variable, and these variables are related by equations that describe exactly
how the ciphertext (or hash digest) bits are obtained by combining the bits of
the inputs. Note that the variables can take values in the binary field IF, and
that the x and + operation correspond to the Boolean operations AND and
XOR.

Definition 3. Given a primitive with inputs Iy, ..., 1, with bit length my,...,my,
output C with length s and function E, that is E(Iy,...,1,) = C, its algebraic repre-
sentation is given by:

clo] = Po(Lo[0],..., Io[mo — 1], 1[0, .., Iu[0], .., L[y — 1])
Cl] = Pi(Lo[0],..., Iomo — 1], 1[0, ..., Iu[0], ..., Lu[my — 1])

Cls—1] = Ps_1(L1[0],...,I1[mo — 1], 1[0],..., 1,[0],..., In[m, — 1])
where Py, ..., Ps_1 are some polynomials in mg + my + - - - + m,, variables.

If looking at the kind of system as a set of logical formulas (the values 0
and 1 can be seen as truth values) we can say it is represented in its algebraic
normal form (ANF), a way of writing logical formulas we will discuss in
more detail in section 2.3.1.

We remark that, when dealing with stream ciphers, we don’t consider
the plaintext and the ciphertext in the algebraic representation but we just
represent the underlying pseudorandom generator of the keystream. Hence,
the keystream will be the output C and the key, or seed, will be the only input
I to the function.

Example 2.1.1. Let’s consider the toy block cipher in figure 2.1 with a 32-bit plain-
text P and a 16-bit key K. Consider Py, P, are respectively the left and right half of
the plaintext and Cy,Cy the left and the right half of the ciphertext.

Then the algebraic representation of the cipher is the following:

16 Chapter 2. Algebraic attacks

Py P,

@

G 8}

FIGURE 2.1: Toy block cipher

clo] = P[8]*K][0]
C[l] = P[9]=K[1]
6[15] = P[7] * K[15]
C[16] = P[8] xK][0] + P[16]
\.(1[31] = P[7] * K[15] + P[31]

2.1.1 Auxiliary variables

As the example shows, this representation results in a system of s equations
where s is the bit length of the ciphertext and the variables involved are only
the ones from the inputs and outputs of the cipher. Nonetheless, we usu-
ally make use of some auxiliary variables representing that help us solve the
system more efficiently. This can be useful or necessary in some cases:

* Firstly, we have to consider a common practice when designing a prim-
itive (e.g. a block cipher) is to use some kind of "round function" that
is applied several times so that the polynomials P;, ..., Ps may be very
long. Adding some auxiliary variables entails a higher number of equa-
tions and variables. However, the equations can become much smaller.
One might ask if this always improves the efficiency of the solver or
when is appropriate to group some variables and operations in a new
auxiliary variable and we usually get the answer from testing activities
on the systems of equations and their resolutions.

2.1. The algebraic representation 17

Nonlinear operations are usually the most difficult part to deal with
when trying to solve a polynomial system of equations such as the ones
above. Sometimes it can be useful to linearize the system by adding
auxiliary variables whenever a multiplication between two variables
comes up. This would result in a system where the linear equations
and the nonlinear ones are clearly split and eventually produce an im-
provement in the solving times.

2.1.2 Main operations and their algebraic representation

In this subsection, we give a detailed description of how the main compo-
nents appearing in modern primitives are represented in the system of equa-
tions. We will use I (I;) for the input (inputs) of the operations and O for the
output. If not specified, n is the bit length of the words.

AND and XOR: As already stated, they simply correspond to the -+
and * of the binary field;

OR: an or operation between two inputs is represented as:

Oizll[]@lz[]@ll[]*Iz[]fOI‘iZO,...,TZ—l,‘

NOT: Not operation simply flips every bit of the word it is applied to

Oli] =I[i] ®1fori=0,...,.n—1;

LINEAR LAYER: A linear layer is a multiplication of the input with a
bit matrix. It usually represents the P-Box or part of the P-Box in a SPN
cipher, introduced in subsection 1.1.1. Let us suppose to have a 4 x 4
matrix:

1000
1011
L= 0100}
1010
then the system of equations results in:
Ol0} = 1[0} & I[1] & I[3]
Ol =12 ,
O)2] =1[1] & I[3] ’
O] =101

MIX COLUMN: The mix column is again a multiplication with a ma-
trix but this time we multiply bytes and then reduce modulo a certain
integer. The matrix can be still transformed into its bit version reducing
a mix column to a linear layer;

18

Chapter 2. Algebraic attacks

e MODADD: For modular addition one usually adopts some auxiliary

variables to keep track of the carries. Here are the equations for an
addition modulo 232:

C[31] =0
Oli] = Lli] ® L[i] @ C[i] fori=0,...,31
Cli — 1] = L[i] * b[i] ® L]i] * C[i] ® L[i] *C[i] fori=1,...,31;

ROTATION: Rotation is usually represented together with some other
operation since it is a renaming of variables. Here we have a left rota-
tion of amount r of a word of n bits:

Olif =I[i+r]fori=0,...,n—1;

SHIFT: The same observation is valid for the shift. Here we have a left
shift of amount s of a word of # bits:

Olij=1I[i+s] fori=0,....n—s—1
O[] =0 fori=n—s,....n—1.

S-BOX: if we have the structure of the S-box, that is the operations that
compose it, then we can simply use the rules above to algebraically
represent it. Istead, if we have only its lookup table the procedure is
a bit longer. An n-bits input to m-bits output substitution box can be
seen as m different n-bits input to one-bit output Boolean functions. To
obtain the algebraic representation of a Boolean function one can follow
these steps [19]:

1. Write the truth table of the function f, i.e. a string of bits where the
i-th bit from the left is the image of the integer i;

2. Write the support of the function f, namely the set containing the
inputs with nonzeros images. If the truth table of the function is
(01000101) the support in binary is supp(f) = {001,101,111};

3. Having the support, we convert the function in the following form:

) = @V,
cesupp(f)
where x = xgx1...X,, ¢ =cocy...c, and xfci) =x;ifc;=1and xfc") =
1@ x;if ¢; = 0. In the previous case where supp(f) ={001,101,111}
the formula would be

f(x) = x(()o)xgo)xél) @ x(()l)xgo)xél) ® x(()l)xgl)xgl),

2.2. Attacks on cryptographic primitives 19

that is:
f(x) =x2 @ xp % X2 @ x1 % X2 D Xg * X D Xg * X7 * X2.

Suppose to have the following toy S-Box:

01 2 3
0 3 1 27

the truth tables would be (0101) and (0110) and the supports are
supp(f1) ={01,11}, supp(f2) = {01,10}. Then the system of equa-
tions representing the S-Box is:

O[0]
O[]

2.2 Attacks on cryptographic primitives

I(1]
10] + 1[1].”

After obtaining the algebraic representation of the primitive, if dealing with
a block or a stream cipher, one usually tries to mount a key-recovery, i.e. tries
to retrieve the bits of the key. In both cases, we attempt a known-plaintext
attack, meaning we suppose to have a couple (or some) (P,C) where P is a
possible plaintext and C the respective ciphertext when encrypting with the
key K we are trying to recover. In stream ciphers, with such a couple one
can easily recover the keystream. By fixing the variables representing the
bits of the keystream one can try to retrieve the remaining variables. In block
ciphers, we can fix the variables representing the bits of the plaintext and the
ciphertext.

In both cases, the non-fixed variables are the auxiliary ones or the ones
representing the bits of the key. Solving the resulting system would then
mean having a successful full key-recovery attack. Hence, an algebraic attack
to a stream or block cipher or to a hash function consists in solving a system
of polynomial equations over a finite field K = GF(g) with usually g = 2.

When attacking a hash function the situation is different since one doesn’t
usually have any key unless he is analysing some HMAC (keyed-hash mes-
sage authentication code). Assuming the latter is not the case, the algebraic
representation of a hash function can be exploited to mount a preimage at-
tack by fixing the hash value and leaving the bits of the message unknown.

However, it is unlikely that this technique directly succeeds in retrieving a
full key or a preimage so some tricks are used to make the attack practical or
to give a theoretical attack whose expected complexity is better than a brute
force one.

2.2.1 Fixing some key bits

One of the best ways of improving the solving and managing to partly re-
trieve the key is to fix some of the key bits randomly. Let k be the key bit
length, then the idea is to fix n out of the k variables representing the key to a

20 Chapter 2. Algebraic attacks

certain random value. Be aware that only one (or just a few) combination of
values is the correct one so one should try all the 2" possible values to find the
rest of the key. In all the other cases we expect the system to be unsatisfiable
with any combination of values of the unfixed variables.

This is the idea underlying the "Guess and Determine" technique. This
is the simple algorithm to follow:

1. Choose n variables to fix between the k variables of the key;

2. Choose a vector in IF5 which wasn’t previously chosen and fix the n
variables to those values;

3. Solve the system of equations;
4. If the system is unsatisfiable, go back to step 2).

5. If the system is solved, test the key on another plaintext-ciphertext pair,
or, in the case of stream ciphers, check it with the following bits of the
keystream. If it isn’t correct go back to step 2), otherwise, the rest of the
key is retrieved.

In the last point, double-checking the key is needed to avoid taking the
wrong key.

When working on block ciphers, it may be that a particular plaintext/-
ciphertext couple is obtained with more than one key. However, if another
couple is tested and the encryption with the key found matches the given
ciphertext, then it is really unlikely the key is not the correct one. To be pre-
cise, considering a couple with a ciphertext of m bits, the probability that a
key encrypts the plaintext to that specific ciphertext is 2% Thus, the proba-
bility that this happens with two different pairs is ZZLW which makes it really

unlikely to happen, considering we are trying at most 2¥ different keys (that
is the brute-force upper bound) with k being the key bit length and usually
k<m.

But this is something to pay attention to especially when dealing with
stream ciphers. The number of different possible solutions is strictly linked
with the number of bits of keystream represented in the system of equations.
It is clear that using more bits decreases the number of possible keys but
also means more equations and more variables usually resulting in worst
solving times. It is important to find a good tradeoff between the number
of solutions and the performances when solving the system of equations.
Multiple solutions may be accepted since the key can be checked with a few
more keystream bits, but it’s still important to keep this number small to
avoid the double-check phase for many possible keys.

Considering the time for checking if a solution is spurious or not to be
negligible, the expected runtime of a guess and determine approach is

2" x T,

where T is the average running time for solving a single (usually impossible)
polynomial system.

2.2. Attacks on cryptographic primitives 21

Testing the algebraic strength of the primitive by fixing some bits of the
key can be also justified by supposing another kind of attack, for instance a
side-channel attack, provided us with that information.

Even if the two ideas of attack seem similar, there’s a big difference when
testing the resolution of the system. In the guess and determine one fixes
randomly the values of the key bits and tests the solving time, which is in
most cases the time the solver takes to find out the system is unsatisfiable.
On the contrary, when using the second idea one has to fix the key values to
the right ones and tests the solving time for finding the rest of the key. This
can be crucial in choosing which kind of solver is the best for the specific kind
of attack.

2.2.2 Choosing the set of variables to be fixed

When applying the above strategies one needs to choose a set of variables
representing the key that needs to be fixed. One can simply take this set ran-
domly but it would be much more efficient to choose it carefully in order to
decrease the solving time of the system of equations. Testing often proves the
resolution time can be drastically diminished by fixing the right key variables
both if the system has a solution or if it has not.

In my research, the choice of the variables was always a core node when
applying algebraic attacks to cryptographic primitives and in some cases, it
highly improved performances outperforming the state of the art.

A simple starting point when working with any cryptographic primitive
is to check which are the variables that occur more frequently in the system
and give priority to them. However, during my research, I didn’t come up
with any general strategy which can be applied to any cipher or hash func-
tion for choosing the best variables to fix. Even if I did some investigation on
the argument, it wasn’t one of the main focuses and nothing about that will
be included in the dissertation.

The choice will usually depend on the specific algorithm and is made after
a careful analysis of its structure so that this argument will be discussed in
more detail in other chapters.

2.2.3 Consider simplified versions of a primitive

Another way to make the resolution practical is to analyse simplified ver-
sions of the primitive.

In the case of block ciphers and hash functions, which are usually made
up of a round function repeating itself a certain number of times this is done
considering a version with a reduced number of rounds. Although a situa-
tion of this kind is not common in real life, this attack can be really useful to
see how far it is possible to go with a practical attack. Moreover, this gives
also an idea of the strength of the original cipher.

This idea is sometimes applied also to stream ciphers. For instance, this
is the case of Trivium [27], a simple stream cipher designed by C. De Can-
niere and B.Preneel in 2005, with good performances in both hardware and

22 Chapter 2. Algebraic attacks

software applications. One year later, in [75], the author introduces Bivium,
a reduced version of Trivium which was widely cryptanalysed in the follow-
ing years. Bivium and Trivium will not be discussed in this dissertation even
if I worked on the cryptanalysis of the first and I am currently working on
the original cipher.

2.3 Possible solving methods

In this section, we present the two solving methods I mainly adopted in my
research: SAT solvers and Grobner basis-based solvers.

2.3.1 SAT solvers

A SAT solver is an algorithm that aims at solving Boolean satisfaction prob-
lems. To give a proper definition of what that is, we go through some of the
bases of Boolean algebra.

Definition 4. A variable is an unknown truth value, i.e. can take values in {0,1}.

The variables can be input to three different operations (or connective):
AND, OR and NOT, represented by A, V and — respectively. When refer-
ring to these operations as connectives they can be also called conjunction,
disjunction, and negation respectively.

Now, we can define what a formula is [79].

Definition 5. Every variable is a formula. If Fy and F, are formulas then F; \ B,
F, V F, and —F; are formulas.

Moreover, the rules in 5 constitute a minimal set in order to build every
logic formula.

Definition 6. An assignment is a function mapping each variable to 0 or 1.

Definition 7. A Boolean Satisfaction problem, given a formula or set of formu-
las, aims at finding an assignment such that the formula evaluates to 1, in which
case we say the problem is satisfiable. On the contrary, if such an assignment doesn’t
exist, the problem is unsatisfiable.

Algebraic normal form (ANF) and conjunctive normal form (CNF) are
two different ways to encode a Boolean Satisfaction problem.

Definition 8 (Algebraic normal form). A logical formula is in Algebraic normal
form if it is made up of some variables and truth values connected by the AND or
XOR operations, namely a polynomial over F,.

Definition 9 (CNF formula, clauses, literals, pure literal). A Boolean formula F
is in Conjunctive Normal Form (CNF) if it is a conjunction of disjunctions, namely
it is represented in the following form:

F=CiNCA...Cp. (conjunction),

2.3. Possible solving methods 23

where the C;s are again formulas called clauses and must have the following form
Ci=lirViaV...Vi) (disjunction),
where the li,]- are literals, that is variables or variables negation:

li,]' € {xl,xz,...,xn} U {—|x1,—|x2,_,,,—|xn},

The polarity of a literal is an indicator of its positivity or negativity. A literal in a
formula is pure if its negation never occurs in it or if its polarity is always positive.

Example 2.3.1. Let us suppose we have the following formula in algebraic normal
form:
1®a®ab=0.

In its conjunctive normal form, it simply becomes:
a A\ —b.

The formula is satisfiable and an assignment satisfying it isa =1 and b = 0.

At the state of the art, the most commonly used solving procedures adopted
by SAT solvers are the DPLL algorithm and the CDCL algorithm.

The Davis-Putnam-Logemann-Loveland (DPLL) algorithm was introduced
more than 50 years ago [25] but it’s still the basis of most modern sat solvers.
However, it was not until the 1990s that the first DPLL-based sat solvers
started to appear adding some enhancements to the original procedure: clause
learning, non-chronological backtracking, branching heuristics, restart strate-
gies, and lazy data structures.

The basic idea is a simple backtracking algorithm:

1. Select a non-fixed variable and assign it a truth value. This is called a
decision;

2. Simplify the formula, i.e. every clause in which the variable appears
is canceled if it is set to 1 otherwise only the variable is removed (be-
cause some other literal in the clause has to be true for the clause to be
satisfied);

3. Check if the simplified formula is satisfiable by applying the algorithm
recursively;

4. If it is not, we go back to 1 and assign the chosen variable the other
value;

5. If the resulting formula is still unsatisfiable we have to backtrack to
some assignment made in a previous recursive step. If there is nowhere
to backtrack the formula is unsatisfiable.

This simple method is enhanced with two techniques:

24 Chapter 2. Algebraic attacks

* Unit propagation: if a clause contains only one unassigned literal then
that literal must be 1 for the formula to be true. Whenever a formula
contains some unit clause, the literal is assigned to 1 and the formula is
simplified avoiding exploring a large part of the naive search space.

* Pure literal elimination: a pure literal can be assigned to true in the
formula without affecting its satisfiability. Essentially, before selecting
a variable to make a decision all pure literals are removed from the
formula by eliminating every clause containing them;

These two methods become part of the simplification step.

CDCL (conflict-driven clause learning) algorithm [65, 66] is the most used
in modern sat solvers and is still based on the backtracking idea of the DPLL.
The main difference between CDCL and DPLL is that CDCL’s back jumping
is non-chronological: when it finds a conflict the DPLL algorithm backtracks
to the last decision made that still has a value to assign available. CDCL
improves DPLL by introducing clause learning, which is what makes non-
chronological backtracking possible. After a conflict is reached, CDCL looks
at the guesses it made and the relative implications and builds an implica-
tion graph. Then, it can generate a clause, which is added to the formula to
satisfy, that is the negation of the assignment that led to the conflict. Then
the algorithm backtracks to the appropriate decision level (and not on the
previous one as DPLL), that is where the first of the variables involved in the
conflict is assigned.

The efficiency of state-of-the-art SAT solvers relies heavily on various fea-
tures that have been developed, analysed, and tested over the last decade.
One of them is randomized restart strategies, a procedure that stops the
search and restarts it from decision level 0 keeping all clauses learned so far.
This has been shown to greatly help in reducing the solution time. Most of
the current SAT solvers employ aggressive restart policies such as geom [91],
Glue [42] and Luby [63].

A parameter one can vary when solving a Boolean Satisfaction problem
with SAT solvers is the polarity. This parameter establishes what value is
assigned to a variable when making a decision.

* Random: polarity for the variable is chosen randomly;
* True: the variables are always assigned to true;
* False: the variables are always assigned to false;

* Auto: the polarity is equal to the last one used (also called ‘caching’).

2.3.2 Grobner basis based solvers

Grobner bases are a mathematical object introduced together with an algo-
rithm to compute them in 1965 by B.Buchberger in his doctoral thesis [16].
Exploiting this object, he manages to give solutions to a large number of
algorithmic problems. The applications of this object cover many different

2.3. Possible solving methods 25

tields such as algebraic geometry, optimization, control theory, robotics, and
many others.

A Grobner basis is a specific generating set of an ideal over a polynomial
ring. More precisely, we are in the polynomial ring R[x,...,x,] with R any
principal ideal ring with 1.

From now on, R =F; and P = Fa[xq,...,x,].

Definition 10. Given a monomial ordering on the set of all monomials in P, a finite
subset G of an ideal 0 # I C P is a Grobner bases of 1 if for any polynomial f € I,
there exists a polynomial ¢ € G such that the largest monomial (w.r.t the chosen
monomial ordering) of g divides the largest monomial of f.

