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che non è niente, non conta niente, ce la siamo inventata solo per stare
tranquilli, per rassicurarci fingendo di spaventarci. C’è ben altro! Siamo
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Introduction

Motivation

Characterization and engineering are the basis for any technological development that
aspires to exploit scientific breakthroughs and novel physical phenomena. Nowadays, it
is impossible to ignore the exceptional results and developments that quantum mechan-
ics, in combination with information theory, has developed in recent decades.

The first quantum revolution was fundamentally based on the wave-particle duality
[124]. Thinking of matter as a wave allowed us to explain chemical reactions or elec-
tronic behaviour in atoms and semiconductor physics. Conversely, thinking of waves as
particles resulted in the development of laser fields. Other technological advancements
are indebted to this new paradigm: it is sufficient to remember nuclear technologies
or semiconductor physics to understand the relevant role that quantum mechanics has
acquired in the last half of the XXth century. In particular, chip technology based on
semiconductor physics has completely transformed our age, which is by someone now
referred to as the information age [202, 345].

The impact of information theory in the development of quantum mechanics and its
applications has become increasingly evident since the end of the XXth century. In the
second quantum revolution we are witnessing today, we are actively employing quan-
tum mechanics to produce novel physical states of light and matter, which promise to
have enhanced properties of sensitivity and non-classical correlations, that aims to pro-
vide significant improvements for a specific range of applications [111]. These peculiar
quantum properties, such as superposition, entanglement and contextuality, are not usu-
ally experienced in classical physics and must be properly engineered to be successfully
exploited.

We can circumscribe four areas that have been most affected by this second quantum
revolution:

• Quantum sensing and metrology. The high sensitivity of quantum systems is cru-
cial for the efficient acquisition of information and for performing more precise
measurements. The first generation of quantum sensors relied on classical physics
and electronic devices, whereas the new generation promises to improve the ac-
curacy using phenomena such as entanglement and non-local correlations [114].
It is also worth mentioning that the engineering of devices at the nanoscale, and
thus inevitably quantum, could enable high-precision and extremely low-invasive
measurements, a paradigm often referred to as quantum probing.

xiii
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• Quantum control of complex systems. One of the key lessons of cybernetics and the in-
formation age is that no complex technology can efficiently work in a broad range
of situations without incorporating control and feedback mechanism. The pres-
ence of noise and stochastic behaviour (whether classical or quantum in nature)
makes it necessary to continuously correct systems to achieve efficient and reliable
performance. The development of quantum control techniques is thus crucial for
building peculiar non-classical states, which may then be used to perform specific
tasks.

• Quantum communications and cryptography. Quantum systems can be used to store
and exchange information. Understanding how to do this with more secure and
efficient protocols is of paramount importance in our digital age. The use of non-
local correlations and quantum superpositions aims to provide new protocols for
secure communication and faster and more reliable transmission of information.

• Quantum computing and simulation. The possibility of using quantum properties
to process information and perform computational tasks is related to the formula-
tion of new algorithms capable of outperforming classical computing paradigms.
Quantum interference, coherence and entanglement are the fundamental concepts
behind this new computational approach. Furthermore, a systematic development
of measurement, control and communication on the quantum scale will facilitate
the building of quantum computers.

The emergent field of quantum technologies not only promises to outperform stan-
dard protocols already present in the market, but they also offer new and unexplored
paradigms, as well as a new wave of industrial applications [98]. This is also why it has
attracted great attention, even outside the narrow circle of experts. Recent studies show
interest in topics that are not strictly scientific-related, such as the impact on society [130]
and the legislative apparatus [180]. Moreover, governments and political entities have
found it essential to propose coordinated strategic development plans for this field of
research [294]. Not least, the recent Nobel Prizes assigned to Haroce and Wineland in
2012, and Aspect, Clauser and Zeilinger [293, 309] in 2022, only confirm this interest in
quantum technologies and the non-classical aspects that they promise to exploit for the
development of new and increasingly powerful tools.

Achieving such results and the so-called quantum advantages can only pass through
the development of new theoretical and experimental methodologies, and the claim of
super-classical performance must rely on precise assessments of the resources under play.
As already stated, all these new technologies rely on high-precision measurements and
engineering: these will be the topics that this thesis covers.

The scope of this work is to provide new results regarding quantum sensing and
quantum control. The need for quantum systems to work in well-established tempera-
ture regimes has brought much attention to quantum thermometry. Moreover, under-
standing the relevant property in building quantum thermometry is quite relevant to
achieve and surpass classical limits. This engineering problem can be studied using the
mathematical tools that have been developed and that enable us to characterize this kind
of system. Indeed, establishing new methods to probe temperatures of fragile systems
and in very unstable regimes, such as in the low-temperature one, is critical for the de-
velopment of trustworthy quantum devices that can retain quantum features over long
periods of time. Decoherence and noise are detrimental for many tasks in all the four key
areas mentioned above. On the other side, the paradigm of quantum probing offers a
new perspective on decoherence. Instead of considering it as detrimental, it exploits the
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inherent fragility to probe features of the environment and to better characterize it, for
instance in temperature measurements. We will report the results of quantum thermom-
etry in Part II, where we will show the fundamental resources that enable advantages in
temperature sensing.

The ability to jointly estimate parameters is of pivotal importance in several fields,
from imaging to gravitational wave detectors. The measurement of quantum systems
has limitations that can be very different in nature: this might come from external
sources, such as the interaction with external environments, or it might be quantum
in nature, such as the impossibility of simultaneously measuring non-commutative ob-
servables. Both these scenarios limit our ability to probe quantum systems, and their
fundamental understanding can have an impact both at the foundational and applica-
tive levels. We will see in Part III how to characterize this quantum noise coming from
measurement incompatibility. We will do this in a general setting, but also for a more
concrete example, i.e. for the characterization of quantum optical devices.

Finally, the last contribution of this PhD thesis consists of a new proposal for quan-
tum search with continuous-time quantum walks. Using the principles of quantum
mechanics to do computation was first proposed by Feynman. In particular, quantum
search algorithms make use of quantum superposition and phase interference to find
items in a structured graph, and they aim to provide speedup compared to equivalent
classical algorithms. The proposed protocol combines three different fields of research,
i.e. continuous measurement, feedback and quantum walks, to provide a novel method
to perform quantum search protocols on graphs. We will dedicate Part IV to show the
results and compare the advantages with known protocols.

Thesis overview

The PhD thesis consists of a preliminary part, three main parts, conclusions and a final
appendix, for a total of 10 chapters. Part I introduce the notation and basic tools to
understand the rest of the thesis. Part II is focused on the thermometric properties of
quantum systems. Part III is dedicated to results on the characterization of quantum
systems in multi-parameter metrology. Part IV deals with feedback and control with
continuous-time quantum walks.

• In Chapter 1, we present the postulates of quantum mechanics from a modern per-
spective. We introduce the basic mathematical tools to deal with quantum states,
quantum evolution and quantum measurements.

• In Chapter 2, we discuss the most important results in quantum metrology, namely
Helstrom bound in quantum discrimination, and the quantum Cramer-Rao and
Holevo bound in multi-parameter estimation. We also present the notion of mea-
surement incompatibility and how to quantify it.

• In Chapter 3, we present the basic formalism to describe continuous-time quantum
walks in terms of the adjacent and Laplacian matrix.

• In Chapter 4, we study the role of topology in the estimation precision of tempera-
ture. We analyze different topological aspects of the structure of a quantum walker
and characterize the optimal systems in low and high-temperature regimes. Re-
sults have been published in [74].

• In Chapter 5, we study how to exploit pure dephasing probes in a thermometry
discrimination task. We evaluate the minimum probability of error and we provide
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the optimal strategy to achieve it. More in general, we identify the main resources
to achieve better performance with respect to equilibrium probes. Results have
been published in [71].

• In Chapter 6, we analyze the simultaneous estimation of non-linearities with Gaus-
sian probes. We prove that squeezing is an important resource to reach the ultimate
limit in the individual and joint estimation of the parameters, and we establish with
analytical and numerical tools the ultimate bounds, also with respect to the initial
preparation. Results have been published in [73].

• In Chapter 7, we investigate the asymptotic incompatibility measure, a quantifier
of measurement incompatibility in multi-parameter quantum metrology. We prove
new properties of this quantity related to the maximal number of incompatible
parameters. We also study it in the problem of full tomography, conjecturing that
its value is related to the fictitious temperature of the state. Results have been
published in [72].

• In Chapter 8, we analyze the use of continuous measurement and feedback op-
erations on continuous-time quantum walks that perform quantum search. The
numerical results for a cycle graph show advantages compared to the already es-
tablished protocols. Results have been published in [70].
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CHAPTER 1

Mathematical tools for quantum mechanics

This thesis is mainly concerned with quantum mechanics and its applications in three
main topics: quantum thermometry, quantum metrology, and quantum random walks.
As a result, this preliminary section is devoted to a basic introduction to the mathemat-
ical tools used in modern quantum mechanics. In particular, we present the formalism
from an information perspective [263], which is more suitable for the application we are
interested in. In this chapter, we aim to introduce the notation and concepts that will
return in the thesis. Our main references are [263, 127], but there are other approaches,
see for instance [99, 257].

This chapter is organized as follows. In Sec. 1.1, we first familiarize with the main
ingredients used to describe a statistical theory: states, transformation and measure-
ment. Then, we present in order how these are formalized in quantum mechanics: in
Sec. 1.1.1 we review the state postulate, introducing the wave function and the density
matrix formalism. In Sec. 1.1.2 we review the evolution of quantum system, i.e. the
Schrödinger equation. We also briefly introduce quantum operations, a generalization
of unitary transformations. Finally in Sec. 1.1.3 we present the measurement postulate
and the mathematical framework of positive-operator valued measurements (POVMs).

1.1 The postulates of quantum mechanics

The postulates of quantum mechanics have long been debated [186], and still today there
is no complete agreement on the minimal assumptions leading to the theory of quantum
mechanics [75, 235]. In this thesis, we embrace an agnostic approach, and we just present
the necessary mathematical structures required for describing quantum systems.