Among the others, an important use of the Grobner basis is for solving
systems of equations. Let us consider a system

fl(xll"-/xn):"':fm(xll--'/xn)zo- (21)

We can associate to that the ideal I = (fy,..., fu) C P.

If we choose a monomial ordering that allows successive eliminations of
variables, a Grobner basis of the ideal I describes the set of solutions of the
polynomial system, including the ones that lie in the algebraic closure of IF5.
If one wants to find only the solutions that are in IF, the so called "field equa-
tions" have to be added to the system of equations:

L= (x3—xp,...,x% —xp).

This is due to the following well-known result you can find for instance in

[40].

Proposition 2.3.1. Let K be the algebraic closure of K and
V(D) = {(ar,...,00) €EK"[fi(a1,...,,) =0for 1 <i<m}.

Put Vi (I) = V(I) NK", that is Vi (I) is the set of the IK-solutions of the polynomial
system 2.1. We have that V(L) = K" and Vi (I) = V(I + L) where I+ L C Pisa
radical ideal.

Grobner bases can be used for the resolution of polynomial systems thanks
to the following result that can be derived from the Nullstellensatz Theorem
for finite fields (see [40]).

Proposition 2.3.2. Assume that the polynomial system 2.1 has a single or no K-
solution. Then, the (reduced) universal Grobner bases G of the ideal I + L, that is,
its Grobner bases with respect to any monomial ordering of P is

{{xl —ay,..,x— o) if V(D) ={(ag,...,ar)},

{1} otherwise.

In other words, by obtaining the reduced universal Grobner bases for the
ideal containing the polynomials of the system and the field equations one

26 Chapter 2. Algebraic attacks

directly has the solution of the system if that exists. If not, one obtains the
unit polynomial.

The current state-of-the-art algorithm to compute Grobner bases is the Fy
algorithm from Faugere [34] and a more recent variant, named M4GB, was
published in 2017 by Makarim and Stevens [64]. Despite many improve-
ments, the theoretical complexity of existing Groebner bases algorithms is
exponential in the number of variables.

For more theoretical results regarding Grobner bases more can be found,
for instance, in [62].

2.4 Guess and determine with Grobner bases

Let’s see the details on how a guess and determine strategy can be applied
using Grobner bases. This particular approach was introduced in section
2.2.1.

It is clear that, by brute-forcing, one can compute Vi (I) in

A=2".¢

by assuming it takes a constant time c to evaluate the polynomial f; over a
vector (B1,...,Bn) € K". To improve this upper bound and obtain an attack
whose complexity is lower than the brute force one can solve the system for
instance with SAT solvers [31, 20] or Grobner bases [45].

In general, Grobner bases performances for solving polynomial systems
are not good since the complexity grows exponentially with the number of
variables 1. One can expect to obtain results even worst than the brute force
upper bound. Despite this, some features of Grobner bases that can result in
good performances under certain conditions have to be underlined :

* If the number of variables 7 is not too big and the set of IKK-solution of
the system 2.1 is small, they become an effective tool for solving it;

* By proposition 2.1, we have that every monomial ordering can be cho-
sen to solve the system so that one can use the most efficient ones;

e When the system is impossible its Grobner basis is G = {1} and the
Buchberger algorithm stops as soon as a constant in K is obtained. We
remark that this feature blends well, for instance, with the guess and de-
termine strategy, which, as already explained, mostly consists of solv-
ing systems of equations without a solution.

From now on, we assume that the polynomial system 2.1 has a single
K-solution, i.e. Vg(I) = {aq,...,a,}. In the guess and determine technique
explained in section 2.2.1 one solves many systems of equations obtained
by evaluating some subset of variables, say {x1,...,xs} with 0 <s <, in all
possible ways over the finite field K. To work with Grobner bases, one would
define the ideal

Eﬁl/mr,Bs = <x1 - ;Bll--'rxs — ,Bs> C P

2.4. Guess and determine with Grobner bases 27

for all vectors (B4, ...,Bs) € K° and consider
Ig,,. . p.=I1+L+Eg, g,

It is trivial that this is equivalent to the assignment x; = 1,...,Xs = Bs.
The generating set of Ig, g, is

Hg, .. ={fi(B1r--sBsXsitsosXn)soes fu(Bisees Bsi Xst1s- -0 Xn),

2 2
X5 — Xsq1s-ne Xy — X, X1 — P1,..., Xs — Bs} C P

One clearly has that:

%) otherwise.

V(l,p) = {{(oq,...,ocn)} i (Br...Bs) = (a1, .reris),

The sequential running time of the guess and determine is

Hs = Z TBy,.... Bs
(ﬁl,...,ﬁs)G]Ks

where 15, 5. is the computation time of the Grobner bases of I, . g, starting
with the generating set Hg, g . Considering the average runtime of this
computation s the time complexity becomes

fs = 2°7;.

Having assumed the solution to be unique, we have that for all 2° — 1 vectors
(B1,.--,Bs) # (a1...,&s) the Grobner bases is always G = {1}. As already
stated, this represents a big advantage for Grobner bases compared to, for
instance, Sat solvers. Indeed, whereas a SAT solver has to explore the full
space to ensure the system is unsatisfiable, a symbolic method just has to
find some inconsistency of the type 1 = 0.

These theoretical facts were confirmed in chapter 3 when we describe the
results obtained in the testing activities of an algebraic attack to the stream
cipher EO where Grobner bases resulted superior to Sat solvers and BDDs.

29

Chapter 3

Algebraic attack to EO

In this chapter, we will describe an algebraic attack to the stream cipher EO,
used in Bluetooth, a well-known communication protocol present in almost
all mobiles, personal computers, remote controllers, and many other devices.
The results of this research are published in [55].

After becoming the Bluetooth protocol, E0 was subject to several crypt-
analytic attacks which can be divided into two main classes: long or short
keystream attacks. The best attacks come from the first category [5, 35, 41]
but the scenario is not real: the protocol doesn’t let using the same key to
generate a keystream longer than 2745 bits.

Cryptanalysis of EO can also be distinguished in correlation attacks or
algebraic cryptanalysis. In the latter, it is common to use Binary Decision
Diagrams (BDDs) as it is done in [52, 53, 54, 80], whereas other solvers as
Grobner basis or XL-algorithm are more rarely applied [4, 21].

In our paper [55] we show that Grobner bases can be a powerful tool
when dealing with systems with a few numbers of solutions. This is the
case of EO, even with a small number of keystream bits, as we show in our
analysis. This fact alone can already be a matter of concern.

We carried out a comparison of the performances of Grobner bases, SAT
solvers, and BDDs using a large test set concluding the firsts are the best
possible tool for this problem. Moreover, our results with BDDs confirm and
improve the ones in [54] where one can find another practical algebraic attack
to EO based on the same kind of solvers.

Our attack is a known-plaintext attack based on a 60 bits keystream. This
kind of algebraic attack for stream cipher was already discussed in chapter 2.
We remark that in the Bluetooth protocol the initial state of E0 is reinitialized
using the last 128 keystream bits. Since we use only 60 our attack can work
in the real case by simply applying it twice.

3.1 The stream cipher EO

As usual for stream ciphers, the core is the keystream generation in figure
3.1.

The 132-bit state is divided into 4 linear feedback shift registers (LFSR) of
length respectively 25,31,33 and 39 bits and a finite state machine (FSM) of
4 bits which are stored in a pair of 2-bit elements. We will denote the four
LFSRs in the state x,y,z, u, respectively. In this chapter, to denote the bits we

30 Chapter 3. Algebraic attack to EO

will use round brackets (they can also be intended as images of a function in
the clock t): the state at any clock ¢ will be

x(t)...x(t+24), y(t)...y(t+30), z(t)...z(t +32), u(t)...u(t+38),
so, at clock 0,
x(0)...x(24), y(0)...y(30), z(0)...2z(32), u(0)...u(38),

where 0 is used for the most significative bit. Similarly, the state machine is
denoted by c(t)c(t 4+ 1)d(t)d(t + 1). The four LFSRs are respectively defined
by the following primitive polynomials with coefficients in IF,

p=xlex?exPexel,
py= PaoPoledol
Hence, at clock t + 1 the state is

x(t+1) ... x(t+25), y(t+1)...y(t+31), z(t+1)...z(t+33), u(t+1)...u(t+39),

where
x(t+25) =x(t+20) D x(t+12) D x(t +8) ® x(¢)
y(t+31) = y(t+24) B y(t +16) B y(t +12) S y(t)
z(t+33) =z(t+28) b z(t+24) D z(t +4) B z(t)
w(t+39) = u(t +36) B u(t+28) ®u(t+4) ®ut).

For what concerns the FSM, it is important to define two integer numbers:

C(t) = d()2 + c(t)
Clt+1) =d(t+1)2+c(t+1).

Atclock t + 1 the FSM is c(t + 1)c(t +2)d(t + 1)d(t + 2) where:

where T : F5 — TF3 is the linear bijection

(d(t),c(t)) = (c(t),d(t) +c(t))

and the 2-bit vector (g1(t+1),g0(t + 1)) € IF5 is defined as follows. Consider
the sum

F(t)=x(t) +y(t+6) +z(t) + u(t +6) € Z

3.1. The stream cipher EO 31

x(t+1)

LFSR1 -
LFSR2 m+;\\
S 'l
zn+;HHH T k(®)
LFSR3 s e
u(t+7) c(t+1)
LFSRA4 T
|
|
: d(t + et + D
| ? ®
| .
i d(t) | c(t)
|
| T =(t)
1 e+
|
— . |)
= _i_) + -
G{t+ 1)
IF(t+ 1)

FIGURE 3.1: EQ keystream generation

and define the integer

GG+¢)=LFG+1y+CU+1W-

2

Since 0 < G(t + 1) < 3, we define the 2-bit element (g1 (t +1),g0(t + 1)) € IF3
as the binary representation of G(t 4 1), namely

G(t+1)=g1(t+1)2+go(t+1).

To show the explicit relation between the new FSM bits at clock t 4+ 1 and
the FSM at clock t we need some more steps. At first, since 0 < F(t) < 4, we
can express it in its binary form:

F(t) = f(6)22 + fi(£)2 + fo(t).

We can obviously view F(t) as a function IF3 — Z with variables set {x(t),y(t +

6),z(t),u(t +6)} and therefore fo(t), f1(t), f2(t) as Boolean functions IF5 — IF,
with the same variables set. We can get the Algebraic Normal Form of these
functions following the procedure shown in section 2.1.2 which one can find

32 Chapter 3. Algebraic attack to EO

also in [19]. We obtain that

fo(t) = x(t)Dy(t+6)dz(t) Du(t+6),

filt) = x(B)y(t+6) & x(t)z(t) & x(t
Sy(t+6)u(t+6)dz(t)u(t

f(t) = x(By(t+6)z(t)u(t+6).

We consider now the following sum of integers
F(t) +C(t) = f2(£)2* + fr(t)2 + fo(t) +d(£)2 +c(t)

whose binary representation, as a result of carries of the addition modulo 22,
is

Ju(t+6) ® y(t+6)z(t)
+6),

E(t) + C(t) = (f2(t) @ fi()d(t) © fo(t)e(t)d(t) @ fi(t) fo(t)e(t))2?
+(fo(B)e(t) @ fr(t) @d(£))2 + (fo(t) © c(t)).

By dividing by 2, we obtain that

w (f2(t) @ fr(t)d(t) ® fo(t)e(t)d(t) @ f(t) fo(t)e(t))2

+(fo(De(t) @ fi(t) @ (1)) + (folt) @ c(t))27".

and therefore, since the term fy(t) & c(f) can be only equal to 0 or 1, it holds
that

F(t) 2 C(t)J = (fa(t) & A @ fo(H)e(D)d(t) & fi(t)fo(D)e(1))2

+ (fo(t)e(t) @ fr(t) @ d(t)).

Since, by definition, we have that

G(t+1) = gi(E+1)2+go(t+1) = {P<f+1>+C<t+1>J

2

we can compare the terms and easily conclude that

q(t+1) = L+ ® AF+1)d(E+1) D fo(t+ et +1)d(t+1)
@fl(t + 1)f0(t + 1)C(t + 1),
g()(t—f—l) = fo(t—f-l)C(t—f-l)@fl(t—f-l)@d(t—l—l).

By using again the definition 3.1 we obtain that

dit+2) = HLUt+)eAF+1)d(tE+1) D fo(t+1)e(t+1)d(t+1)
@f(t+1)fo(t+De(t+1) @d(t+1) ®c(t),

c(t+2) = fo(bt+De(t+1)® fa(t+1)®d(t+1)
Ge(t+1) @d(t) ®c(t).

3.1. The stream cipher EO 33

Finally, we can substitute the ANF of the functions fy(t), f1(t), f2(t) and
putting all together obtain the evolution of the state from t =0to t = 1.

([x(25) = x(0)®x(5) ® x(13) ® x(17),
y(31) = y(0) &y(7) Dy(15) ®y(19),
z(33) = z(0) ®z(5) ®z(9) ®z(29), (3.2)
u(39) = u(0)®u(3)®u(l11l)® u(35), '
c(2) = gy
[d(2) = &
where the non-linear polynomials gj, g} are defined as
g = x(M)e(1) @y(7)c(1) ®z(1)e(1) ®u(7)e(1) @ x(1)y(7) © x(1)z(1)
®ex()u(7)®y(7)z(1) ®y(7)u(7) ®z(1)u(7) ®c(1) & d(1)
©c(0) ©d(0),
g1 = x(My(7)z(Mu(7) ©x(1)y(7)d(1) ® x(1)z(1)d(1) © x(1)u(7)d(1)
®y(7)z(1)d(1) @ y(7)u(7)d(1) @ z(1)u(7)d(1) ® x(1)c(1)d(1)
®y(7)c(1)d(1) @ z(1)c(1)d(1) @ u(7)c(1)d(1) & x(1)y(7)z(1)c(1)
Dx(Ly(7)u(7)e(1) ® x(1)z(L)u(7)e(1) © y(7)2(1)u(7)c(1)
®d(1) ®c(0)

Finally, for all t > 0 the keystream bits of the cipher EQ are computed as
the sum

k) =x(tel)oyta?7)oztol)outa?)dc(t®l) cF,.

The system 3.2 can be regarded as the evolution of the internal state v(t) €
IF132 of the difference stream cipher E0. The reader can find a theoretical
introduction and some useful results regarding difference stream ciphers in
[78].

By Bluetooth specifications [14], to initialize the state, the following steps
are followed:

1. The key encryption is used together with the 48 bits Bluetooth address
and the 26 bits master counter to fill the 132 bits state;

2. The v(t) transformation is performed until + = 39 (when the last bit
from the starting state disappears) without generating keystream. Both
C39,C39—1 are reset so that their values don’t have any importance to this
point;

3. Other 200 clocks are performed generating output symbols, getting to
t = 239. At this point, the last 128 bits of the keystream produced are
used to fill the keystream generator’s initial state.

As anticipated, this means that to retrieve the original encryption key an
attack to the keystream generator should be applied twice. Moreover, this
strategy can be used only if the attack is based on a short keystream (i.e. less
than 128 keystream bits).

34 Chapter 3. Algebraic attack to EO

3.2 The algebraic attack on E0

Thanks to the results in [78], we have that the explicit difference system (3.2)
of EQ is invertible with inverse system

((x(25) = x(20) @ x(12) @ x(8) ® x(0),
y(31) = y(24)®y(16) ®y(12) ® y(0),
z(33) = z(28) ©z(24) ®z(4) ®z(0),
u(39) = u(36) du(28) du(4) ®u(0),

C(Z) = ho,

L d(2) = I

where the polynomials hg, h; are defined as

ho = x(24)y(24)z(32)u(32) & x(24)y(24)z(32)c(1) & x(24)y(24)u(32)c(1)
®x(24)z(32)u(32)c(1) ®y(24)z(32)u(32)c(1) @ x(24)y(24)d(1)
D x(24)z(32)d(1) ® y(24)z(32)d(1) ® x(24)u(32)d(1) © y(24)u(32)d(1)
©2z(32)u(32)d(1)@x(4)c(1)d(1) ®y(24)c(1)d(1) & z(32)c(1)d(1)
®u(32)c(1)d(1) ®d(1) ®d(0),

hi = x(24)y(24)z(32)u(32) @ x(24)y(24)z(32)c(1) @ x(24)y(24)u(32)c(1)
D x(24)z(32)u(32)c(1) @ y(24)z(32)u(32)c(1) ® x(24)y(24)d(1)
D x(24)z(32)d(1) ® y(24)z(32)d(1) ® x(24)u(32)d(1) y(24)u(32)d(1)
©z(32)u(32)d(1) & x(24)c(1)d(1) S y(24)c(1)d(1) & 2(32)c(1)d(1)
@u(32)c(1)d(1) (4) (24)69){(24) (32)@]/() (32)@x(24) (32)
®y(24)u(32) ®z(32)u(32) ® x(24)c(1) ®y(24)c(1) ®z(32)c(1)
®u(32)c(1) ®c(1) ®c(0) ® d(0).

The invertibility of the system (3.2) allows us to attack equivalently any
internal state. A convenient choice consists hence in attacking the state cor-
responding to the clock where the keystream starts to output.

This made possible the usage of a very low number of auxiliary variables
(see subsection 2.1.1). Thanks to elimination by the linear difference equa-
tion, the polynomial system is indeed defined over the following variable

set:
{x(0),...,x(24),y(0),...,¥(30),z(0),...,z(32),
u(0),...,u(38),c(0),...,¢(B),d(0),...,d(B)},

where B is the clock bound. We observe that other partial eliminations could
be considered, including the total elimination of all variables except for the
initial ones that are

{x(0),...,x(24),y(0),...,y(30),2z(0),...,z(32),
u(0),...,u(38),c(0),c(1),d(0),d(1)}.

However, we have experimented that all these variants increase the de-
gree of the eliminated polynomials in a way that either makes them impossi-
ble to be computed or leads to polynomial systems which are more difficult
to solve.

Our attack is based on a short keystream. Precisely, we focused on a num-
ber K of keystream bits with 51 < K < 63 since in this range we have found

3.3. The 83 variables set 35

very few Fp-solutions of the resulting system. To avoid a huge amount of
testing possibilities we choose to consider K odd. We remark that the num-
ber of equations and variables and consequently the cost of solving grows
significantly with K. Nonetheless, when reducing the number of keystream
bits considered one obtains more spurious solutions, namely keys different
from the right one but generating the right keystream bits. However, com-
paring a few extra keystream bits isn’t usually a very time-consuming task.
A good trade-off consists in using a value of K that lies approximately in the
middle of the range 51 < K < 63.

In our guess-and-determine strategy, we choose a subset of 83 variables
which are exhaustively evaluated over IF5°, leading to Grobner bases compu-
tations that take a few tens of milliseconds on average.

3.3 The 83 variables set

The set of the 83 variables is the following one

{x(0),...,x(24),y(0),...,¥(26),y(29),2(0),...,2z(10),z(29),...,2(32),
u(0),...,u(9),u(35),u(36),u(37),c(0),d4(0)}.

The starting point for the choice of this set are 14 "special" variables we
have found analysing the detailed structure of the keystream generator we
described above. The remaining 69 variables have been obtained through
experimental optimization.