Quantum mechanics is a statistical framework for the description of a certain class of
phenomena. From an information perspective, the formalism does not specify the physi-
cal system, neither the physical laws that that system must satisfy. Rather, it provides the
building blocs that connects the mathematical formalism to the observed phenomena. In
this setting, the fundamental blocks are three:

1. state space H: every elements in H represents a physical state of the system, en-
coding all the relevant physical degrees of freedom.

2. transformation rules E : every E prescribes how the states in H change, eventually
under the interaction with external systems.

3. measurements ⇧: a rule that predicts the results of a measurement process, the
only way we can obtain information on the systems degrees of freedom.

3



4 1.1 Postulate 1: Quantum states

We would like to mention that also classical mechanics can be rephrased in this language:
the states are a collection of independent coordinates and momenta {qi, pi}, while the
evolution are given in terms of differential equation. Finally, the rule that predicts the
result of measurements are probability measures [127].

In the quantum realm, these prescriptions are also referred as the postulates of quan-
tum mechanics. For each of the three postulates, we first present their standard formula-
tion usually seen in undergraduate courses with pure states, unitary maps and quantum
observables. For each of them we will see that suitable generalization are necessary
to give a complete description of the systems under study, in terms of density matrix,
quantum operations and POVMs.

1.1.1 Postulate 1: Quantum states

The first postulate specify the state space H, or the physical degrees of freedom are en-
coded. We present it using the Dirac formalism.

Postulate 1: State of quantum systems

The degrees of freedom of a quantum system are described by normalized vectors
| i in a separable complex Hilbert space H. Composite systems are associated to the
tensor product H1 ⌦H2 ⌦ . . . of the Hilbert spaces corresponding to each component
of the system.

We recall that a complex Hilbert space is a complete vector space on a complex field
endowed with a scalar product h |�i 2 C, which is necessary to define the notion of
probability, as we are going to see in the last section. Instead, the properties of linearity
and complex field are needed in order to accommodate all interference phenomena that
radiation and matter display in the quantum realm. This also implies that if | 1i and
| 2i are states, than any normalized linear combination of the two ↵| 1i + �| 2i with
|↵|2 + |�|2 = 1 is a proper state of the system, where ↵ and � are complex number
known as amplitudes. In the quantum mathematical jargon, this linear combination is
known as the superposition principle. The main consequence of this fact will become clear
with the introduction of observables. Finally, apart for mathematical convenience, the
request of H to be separable ensures us that a numerable basis exists. From a physical
point of view, this means that the state is uniquely determined by a countable number
of measurements.

As a final remark, we notice that the requirement to have normalized states is not suf-
ficient to identify a single vector in the Hilbert space: in fact, there is an arbitrary global
phase ei↵ such that the two states | i and ei↵| i are completely equivalent. For this rea-
son and to be more precise, quantum states should be identified with ray in H, that is
the equivalence classes of vectors of length 1 in H. These are univocally determined by
a rank-one projection operator in H

% = | ih |, (1.1)

satisfying %2 = %. The % is the density matrix of the system, and is a bounded, positive
semi-definite, trace-one operator. Since this represent a physical state of the system, we
assume that there is at least one physical procedure that prepares the physical system in
such state with certainty. For this reason, such states are known as pure states.
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However, the preparation of the physical system may not be completely under con-
trol. Then, a probabilistic description must be considered. This is given with respect to
a certain statistical ensemble {pi, | ii}, where the ith state | ii is prepared with prob-
ability pi. Since this is a classical ensemble, the state of the system can be written as a
probabilistic mixture of the pure states in the ensemble as

% =
X

i

pi| iih i|. (1.2)

Even in this case, the density matrix is a bounded, positive semi-definite, trace-one oper-
ator, and hence will have all the fundamental properties needed to derive a probabilistic
rule from it. The only difference is that the state is not pure anymore, and its purity is
always smaller than one µ[%] = Tr

�
%2
 

 1. The equality is obtained iff and only if the
state is in the form of Eq. (1.1).

1.1.2 Postulate 2: Quantum evolution

The second postulate prescribe how the states defined in Postulate 1 change. The first
formulation is given in terms of the Schrödinger equation as

Postulate 2: Evolution of quantum systems

The states of a system evolves in times according to the differential equation

i~
d

dt
| (t)i = bH(t)| (t)i, (1.3)

known as the Schrödinger equation. The operator Ĥ(t) is the Hamiltonian of the sys-
tem and ~ is the Planck’s constant.