The monomial ordering that we use for computing Grobner bases and
normal forms during the attack to EO is defined as the DegRevLex-ordering
over the following variable set

{x(0),¥(0),2(0),u(0),x(1),y(1),2(1),u(1),...}
U{c(0),¢(1),...} U {d(0),d(1),...}

induced by putting

x(0) <y(0) <z(0) <u(0) <x(1) <y(1) <z(1) <u(l) <...
<¢(0) <c(1) <...<d(0) <d(1) <...
Let us derive the 14 "special" variables we mentioned above. We start

considering the following polynomials which belong to the difference ideal I
corresponding to the explicit difference system (3.2)

Co = ¢(2)+x(1)c(1) +y(7)c(1) +z(1)c(1) + u(7)c(1) + x(1)y(7) + x(1)z(1)
+x(Vu(7) +y(7)z(1) + y(7)u(7) + z(1)u(7) +¢(1) + d(1) + c(0) + d(0),

Ci = ¢(3)+x(2)c(2) +y(8)c(2) +z(2)c(2) + u(8)c(2) + x(2)y(8) + x(2)z(2)
+x(2)u(8) +y(8)z(2) + y(8)u(8) + z(2)u(8) +c(2) + d(2) + (1) +d(1),

Dy = d(2)+x(1)y(7)z(V)u(7) + x(1)y(7)d(1) + x(1)z(1)d(1) + x(1)u(7)d(1)
+y(7)z(1)d(1) + y(7)u(7)d(1) + z(1)u(7)d(1) + x(1)c(1)d(1)
+y(7)c(1)d(1) +z(1)e(1)d(1) + u(7)c(1)d(1) + x(1)y(7)z(1)c(1)
+x(V)y(7)u(7)e(1) + x(1)z(1)u(7)ec(1) + y(7)z(1)u(7)c(1) + d(1) + c(0)

36 Chapter 3. Algebraic attack to EO

If you look carefully, you can see that these equations are from the com-
biner. In particular, they are the equations representing how to generate
d(2),c(2),c(3) from the initial state. We also consider the following poly-
nomials corresponding to the first 3 keystream bits, say ko, k1,kz € IF», of EO

Ko = x(1)+y(7)+2z(1) +u(7) +c(1) + ko,
Ki = x(2)4+y(8)+z(2) +u(8) +c(2) + kq,
Ky = x(3)+y(9)+2z(3)+u(9)+c(3) + k.

We can now eliminate the variables ¢(1),¢(2),¢(3) from the polynomials Cy, C1, Do
by reducing them modulo the polynomials Ko, K1, K>. We get

Gl = d(]‘) +A11
G, = d(1)+d(2)+ Ay,
Gs = Aszd(1l)+d(2)+ Ay

Ar = u(7)x(1) +u(7)y(7) + u(7)z(1) + x(V)y(7) + x(1)z(1) + y(7)z(1)
+ko(x(1) +y(7) +z(1) +u(7)) +c(0) +d(0) + x(2) + y(8) +z(2)
+M(8)+k0+k1,

Ay = u(8)x(2) +u(®)y(8 ZM(S) 2(2) + x(2)y(8) + x(2)z(2) + y(8)z(2)

)
+h1(x(2) +y(8) +2(2) +u(8)) + x(1) + x(3) + y(7) + y(9) + z(1)
+2(3) +u(7) +u(9) + ko + ki + ko,
As = u(7)x(1) +u(7)y(7) + u(7)z(1) + x(1)y(7) + x(1)z(1) +y(7)z(1)
+ (ko + 1) (x(1) + (7>+z<) +u(7)) +1,
As = u(7)x(D)y(7)z(1) + (ko + 1) (u(7)x(1)y(7) + u(7)x(1)z(1)
+u(7)y(7)z(1) + x(1)y(7)z(1)) + ¢(0).

Hence, a part of the polynomial system will result in

d(1) + Ay =0
d(1)+d(2)+A2 =0
Asd(1)+d(2)+ A, = 0

It is clear that this is impossible if and only if and only if
G=(As+1)A1+ Ay + Ay #0.

Note now that the set of IF,-solutions of the equation G = 0 is a preimage of
the Boolean function F}* — F, corresponding to the polynomial G in the 14
variables

{x1,%2,X3,Y7,Y8,Y9,21,22, 23,17, U8, U9, Co, do } -

Note in fact that, when solving the system, the bits of the keystream ko, k1, k»
are evaluated to a certain value. By computing the IF,-dimension of the quo-
tient algebra

Fy[x1,...,do] /{G,x3 + x1,...,d5 + do)

we have that the number [F,-solutions of G = 0 is exactly 2!3, for all bits

3.4. Experimental results 37

by, b1,b3 € Fy. Let’s point out that, when evaluating the 14 variables, the poly-
nomials A1, Aj, Az, A4 become some constant bits ¢, cq,¢2,c3.

d(1) + ¢ =0
d1)+d2)+c = 0,
ng(l) —|—d(2) +c4 = 0

and as soon as an inconsistency comes out of this system the Grobner basis
output 1. This implies that for half of the evaluations of the 14 variables the
resolution is extremely fast. In theory, we can precompute the IF,-solutions
of the equation G = 0 once given the first 3 keystream bits ko, k;,k2 in order
to avoid useless Grobner bases computations.

Remark finally that in our attack to EO, before performing Grobner bases
computations, we eliminate also the variables c(f + 1) (t > 0) by means of the
polynomials

X(t+1) +y(t+7) +z(t+1) Fu(t+7) +c(t+1) +k(t)

where k(t) denotes the keystream bit at clock ¢.

3.4 Experimental results

In this section, we report the result of the testing activity. After coding the
attack on the difference stream cipher EO by means of Grobner bases, SAT
solvers, and Binary Decision Diagrams we run it on a couple of servers. I
was mainly involved in the first two, but results from the latter will also be
shown in order to give a full comparison. The servers have the following
hardware configurations:

¢ Intel(R) Core(TM) i9-10900 CPU@2.80GHz, 10 Cores, 20 Threads and 64
Gb of RAM — server A, for short;

¢ 2 x Intel(R) Xeon(R) Gold 6258R CPU@2.7GHz, 56 Cores, 112 Threads
and 768 Gb of RAM — server B, for short.

On both these machines, we install a Debian-based Linux distribution as op-
erating system.

The comparison between Grobner and SAT solvers was executed on server
A. Every single combination of parameters is tested 22° times. More specifi-
cally, we evaluate the set of variables with 217 different random guesses and
we do this for 23 different keys (and so keystreams).

We tested all the odd values of K with 51 < K < 63 measuring average,
minimum and maximum computing time for performing the DegRevLex
Grobner bases and for SAT solving. All the results are gathered in Table 3.1.
The timings are expressed in milliseconds that are denoted as “ms”.

Grobner bases were implemented in SLIMGB of the computer algebra sys-
tem SINGULAR [44] whereas as a SAT solver we chose CRYPTOMINISAT [82],

38 Chapter 3. Algebraic attack to EO

a solver derived from Minisat but dedicated to cryptography. We remem-
ber that SAT solvers usually work on Conjunctive Normal Form (see section
2.3.1) so that an ANF-to-CNF conversion is needed when trying this resolu-
tive method. However, the conversion time is essentially negligible since we
apply it only once and for each evaluation of the 83 variables we just add the
corresponding linear equations to the CNFE.

TABLE 3.1: GB vs SAT

K | GBavg | GBmin/max | SAT avg | SAT min/max
51 31ms 1/411ms 196ms 105/1007ms
53 | 34ms 2/480ms 220ms 121/876ms
55 | 4lms 2/522ms 230ms 134/638ms
57 | 52ms 3/620ms 245ms 143/645ms
59 | 64ms 3/799ms 283ms 161/777ms
61 79ms 3/1115ms 300ms 174/732ms
63 96ms 4/1287ms 326ms 191/862ms

From the results in the table, one can claim that for this specific problem
Grobner bases do better than SAT solvers with solving times that are about
four times better.

According to Section 3.3, one can expect that minimum computing times
are obtained for guesses of the 14 special variables such that G # 0. This also
explains the quite significant difference between max and min computing
timings.

Another main testing activity involved the estimation of the number of
solutions for every different K. In this direction, we gathered information re-
garding the degree of the Grobner bases and the average number of spurious
solutions we compute by means of such bases. Note that the degree of a ba-
sis is the highest degree of its elements up to field equations. Hence, a basis
with degree 0 means an impossible system, i.e. no spurious solutions, and
a degree 1 basis means we are dealing with a linear basis that can be solved
efficiently.

For every K, we tested again polynomial systems and we give the
results as a percentage of the total number of Grobner bases in the table 3.2
below.

220

TABLE 3.2: GB data

K | deg(GB)=0 | deg(GB)=1 | deg(GB)=2 | deg=1avgsol | deg=2 avg sol
51 | 83.781% 15.243% 0.975% 1.442 3.154

53 | 94.023% 5.971% 0.005% 1.047 3

55 | 98.438% 1.561% 0.0001% 1.011 3

57 | 99.613% 0.386% 0% 1.004

59 | 99.901% 0.098% 0% 1

61 | 99.976% 0.023% 0% 1

63 | 99.993% 0.006% 0% 1

Data gathered show that the average number of spurious solutions for
each Grobner basis drops down very quickly as the number K of keystream

3.4. Experimental results 39

bits slightly increases. Whereas for K = 51,53,55 the number of degree 1
bases is quite high and some degree 2 bases appear (even if rarely) when
setting K > 59, more than 99.9% of the Grobner bases provide no spurious
solution. The remaining bases are of degree 1 and have a single solution as
the average number of solutions shows. That unique solution can be read
immediately from the basis and detected as a spurious one by using a few
additional keystream bits. In fact, for K = 63 the probability to have spuri-
ous solutions is already close to zero. In our tests, Grobner bases of degrees
strictly greater than 2 were not found.

To have a full comparison, we also code a BDD-based algebraic attack to EO
and compare new results with those presented in Table 3.1 and in the litera-
ture [54, 80]. Indeed, BDDs have been generally considered the standard in
EO cryptanalysis. For the testing activity we installed BUDDY library pack-
age 2.4 [59] on our machines.

At first, we considered the same set of 83 variables previously used with
Grobner bases and SAT solvers. More precisely, we set 57 < K < 63, collect
several random guesses of 83 variables, use 2° random keys and try to re-
cover the remaining 49 key bits.

Regarding the ANDing of the set of BDDs, among the various approaches
described in [54] such as sequential ANDing, ANDing with a fixed interval,
random ANDing, RSAND and so on, we decide to adopt RSAND because
it takes the overall used memory under control, reducing (recursively) the
number of BDDs by half until it gets the final BDD.

Despite using RSAND, experimental activities show that none of these
tests ended due to lack of memory of our servers even when running on
our server B. Therefore, we had to increase the number of fixed variables
to 93 leaving only 39 unknown key bits to be recovered. On server A, us-
ing a single-thread configuration and a few Mb of memory, we are able to
recover 39 unknown key bits in about 0.15 seconds which is much better
than the 5 seconds resolution time on a personal computer by the authors of
[54]. Interestingly, the best results do not come from the same set of variables
found with Grobner bases and SAT solvers but from evaluating all key bits
but a chunk of consecutive bits which includes all 39 variables of the fourth
LFSR, namely u(0),...,u(38). Experimental results showed that to increase
the number of variables to be solved from 39 to 40,41,42 the best choice is to
"free" the last variables of the third LFSR, that is, z(32),z(31),z(30),....

We measured the performances starting from 39 free variables and in-
creasing the count by one variable at a time. As said, when leaving 42 un-
known key bits (and 90 fixed), the choice is

u(0),...,u(38),2(32),z(31),z(30)....

Table 3.3 shows the results of the experimental activity with BUDDY library
2.4 on server A which is slightly faster than server B. The timings are given
in seconds that will be denoted as “s”.

Although we fixed the number K to much lower values than with Gb and

40 Chapter 3. Algebraic attack to EO

TABLE 3.3: BDD with BuDDY 2.4

key bits | K | exectime | mem used | # of threads
39 40 0.15s 60Mb 1
40 41 1.07s 240Mb 1
41 42 4.75s 725Mb 1
42 43 19.3s 3Gb 1
43 44 94.5s 13Gb 1
44 45 - out of mem 1

SAT, data show high time and memory-consuming which also grows expo-
nentially fast with the number of unknown key bits. However, one has also
to notice only 1 thread was used since BUDDY library does not provide the
possibility to run the code on all threads of our servers. Hence, we installed
SYLVAN [29], a decision diagram package which support multi-core architec-
tures. Whereas SYLVAN performs slower than BUDDY 2.4 when executed in
single thread mode, exploiting the power of the modern multi-core architec-
tures, the advantage of its use becomes more and more evident as the number
of unknown key bits to recover increases.

This is proved by our extensive testing whose results are summarized
in table 3.4. The testing is performed for K = 41,43,45, and for each value
we evaluate 91,89,87 variables with 2° random guesses collecting average
execution time and memory used. As for GB and SAT, we repeated the tests
for 23 random keys. However, the last four rows of this table do not refer to
212 different tests — 2° random guesses and 2% random keys — but to a single
execution with a random key due to excessive time consumption.

TABLE 3.4: BDD with SYLVAN

key bits | K | exectime | mem used | # of threads
39 41 1.19s 1.47Gb 112
40 41 1.55s 1.51Gb 112
41 41 1.95s 1.60Gb 112
39 43 1.34s 1.60Gb 112
40 43 2.03s 1.76Gb 112
41 43 4.71s 3.46Gb 112
39 45 3.58s 3.44Gb 112
40 45 5.23s 3.86Gb 112
41 45 14.65s 7.41Gb 112
43 45 68.29s 30Gb 112
44 45 | 128.37s 36Gb 112
45 46 | 517.42s 233Gb 112
46 47 — out of mem 112

3.5 Expected runtime of the attack

The experimental activity showed that our Grobner bases algebraic attack to
EOQ is better than the one performed with Sat solvers and with BDDs. We re-
mark that it should be preferred not only when comparing computing times,

3.5. Expected runtime of the attack 41

but also in memory: our Grobner bases computations run in less than 0.5 Gb
of memory for K = 63. For K = 59, which we showed to be an acceptable
value due to a few spurious solutions, the average solving time employing a
Grobner basis of the polynomial system is about 60 milliseconds. By the ob-
servations in section 2.2.1, the sequential running time is about 2% x 60 ms,
that is about 27 seconds, which improves any previous attempt to attack EQ
using a short keystream. The complexity 2% also improves the one obtained
by BDD-based cryptanalysis which is generally estimated as 2% [50, 54]. We
finally observe that the parallelization of the brute force on the 83 variables
can be easily used to scale down further the runtime.

43

Chapter 4

SHA1

In this chapter, we will describe an algebraic attack to SHA-1 (short for Secure
Hash Algorithm 1), one of the four cryptographic hash functions in the SHA
family. The attack can also be found in [9].

The function was designed by the United States National Security Agency
(NSA) and published by the National Institute of Standards and Technology
(NIST). It is described in FIPS 180-4 Secure Hash Standard [37].

The algorithm, as its predecessor SHA-0, takes as input a bit string of
arbitrary length and produces an output message digest of 160-bit. SHA-0
was published in 1993 but only two years after it was replaced by SHA-1 due
to a security flaw. SHA-1 was built on top of SHA-0 and fixes the weakness
found in its predecessor, and was heavily cryptanalysed since its appearance.

4.1 Related works

A vast literature studied the collision resistance of SHA-1 and SHA-0, see e.g.
[1,10,11,17,18, 26,43, 58, 83, 84, 85, 92],

In 2005, SHA-1 was also found to be insecure [92], since Wang et al.
demonstrated that SHA-1 has a collision resistance strength that is consid-
erably less than 80 bits. Since 2005, attacks to the collision resistance im-
proved their results until in 2017 the first real collision of the full SHA-1 was
discovered by Stevens et al. [85]. The practical attack had a computational
complexity of 26%! SHA-1 applications.

In 2008, the NIST document SP 800-17 [24], stated that SHA-1 hash func-
tion presents collision resistance strength of less than 80 bits, a second preimage
resistance strength of 105-160 bits, and a preimage resistance strength of 160
bits. At the time it was written, there had been no known shortcuts for find-
ing preimages of the hash values generated by SHA-1. Because of that, the
adoption of SHA-1 is still widespread and even allowed in certain applica-
tions by some of the most important standards. To mention one, the use of
SHA-1 is allowed in the construction of the widely adopted message authen-
tication code HMAC-SHAL1 (see e.g. [8, 24]).

However, preimage and second preimage attacks against SHA-1 do exist
even if, to date, none of the attacks present in the literature cover the full
SHA-1 algorithm.

The second preimage attack can be seen as a particular case of a collision
attack. The best second preimage attack to SHA-1 is a general result for all

+ Chapter 4. SHA1

narrow-pipe Merkle-Damgdard hash functions [49]. When n = 160, as is the
case for SHA-1, it will take 2!% computations to find a second preimage in a
60-byte message.

Anyway, many applications of hash functions rely only on the preimage
resistance. The first attack affecting this kind of security was published only
in 2008 by De Canniére and Rechberger [28]. The attack is a combination of
a "reversing the inversion problem" technique and an algorithm exploiting
random graphs theory. Reduced SHA-1 (45 rounds) is attacked with com-
plexity (21°7).

Some more attacks followed in the years. Table 4.1 shows the main ones.

TABLE 4.1: preimage attacks on SHA-1

of rounds | # of blocks | Complexity Technique Year | Ref
45 1 2157 Reversing inversion + Graph | 2008 | [28]
48 1 2159 MiTM 2008 | [3]
57 1 21587 Differential MiTM 2012 | [51]
57 2 215838 Differential MiTM 2012 | [51]
62 1 2159 Higher order diff. MiTM 2015 | [33]
62 2 2159.3 Higher order diff. MiTM 2015 | [33]

All the approaches in table 4.1 try to maximize the number of rounds
attacked keeping the complexity below the brute force upper bound.

One less explored approach is to attack a hash function practically, that is,
with an attack that retrieves the unknown data in a more reasonable time (1
day/week) and to investigate how many rounds can be broken in this way.
Be aware that the computational time of the attack may heavily depend on
the computational power the attacker has at his disposal.

The most recent work we could find in this direction is from Nejati et al.
in 2017 [38]. It is an algebraic attack, therefore a reduced version of SHA-1 is
represented as a system of equations and solved with different SAT solvers.
The authors claim that, with this method, preimages for more than 23 steps
cannot be constructed in a reasonable amount of time even with the latest
techniques and hardware. [70, 56, 57]. Moreover, they assert that 27 rounds
is their best result when leaving only 40 bits of the message free.

This is also the kind of attack we proposed: an algebraic attack trying to
maximize the number r of rounds of the compression function that can be
attacked practically.

4,2 The hash function SHA-1

SHA-1 hash function adopts the Merkle-Damgiird construction described in
section 1.3.3.

The padding for SHA-1 has the purpose of making the total length of a
padded message a multiple of 512. The last 64 bits of the padding must con-
tain the length of the message in binary form. The other bits are a 1 followed
by 0s until reaching those last 64 bits.

4.2. The hash function SHA-1 45

A1 Bi 1 Ciq Di 1 Ei 1
[]
[] ‘-: Fl—l —>E3
o—| K5 BH
K30 H~— Wi_1
M‘_ "
vy B; C; D; E;

FIGURE 4.1: SHA-1: round function

Then SHA-1 sequentially processes blocks of 512 bits when computing
the message digest. The 512-bit blocks are in turn divided into sixteen 32-bit
words, which a message schedule extends into eighty 32-bit words apply-
ing some linear operations. The message schedule, for 16 <i <79 (starting
enumerating the w; from 0), generates the remaining message words in the
following way:

w; = (wi—3 Dw;_gDwi_14D wi—16) K. 4.1)

An alternative representation can be found in [89].