A formal solution of such equation can be derived in terms of unitary operator
U(t, t0). Indeed, given an arbitrary initial condition | (0)i at time t = 0, the state of
the system at time t is given as

| (t)i = bU(t, t0)| (0)i, (1.4)

where U(t, t0) can be formally written as

bU(t, t0) = T exp

⇢
� i

~

Z
t

t0

dt0 bH(t0)

�
. (1.5)

Here, T is the time-ordering operator, whose effect is to put non-commuting operators
in the correct chronological order

T bH(t1) bH(t2) =

(
bH(t1) bH(t2) if t1 < t2
bH(t2) bH(t1) if t1 > t2

(1.6)

Differently from the differential equation (1.3), that describe the evolution continuously
in time, the formulation in terms of unitary operator describes how to map a quantum
state from time t0 to time t.
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It is a straightforward exercise to prove that we can also write Eqs. (1.3)–(1.4) in terms
of the density matrix % respectively as

d

dt
%(t) = � i

~
[ bH(t), %(t)] (1.7)

%(t) = bU(t, t0)%(0)bU(t, t0)
† (1.8)

A time-dependent Hamiltonian bH(t) in general means that the system is not closed,
but it varies according to some experimentalist’s control. Instead, in the case where
bH(t) ! bH is time-independent, the system is closed and isolated. In this case, an ex-
act closed solution for the evolution can be obtained. If we denote with E� and {|e�i}
respectively the eigenvalues and the eigenstates of bH , then we can write explicitly the
unitary operator as

bU(t, t0) = exp

⇢
� i

~

bH(t � t0)

�
=
X

�

e�i
i

~E�(t�t0)|e�ihe�| (1.9)

and then the evolved state is simply

| (t)i =
X

�

c�(0)e�
i

~E�(t�t0)|e�i (1.10)

where the c�(0) are the amplitudes of the initial state in the energy eigenbasis | (0)i =P
�

c�(0)|e�i.
From a more general perspective, a transformation of a system is a map that trans-

form quantum states % in quantum states E [%]. These are known as quantum operation or
quantum channel and in principle are the most general way to describe the evolution of
quantum systems. Here we briefly characterize their mathematical structure and we see
how they reconcile with the formulation in terms of unitary operations.

We can list three fundamental properties of quantum operations E [%], necessary for a
complete and consistent description of quantum systems:

1. The map must be positive E [%] and trace preserving Tr {E [%]} = 1. In this way, the
output of the map is a density matrix and preserve the normalization of states.

2. The map E [%] is linear

E
"
X

i

pi%i

#
=
X

i

piE [%i] (1.11)

This means that the state obtained from a certain statistical ensemble mixture
{pi, %i} is the ensemble of evolved states E [%i].

3. The map is completely positive E [%]. This means that any extended map E ⌦ I on
the auxiliary system H ⌦ Ha is positive as well, independently on the dimension
of Ha. Physically, it means that the map is a faithful quantum operation even if we
look at it from a larger systems.

Given all these request, each capturing different well defined physical property, the fol-
lowing theorem fully characterize quantum operations [207]
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Theorem 1: Kraus operator-sum representation

A map E [%] is a quantum operation, i.e. satisfy the three properties presented above,
if and only if is the partial trace of a unitary evolution on a larger Hilbert space H⌦Ha

with factorized initial condition

E [%(t0)] = Tra

�
U(t, t0)%(t0) ⌦ %a(t0)U(t, t0)

†
 

(1.12)

This is equivalent to the Kraus decomposition

E [%] =
X

k

Mk%M
†

k
(1.13)

where {Mk} are the Kraus operator satisfying
P

k
M†

k
Mk = I.

The theorem is also known as the Stinespring dilation theorem [328]. The Kraus rep-
resentation is the generalization of unitary operations to arbitrary quantum evolution,
satisfying the minimal properties that give rise to a proper quantum evolution. Unitary
maps are included, and are identified as the one with a single Kraus operator Mk. These
are also the only invertible quantum operations. We have presented the theorem from an
axiomatic perspective, but since the theorem is an if and only if, it assures us a construct-
ing method to build such map by tracing a unitary operation on a larger system. Finally,
we also mention that the third condition on completely positivity may not be necessary
to describe physical transformations [320].

1.1.3 Postulate 3: Quantum measurements

The third postulate specifies the observable quantities of the theory and what we can
predict about the outcomes of measurements. The system is no longer isolated during
these processes, hence a unitary dynamics does not provide a suitable dynamical de-
scription. Hence, we have to introduce another postulate that makes predictions on the
outcomes of the theory and prescribes how the system change accordingly.

To do so, we first need to identify the observable quantities. In the quantum scenario,
these are self-adjoint operator bA, and they admit a spectral decomposition

bA =
X

m

amPm, (1.14)

where the am are the eigenvalues of bA and represent the values of the possible outcomes,
while the Pm = |amiham| are projectors PmPm0 = �mm0Pm on the eigenvectors {|ami} of
bA. These are a complete set of orthonormal states, i.e. ham|am0i = �mm0 , from which it
follows that

P
m

Pm = IH. We can now state the rule that associate a probability to each
possible outcome:
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Postulate 3: Measurement of a quantum system

The probability of obtaining the mth outcome from the measurement of an observ-
able bA given the state % is given by the Born rule

pm = Tr {%Pm} =
X

i

pi|h i|ami|2 (1.15)

In the case we measure the system and we observe the mth outcome, the post-
measurement state is given by

%m =
Pm%Pm

pm

= |amiham|. (1.16)

This is the fundamental recipe to assign probabilities to outcomes of an observable.
Indeed, given a certain state, we can also evaluate average values of the observable bA as

D
bA
E

= Tr
n
% bA
o

=
X

m

ampm =
X

m,i

ampi|h i|ami|2. (1.17)

An important feature of quantum mechanics is the presence of incompatible observables,
i.e. pair of observables { bA, bB} that do not commute [ bA, bB] 6= 0. In this case, there is no
common eigenbasis for the two operators. This has important physical consequences: if
we measure the first observable and obtain the outcome am, there is no certainty about
the outcome of the measure of the observable bB, see Eq. (1.15). Conversely, if the two ob-
servable commutes [ bA, bB] = 0, it means that they share a common set of projectos Pm and
a joint measure is possible. Indeed, after we have measured bA and observed am, then the
measure of bB will yield for sure the outcome bm, and we can simultaneously assign the
values {am, bm} to the state %. As already mentioned, the presence of non-commuting
observables is essentially equivalent to the possibility of having superpositions: super-
posed states coming from of a certain set of projectors can form non-commuting basis.

The density matrix formalism is particularly powerful in the description of subsys-
tem of composite system. Let us assume that we have a bipartite system whose state is
given by the density matrix %AB . Suppose the observable bA is on the partition A only,
with overall observable bA = bA ⌦ IB . The probability distribution of the outcomes is
given by (1.15), but since the observable is only on the partition A, we expect the Born
rule to be valid even at the level of the single system. Hence, we need a function that
properly maps a density matrix %AB to %A in such a way that the probability distribution
given in (1.15) correspond to

pm = TrAB

�
%ABPm ⌦ IB

 
= TrA

�
%APm

 
. (1.18)

One can show that the only mapping from %AB to %A is given by the partial trace

%A = TrB

�
%AB

 
(1.19)

where the partial trace is formally defined as

TrB {|aiihaj | ⌦ |bkihbl|} = |aiihaj |Tr {|bkihbl|} . (1.20)
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One can prove that the partial trace yields to a positive unit trace operator %A and hence
is the unique operation that allows to maintain the Born rule, i.e. consistency in the
prediction both at the bipartite and at the single level description. Here, we recover
another interpretation of the density matrix, i.e. the state of a system whose knowledge
is only partial with respect to a larger global picture.

In an analogous way as with unitary operation and quantum operation, it is not nec-
essary to restrict ourself to observables in order to prescribe outcomes probabilities. In-
deed, by analyzing the fundamental properties that define a probability distribution, we
can look for some generalizations. This yields to definition of generalized measurements,
or POVMs.

A closer look at the Born rule in Eq. (1.15) allows us to rewrite it as

pm = Tr {%Pm} = Tr
�
%P 2

m

 
. (1.21)

Since the only request to have a probability are the fact that the pm are positive and
their sum is 1, it is quite natural to observe that a sufficient condition to obtain positive
pm consists in asking that the %P 2

m
are positive semi-definite. Since % is a state and is

positive semi-definite by definition, we may relax the request of P 2
m

as projectors, and
just asking them to be semi-definite positive operator ⇧m. Of course, to preserve the
fact that the pm are a probability, we need that

P
m
⇧m = IH. These define a POVM

⇧ = {⇧m} and the ⇧m are the POVM elements. Differently from the observable case,
where the number of projector is equal to the dimension of the Hilbert space, here the
number of the POVM elements is not constrained, and might be larger then dimH.

With this generalization, we have lost some information in the description of the mea-
surement. Indeed, generalized measurements given by POVMs have sufficient mathe-
matical structure to define probability distribution on the Hilbert space, but it is not
possible to determine the post-measurement state as in Eq. (1.16). A further structure is
needed, which is formalized in terms of quantum instruments.

To obtain such structure, it is sufficient to introduce a set of operators called detection
operators Dm which yields the post measurement according to (1.16), i.e.

% ! %m =
Dm%D†

m

pm

, (1.22)

with
pm = Tr

�
Dm⇧mD†

m

 
= Tr

�
⇧mD†

m
Dm

 
. (1.23)

Since D†

m
Dm is positive semi-definite, we see that a specific set of detection operators

give rise to a unique POVM as
D†

m
Dm = ⇧m. (1.24)

However, the converse is not true: given a POVM ⇧ = {⇧m}, any detection scheme
{UmDm} with Dm =

p
⇧m correctly describes the same POVM. Actually, any POVM

defines a class of detection schemes {UmDm}, where Dm =
p
⇧m are fixed by {⇧m}. In

other words, the POVM fixes the probability, but not completely the post-measurement
states: from a physical point of view this means that there is an infinite number of ex-
periment/detection schemes yielding the same probability distribution of the outcomes.
We can also see the detection operator Dm and the POVM elements ⇧m respectively
as a generalization of the Pm and P 2

m
. We will refer to POVMs made of projectors as

projection-valued measures (PVMs).
Analogous to Kraus’s theorem , we can prove that any generalized measurement ⇧

can be described by the measure of an observable in a larger Hilbert space. Such process
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can be viewed as a consequence of Stinespring’s dilation Theorem 1 and bares the name
of Naimark theorem [263]

Theorem 2: Naimark theorem

For a given POVM ⇧ = {⇧m} on H there exists an ancillary system Ha, a pure state
| aih a|, a unitary operation on H ⌦ Ha and a projective measurement Pm on Ha

such that the POVM elements ⇧m are given as

⇧m = Tra

�
UI ⌦ | aih a|U†

I ⌦ Pm

 
(1.25)

The setup is referred to as a Naimark extension of the POVM.