At round i the 32-bit word w;_1 is used together with the round constant
K;_1 to modify the 160-bit state A;_1,B;_1,C;_1,D;_1,E;_1 by means of the
round function in figure 4.1:

A =K;_1 H (Wj,l H ((Aifl XK 5) B (Ei,1 H Fifl(Biferiferifl))))r (42)

Bi=A,_1, 4.3)
C,=B;_1 k30, (4.4)
D;=Ciy, (4.5)
E.=Di_,. (4.6)

The function F; is defined as:

F(B,C,D) = (BAC)V ((—=B) AD) if0<i<19,
F(B,C,D)=B®&C®D if 20 <i <39,
F(B,C,D)=(BAC)V(BAD)V(CAD) if40<i<59,
F(B,C,D)=B&C®D if 60 < i< 79.

At the beginning of the algorithm, the state is initialized with a 160-bit

46 Chapter 4. SHA1

word called initialization vector (IV). Every next round the input state is the
output of the preceding application of the round function. The round func-
tion is repeated eighty times and the 160-bit final output is the input to a new
state that is processed with a new message block. If all the blocks have been
used the 160-bit output is the message digest (or hash value).

4.3 Modelling SHA-1 as a system of equations

In this section, we briefly describe how the hash function SHA-1 was alge-
braically represented for our attack.

Since the algorithm is the repeated application of the compression func-
tion, which in turn is a sequence of eighty (almost) equal rounds, it will be
enough to explain how one of these rounds is transformed into equations.
Actually, our attack is a one-block preimage attack, so that our model does
represent the algorithm working on only one block.

Equations 4.3, 4.4, 4.5, and 4.6 are simply equalities (and a rotation) so we
will always avoid to use auxiliary variables for these passages. In fact, what
every round produces is only a 32-bit word entering the state to the left. The
rest of the operations can be seen as a right shift of the words of the state.

Instead, in equation 4.2, we have two non linear operations: addition
modulo 232 and the Boolean function F;. Details regarding how to obtain
the representation of these operations can be found in section 2.1.2.

In 4.2, we show the number of variables and equations of the polynomial
system over GF(2) for various problems appearing in the SHA-1 hash func-
tion.

operation no. of variables | no. of equations
addition mod 2" 4n 2n
F; 4n n
1-round of SHA-1 compression function 480 608
r-rounds of SHA-1 (r > 16) 3207 + 480 320r — 192
r-rounds of SHA-1 preimage (r > 16) 320r + 480 320r + 128

TABLE 4.2: Number of variables and equations for SHA-1 poly-
nomial system over [F; as a function of the number r of rounds.

Note that in the second last line we have the number of equations and

variables used for representing algebraically r rounds of the compression
function whereas in the last line we have the ones for the system represent-
ing the preimage attack. The only equations that we need to add are the ones
for fixing the input state to the IV and the hash value to the output value we
want to find the preimage of and therefore 160 - 2 equations are needed.

In 4.3, we want to gather information regarding the number of additions
and multiplications in various operations. This is useful to get an idea of the
amount of "nonlinearity" of the system.

4.4. The algebraic attack on SHA-1 47

Operation # addition | # multiplication Parameters
A (addition mod 23?) 189 93 -
96 64 0<t<20
F 96 96 40 <t <60
96 0 20 <t < 40,60 <t <80
852 436 0<t<20
The t-th Round 852 468 40 <t <60
852 372 20 <t < 40,60 <t <80
Message Expansion | 4(r —16) 0 r>16
Final addition 945 465 -

TABLE 4.3: Number of addition (Boolean XOR) and multiplica-
tion (Boolean AND) for the system of equations of SHA-1.

4.4 The algebraic attack on SHA-1

Our attack is a preimage attack as intended in section 2.2. We fix the hash
value besides the initialization vector and the round constants which are con-
stant values. We work on reduced versions of the compression function try-
ing to maximize the number r of rounds reached by the attack. To do so, we
fix some of the message bits, mainly following two different ideas:

* A first approach is to leave at least 160 bits of the message free. Indeed,
since SHA-1 hash function has a hash value of 160 bits one could expect
to find at least a preimage if so many variables are not fixed. This leaves
the attacker the freedom to fix from 0 to 352 variables of the message
block.

* We also decided to test the strength of the compression function when
leaving less than 160 bits of the message free. In this case, the result-
ing system is probably unsatisfiable. We decided to fix the values to
the correct ones of the preimage thinking of a real case in which the
attacker has retrieved those bits in some other way, for instance by a
side-channel attack.

The systems obtained are transformed into the CNF form and solved with
the SAT solver CryptoMiniSat v5.8.0. [82]. We tested also the performances
of Grobner bases but since they were much worst than SAT ones the results
are not shown.

4.5 Experimental results

In this section, I report our experimental results when trying to find a preim-
age of SHA-1 using SAT solvers.
We run our code on a server and a cluster. The first one is equipped with:

e CPU: Intel(R) Xeon(R) Gold 6258R CPU @ 2.70GHz;

® Memory: 768GB 2933 MHz;

48 Chapter 4. SHA1

e 0S: Ubuntu 18.04.5 LTS.

The cluster is equipped with:

e CPU: POWER9, altivec supported
® Memory: 319GB 2666 MHz

e 0S: Red Hat Enterprise Linux Server 7.6 (Maipo)

Regarding the first kind of attack described in the previous section 4.4,
we reached the round 23, confirming the claims in [38]. It is interesting to
notice that the SAT solver does not always benefit from having fewer free
variables. In fact, the results of the experiments showed that the best solving
times when leaving at least 160 bits from the message free are obtained when
the free bits are 440. Actually, this is not even counter-intuitive: although
setting some values means reducing the number of variables and simplifying
many of the equations it also reduces the number of possible preimages. A
Sat solver may suffer from a reduction in the number of the solutions because
of how its solving algorithms work and because it stops as soon as a single
solution is found.

Since reversing 23 rounds is quite time-consuming extensive testing, which
provides an average from 100 tests, has been done for 20 and 21 rounds. In
these tests we vary (look also at section 2.3.1):

¢ The number of threads used;
* The polarity mode: auto, false, random, true;
* The restart policy: geom, glue, luby;

The results were similar both with the server and the cluster with the latter
being slightly more performing so we will omit data collected on the server.
They are gathered in Table 4.4. We also set a time limit for the solving: 10
seconds for round 20 and 180 seconds for round 21. Not all the systems are
solved within the time limit: in the table, red numbers represent the number
of systems solved out of 100.

The table shows that using a higher number of threads gives usually bet-
ter results. The best results are usually obtained with polarity modes "auto"
or "random" and with the restart policy "geom". However, none of the com-
binations (polarity mode-restart policy) performs always particularly better
than the others.

Fixing only a few message bits (72), choosing the best possible set of vari-
ables is not crucial. But when working on the second approach, where more
than 352 of the variables representing the input block are fixed, it becomes
really important to choose them carefully.

To do so, we had to carefully analyse the message schedule introduced in
section 4.2. Firstly, in table 4.5 it is shown what message words are used for
computing r rounds of SHA-1 function. In particular, the green color is used
for a message word that is used in the exact round we are considering while

4.5. Experimental results 49

polar | restart | n.o.t. round 20 round 21 polar | restart | n.o.t. round 20 round 21
1 100/1.551 | 16/163.679 1 100/1.537 | 11/169.224

geom 2 100/0.980 | 35/144.212 geom 2 100/0.872 | 17/165.370

4 100/0.703 | 46/135.598 4 100/0.539 | 28/152.521

8 100/0.595 | 50/131.754 8 100/0.448 | 67/110.260

auto 1 82/4.916 | 21/158.565 rnd 1 98/3.336 8/174.637
glue 2 100/1.195 | 28/154.708 glue 2 100/1.147 | 15/166.956

4 100/0.852 | 30/152.602 4 100/0.771 | 17/164.757

8 100/0.694 | 25/157.295 8 100/0.604 | 13/169.859

1 100/1.903 | 29/153.644 1 98/2.198 9/170.210

luby 2 100/0.966 | 28/153.768 luby 2 100/1.016 | 19/161.224

4 100/0.783 | 40/141.568 4 100/0.638 | 39/147.540

8 100/0.627 | 33/148.349 8 100/0.483 | 43/136.528

1 100/1.577 | 15/166.735 1 100/1.472 | 32/150.264

geom 2 100/1.162 | 19/162.413 geom 2 100/0.856 | 33/150.108

4 100/0.838 | 30/152.825 4 100/0.729 | 35/147.536

8 100/0.593 | 50/137.270 8 100/0.611 | 59/124.257

false 1 98/2.148 | 16/166.044 true 1 99/2.507 | 26/157.044
glue 2 100/1.080 | 15/164.878 glue 2 100/1.071 | 39/142.236

4 100/0.875 | 25/158.758 4 100/0.877 | 33/145.281

8 100/0.700 | 21/161.685 8 100/0.701 | 31/153.147

1 100/1.955 | 15/167.913 1 99/2.330 | 22/163.257

luby 2 100/0.980 | 18/162.320 luby 2 100/0.954 | 33/152.180

4 100/0.660 | 33/152.766 4 100/0.748 | 45/139.531

8 100/0.591 | 44/139.372 8 100/0.579 | 45/133.082

TABLE 4.4: Average times to reverse SHA-1 on the cluster with
Cryptominisat.

the red one is used for words that are used in some previous round function
applications. Round 22 is the first one where all the words from the input
block are used and this seems to affect the solving complexity of the system,
which increases considerably with respect to round 21.

Message words
Wo | W1 | Wy | W3 | Wy | W5 | We | W7 | Wg | W9 | W10 | W11 | Wi | W13 | W4 | W15

17
18
Rounds | 19
20
21
22

TABLE 4.5: Message words involved at different rounds.

Moreover, considering that the elements used to compute round i are a)
the output state of the previous round b) the known constant K;_; c) the mes-
sage word W;_1, one has that fixing the first s message words, that is 32 - s
variables, gives the possibility to compute the first s rounds and obtain the
state Ag, B, Cs, D5, Es. We tested the performances when fixing all words but
two consecutive ones (64 bits free) and the best results are obtained when
only the last two (w4, w15) have to be retrieved, confirming the intuition
above. Times are a result of a single computation, not an average, and are
shown in table 4.6.

This technique lets us get to reverse 27 rounds of SHA-1 matching the re-
sults [38] where however the authors were leaving only 40 bits of the preim-
age free.

50 Chapter 4. SHA1

rounds
21 22 23 24 25 26 27
14&15 X 0.02 | 0.03 052 | 5.02 | 3.12 | 1059.25
13&14 0.01 0.02| 0.04| 1252 | 15.30
12&13 0.01 0.14 | 0.61 | 104.52
11&12 0.02 0.02 | 054 | 118.29
unknown | 10&11 0.01 3.29 | 99.65
words 9&10 1.73 | 127.35
8&9 367.66
7&8 0.08
6&7 1.21

5&6 | 35957.59

TABLE 4.6: SAT-based attack on two unknown words. Time is
in seconds.

Following a similar idea, it was decided to solve the polynomial system
by fixing instead the last message words, that is, when trying to retrieve a 64-
bit preimage for r rounds, fixing the words w,_14,...,w,_1. We remark that
being the message schedule a linear expansion, we can try to retrieve any
sixteen consecutive words and generate the first sixteen from them. The new
approach seems really promising: when fixing those words, the output state
Ar_14,By-14,Cr_14,D; 14, E,_14 can be immediately computed deterministi-
cally. In table 4.7, the results obtained solving the resulting systems for 30
different assignments of the variables are shown. In particular, minimum,
maximum, and average times are provided.

rounds time (s) | min max
26 1.37s | 0.00 17.32
27 498s | 0.19 16.01

28 131.02s | 11.06 334.56
29 | 4588.24s | 7.45 | 35114.09
30 | 9924.96s
31 | 16255.33s

TABLE 4.7: Words w,_14 — w,_1 fixed

With the new technique, we managed to reverse 31 rounds of the SHA-1
hash function highly improving the attack in [38]. Due to time constraints
rounds 30,31 are executed a single time.

The same technique was applied when leaving fewer preimage bits free
(80,96,112) and tested on a single execution. Results are shown in table 4.8.
Note that for 80 and 112 free bits, we fix the last 13 and 12 words plus the
second half of the 14-th and 13-th last words respectively.

4.6. Final observations

51

Number of free bits

rounds 80 96 112
20 0.02s
21 0.01s 0.43s
22 0.85 6.98s
23 0.02s 0.02s 4.87s
24 2.03s 19.62s 4091s
25 1.70s 699.00s 498.99s
26 15.99s | 172552.81s | 528294.05s
27 134.28s
28 4717.71s
29 | 593366.71s

TABLE 4.8: Results for 80,96,112 bits free when fixing the last
words

4.6 Final observations

The algebraic attack to SHA1 reveals some weaknesses in the message sched-
ule which let us outperform all the previous results obtained in the literature
in the same direction. However, a practical attack on the whole primitive-
function seems very unlikely. Indeed, even supposing some preimage bits
are recovered by some other attack, this attack breaks 31 rounds which is
quite more than what showed in any other work but still really far from the

80 rounds of the full algorithm.

It was still interesting also investigating the behavior of SAT solvers when
solving polynomial systems with different features and comparing different

restart policies and polarity modes.

Part 11

Differential and linear
cryptanalysis

53

55

Chapter 1

Differential cryptanalysis

Differential cryptanalysis, first proposed by Biham and Shamir in 1990 [13], is
a sort of statistical cryptanalysis that may be used to attack block and stream
ciphers or even cryptographic hash functions. It consists in studying how a
certain input difference applied to the plaintext propagates throughout the
algorithm resulting in a final output difference. Since it is really unlikely
to find an input-output difference couple holding with probability 1 for a
full cipher, the attacker looks for the input-output difference couple which is
most likely to appear for any input message M. Then, if a couple with a high
probability is found, one can mount a chosen-plaintext partial key-recovery
attack to the primitive.
In this chapter we will use the following notations:

P is the plaintext (or message);

C is the ciphertext;

K is the key;

Ap is the input difference;

Ay is the input difference applied to the key in a related key scenario;
Ac is the output difference;

P’ = P @ Ap is the plaintext obtained by applying the input difference
to the original plaintext;

C' = C @ Ac is the ciphertext obtained applying the output difference
to the original ciphertext;

K’ = K @ Ay is the key obtained by applying the input difference to the
original key.

When the difference applied to the key Ay is fixed at 0 the scenario is called
"single-key" whereas the scenario is called "related-key" if the difference Ay
is left free to vary.

56 Chapter 1. Differential cryptanalysis

1.1 Formal definitions

Let’s introduce this in a more formal way starting by defining what is a dif-
ference. In my research the focus was on xor differential cryptanalysis, that
is the difference is applied to the input message by XORing it to the origi-
nal message. Another possibility is for example to apply the difference by a
modular addition.

Definition 11 (Difference). Let (G,+) be an Abelian group. The difference be-
tween two elements x and x' is defined as x + x'~!, where + is the group operation
and x'~1 is the inverse element of x' in G.

When dealing with cryptographic primitives the group will usually be IF}
and so the + is the XOR boolean operator and the inverse of an element is
the element itself.

The differential probability of a vectorial Boolean function (BF) is defined
as follows.

Definition 12 (Differential probability). Let (G1,+g¢,) and (G2, +¢,) two groups
whose elements can be represented with bit strings of, respectively, ny and ny. Let
Ax € {0,1}™,Ay € {0,1}"2 be fixed n-bit strings, representing two group differ-
ences in, respectively, Gy and G,. The Differential Probability (DP) of a function f
(dpf) from Gy to G, is the probability with which Ax propagates to Ay through the
function f, computed over all n-bit input x:

dp/ (Ax = Ay) =27"- [{x € Gr : (f(x +g, Ax) = f(x) +g, Ay}

Definition 13 (DDT). A difference distribution table (DDT) of a vectorial BF
is a table that shows the probability of every possible input and output difference
couple.

Note that the DDT of a n1 x np Boolean function can be represented as a
2™ x 2" matrix and thus only the DDT of a function of small size is practical
to be generated. This is the case for instance of S-Boxes which usually have 4
or 8-bit input and output words and therefore the DDT is a 256 x 256 matrix
in the latter. Instead, it is clearly infeasible to obtain the DDT of a block
cipher, considering its large block size and the fact that every master key
instantiates a different permutation. Nonetheless, it is important to consider
that block ciphers are usually iterative functions, that is a function of the type

f,,_lo...Of().

Definition 14 (Differential characteristic). For an iterative function f = f,_q o
... 0 f1 0 fo, a sequence of differences

fo A fr=1

N —>NMN — ... N1 — A,

is called an r-round differential characteristic of f.

Definition 15 (Differential). A differential (Ax — Ay) over f = f,_10...0 fj0
fo, contains all differential characteristics with Ay = Ax, and A, = Ay.

1.2. Differential analysis of main operators 57

Lemma 1.1.1. The probability of a differential is the sum of that of all its character-
istics.

The base 2 logarithm of the reciprocal of the probability is called weight
and is usually what the attacker keeps track of. We remark that, if working
on weights, one has to find the differential with the lowest weight, which
corresponds to the highest probability.

The difference between differential and differential characteristics is cru-
cial. In a partial key-recovery attack such as the one we will describe one
actually needs the best differential and its probability. Nevertheless, many
papers in the literature look for the best possible differential characteristics
of a primitive and base their attack on that since it is much simpler than find-
ing the best differential. It is also what I've been doing in my research (see
chapter 3). But actually one can have a big gap between the two probabilities
(for more, look at [2]).

1.2 Differential analysis of main operators

A cryptographic primitive is usually a sequence of linear and nonlinear op-
erations starting from the plaintext (and eventually the key) and ending at
the ciphertext. Differential characteristics can be obtained by concatenating
all input/output difference couples and their probabilities obtained for every
single operation. Computing the precise probability of a differential charac-
teristic isn’t simple anyway. In particular, to "concatenate" the probabilities
one has to do some fundamental assumptions, such as Markov cipher assump-
tion, the Hypothesis of stochastic equivalence and the Hypothesis of independent
round keys (see e.g. [61, Section 2.2.1]).

In my research I worked on the assumption of independence between the
various operations so that the resulting probability when considering two
consecutive BFs is computed by the following:

Proposition 1.2.1. Let f and f, be two boolean functions
fi:Fy — Fy
f2: Fy — TF.
and let Ay €), Ay € F3 and A, € P2 be three differences such that
dp/i(Ax = Ay) =p1 dp(Ay — Az) = p,.

Then, we have
dp2°N(Ay — A) = p1 - po.

Note that the relative weights of the functions will be summed.

In this section, we will provide a detailed description of how differen-
tial cryptanalysis deals with the most common operations in a cryptographic
primitive.

58 Chapter 1. Differential cryptanalysis

Firstly, we remark that no differences are applied to the constants used in
the algorithm (by definition of what a constant is).