This theorem simply states that there is a one-to-one correspondence between
POVMs and indirect measurements of the type describe above. In other words, an in-
direct measurement in which a projective measurement is performed on the ancillary
system, sometimes also named as pointer or meter, may be seen as the physical imple-
mentation of a POVM. At the same time, any POVMs have a suitable representation
with respect to an indirect measurement with projective measurement, establishing the
possibility of a physical implementation of POVMs.

The possible Naimark extensions are infinite, corresponding to the intuitive idea that
there are infinite ways, with an arbitrary number of ancillary systems, of measuring
a given quantity. This is nothing but the fact that there are infinite possible detection
operators {Dm} with the same POVM ⇧.



CHAPTER 2

Introduction to quantum metrology

Metrology is the science of measurement, and it consists of devising schemes that can
extract as much information as possible from the system of interest using methods from
statistical inference. The usual topics range from the estimation of parameters to the ac-
ceptance or rejection of a certain hypothesis. Each of these problems is based on exper-
imental data, and as a result, the mathematical tools of quantum sensing are essentially
based on statistical science. As one may imagine, this is a vast field of research that in-
tersects with several other disciplines: starting with the purest sciences such as physics,
and chemistry, moving on to the medical sciences, biology, and even economics and so-
ciology, and many others. The countless applications are far too many to list here, and
they had an immense impact on the world today [284]. In the quantum realm, we usu-
ally refer to all these protocols of estimation and discrimination as quantum metrology
or quantum sensing.

In this thesis, we are interested in quantum physical science and in developing the
mathematical tools regarding quantum discrimination and local quantum parameter estima-
tion. Here, problems are usually formulated in three steps: probe preparation, interac-
tion with a certain system and a final readout. Although errors inevitably affect any
measurements, the appropriate choice of these stages may enhance sensitivity and pre-
cision. In particular, quantum metrology seeks scenarios where possibly non-classical
resources provide enhancement over classical strategies and tries to identify and quan-
tify them.

Indeed, in the classical setting, there is an equivalence between the information en-
coded in the state and the information potentially accessible. For instance, the state vari-
ables (position q and momentum p) are also observables and there is no fundamental
limitation on the precision with which we can measure them. On the other side, in the
previous chapter we presented the postulates of quantum mechanics and their mathe-
matical foundation. Different classes of objects were introduced, and we saw that states
and observables quantities are two distinct and separate mathematical objects. The first
can be considered as the carrier of all the information we have on the physical degree
of freedom of our system, whereas the second are the quantities that we can practically
observe and measure. We have already seen some limitations on what we can say about
the physical degrees of freedom when we discussed incompatible observables. In this
chapter, we will see how this affects quantum sensing as well.

A question naturally arises: to what extent can we determine the state % of a quantum
system? There are different approaches to this problem, which depend on the physical
setting and the prior knowledge we have of the physical system itself. The first we
introduce is the discrimination problem in Sec. 2.1. In this case, we have a set of possible
states {%k} that forms a hypothesis set, and we wish to determine in which state the
system is with the maximum confidence.

11
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The second approach is given in terms of parameter estimation, and it is presented
in Sec. 2.2. Even in the classical scenario, several quantities of interest are not directly
observable. Usually, they are described by parameters that we use to model the theory
behind the experiment. To find their values, one has to deal with random data and
needs statistical tools to obtain the most precise estimate of the parameter under study.
The randomness may come from noisy disturbance, like in electrical communication, or
because the nature of the phenomenon is intrinsically stochastic. A set of parameters can
be used to describe the underlying probabilities, and estimation theory is the branch of
statistics that aims to find the best procedures and the most fundamental limits in the
parameters’ estimation. In the quantum setting, this means that we have some prior
knowledge of the structure of the state, and usually, it is a family of states that depends
on a set of parameters ✓, and we wish to determine with the highest precision such
parameters. In both cases, since experimentalists can have access to quantum states only
through observable quantities, we wish to determine the optimal physical procedure, i.e.
the POVM, that yields the maximum confidence.

2.1 Quantum Discrimination

The problem of discriminating different hypotheses is ubiquitous in many scientific
fields. In the quantum realm, quantum discrimination has had an impact on the devel-
opment of several quantum technologies, especially in optical communication [21]. One
of the most important achievements has been the B92 quantum key distribution proto-
col, in which it was proposed to use the unambiguous discrimination of two nonorthog-
onal states as the basis to form a quantum cryptographic protocol [38], and see also
[217, 30, 29] for recent experimental implementation with continuous variable systems.
Quantum discrimination is also involved in foundational questions of the theory, see the
Pusey–Barrett–Rudolph (PBR) theorem [283, 310]. They also have been investigated in
 -epistemic theory [216] or in generalized probabilistic theories [20]. More recently, con-
textual advantage has also been proved for quantum discrimination in different settings
[311, 136].