Linear operations will never generate a probability, meaning a certain in-
put difference corresponds deterministically to a certain output difference
which can be obtained using the following;:

Proposition 1.2.2. Let f : IF)' — IF) be a linear function and let Ay € IF}' be an

input difference. Then
flx+Ay) = f(x) + f(A),
that is Ay = f(Ax).
The most common linear operations are:

* XOR: exclusive or between x1, ..., x;; with x; € IF] for every i can be seen

asafunctionis f : FJ"" — %, where the input is xq || x2 || ... || x,». Note
that in a xor of an input with a constant the input difference is simply
XORed to 0;

* linear layer and mixcolumn: for linear layer proposition 1.2.2 directly
applies considering the linear function f to be the multiplication with
the matrix. As in section 2.1.2, mix column can be transformed simply
in a linear layer. Actually, mix column will be one of the main characters
in the strategy we will explain in section 1.3;

e rotation;

* shift is a linear operation and the proposition 1.2.2 could be applied but
one has to be careful with dependencies. For instance, let us suppose a
part of the algorithm is the following;:

(S(@1) [S(z2) || .- | S(w8)) <-4,

with S being a 4 x 4 S-Box, namely a 32-bit word that is the concate-
nation of eight parallel S-Boxes is shifted by 4 to the left. Then, the
probability generated by the first left S-Box shouldn’t be considered:
the 4-bit output disappears in favor of the 4 zeros added to the right.

In a nonlinear operation usually for a single nonzero input difference we
have that more than one output difference is possible so that a probability is
generated. A special case is the NOT operation which is treated as the xor
with the constant word of all 1s.

For an operation with small input and output bit sizes, one can always
compute the DDT. This can be done for example for AND, OR that operate
bitwise or for S-Boxes which have usually 4 or 8 input and output bit size.

Unfortunately, it is practically inefficient to use DDTs when dealing with
addition modulo 232 (MODADD) because its dimension would be 232 x 232,
For computing the probability of modular addition one can use the Lipmaa-
Moriai algorithm proposed in [60]. For any x,y and z we define eq(x,y,z) :=
(-x ®y) A (—x @ z), that is eq(x,y,z) =1 < x; = y; = z;, and for any n,
mask(n) := 2" — 1. wy, is the hamming weight of a string of bits, namely
the number of bits equal to 1. The algorithm works as follows:

1.3. Two steps strategy 59

Algorithm 1: Lipmaa-Moriai algorithm for modular addition

Input : Axerxery

Output: dp"™ ™4 (A, || Ay, — Ay)

if eq(Ay, < 1,00 < 1,0y < 1) A (Ay, @ Ayy B Ay B (A, < 1)) £0
then
| thenreturn 0 ;

else

[y

W N

—wy(—eq(Axy Dry Ay) Amiask(n—1)).
4 ‘ return 2~ n(764(Axy Bay Ay) Amask(n=1)).
5

end if

1.3 Two steps strategy

Differential cryptanalysis has two main limits: the best differential charac-
teristics (or differential) for r rounds of the function a) may have a too low
probability or b) may be impossible to compute in a practical time. For this
reason, the attacker usually tests the attack on a reduced version of the cipher.

A really common approach that tries to improve the efficiency of the
search of the trail is to divide the search into two steps [39].

In the first step, the state of the function evolving from plaintext to cipher-
text is divided into words of a certain length. Then a bit is used for each of
these words. These bits have value 1 if a nonzero difference is applied to the
word they represent and 0 otherwise.

Example 1.3.1. Let A, = 11010101010011110000000010100000 be an input dif-
ference and the word size we work with is 4 then we define AW, = 11110010.

The first step aims at finding a trail that minimizes the number of active S-
Boxes, that are the S-Boxes with an active input word, which is usually called
a "truncated trail". This trail doesn’t describe how a bit difference propagates
throughout the function but describes only how the activity of the words
behaves.

In the second step, the attacker tries to find a valid trail with the bit values
matching the active words of one of the solutions from step one, i.e. a certain
word has nonzero value only if the corresponding bit in the first step solution
is 1.

Note that this strategy works pretty well with functions containing S-
Boxes and mix columns, whose input and output bit size is usually used
as the word size chosen. It is also acceptable to have rotations/shifts of an
amount multiple of the word size. Instead, if one has a modular addition the
strategy usually isn’t useful at all: when a modular addition between two
input differences is computed every word of the output differences is likely
to be activated because of the carries.

Let’s explain how to deal with some functions when performing step one
of the search. For step two one can just look at the previous section.

* XOR: since XOR is a bitwise operation it is sufficient to look at how it
works on single words. We recall that a word is defined by a single bit.
The XOR works as follows:

60

Chapter 1. Differential cryptanalysis

X|Y| Z
00 0
110 1
0O[1] 1
1]1/0/1

Consider that if two input words are nonzero their sum is 0 if and only
if all their bits are equal and then the last line holds because in step
one we don't see the bit values of the words. This fact arises the prob-
lem of impossible solutions (solutions from step one to which no pos-
sible bit solution exists): a solver trying to minimize the number of ac-
tive S-Boxes will usually prefer taking the 0 output when XORing two
nonzero words instead of the 1 but this means making the strong as-
sumption that the two input words are bitwise equal.

SBOX: S-Boxes are trivial to work with in step one. They usually op-
erate on a single word and the output word is active if and only if the
input word is.

Mix column: for mix column we use an object related to linear trans-
formations acting on byte vectors called the Branch number (see [23] for
more). We can define a function weight W that, applied to a vector,
counts the number of nonzero words in that vector, with a word being
a string of a certain amount of bits (if the words are single bits this is
usually called the Hamming weight). Then, the branch number of a
linear transformation F is

r;%m(a) + W(F(a))),

where 7 are all the possible inputs of the linear function. The word size
depends usually on the dimensions of the S-Boxes and is commonly
4 or 8. For implementing a mix column in the first step we constrain
the total number of 1s in the input and output bits to be either 0 or
greater or equal to the branch number, which can be computed eas-
ily. Let M denote the matrix representing the transformation, than the
branch number is the minimum weight of the rows of matrix G = [I| M]
with I the identity matrix.

Rotation/Shift: they work as in the ordinary case but the amount of the
rotation or the shift is divided by the word size. For example, if a 32-bit
word [is left-rotated by 8 and our word size = 4 then we will left rotate
the 8-bit word representing the activity of I by 2.

1.4 Partial key-recovery differential attack

Once a differential is found the attacker can mount a chosen-plaintext par-
tial key-recovery attack to the cipher. We will briefly present the method
described in [47] for a single key scenario.

1.4. Partial key-recovery differential attack 61

Let f; be the function for i rounds and (Ap,Ac) a differential for » — 1
rounds holding with a suitably large enough probability p. Let’s denote by K
the key to recover and by K; the word coming from the key schedule that is
used in the i-th round of the function, called subkey for round i. The targets
of the attack are some of the bits from the last subkey K, and will be called
target subkey bits. In particular, we consider the bits of the subkey that are
used to partially decrypt the last round of the cipher, i.e. to decrypt only
the parts of the ciphertext corresponding to S-Boxes with a nonzero output
difference (or active S-Boxes).

For all possible combinations of values assigned to the target partial sub-
key one proceeds as follows:

1. Set a counter ¢ = 0;

2. Take one of the couples of plaintexts (P, P’) with P & P’ = Ap and rela-
tive ciphertexts after r rounds (Cy, C;) ;

3. Partially decrypt the last round of the function f to obtain some parts of
(Cr—1,C,_,). Compute the partial output difference between the cipher-
texts for round r — 1: if it matches the expected difference Ac increase
the counter by 1;

4. If there are other couples (P,P’) available go to 2) otherwise return
counter c.

The combination of values for which the counter reaches the highest num-
ber is the one we believe to be correct. Indeed, if the correct subkey bits are
used the partial one round decryption is correct and it is true that C,_; =
fr—1(K,P) and C._; = f,_1(K,P’) whereas with wrong values of the subkeys
C;—1 and C|_, should have arbitrary values. Then, we expect to obtain the
highest probability with the correct partial subkey bits and a probability close
to 1/2 for all the other choices.

The complexity of the attack is estimated in terms of the number of plain-
text couples needed. We assume that if we have any number of such couples,
we are able to process all of them. The number of plaintexts we expect to be
needed is

where c is some small constant. Consider that, being p the probability of
the input/output difference couple, the output difference Ac is expected to
appear once every p plaintext couples. Testing some multiple of p plaintext
couples should be enough to underline the difference in the counter between
a random target subkey bits guess and the correct one.

63

Chapter 2

Linear cryptanalysis

Linear cryptanalysis was introduced by Matsui (see e.g. [67] and [68]) in the
early 1990s and it is one of the most widely used attacks on block ciphers,
together with the differential one introduced in chapter 1. Even so, it can be
efficiently applied also against stream ciphers.

Linear cryptanalysis aims to find a linear relation between the plaintext,
the key, and the ciphertext holding with a probability as higher or lower as
possible of ;. If a linear relation with a good probability is found, one can
mount a known-plaintext partial key-recovery attack to the primitive.

We talk about a single key scenario if the key and the key schedule are
tully ignored in the linear trail search, a related key scenario otherwise.

2.1 Formal definitions

More formally, in linear cryptanalysis one would like to obtain a relation of
this kind:

P @P 0K, @ @®K;, @C, @ D, =0, (2.1)

holding with a certain probability p for randomly given plaintext and corre-
sponding ciphertext.

The following definition lets us give another representation of this equa-
tion:

Definition 16 (Linear combination). Let x,I" € IF) be two bit strings. The linear
combination of x and I is the standard dot product between the two, ie. T - x =
Iy_1x,—1+ ... +T1x1 + Toxg € Fy. Sometimes I is also called a mask for x.

In this chapter I'p,I'x, and I'c are the masks applied to the plaintext, the
key, and the ciphertext, respectively. For the rest of the notations, one can
still refer to chapter 1.

Then we can rewrite equation 2.1:

FP-P@Fk~K@Fc-C:C,

where wy,(T'p) =1, wy,(Tx) = m, wy(Tc) = n.
Let us call X the left side of equation 2.1. We use the capital letter X
because it can be seen as a random variable taking values in {0,1}. Then we

define p=P(X =0) and e = p — ; so thate € [—%,%]

64 Chapter 2. Linear cryptanalysis

In linear cryptanalysis, we are looking for a linear relation holding with
probability as far as possible from 1/2, i.e. with the highest possible |e|. To
do this we usually don’t work either on the probability or the bias but on the
correlation, which we define below.

Definition 17 (Correlation). Let f : F;' — Fpn, be a vectorial Boolean function.
Assume that the masks for input x and output f(x) are T';,, and T oy;. The correlation
of the linear approximation is defined as

Corr(T'iy, Tout) =P(X=0)—P(X=1) =

= >)
It is trivial to see that
_ Corr(Ti, Tout)

€ f

As for the differential case, when dealing with a vectorial boolean func-
tion we can build a table containing all the correlations.

Definition 18 (LAT). A linear approximation table (LAT) of a vectorial BF is
a table that shows the correlation of every possible couple of masks applied to the
input/output couples of the function.

As for the DDT, for functions with small input sizes, for instance an S-
Boxox, the LAT can be efficiently generated. Indeed, we have again that a
n1 X ny Boolean function can be represented as a 2" x 2"2 LAT.

Let f = f,_q10...0 f1 o fo be an iterated function. We define a linear trail
(or characteristic) as below.

Definition 19 (Linear characteristic). For an iterative function f = f,_jo...0
f1 o fo, a sequence of linear approximations

VLS VAN SN

is called an r-round linear trail (or characteristic) of f.

In order to estimate the correlation of a linear trail, meaning Corr(T'o,I';)
for the full function f, one has to use the Piling Up Lemma.

Lemma 2.1.1 (Piling-Up Lemma). Let (X3, ..., X,,) be independent, binary-valued
random variables with py,...,py and €1, ...,€, defined as before. Then we have that

n
PX1®X @ @ X, =0)=1/2+2"" e
i=1

or

n
e=2""Te:
i=1

where € is the total bias of the sum of the variables.

2.2. Linear analysis of main operations 65

Applying the lemma to the correlation of the iterative function f yields

r—1
Corr(Ti, Tout) = [[Corr(T;, Tisq).
0

As with the bias, we want to maximize the correlation of the trail. There-
fore, we have to avoid any 0 correlation because if any appears then the prob-
ability of the full linear trail is 1/2. As in the differential case, we often refer
to the weight of the correlation, that is its base 2 logarithm.

Definition 20 (Linear hull [71]). A linear hull (or linear approximation) (T';, —
Lout) over f = f,_q10...0 f1 0 fo contains all linear trails with (o =T},), and
(rr - rout)/

Lemma 2.1.2. The correlation of a linear hull is the sum of the correlations of all the
linear trails as predicted by the correlation matrix [22].

2.2 Linear analysis of main operations

Similarly to the differential case, the correlation of a linear trail can be com-
puted by concatenating all input/output masks obtained for every single op-
eration multiplying the respective correlations by Lemma 2.1.1. Even in this
case, assumptions on the independence of the operations have to be made.

Although a two-step strategy is possible also in the linear case, it will not
be investigated in the dissertation.

In this section, we will provide a detailed description of how linear crypt-
analysis deals with the most common operations in a cryptographic primi-
tive.

At first, we have to do a preliminary observation on what happens when
there is a branching, i.e. when an input of the cipher or the output of a certain
intermediate function is the input to more than one component of the cipher.
In the differential case, nothing happens: the difference applied on the word
that branches simply runs on all the new branches.

66 Chapter 2. Linear cryptanalysis

Proposition 2.2.1. Let f; and f, be two functions such that fi : Fj — F5' and
f2 : 4 — 2. Let’s consider the function

£ s F X FR

x— (f1(x), f2(x)),
then - . -
Corrf(rin,rout) = Corrfl(l“i;,l“oilt) - Corrg, (Fii,l“oit),
for every (F{A'T{Z) and (rﬁltrrgi:t) such that r{n = F{A D F{rzz and rgut = (rﬁttfrgit)-

Proof. It is enough to observe that

rl x@r, f(x)=CleT?) xo L, r2) (AX), A1)
=l xeorl, fikx) e T2 xoTk, - fix)

Then, we conclude by using the definition 17 and the Piling Up Lemma. [

By proposition 2.2.1, one has that if a certain word O becomes the input
of two different components, the inputs masks to the component should be
1"11 and 1"12 withT'p = 1"11 D 1"12.

Then, we need to do a second remark regarding the sign of the correla-
tion. Observe that some operations in the cipher may change the constant
value 0 to 1 on the right side of equation 2.1. When this happens, one can
keep the constant as it is and just change the sign of the correlation (or bias).
However, we recall that we want to maximize the absolute value of the corre-
lation and we can actually ignore the sign while searching for the best linear
trail.

Let’s see now how to work with the other possible operations:

* XOR:if x; @ xp =y, thenTy, =Ty, =TIy =T. Indeed,
rxl X1 D rxz ~x2 = Tout - (xl Y x2)/

in this case holds with probability 1, that is Corr(T || I,T) = 3, whereas
it is easy to observe that any other combination yields correlation 0. If
one of the inputs is a constant c we do the same and the sign of the cor-
relation can be calculated by I'c - c. The technique is easily generalized
to the multiple inputs case;

* Linear layer/Mix column: as already stated linear layer is a vector per
matrix multiplication x - M. Thus

rin‘xzrout'x'M@x'Fin:x'M'Fout
@rin:M'roub

* Rotation: it is enough in this case to apply the rotation to the input
mask, indeed:

2.3. Partial key recovery linear attack 67

with probability 1, where R is the rotate function;

e Shift: for a shift of amount s to the left applied to a n-bit word, the
input/output mask couple is determined in this way: I';,[i] =0 for 0 <
i <s—1,1i.e. the positions that will "shift away" are not involved in the
linear relation. Then,

] = Tipli+s] for0<i<n—s-—1
outtel = 0/1 forn—s—1<i<n

We have:
Fin <X = Fout . S(X)

with probability 1, where S is the rotate function, whereas for any other
choice of the masks the correlation is 0;

* NOT: we can again consider the not as the xor with a constant string of
all 1s. Then, the mask on the output is the same as the one of the input
and the sign of the correlation is determined by the parity of I';,;;

* AND/OR/Sboxes: since they are operators with small input and output
bit size (and/or operate bitwise), it is enough to compute the LAT;

e Modular addition: as in the differential case, because of the excessive
big size, we can’t use the LAT for the modular addition and we need
a clever algorithm. This is provided by Nyberg and Wallén in [90, 72]
and we will use the version presented in [36].

2.3 Partial key recovery linear attack

Once a linear hull is found the attacker can mount a known-plaintext par-
tial key recovery attack to the cipher. We will briefly present algorithm 2
presented in [67].

First of all, note that in this case the attack is not chosen-plaintext but
"just” known-plaintext. Indeed, whereas in the differential attack we needed
precise plaintexts obtained by applying the input difference to a random
plaintext, in the linear case we can accept any plaintext/ciphertext couple.

A second observation should be done on the linear equation 2.1 we ex-
ploit in the attack: the key from the bits, which are fixed but unknown, can
be removed from the relation. In fact, they will only affect the constant value
on the right side of the equation and so the sign of the correlation.

Let f; be the function for i rounds and (T'g,I,_1) a linear hull for r — 1
rounds holding with a suitably large enough correlation.

Using the notations of section 1.4, the target subkey bits are the ones of
the subkey K that are used to partially decrypt the last round of the cipher,
i.e. to decrypt only the parts of the ciphertext involved in the linear relation.

For all possible combinations of values assigned to the target partial sub-
key one proceeds as follows:

68 Chapter 2. Linear cryptanalysis

1. Set a counter ¢ = 0;

2. Take a (P,C) couple with C being the ciphertext after r rounds of the
encryption function;

3. Partially decrypt the last round of the function f to obtain some bits of
(Cy—1,C]_,), that are the ciphertexts after r — 1 rounds. Compute the
linear relation substituting the bits of the plaintext and the ciphertext
found: if it is satisfied increase the counter by 1;

4. If there are other couples (P,C) available go to 2) otherwise return |c —
n/2|, with n the number of plaintext/ciphertext samples used.

The combination of values for which the absolute value calculated in the
last step is higher is assumed to be the correct one. Indeed, if the real subkey
bits are used then the partial decryption is correct and it is true that C,_; =
fr—1(K,P) and C._; = f,_1(K,P’) whereas with wrong values of the subkeys
C,_1 and C|_; should have arbitrary values. We expect the linear relation for
these arbitrary ciphertexts to be satisfied about half of the times whereas to
be satisfied (or not) significantly more frequently than half the times for the
correct ones if n is high enough.

As for the differential attack, the complexity is estimated in terms of the
number of samples used. Matsui estimated the number of plaintexts we ex-

pect to be needed is
1
ne —
€2
where € is the bias for the linear hull and in practice we expect that taking
some small multiple of €2 is enough.

69

Chapter 3

Automatic tool for differential and
linear cryptanalysis

In this chapter, I will present another important slice of my research work
which involved the implementation of an automatic tool that generates mod-
els for differential and linear trail search.

The task of finding the best differential or linear characteristics is actually
a Constraint Satisfaction Problem (CSP), or a Constraint Optimisation Prob-
lem.

CSP and COP ask to find a satistying assignment for a set of variables with
associated domains under a set of constraints. In a CSP, the implementer wants
to find any solution, in our case, a trail with any probability or correlation.
In a COP, he wants to obtain the optimal solution under a given objective
function, for instance the differential trail with the highest probability.