The problem is usually formulated as follows [88, 246, 26, 21, 40, 41, 39]: let us assume
that one party, Alice, can prepare a set of quantum states {%i}N

i=1 each with a certain
probability qi. These %i are the a priori quantum states and the qi correspond to the a
priori probabilities. We will refer to the pair {%i, qi} as the hypothesis set. This hypothesis
set is shared with Bob, whose goal is to determine which element in the hypothesis set
was generated by the probabilistic preparation procedure of Alice. Since Bob can not
directly measure the state of the system, all the information he gains comes from the
outcomes of a certain measurement scheme he performs. The main difficulty in such
a problem is that, due to the superposition principle, there must exist non-orthogonal
states that have nonzero overlap. As we are going to see, a straightforward consequence
is that, for these states, there is no way to determine with certainty which state was
prepared [88]. This is in strict connection with the no-cloning theorem [355], according
to which no procedure can generate an identical copy of an unknown quantum state.

To address this problem, different approaches have been developed in the last 50
years, which depend on the kind of hypothesis set we have and which kind of predic-
tion Bob wants to obtain from his measurement outcomes. We can identify three main
strategies to address a quantum discrimination task [39]:

1. Minimum error discrimination strategy: in this case, we ask to have only conclu-
sive results. This means that we want to be able to draw a conclusion concern-
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ing the elements in the hypothesis set, whatever the outcome of the measurement
is. As a result, errors are unavoidable when the states in the hypothesis are non-
orthogonal since we can not perfectly distinguish them. To have conclusive results
only, each outcome must be associated with one and only one of the hypotheses.
The probability of guessing the correct state given certain outcomes yields an over-
all probability of error, which is the main figure of merit that must be minimized.
Historically, this was the first strategy introduced in seminal works of Helstrom
[172] and Holevo [178].

2. Unambiguous discrimination strategy: in this scenario, the observer is not al-
lowed to draw wrong conclusions: if the apparatus yields the outcomes corre-
sponding to a certain element in the hypothesis set, then we must conclude with
certainty that the state was this one. However, the presence of non-orthogonal
states in the hypothesis set does not always allow us to have definite answers.
Consequently, there is also a non-zero probability to obtain inconclusive answers
from which we can not draw any conclusion about the hypothesis. Hence, the
goal of this procedure is to minimize the probability of obtaining this inconclusive
outcome. This strategy was first introduced in [187] and then solved for N = 2
hypothesis with pure states in [122, 268].

3. Maximum confidence discrimination strategy: this is a generalization of the un-
ambiguous strategy, where the hypothesises are not linearly independent and was
introduced more recently in [106]. It optimizes the posterior probability P (%i|i)
(called confidence) that the state was prepared in %i and the corresponding out-
come i was detected.

In this thesis, we are going to deal specifically with the first strategy, which is going to
be reviewed in the following section.

2.1.1 Minimum error Discrimination

Many applications in quantum communication and quantum cryptography need only
to have conclusive answers. This means that, based on the outcome of the measure-
ment, Bob has to draw a conclusion, which is unavoidably affected by some error to be
wrong. In this section, we are going to derive this probability of error and the optimal
measurement that minimizes it, following the approach in [40, 41].

Let us assume that our hypothesis set is given by H = {pk, %k} with k = 1, ..., N ,
where pk is the probability that the system is prepared in %k. This means that the state
prepared by Alice and sent to Bob is a classical statistical mixture

% =
NX

k=1

pk%k. (2.1)

The system is measured according to a certain POVM {⇧k}N

k=1 such that each detection
operator ⇧k is associated with one hypothesis in the set H. Then, the probability of
correctly inferring the kth state given that the state was precisely prepared in the state
%k is

pINF
k

= Tr {%k⇧k} . (2.2)

Furthermore, since each of the hypotheses %k was prepared with an a priori probability
pk, the total successful probability of inferring the state in the correct hypothesis is given
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by

pSUC =
NX

k=1

pkpINF
k

, (2.3)

while the probability that one fails is simply

pERR = 1 � pSUC = 1 �
NX

k=1

pkpINF
k

. (2.4)

The goal of minimum-error discrimination theory is to find the POVM that minimize
this average probability of error among all the hypothesis available. The general solution
for the optimal measurement is non-trivial and might not be unique. However, in the
discrimination problem with just two hypotheses, it is possible to determine the optimal
discrimination strategy.

In this case, the hypothesis set is {pi, %i}2
i=1, and the POVM elements are {⇧1,⇧2}.