These problems are usually entrusted to one of the following four dedi-
cated solvers:

* SAT:in SAT solvers (see section 2.3.1), the variables can take only Boolean
values and the constraints are in the form of clauses. SAT is usually a
really efficient way for trail search but the most difficult way to imple-
ment it;

* SMT: SMT is an extension to SAT, which allows for more variable types,
and additional constraints;

e MILP: in MILP (Mixed Integer Linear Programming), the variable do-
mains are the integer, real or binary numbers while the constraints are
expressed as linear inequalities;

¢ CP: in CP (Constraint Programming), the variables can be on any do-
main, and all types of constraints (including nonlinear) are permitted.
Constraint programming is very common in linear and differential crypt-
analysis since the search can be easily implemented.

The automatic tool, implemented in the software Python, takes as an in-
put the graph representation of a cipher and outputs a constraint program-
ming model written in the Minizinc language. The graph representation of
a cipher is a Python dictionary from which one can recover all the specifics
of the cipher and was developed by the Technology and Innovation Insti-
tute, a company I collaborated with during my Ph.D. To create a model, the

70 Chapter 3. Automatic tool for differential and linear cryptanalysis

Python code is run in the free open-source mathematics software SageMath
accessible via Python-based language and useful for its many mathematics
functions.

Thus, in the next section, we will show what CSP and COP are formally
and present constraint programming in an extended way.

3.1 Constraint Programming (CP)

Constraint Programming (CP) is a powerful technique for solving combina-
torial search problems presented in the form of arbitrary constraints.

Definition 21. A Constraint Satisfaction Problem (CSP) is defined by a tuple (X,C, D)
where:

o X =(x1,...,%x,) is the set of variables involved in the problem.;

e D= (Dy,...,Dy) is the set of domains of the variables. For every x; € X we
must have that X; € D;;

e C=(Cy,...,Cp) is the set of constraints. A constraint is defined by a couple
(R;, X;) where R; is a relation and X; is the subset of X containing the variables
that must satisfy it, say X = {xj,,...,x;,}. We recall that, by the definition of
relation, R; is a subset of the Cartesian product Dj,...,D;, which specifies the
allowed combinations of values for the variables in X;

A Constraint Optimization Problem (COP) adds an objective function to
the set of variables, constraints, and domains, for instance, to minimize a
certain variable of the model.

In CP there is no strict restriction on the domains apart from the ones for
the specific problem.

Definition 22. An assignment is a couple (V,A) where V = (x;,,...,x;) C X is
the set of selected variables and A = (a;,,...,a;,) are the values assigned to each of
the variables with a;, € D;, for every ij. An assignment is total if X =V, partial
otherwise.

Definition 23. An assignment satisfies a constraint C; = (R;, X;) if the assigned
values satisfy the relation R;.

Definition 24. A solution to a CSP problem is a total assignment that satisfies all
the constraints.

The strength of CP lies in the fact that the structure of the constraints
could be very different so that many algorithms can be used at the same time
to solve a problem. In solving a real-world problem, the search for a good
model is crucial. The same problem can be hard to solve if represented with
a poorly chosen model while easy if the model is efficient.

In fact, many times CP is used to solve Constraint Optimization Problems
(COP) instead of CSP. In this case, the constraints could be more relaxed,

3.1. Constraint Programming (CP) 71

leaving many solutions available and the solver is asked to find only a few of
them according to some preferences (e.g. a variable needs to be minimized).

Constraint programming is closely related to artificial intelligence: many
ideas from Al regarding knowledge representation and reasoning can be ap-
plied to CP and at the same time CP techniques can give a contribution to the
development of Al This is probably because Al problems can be often seen
as a form of searching in an enormous graph and also CSPs or COPs ask to
look for solutions in a big search space.

3.1.1 Solving algorithms

The main resolution methods for CP rely on constraint propagation and back-
tracking.

In CP the problems are conjunctions of sub-problems and the first step,
called filtering, runs an adapt algorithm for each of them to eliminate im-
possible values from the domains of the variables. Practically, for every con-
straint, the associated resolution method is used to prune the search space.

When a certain domain is restricted, a new domain restriction may be pos-
sible if looking back at an already considered constraint. Thus, every time the
domain of a variable is restricted, all the constraints involving that variable
need to be reconsidered and the respective filtering algorithm applied again.
This step is called the constraint propagation.

These mechanisms are applied until arc consistency is reached for every
constraint.

Definition 25 (Support). A certain value a € D; is consistent with a constraint
Ci, where x; € X;, if 3T € R; such that T[x;] = a, namely if setting x; = a one can
find an assignment for the other variables involved in C; so that R; is satisfied. In
this case, we say that T is a support of a in C;.

Definition 26 (Arc Consistency). A constraint C; is Arc Consistent (AC) iff Vx; €
Xi, Va € Dj, there exist a support for a.

In practice, this condition occurs when no more pruning can be done so
that the solver needs to make a guess on a variable.

Hence, in the last step, a value is assigned successively to each variable.
Whenever this is done, filtering and propagation are triggered. An assign-
ment of a variable may lead to a dead end: all the elements from the domain
of a variable that is not instantiated are removed. This means the guess was
incorrect, so the algorithm backtracks, and a new assignment is tried. This
last step is called search.

During the years, this general idea was carefully studied to try to improve
the different mechanisms implied in it. Many techniques exist for the search,
the backtrack, and the filtering algorithms. More about this can be found
in [77].

72 Chapter 3. Automatic tool for differential and linear cryptanalysis

3.1.2 Global constraints

One of the most important classes of constraints is the global ones. A global
constraint is a relation between a set of variables encapsulating more than
one constraint. These kinds of constraints are really powerful because their
tiltering algorithms work more efficiently than splitting the problem back to
the subconstraints and solving each of them separately. The classical and
most widespread example is the all-different constraint. Applied to a set of
variables, it requests that all the values assigned to those variables must be
pairwise different. An all-different constraint could be split in many binary
constraints. However, doing that would not only slow down the resolution
but also leave some impossible values in the domains of the variables. In [76],
a detailed survey on the most frequently used constraints and filtering algo-
rithms is provided.

3.1.3 Practical example

In the following, we will give a practical example of how CP works showing
a Minizinc code to solve the famous puzzle called “Sudoku”. In classical
Sudoku one has to fill a 9x9 grid with digits from 1 to 9 with the following
rules: each row, column and each of the 3x3 subgrids which compose it must
contain all the nine digits. It is easy to use constraint programming to solve
a Sudoku. We report here the code written in Minizinc IDE:

1 include "alldifferent.mzn";

2> set of int: RANGE = 1..9;

3 % The 9x9 Grid

1+ array [RANGE, RANGE] of var RANGE: cell;

6 % Constraint fixing the known values
7 constraint cell[2,5]= 6 /\ cell[2,8]= 2 ... /\ cell
[8,8]= 1;
8 » Constraint for having all different digits in every
row
9 constraint forall(i in RANGE) (alldifferent([cell[i,jll]j
in RANGE]));
10 4 Constraint for having all different digits in every
column
n constraint forall(j in RANGE) (alldifferent ([cell[i,j]lli
in RANGE]));
12 % Constraint for having all different digits in every 3
x3 subgrid
13 constraint forall(a in 1..3,b in 1..3) (alldifferent ([
cell[i+(a-1)*3,j+(b-1)*3]|i in 1..3, j in 1..31));
14
15 output [show(row(cell,i)) ++ "\n"| i in RANGE];

Let us consider the scheme in 3.1.
Here the black digits are the ones of the original scheme, while the blue
ones are obtained by the solver with constraint propagation. We will denote

3.1. Constraint Programming (CP) 73

6
6
5171211461983
5
7
7 9
5 1
6

FIGURE 3.1: Sudoku example

by S(i,j) the entrance of the scheme at row i and column j, with 1 <i,j <9.
The problem can be modeled as a CSP, by definition 21, in the following way:

* X =(x1,...,x81), where xg(;_1),; = S(i,]) for every i,j;
e D= (Dy,...,Dg), where D; ={1,...,9} for every i;

e C=(Cyq,...,Cqq), where C; — Cyy are for the cells with fixed digits,
C1g — Cyg are the all-different constraints for the rows, Cy7 — Cs5 for
the columns and Cz4 — Cy4 for the subgrids;

At first, the filtering algorithm for the all-different constraint lets the solver
conclude that 5(4,6) is a 6. Then, constraint propagation is applied since one
of the variables has been assigned a value. Through that 5(9,4) and then
S(1,8) are uniquely determined. In this case, we know that A = (6,6,6) is a
partial assignment that satisfies all the constraints.

The all-different constraint plays a fundamental role: let’s see that in col-
umn 8 understanding how the algorithm would operate step by step.

1. By the all different constraint for column 8, the domain of 5(1,8) is
restricted from {1,...,9} to {3,4,6};

2. Similarly, by the all different constraint for column 8 and the all dif-
ferent constraint for row 3 the domain of S(3,8) is restricted to {3,4}.
At this moment filtering algorithm is again applied for the all different
constraint of row 8 because a variable involved changed its domain but
there is no effect on the domain of S(1,8);

3. Samely, by the all different constraint for column 8 and the all different
constraint for row 9 the domain of 5(9,8) is restricted to {3,4}. Again,
the filtering algorithm for the all-different constraint of column 8 is ap-
plied and the domain of S(1,8) is restricted to {6}.

Note that in the third step it is possible to determine that S(1,8) = 6 only
because the constraint is a global constraint and considers the three variables’
domains all at once. If one works only with binary constraints the arc consis-
tency is reached when the domain of S(1,8) is still {3,4,6}.

Constraint propagation is again applied and the domains restricted: for
every cell, the solver calculates the digits available. At this point, none of the

74 Chapter 3. Automatic tool for differential and linear cryptanalysis

FIGURE 3.2: MiniZinc Challenge 2020.

Category
Fixed
Free
Parallel
Open

Local Search

domains is restricted to only one value so that the solver has to guess a digit
for a cell (supposedly from the ones whose domain is smaller). This is what
we have called the search. After the guess, constraints are again propagated,
and search and propagations are alternated until a solution is found. Note
that in this case the problem has many solutions. If not restricted, the solver
will try to find all of them.

To model and solve a CP problem we have at our disposal different lan-
guages and solvers. We will use MiniZinc, a free and open-source constraint
modeling language. Through MiniZinc it is possible to implement COPs and
CSPs in a high-level solver-independent way and then compile the model
into FlatZinc, a language that many solvers can understand.

The most widely used solvers are Chuffed, OR-Tools and Choco. In Fig-
ure 3.2 we can see the rank of solvers in a MiniZinc Challenge from 2020
organized for various categories:

* Fixed search: solvers must use the search strategy defined in the prob-
lem;

* Free search: solvers can use any search strategy;

* Parallel search: solvers are allowed to use parallelization, so multiple
threads or cores to solve the problem;

* Open class: portfolio solvers are allowed too. Portfolio solver are es-
sentially collection of solvers that, when facing a new unseen problem
p, try to predict the best solver(s) to solve p;

* Local search: specific for local search solvers. This kind of search starts
from a "local" solution and tries to improve it to get a possibly better
solution in a "neighbourhood", that is a solution that is not too much
different from the starting one.

3.2. CP constraints for the main operators in differential search 75

3.2 CP constraints for the main operators in differ-
ential search

In this section, we will provide the code for implementing in Minizinc the
constraints for differential trail search for the main operators adopted in cryp-
tographic primitives. In section 1.2 one can find a theoretical explanation of
the constraints. Note that this is a step behind the implementation of the tool
in Python.

A common strategy applied by the tool to any kind of constraint is to
create a Python list containing all the names of the variables representing
the input bits and then generate the constraints for the operations bitwise in
Minizinc avoiding declaring the array of all inputs. This is done because it is
common to have inputs formed by more than one word (e.g. a concatenation
of half of the plaintext and of the key is rotated). For almost every component
we will also show a "bit version" of the implementation.

Constraints for the NOT function will not be shown since, as already ex-
plained, in differential trail search one has simply to constraint equality be-
tween input and output difference.

The input will be always denoted with the letter I (Iy,..., I, if more than
one) the output with O (Oy,...,0O, if more than one).

3.21 XOR

include "globals.mzn";

1
2
3 int : n;

4+ array [0..n-1] of var O0..1:
5 array [0..n-1] of var 0..1:
6
7
8
9

O H H
|
N =

array [0..n-1] of var 0..1:

constraint 0 = Xor_2(I_1, I_2);

10 % XOR of 2 arrays

11 function arrayl[int] of var 0..1: Xor_2(array[int] of
var 0..1: a, arrayl[int] of var 0..1: b)=

12 arrayld (0..(length(a)-1), [(al[jl+b[j]) mod 2 | j in
0..(length(a)-1)1);

The automatic code for two addends XOR with four 8-bit inputs would
be the following.

include "globals.mzn";

1

2

3 int : n;

4+ array [0..7] of var 0..1: I_1;
s array [0..7] of var 0..1: I_2;
¢ array [0..7] of var 0..1: I_3;
7 array [0..7] of var 0..1: I_4;
8

array [0..15] of var 0..1: O0;

76 Chapter 3. Automatic tool for differential and linear cryptanalysis

10 constraint 0_[0] (I_1[0] + I_3[0]) mod 2;

11 ...

(I_1[7] + I_3[7]) mod 2;
(I_2[0] + I_4[0]) mod 2;

12 constraint 0_[7]
13 constraint 0_[8]

14 ...

15 constraint O_[15] = (I_2[7] + I_4[7]) mod 2;
3.2.2 Rotation/Shift

In the following, we show the code for left rotate and shift (the right ones are

really similar).

1 include "globals.mzn";

3 int : n;

s+ array [0..n-1] of var O0..1:
5 array [0..n-1] of var
¢ array [0..n-1] of var 0..1: 0_2;

o
oo H
N~ -

LRot (I_1, m);
LShift(I_1, m);

s constraint O0_1
9 constraint 0_2

10
1n % Left rotation of X by val positions

12 function array[int] of var 0..1: LRot(arrayl[int] of var

0..1: X, var int: val)-=
13 arrayld (0..(length(X)-1), [X[(j+val) mod length(X)] |
in 0..(length(X)-1)1);
14
15 % Left shift of X by val positions
16 function array[int] of var 0..2: LShift(array[int] of
var 0..2: X, var int:val)=

17 arrayld (0..(length(X)-1), [if j<length(X)-val then X[(j
+val) mod length(X)] else O endif | j in 0..(length(

X)-1)1);

As for the XOR, we use a bit version for the rotation or the shift in the au-
tomatic model. We show a left rotate and shift of 3 of two 8-bit concatenated

inputs.

1 include "globals.mzn";

3 int : n;

4+ array [0..7] of var O0..1: I_1;
s array [0..7] of var 0..1: I_2;
¢ array [0..15] of var 0..1: 0_1;
7 array [0..15] of var 0..1: 0_2;

9 % Rotate
10 constraint 0_1[0]

I_1[3];

1 ...

12 constraint 0_1[5] I_2[0];

13 ...

3.2. CP constraints for the main operators in differential search

77

14

15

16

17

18

19

20

constraint
constraint
constraint
constraint

% Shift
constraint

21 ...

22

constraint

23 ...

24

25

26

27

3.2.3 Linear Layer/Mix Column

1

constraint
constraint
constraint
constraint

0_1[12]
0_1[13]
0_1[14]
0_1[15]

0_21[0]

0_21[5]

0_2[12]
0_2[13]
0_2[14]
0_2[15]

I_2[71;
I_1[0];
I_1[1];
I_1[2];

I_1([3];

I_2[0];

_2[7]1;

I
0;
0;
0

>

At its actual status, the automatic model doesn’t address the dependen-
cies issues regarding the shift explained in section 1.2.

include
int n;
array [O.
array [O.
array [O.

constraint forall(i in O0..n-1)(0[i] =

"globals.mzn";

.n-1] of var 0..1:
.n-1,0..n-1] of O0..
.n-1] of var 0..1:

j in 0..n-1]1) mod 2);

0;

sum (LI[j1*M[j,1i]

In the automatic tool, we don’t declare the matrix in Minizinc but we
directly write the modulo 2 sums. Let M be the following 4 x 4 matrix:

—_ O =) O
O R R -

then the code would be the following;:

1

include

int
array [O.
array [O.

n;

constraint
constraint
constraint
constraint

.n-1]
.n-11]

0[ol
0[1]
0[2]
0[3]

of
of

"globals.mzn";

var O0..1:
var O0..1:

O = O

ILg
0;

_ R, O

(I[1] + I[3]) mod 2;
(Ifol] + I[1] + I[2]) mod 2;
(I[0] + I[2]) mod 2;
(If1] + 1[2] + I[3]) mod 2;

78 Chapter 3. Automatic tool for differential and linear cryptanalysis

3.2.4 Sboxes/AND/OR

For S-Boxxes/AND/OR one can simply use the DDT table and exploit the
table constraint by Minizinc, a powerful constraint that constrains an array
to take only some possible combination of values explicited in the rows of
the table. In particular, a row of the table will contain the following three
elements concatenated: an input difference, an output difference, and the
weight of the probability for the input/output difference couple. The DDT
can be easily generated in Sagemath using the function "dif ference_distribution_table()".

1 include "globals.mzn";

3 int : n;

4+ array [0..n-1] of var 0..1: I;

5 array [0..n-1] of var 0..1: O0;

6 var int: w;

7% DDT: m is the number of possible combinations

s array [0..m, 1..2%n+1] of int: DDT = array2d(0..m,1..2%
n+1,[0,1,...,1,2,1,0, ...,0,3,0,1, ... 1);

10 constraint table(I ++ 0 ++ [w], DDT);
11

» solve minimize (p);

The bitwise case used in the automatic tool is quite similar but one con-
catenates single integers instead of arrays inside the table constraint. The
code is omitted.

3.2.5 Modadd

For simplicity, even in the automatic tool, the constraints for modular addi-

tion involve the preliminary step of declaring the two arrays representing the
addends.

1 include "globals.mzn";

3 int : n;

1+ array [0..n-1] of var 0..1: I_1;

5 array [0..n-1] of var 0. I_2;

¢ array [0..n-1] of var O.. 0;

7 var int: w;

8

9 array [0..n-1] of var 0..1: Shi_TI_1 = LShift(I_1,1);
10 array [0..n-1] of var 0..1: Shi_I_2 = LShift(I_2,1);
1n array [0..n-1] of var 0..1: Shi_ 0 = LShift(0,1);

12 array [0..n-1] of var 0..1: eq = Eq(Shi_I_1, Shi_I_2,

Shi_0);

1 constraint forall(j in 0..n-1) (if eql[j]l] = 1 then (sum([
I_1[031, I_2[j1, 0[j1]) mod 2) = Shi_I_2[j] else true
endif) /\ w = n-sum(eq);

3.3. Constraints and automatic tool for two steps strategy 79

16 %» Eq function

17 function array[int] of var 0..1: Eq(array[int] of var
0..1: a, arrayl[int] of var 0..1: b, arrayl[int] of
var 0..1: c¢)=

18 arrayld (0..(length(a)-1), [all_equal([aljl,b[j],c[j11)
| j in 0..length(a)-11);

20 solve minimize (w) ;

with the LShift and Xor_2 already defined in the previous code.

The constraint is based on algorithm 1. The first if of the constraint is for
the if at line 1 of the algorithm. In the case the first part of the end is satisfied
(i.e. eq =1 or True) we want to ensure the second part is not, otherwise
the algorithm returns probability 0 which means the input/output difference
couple can’t be valid. Instead, if the first part is not satistied we are already
good.

Finally, the rest of the constraint simply calculates the weight as in line
4 of the algorithm: shifting the arguments of the eq function as we do in
the implementation has the same effect as the AND with mask(n — 1) in the
algorithm.

3.3 Constraints and automatic tool for two steps
strategy

In this section, we explain how to work with different components in the two
steps strategy for differential trail search. The dimension of the arrays n will
always be the result of the original length of the word divided by the word
size.

Rotate/Shift and S-Boxxes are simple:

* Rotate/Shift: are equal to one step case if one inserts the rotate /shift_amount
in the code already divided by the word_size.

* Sboxes/AND/OR: they are just equalities.

3.3.1 XOR
For a two inputs XOR the code is the following:
1 include "globals.mzn";
2
3 int : n;
4+ array [0..n-1] of var 0..1: I_1;
s array [0..n-1] of var 0..1: I_2;
¢ array [0..n-1] of var 0..1: O0;
7 array [0..4,1..3] of 0..1: XOR_table = array2d

(0..4,1..3,[0,0,0,0,1,1,1,0,2,1,1,0,1,1,1]);

80 Chapter 3. Automatic tool for differential and linear cryptanalysis

9 constraint forall(i in O0..n-1)(table([I_1[i]] ++ [I_2[1
11 ++ [0[i]], XOR_table));

The automatic model trivially develops the "forall".

3.3.2 Mix column
include "globals.mzn";

1

2

3 int : n;

4+ array [0..n-1] of var 0..1: I;

s array [0..n-1] of var 0..1: O;

¢ array [0..m,1..2*%n] of O0..1: mix_column_table = array2d
(0..m,1..2*%n, [TABLE]) ;

s constraint table(I++0, mix_column_table) ;

"TABLE" stands for the full mix column table that we can generate using
the branch number already discussed. In the automatic model, the branch
number and subsequently the mix column table are calculated by a Python
function.

To obtain a trail with the two steps strategy, the automatic model per-
forms the following steps:

1. Build and solve the Minizinc model for finding the minimum number
of active S-Boxxes;

2. Build and solve the Minizinc model for finding all the possible solu-
tions with the number of active S-Boxxes in step 1);

3. Build and solve a Minizinc model which finds a full trail constraining
the values of the bits to match with the values representing the activity
of the words from any of the solutions found in step 2);

4. If no solution is found, that is all the truncated trails of step 2) are im-
possible, go back to 2) increasing by 1 the number of active S-Boxxes.

3.4 CP constraints for the main operators in linear
search

This section is similar to 3.2 but dedicated to the linear trail search. For the
notations, one can still refer to the one used in 3.2. We omit some simple or
already given code:

* XOR: is simply the implementation of some equalities;
e Rotate: works as in the differential case;

* Linear layer/Mix column: works as in the differential case but I and O
have to be exchanged;

3.4. CP constraints for the main operators in linear search 81

* Sbox/AND/OR: one can do exactly as in the differential case but us-
ing the LAT instead of the DDT. The LAT can be easily generated in
Sagemath using the function "linear_approximation_table()".

3.4.1 Branching

Suppose a certain word I has to be used as input to two different operations.
The code for branching is the following, where I_1, I_2 are the inputs to the
operations.

1 include "globals.mzn";

2

3 int : n;

4 array [0..n-1] of var 0..1: I
array [0..n-1] of var 0..1: I

array [0..n-1] of var 0..1: I

® N o o’

constraint forall(i in O0..n-1)(I[i] = I_1[i] + I_2[1i]
mod 2) ;

The bitwise model generated automatically is trivial and one can look at
the XOR in the differential case.

3.4.2 Shift

In the following, we show the code for the left shift (the right one is really
similar).

1 include "globals.mzn";

2

3 int : n;

4+ int : shift_amount;

s array [0..n-1] of var 0..1: I;

¢ array [0..n-1] of var 0..1: O0;

7
constraint forall(i in O..shift_amount-1) (I[i] = 0);

9 constraint forall(i in O..n-shift_amount-1) (0[i] = I[i+
shift_amount]) ;

@®

The automatic tool for a left shift of amount 3 will generate:

—_

include "globals.mzn";

int : n;
array [0..n-1] of var O0..1: I;
array [0..n-1] of var 0..1: O;

© o N Ul e W N

constraint I[0] = O;
constraint I[1] = O;
constraint I[2] = 0;

10 constraint 0[0] = I[3];

-
ja

12 constraint 0[12] = I[15];

82 Chapter 3. Automatic tool for differential and linear cryptanalysis

3.4.3 Modadd

As in the differential case, even in the automatic tool, the constraints for
modadd involve the preliminary step of declaring the two arrays represent-
ing the addends.

1 include "globals.mzn";

3 int : n;

4+ array [0..n-1] of var O0..1
5 array [0..n-1] of var
¢ array [0..n-1] of var 0..1
7 var int: w;

« we

o
O H H

|

N =

9 constraint modadd_linear(I_1,I_2,0,w);

10

1 % XOR of 3 arrays

12 function array[int] of var 0..1: Xor_3(arrayl[int] of
var 0..1: a, arrayl[int] of var 0..1: b, arrayl[int]
of var 0..1: c)=

13 arrayld (0..(length(a)-1), [(aljl+b[jl+c[jl) mod 2 | j
in 0..(length(a)-1)1);

14

15 4tModular addition for xor linear

16 predicate modadd_linear (array[int] of var 0..1: a,
array[int] of var 0..1: b, array[int] of var 0..1: ¢
, var int:w) = (

17 let {

18 array [0..length(a)] of var 0..1: state,

19 array [0..length(a)-1] of var 0..1: prob,

w0 array [0..length(a)-1] of var 0..1: X=Xor_3(a,b,c)

21 } in

» state [0]=0 /\

3 forall (i in O0..length(a)-1)(

24 if state[i]==0 then all_equal ([al[i]l,b[i],c[i]])
else true endif /\

2 state[i+1]1=((X[i]l+state[i]) mod 2) /\

2 if state[i]==1 then prob[i]=1 else prob[i]=0 endif)
/\

27 w=sum (prob)
8) ;
29

3 solve minimize (w) ;

3.5 Experimental result

In this section we present the results of some experimental results on the
automatic tool for the search of both differential and linear trails. The initial
goal of the experiments was also to show how the automatic tool performs
with respect to ad hoc models constructed for the search. Unfortunately, it

3.5. Experimental result 83

was really difficult to find proper papers in the literature showing the time
required for the search of the trails. Most of the papers, indeed, only show
the weight of the trail, or, at most, the trail itself. In particular, only one was
found and compared.

Even though, we don’t have enough timings to compare, it is still inter-
esting to show some results in order to get an idea of the performances of the
software.

The experiments were run on a server equipped with:

e CPU: Intel(R) Xeon(R) Gold 6258R CPU @ 2.70GHz;
® Memory: 768GB 2933 MHz;
e 0S: Ubuntu 18.04.5 LTS.

In table 3.1, the tests for differential and linear trails search in a single-key
scenario on three ciphers are shown: Present [15], Simon [7] and TinyJAMBU
[93], all lightweight algorithms. The latter is a finalist in the NIST lightweight
cryptography challenge. As already mentioned, only for the differential trails
of the block cipher Present we have a reference to compare with.

The columns of the table show:

* The cipher and the parameters chosen for the attack;
¢ The solver used for solving the model;

¢ The building and solving times, that is the timings for building the CP
model and the one to solve it respectively;

¢ The timings declared for the solving from a paper in the literature.
There is no building time since the model is written ad hoc;

¢ A reference and the year of publication of the paper we are comparing
the results with;

* The weight, that is intended of the probability for the differential and
of the correlation for the linear;

As shown in the table, the results from the comparison with the only pa-
per found are good: the software seems to perform better than the ad hoc
model when using the solver "Chuffed’.

For what concerns the solvers, Chuffed and Gecode, there is not one that
is clearly better than the other.

Chapter 3. Automatic tool for differential and linear cryptanalysis

84

¢ c0¢ql 6£5°erl 0T
< - - - 08070 984°¢6 9p0d23H 8¢1/8¢1 01¢ NGV [Aury,
4 990°0 €0L'%9 08T
€ T6C611 LE9EVL 05¢
< - - - LS99 €0E¥6 pagny> 8¢1/8¢1 01¢ NIV [Aury
< 8TV'E 16€%9 08T
6 754299 £20°0 8
L - - - L6LTS 0200 9pP0d9H) ¥9/C¢ L uowiig
9 1401 910°0 9
6 6£€'699 £20°0 8
L - - - 8049 1200 pagnyd $9/2¢ L uowrg
9 1440 <s10°0 9
8 11599 80T°0 g
9 - - - £06C ¥80°0 9p0d3H 08/%9 4 Juesald
¥ 160°0 6200 €
8 ¢LS TS 80T°0 <
9 - - - €9C'T <a80°0 PapmyD 08/%9 i4 JuesaI g
i 090°0 2010 €
Ieaur]
A £99°C96 £20°0 05T
g - - - C09'1T1 €200 9pP0d9H) 8¢1/8¢1 01¢C NGV I[Aury
i L¥6°0 0200 08T
L ¥9T°LC8 £20°0 0sT
g - - - CLV'SL 200 pagnyd 8C1/8C1 01¢ NGV [Aur,
¥ <0C0 0200 08T
ST T0'SICL 2000 8
4" - - - ac89cl 2000 9pP0d3H ¥9/2¢ L uouwig
4" TI8'6C 100°0 9
8T TIC 1YL 2000 8
4" - - - <Ly aL 2000 pagny>d ¥9/C¢ L uowrg
4" 6vL L1 100°0 9
4" LET L6E 1100 [
0T - - - (\ré a4 60070 9p0d3H 08/%9 4 juasald
8 2600 6000)
Cl avove €19°98¢9 1100 g
01 £102 | [88] ¥11 8TLT 1100 pPagYD 08/%9 i JuasaI]
8 20 0600 9100 €
[eRULISIq
SoMm 7 Teag 7 FEN 7 (317) oy, 7 (s) awy Surajog 7 (s) swp Surppmg 7 I9A[OG 7 so718 Loy /pxojure]J 7 Spuno1 Jo # 7 1oydi

1003 d1jewioine 9y} YHM ydldeas sfred] Jeaul] pue [efjuaaJJIp J0J sjjnsal ﬁﬁwﬁwaﬁwﬂxm I'e d14dv],

Part 111

Conclusion

85

87

Chapter 1

Conclusion

In this dissertation, we provided a wide overview of the most common and
modern cryptanalytic techniques used to attack symmetric cryptographic
primitives.

In the first part, we presented algebraic cryptanalysis, which tries to at-
tack the key by solving a polynomial system representing the function. In my
research this kind of attack was explored in detail and attempted on many
ciphers: for instance, several ciphers from NIST lightweight cryptography
competition. Nonetheless, in the paper we showed only the most significant
two attacks, that are on the cryptographic hash function SHA-1 and on the
Bluetooth cipher EQ.

In the first, a preimage attack is mounted on a reduced version of the com-
pression function of the primitive, following two directions: leaving more
than 160 bits of the message free we reached round 23 matching the state of
the art results whereas leaving only 64 free bits round 31 was attacked suc-
cessfully outperforming the state of the art.

The attack to EO is a key-recovery attack based on a short keystream,
hence fitting with Bluetooth specifications, performed with the guess and
determine technique. In the choice of the variables to fix, it was crucial the
discovery of a fourteen variables special set that makes the resolution of the
polynomial system particularly easy for half of the assignments. The system
is solved by means of Grobner bases, SAT solvers, and BDDs, and the first
technique seems to obtain the best results. The expected runtime of the attack
is about 27 seconds and to the best of our knowledge improves any previous
attack based on a short keystream.

The second part of the thesis concerns the implementation of an automatic
tool implemented in Python that generates Minizinc models for the search of
the best differential and linear trails of cryptographic primitives. Minizinc is
a free and open-source constraint programming language.

Differential and linear cryptanalysis are presented giving a detailed ex-
planation of how to deal with every possible component of a cipher. This
also comprehends, in the last chapter, the Minizinc implementation of the
main operations. Moreover, in most cases, a slightly different Minizinc im-
plementation is also provided, closer to the one obtained when running the
automatic tool.

Finally, the experimental results for the differential and linear trail search
are shown providing also a comparison with a single paper on the lightweight
block cipher PRESENT.

88 Chapter 1. Conclusion

1.1 Future directions

The research activity could be extended in various directions.

For what concerns algebraic cryptanalysis, it would be interesting to in-
vestigate the possible employment of artificial intelligence for selecting the
best possible set of key variables to fix. Indeed, in my research, this choice
was always a result of an analysis of the structure of the cipher made "by
hand".

Secondly, the automatic tool can be improved:

* New techniques for making the two steps strategy more efficient could
be implemented;

* New constraints, such as the ones for the "shift by variable amount"
component from Raiden block cipher [74], could be added;

* Search for an automatic strategy for finding the best differential instead
of the best differential characteristics;

Finally, one could extend the automatic tool to work also for other kinds
of cryptanalysis, such as impossible differential or rotational cryptanalysis.

89

Bibliography

[1] Andrew V. Adinetz and Evgeny A. Grechnikov. “Building a Collision
for 75-Round Reduced SHA-1 Using GPU Clusters”. In: Euro-Par 2012
Parallel Processing. Ed. by Christos Kaklamanis, Theodore Papatheodorou,
and Paul G. Spirakis. Springer Berlin Heidelberg, 2012, pp. 933-944.

[2] Ralph Ankele and Stefan Kolbl. Mind the Gap - A Closer Look at the Secu-
rity of Block Ciphers against Differential Cryptanalysis. Cryptology ePrint
Archive, Paper 2018/689. 2018.

[3] Kazumaro Aoki and Yu Sasaki. “Meet-in-the-middle preimage attacks
against reduced SHA-0 and SHA-1". In: Annual International Cryptology
Conference. Springer. 2009, pp. 70-89.

[4] Frederik Armknecht and Gwenolé Ars. “Algebraic Attacks on Stream
Ciphers with Grobner Bases”. In: Grobner Bases, Coding, and Cryptogra-
phy. Ed. by Massimiliano Sala, Shojiro Sakata, Teo Mora, Carlo Traverso,
and Ludovic Perret. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 329-348.

[5] Frederik Armknecht and Matthias Krause. “Algebraic Attacks on Com-
biners with Memory”. In: Advances in Cryptology - CRYPTO 2003. Ed.
by Dan Boneh. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
pp- 162-175.

[6] Seminararbeit Bartkewitz. “Building Hash Functions from Block Ci-
phers, Their Security and Implementation Properties”. In: (Jan. 2009).

[7] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK Families of Lightweight
Block Ciphers. Cryptology ePrint Archive, Paper 2013 /404. 2013.

[8] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. “Keying hash func-
tions for message authentication”. In: Annual international cryptology
conference. Springer. 1996, pp. 1-15.

[9] Emanuele Bellini, Alessandro De Piccoli, Rusydi Makarim, Sergio Polese,
Lorenzo Riva, and Andrea Visconti. “New Records of Pre-image Search
of Reduced SHA-1 Using SAT Solvers”. In: Proceedings of the Seventh
International Conference on Mathematics and Computing. Ed. by Deba-
sis Giri, Kim-Kwang Raymond Choo, Saminathan Ponnusamy, Weizhi
Meng, Sedat Akleylek, and Santi Prasad Maity. Singapore: Springer
Singapore, 2022, pp. 141-151.

[10] Eli Biham and Rafi Chen. “Near-Collisions of SHA-0". In: Advances in
Cryptology — CRYPTO 2004. Ed. by Matt Franklin. Vol. 3152. Springer
Berlin Heidelberg, 2004, pp. 290-305.

90

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Eli Biham, Rafi Chen, Antoine Joux, Christophe Carribault Patrick and
Lemuet, and William Jalby. “Collisions of SHA-0 and Reduced SHA-
17. In: Advances in Cryptology — EUROCRYPT 2005. Ed. by Ronald Cramer.
Vol. 3494. Springer Berlin Heidelberg, 2005, pp. 36-57.

Eli Biham and Orr Dunkelman. “A framework for iterative hash functions-
HAIFA”. In: IACR Cryptology ePrint Archive 2007 (Jan. 2007), p. 278.

Eli Biham and Adi Shamir. “Differential cryptanalysis of DES-like cryp-
tosystems”. In: Journal of CRYPTOLOGY 4.1 (1991), pp. 3-72.

Bluetooth Core Specification. revision v5.2. Bluetooth. 2019. URL: https:
//www.bluetooth.com/specifications/bluetooth-core-specification.

A.Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B.
Robshaw, Y. Seurin, and C. Vikkelsoe. “PRESENT: An Ultra-Lightweight
Block Cipher”. In: Cryptographic Hardware and Embedded Systems - CHES
2007. Ed. by Pascal Paillier and Ingrid Verbauwhede. Springer Berlin
Heidelberg, 2007, pp. 450-466.

Bruno Buchberger. “Ein algorithmisches Kriterium fiir die Losbarkeit
eines algebraischen Gleichungssystems”. In: Aequationes Mathematicae
4 (Jan. 1970), pp. 374-383.

Christophe De Canniéere and Florian Mendel and Christian Rechberger.
“Collisions for 70-Step SHA-1: On the Full Cost of Collision Search”. In:
Selected Areas in Cryptography. Ed. by Carlisle Adams and Ali Miri and
Michael Wiener. Vol. 4876. Springer Berlin Heidelberg, 2007, pp. 56-73.

Florent Chabaud and Antoine Joux. “Differential collisions in SHA-0".
In: Advances in Cryptology — EUROCRYPT 2005. Ed. by Hugo Krawczyk.
Vol. 1462. Springer Berlin Heidelberg, 1998, pp. 56-71.

Dengguo Feng Chuan-Kun Wu. “Boolean Functions and Their Appli-
cations in Cryptography”. In: (2016).

Nicolas T. Courtois and Gregory V. Bard. “Algebraic Cryptanalysis of
the Data Encryption Standard”. In: Cryptography and Coding. Ed. by
Steven D. Galbraith. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 152-169.

Nicolas T. Courtois and Willi Meier. “Algebraic Attacks on Stream Ci-
phers with Linear Feedback”. In: Advances in Cryptology — EUROCRYPT
2003. Ed. by Eli Biham. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 345-359.

Joan Daemen, René Govaerts, and Joos Vandewalle. “Correlation ma-
trices”. In: International Workshop on Fast Software Encryption. Springer.
1994, pp. 275-285.

Joan Daemen and Vincent Rijmen. “The Block Cipher Rijndael”. In:
Smart Card Research and Applications. Ed. by Jean-Jacques Quisquater
and Bruce Schneier. Berlin, Heidelberg: Springer Berlin Heidelberg,
2000, pp. 277-284. 1SBN: 978-3-540-44534-0.

https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification

Bibliography 91

[24] Quynh Dang. Recommendation for applications using approved hash algo-
rithms. US Department of Commerce, National Institute of Standards
and Technology, 2008.

[25] Martin Davis and Hilary Putnam. “A Computing Procedure for Quan-
tification Theory”. In: J. ACM 7.3 (July 1960), pp. 201-215.

[26] Christian De Canniere Christophe and Rechberger. “Finding SHA-1
Characteristics: General Results and Applications”. In: Advances in Cryp-
tology - ASIACRYPT 2006. Ed. by Kefei Lai Xuejia and Chen. Vol. 4284.
Springer Berlin Heidelberg, 2006, pp. 1-20.

[27] Christophe De Canniere. “Trivium: A Stream Cipher Construction In-
spired by Block Cipher Design Principles”. In: Information Security. Ed.
by Sokratis K. Katsikas, Javier Lopez, Michael Backes, Stefanos Gritza-
lis, and Bart Preneel. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 171-186.

[28] Christophe De Canniere and Christian Rechberger. “Preimages for Re-
duced SHA-0 and SHA-1". In: Advances in Cryptology — CRYPTO 2008.
Ed. by David Wagner. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 179-202. 1SBN: 978-3-540-85174-5.

[29] Tom van Dijk and Jaco Pol. “Sylvan: multi-core framework for deci-
sion diagrams”. In: International Journal on Software Tools for Technology
Transfer 19 (Nov. 2017). DOI: 10.1007/s10009-016-0433-2.

[30] Georgios Doukidis, Nikolaos Mylonopoulos, Nancy Pouloudi, and Jill
Shepherd. “What is the Digital Era?” In: Jan. 2004, pp. 1-18. 1ISBN: 9781591401599.
DOI: 10.4018/978-1-59140-158-2.ch001.

[31] Tobias Eibach, Enrico Pilz, and Gunnar Volkel. “Attacking Bivium Us-
ing SAT Solvers”. In: Theory and Applications of Satisfiability Testing —
SAT 2008. Ed. by Hans Kleine Biining and Xishun Zhao. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2008, pp. 63-76.

[32] Jeremy Erickson, Jintai Ding, and Chris Christensen. “Algebraic crypt-
analysis of SMS4: Grobner basis attack and SAT attack compared”. In:
International Conference on Information Security and Cryptology. Springer.
2009, pp. 73-86.

[33] Thomas Espitau, Pierre-Alain Fouque, and Pierre Karpman. “Higher-
Order Differential Meet-in-the-middle Preimage Attacks on SHA-1 and
BLAKE". In: Advances in Cryptology — CRYPTO 2015. Ed. by Rosario
Gennaro and Matthew Robshaw. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2015, pp. 683-701. ISBN: 978-3-662-47989-6.

[34] Jean-Charles Faugere. “A new efficient algorithm for computing Grob-
ner bases (F4)”. In: Journal of pure and applied algebra 139.1-3 (1999),
pp- 61-88.

[35] Scott Fluhrer and Stefan Lucks. “Analysis of the EOEncryption Sys-
tem”. In: Selected Areas in Cryptography. Ed. by Serge Vaudenay and
Amr M. Youssef. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001,
pp- 38-48.

https://doi.org/10.1007/s10009-016-0433-2
https://doi.org/10.4018/978-1-59140-158-2.ch001

92

Bibliography

[36]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Kai Fu, Meigin Wang, Yinghua Guo, Siwei Sun, and Lei Hu. “MILP-
based automatic search algorithms for differential and linear trails for
speck”. In: International Conference on Fast Software Encryption. Springer.
2016, pp. 268-288. ISBN: 978-3-662-52992-8. DOI: 10.1007/978-3-662-
52993-5_14.

Patrick Gallagher and Acting Director. “Secure hash standard (shs)”.
In: FIPS PUB 180 (1995), p. 183.

Vijay Ganesh. “Adaptive Restart and CEGAR-Based Solver for Invert-
ing Cryptographic Hash Functions”. In: Verified Software. Theories, Tools,
and Experiments: 9th International Conference, VSTTE 2017, Heidelberg,
Germany, July 22-23, 2017, Revised Selected Papers. Vol. 10712. Springer.
2017, p. 120.

David Gérault, Pascal Lafourcade, Marine Minier, and Christine Sol-
non. “Revisiting AES related-key differential attacks with constraint
programming”. In: Information Processing Letters 139 (2018), pp. 24-29.
1SSN: 0020-0190. DOL: https://doi.org/10.1016/j.1ipl.2018.07.
001. URL: https://www.sciencedirect.com/science/article/pii/
S5002001901830139X.

Sudhir R. Ghorpade. A Note on Nullstellensatz over Finite Fields. 2018.

Jovan Dj. Goli¢, Vittorio Bagini, and Guglielmo Morgari. “Linear Crypt-
analysis of Bluetooth Stream Cipher”. In: Advances in Cryptology — EU-
ROCRYPT 2002. Ed. by Lars R. Knudsen. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2002, pp. 238-255.

Carla Gomes, Bart Selman, and Henry Kautz. “Boosting Combinatorial
Search Through Randomization”. In: Proceedings of the National Confer-
ence on Artificial Intelligence (Mar. 2003).

Evgeny A Grechnikov. “Collisions for 72-step and 73-step SHA-1: Im-
provements in the Method of Characteristics.” In: JACR Cryptology ePrint
Archive 2010 (2010), p. 413.

G. M. Greuel, G. Pfister, and H. Schonemann. “SINGULAR: A Com-
puter Algebra System for Polynomial Computations”. In: ACM Com-
mun. Comput. Algebra 42.3 (2009), pp. 180-181.

Gert-Martin Greuel and Pfister Gerhard. A Singular Introduction to Com-
mutative Algebra. 1st. Heidelberg: Springer Berlin, 2002.

Lov K. Grover. “A Fast Quantum Mechanical Algorithm for Database
Search”. In: Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing. STOC '96. Philadelphia, Pennsylvania, USA:
Association for Computing Machinery, 1996, pp. 212-219.

Howard Heys. “A Tutorial on Linear and Differential Cryptanalysis”.
In: Cryptologia 26 (June 2001).

Oleksandr Kazymyrov, Roman Oliynykov, and Havard Raddum. “In-
fluence of addition modulo 2 n on algebraic attacks”. In: Cryptography
and Communications 8.2 (2016), pp. 277-289. DOI: 10.1007/s12095-015-
0136-7. URL: https://doi.org/10.1007/s12095-015-0136-7.

https://doi.org/10.1007/978-3-662-52993-5_14
https://doi.org/10.1007/978-3-662-52993-5_14
https://doi.org/https://doi.org/10.1016/j.ipl.2018.07.001
https://doi.org/https://doi.org/10.1016/j.ipl.2018.07.001
https://www.sciencedirect.com/science/article/pii/S002001901830139X
https://www.sciencedirect.com/science/article/pii/S002001901830139X
https://doi.org/10.1007/s12095-015-0136-7
https://doi.org/10.1007/s12095-015-0136-7
https://doi.org/10.1007/s12095-015-0136-7

Bibliography 93

[49] John Kelsey and Bruce Schneier. “Second preimages on n-bit hash func-
tions for much less than 2" work”. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer. 2005,
pp- 474-490.

[50] Andreas Klein. Stream Ciphers. Dec. 2013.

[51] Simon Knellwolf and Dmitry Khovratovich. “New Preimage Attacks
against Reduced SHA-1". In: Advances in Cryptology — CRYPTO 2012.
Ed. by Reihaneh Safavi-Naini and Ran Canetti. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 367-383. ISBN: 978-3-642-32009-5.

[52] Matthias Krause. “BDD-Based Cryptanalysis of Keystream Generators”.
In: Proceedings of the International Conference on the Theory and Applica-
tions of Cryptographic Techniques: Advances in Cryptology. EUROCRYPT
'02. Berlin, Heidelberg: Springer-Verlag, 2002, pp. 222-237.

[63] Matthias Krause and Dirk Stegemann. “Reducing the Space Complex-
ity of BDD-Based Attacks on Keystream Generators”. In: Fast Software
Encryption. Ed. by Matthew Robshaw. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 163-178.

[54] Harish Kumar Sahu, Indivar Gupta, N. Rajesh Pillai, and Rajendra Ku-
mar Sharma. “BDD-based cryptanalysis of stream cipher: a prac- tical
approach”. English. In: IET Information Security 11 (3 May 2017), 159-
167(8).

[55] Roberto La Scala, Sergio Polese, Sharwan K. Tiwari, and Andrea Vis-
conti. An algebraic attack to the Bluetooth stream cipher E0. Cryptology
ePrint Archive, Paper 2022/016. 2022.

[56] Florian Legendre, Gilles Dequen, and Michaél Krajecki. “Encoding hash
functions as a sat problem”. In: 2012 IEEE 24th International Conference
on Tools with Artificial Intelligence. Vol. 1. IEEE. 2012, pp. 916-921.

[67] Florian Legendre, Gilles Dequen, and Michaél Krajecki. “Logical Rea-
soning to Detect Weaknesses About SHA-1 and MD4/5.” In: IACR Cryp-
tol. ePrint Arch. 2014 (2014), p. 239.

[58] Gaétan Leurent and Thomas Peyrin. “From Collisions to Chosen-Prefix
Collisions Application to Full SHA-1". In: Advances in Cryptology — EU-
ROCRYPT 2019. Vol. 11478. Advances in Cryptology — EUROCRYPT
2019. Springer, 2019, pp. 527-555. DOI: 10.1007/978-3-030- 17659 -
4_18.

[59] Jorn Lind-Nielsen. “BuDDy : A binary decision diagram package.” In:
1999.

[60] Helger Lipmaa and Shiho Moriai. “Efficient Algorithms for Comput-
ing Differential Properties of Addition”. In: FSE 2001, Lecture Notes in
Computer Science. Vol. 2355. Springer. 2001, pp. 336-350.

[61] Yunwen Liu. “Techniques for Block Cipher Cryptanalysis”. Available
at: https://www. esat .kuleuven.be/cosic/publications/thesis-
306.pdf. PhD thesis. KU Leuven, Faculty of Engineering Science, Sept.
2018.

https://doi.org/10.1007/978-3-030-17659-4_18
https://doi.org/10.1007/978-3-030-17659-4_18
https://www.esat.kuleuven.be/cosic/publications/thesis-306.pdf
https://www.esat.kuleuven.be/cosic/publications/thesis-306.pdf

94 Bibliography

[62] Philippe Loustaunau and William W. Adams. An Introduction to Grob-
ner Bases. American Mathematical Soc., 1994.

[63] Michael Luby, Alistair Sinclair, and David Zuckerman. “Optimal speedup
of Las Vegas algorithms”. In: Information Processing Letters 47.4 (1993),
pp- 173-180.

[64] Rusydi H Makarim and Marc Stevens. “M4GB: an efficient Grobner-
basis algorithm”. In: Proceedings of the 2017 ACM on International Sym-
posium on Symbolic and Algebraic Computation. 2017, pp. 293-300.

[65]].P.Marques Silva and K.A. Sakallah. “GRASP-A new search algorithm
for satisfiability”. In: Proceedings of International Conference on Computer
Aided Design. 1996, pp. 220-227.

[66] Joao P Marques-Silva and Karem A Sakallah. “GRASP: A search algo-
rithm for propositional satisfiability”. In: IEEE Transactions on Comput-
ers 48.5 (1999), pp. 506-521.

[67] Mitsuru Matsui. “Linear Cryptanalysis Method for DES Cipher”. In:
EUROCRYPT. Lecture Notes in Computer Science. Vol. 765. Springer. 1993,
pp. 386-397.

[68] Mitsuru Matsui and Atsuhiro Yamagishi. “A New Method for Known
Plaintext Attack of FEAL Cipher”. In: EUROCRYPT. Lecture Notes in
Computer Sciences. Vol. 658. Springer. 1992, pp. 81-91.

[69] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Hand-
book of Applied Cryptography. Discrete Mathematics and Its Applica-
tions. Taylor & Francis Inc, 1996.

[70] Vegard Nossum. “SAT-based preimage attacks on SHA-1”. MA thesis.
University of Oslo, 2012.

[71] Kaisa Nyberg. “Linear approximation of block ciphers”. In: Workshop
on the Theory and Application of of Cryptographic Techniques. Springer.
1994, pp. 439-444.

[72] Kaisa Nyberg and Johan Wallén. “Improved Linear Distinguishers for
SNOW 2.0”. In: Fast Software Encryption. Ed. by Matthew Robshaw.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 144-162.

[73] Sergio Polese and Andrea Visconti. “Survey: Attacks on hash func-
tions”. In: DE CIFRIS cryptanalysis: selected papers from the itasec2020
workshop "Cryptanalysis, a key tool in securing and breaking ciphers”. Ed.
by aracne. Collectio Ciphrarum. Mar. 2022, p. 71.

[74] Javier Polimén, Julio Hernandez-Castro, Juan Tapiador, and Arturo Rib-
agorda. “Automated design of a lightweight block cipher with Genetic
Programming”. In: KES Journal 12 (Mar. 2008), pp. 3-14. DOI: 10.3233/
KES-2008-12102.

[75] Havard Raddum. “Cryptanalytic results on TRIVIUM.” In: eSSTREAM,
ECRYPT Stream Cipher Project, 2006, Report 2006/039.

https://doi.org/10.3233/KES-2008-12102
https://doi.org/10.3233/KES-2008-12102

Bibliography 95

[76] Jean-Charles Régin. “Global constraints: A survey”. In: Hybrid optimiza-
tion. Ed. by Pascal van Hentenryck and Michela Milano. New York, NY:
Springer New York, 2011, pp. 63-134. ISBN: 978-1-4419-1644-0. DOI: 10.
1007/978-1-4419-1644-0_3. URL: https://doi.org/10.1007/978-1-
4419-1644-0_3.

[77] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Con-
straint Programming (Foundations of Artificial Intelligence). USA: Elsevier
Science Inc., 2006. ISBN: 0444527265.

[78] Roberto La Scala and Sharwan K. Tiwari. “Stream /block ciphers, dif-
ference equations and algebraic attacks”. In: CoRR abs/2003.14215 (2020).

[79] U. Schoning and J. Toran. The Satisfiability Problem: Algorithms and Anal-
yses. Mathematik fiir Anwendungen. Lehmanns Media, 2013.

[80] Yaniv Shaked and Avishai Wool. “Cryptanalysis of the Bluetooth EO
Cipher Using OBDD’s”. In: Information Security. Ed. by Sokratis K. Kat-
sikas, Javier Lopez, Michael Backes, Stefanos Gritzalis, and Bart Pre-
neel. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 187-202.

[81] Claude Shannon. A Mathematical Theory of Cryptography. 1945.

[82] Mate Soos. CryptoMiniSat 5. An advanced SAT solver. 2021. URL: https:
//www.msoos.org/cryptominisat5.

[83] Marc Stevens. “Attacks on hash functions and applications”. PhD the-
sis. Mathematical Institute, Faculty of Science, Leiden University, Jan.
2012.

[84] Marc Stevens. “New Collision Attacks on SHA-1 Based on Optimal
Joint Local-Collision Analysis”. In: Advances in Cryptology - EUROCRYPT
2013. Vol. 7881. Lecture Notes in Computer Science. Springer, 2013,
pp- 245-261. DOI: 10. 1007 /978 -3 -642-38348-9\ _15. URL: https:
//www.iacr.org/archive/eurocrypt2013/78810243/78810243. pdf.

[85] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik
Markov. “The First Collision for Full SHA-1”. In: CRYPTO. Springer,
2017, pp. 570-596. DOI: 10.1007/978-3-319-63688-7_19.

[86] Douglas Robert Stinson and Maura Paterson. Cryptography: theory and
practice. Textboook in Mathematics. Taylor & Francis Ltd, 2018.

[87] Submission Requirements and Evaluation Criteria for the Lightweight Cryp-
tography Standardization Process. 2018. URL: https://csrc.nist.gov/
CSRC/media/Projects/Lightweight-Cryptography/documents/final-
lwc-submission-requirements-august2018.pdf.

[88] Siwei Sun, David Gerault, Pascal Lafourcade, Qiangian Yang, Yosuke
Todo, Kexin Qiao, and Lei Hu. “Analysis of AES, SKINNY, and Oth-
ers with Constraint Programming”. In: IACR Transactions on Symmetric
Cryptology 2017.1 (Mar. 2017), pp. 281-306.

[89] A. Visconti and F. Gorla. “Exploiting an HMAC-SHA-1 Optimization
to Speed up PBKDF2”. In: IEEE Transactions on Dependable and Secure
Computing 17.4 (2020), pp. 775-781.

https://doi.org/10.1007/978-1-4419-1644-0_3
https://doi.org/10.1007/978-1-4419-1644-0_3
https://doi.org/10.1007/978-1-4419-1644-0_3
https://doi.org/10.1007/978-1-4419-1644-0_3
https://www.msoos.org/cryptominisat5
https://www.msoos.org/cryptominisat5
https://doi.org/10.1007/978-3-642-38348-9_15
https://www.iacr.org/archive/eurocrypt2013/78810243/78810243.pdf
https://www.iacr.org/archive/eurocrypt2013/78810243/78810243.pdf
https://doi.org/10.1007/978-3-319-63688-7_19
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf

96 Bibliography

[90] Johan Wallén. “Linear Approximations of Addition Modulo 2n”. In:
Fast Software Encryption. Ed. by Thomas Johansson. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 261-273.

[91] Toby Walsh. “Search in a Small World”. In: IJCAI International Joint Con-
ference on Artificial Intelligence 2 (Apr. 2002).

[92] Xiaoyun Wang and Yiqun Lisa Yin and Hongbo Yu. “Finding collisions
in the full SHA-1". In: Advances in Cryptology — EUROCRYPT 2005. Ed.
by Victor Shoup. Vol. 3621. Springer Berlin Heidelberg, 2005, pp. 17-36.

[93] Hongjun Wu and Tao Huang. “TinyJAMBU : A Family of Lightweight
Authenticated Encryption Algorithms (Version 2)”. In: 2019.

	Introduction
	Notation

	I Algebraic cryptanalysis
	Symmetric ciphers
	Block ciphers
	Subtitution permutation networks

	Stream ciphers
	Hash functions
	Birthday attack
	Brute-forcing a preimage
	Merkle-Damgärd construction

	Algebraic attacks
	The algebraic representation
	Auxiliary variables
	Main operations and their algebraic representation

	Attacks on cryptographic primitives
	Fixing some key bits
	Choosing the set of variables to be fixed
	Consider simplified versions of a primitive

	Possible solving methods
	SAT solvers
	Gröbner basis based solvers

	Guess and determine with Gröbner bases

	Algebraic attack to E0
	The stream cipher E0
	The algebraic attack on E0
	The 83 variables set
	Experimental results
	Expected runtime of the attack

	SHA1
	Related works
	The hash function SHA-1
	Modelling SHA-1 as a system of equations
	The algebraic attack on SHA-1
	Experimental results
	Final observations

	II Differential and linear cryptanalysis
	Differential cryptanalysis
	Formal definitions
	Differential analysis of main operators
	Two steps strategy
	Partial key-recovery differential attack

	Linear cryptanalysis
	Formal definitions
	Linear analysis of main operations
	Partial key recovery linear attack

	Automatic tool for differential and linear cryptanalysis
	Constraint Programming (CP)
	Solving algorithms
	Global constraints
	Practical example

	CP constraints for the main operators in differential search
	XOR
	Rotation/Shift
	Linear Layer/Mix Column
	Sboxes/AND/OR
	Modadd

	Constraints and automatic tool for two steps strategy
	XOR
	Mix column

	CP constraints for the main operators in linear search
	Branching
	Shift
	Modadd

	Experimental result

	III Conclusion
	Conclusion
	Future directions