Actually, these are not linearly independent, since a POVM must satisfy

⇧1 +⇧2 = I. (2.5)

As a result, the average probability of error can be expanded as

pERR = 1 � p1Tr {%1⇧1} � p2Tr {%2⇧2} =

= 1 � p1Tr {%1(I �⇧2)} � p2Tr {%2(I �⇧1)} =

= p1Tr {%1⇧2} + p2Tr {%2⇧1} , (2.6)

The two elements in the sum represent exactly the probabilities of incorrectly inferring
the wrong hypothesis, weighted by their a priori probabilities. We can alternatively
write this as

pERR = p1 + Tr {⇤⇧1} = p2 � Tr {⇤⇧2} , (2.7)

where we have defined the hermitian operators

⇤ = p2%2 � p1%1 =
dX

k=1

�k| kih k|. (2.8)

Here, d is the dimension of the Hilbert space, and �k and | ki are respectively the eigen-
values and eigenvectors of the operator ⇤. Using this spectral decomposition, we obtain
that

pERR = p1 +
dX

k=1

�kh k|⇧1| ki = p2 �
dX

k=1

�kh k|⇧2| ki. (2.9)

To find the optimal measurement strategy we must minimize pERR, a request that corre-
sponds to two conditions

min
⇧1>0

(
dX

k=1

�kh k|⇧1| ki
)

, (2.10)

max
⇧2>0

(
dX

k=1

�kh k|⇧1| ki
)

. (2.11)
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The first is minimized when h k|⇧1| ki = 1 for negative eigenvalues �k, and
h k|⇧1| ki = 0 for positive eigenvalues �k, while the opposite constraints applies to
⇧2. If we regroup the eigenvalues so that {�k}d0

k=1 are the negative ones, while the
{�k}d

k=d0+1 correspond to the positive ones, we obtain that the optimal POVM must
be

⇧1 =
d0X

k=1

| kih k|, ⇧2 =
dX

k=d0+1

| kih k|. (2.12)

The presence of zero eigenvalues does not affect the splitting since they do not contribute
to the probability of error pERR. However, they must be included, otherwise, the condi-
tion given by Eq. (2.5) is not satisfied. In other words, the eigenvectors corresponding
to zero eigenvalues can be included in both POVM elements’ decomposition without
changing the final result.

Once we have obtained the optimal measurement, we can evaluate the minimum-
error i.e.

pERR = p1 �
d0X

k=1

|�k| = p2 �
dX

k=d0+1

|�k|. (2.13)

With the use of some algebraic manipulation, we eventually obtain a symmetric quantity

pERR =
1

2

 
1 �

dX

k=1

|�k|
!

. (2.14)

This expression can be translated to the celebrated Helstrom bound [172]

pERR =
1

2

 
1 � kp2%2 � p1%1k

◆
, (2.15)

where we have introduced the trace norm

kAk = TrAbs {A} = Tr
np

A†A
o

. (2.16)

This further simplifies if the two states are pure as

pERR =
1

2

⇣
1 �

p
1 � 4p1p2|h 1| 2i|2

⌘
. (2.17)

We summarize the result in the following box

Result 1: Error probability for binary quantum discrimination

Given a binary hypothesis set {pi, %i}2
i=1 and a binary POVM {⇧1,⇧2}, the minimum

error discrimination is given by

pERR =
1

2

 
1 � kp2%2 � p1%1k

◆
, (2.18)

and the optimal POVM is given by Eq. (2.12).
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Some considerations about the optimal measurement and minimum probability are
in order. An interesting case occurs when there are no positive eigenvalues of ⇤ (the
same conclusions can be drawn in the case without negative eigenvalues). In this case,
⇧2 = 0 and ⇧1 = Id0 , which means that the optimal strategy is to always guess the
first hypothesis %1 without measuring the system. In other words, there are cases where
measuring the system increases the probability of wrongly guessing the state, as already
observed in [184].

The bound so derived is valid for single-shot experiments, in which the measure-
ment is applied only once. A more general strategy occurs when it is possible to use a
collection of identically and independently distributed (i.i.d.) prepared states [272, 21].
In this way, the state from Bob’s perspective is

% =
X

i

pi%
⌦n

i
(2.19)

For a binary discrimination problem and equal a priori probability, the error is given as
derived above. In the asymptotic limit, this has been proved to scale exponentially as

pERR ⇠ exp {�n⇠QCB} (2.20)

where ⇠QCB is the quantum Chernoff bound, reminiscent of the classical Chernoff bound.
Its explicit form has been derived in [19] and reads as

⇠QCB = � log

✓
min

0s1
Tr
�
%s

1%
1�s

2

 ◆
. (2.21)

which is the counterpart of the classical Chernoff bound.

2.2 Quantum parameter estimation

The birth of modern statistical and estimation theory is mainly due to the contributions
of Fisher, Cramer and Rao in the first half of the previous century [271]. The most fun-
damental result was the inequality for the variance of any estimator on finite samples
derived by Cramer and Rao [286]. Their result is mainly based on geometrical argu-
ments in the language of Riemannian manifolds and the Fisher metric tensor [135]. Af-
ter 30 years, Rao’s ideas were extended to formulate an asymptotic theory of statistical
inference [125]. In the following decades, thanks to the work of Amari et al. [11, 14],
the geometrization of statistical models enabled the proof that the maximal likelihood
estimator is optimal in the asymptotic theory [12]. The field of information geometry
found several applications, and it has been proven to provide powerful tools for classi-
cal estimation theory [13]. All these results regard local theories, where we have good
knowledge of the interval where the true value of the parameters lie, and this will be
our setting in all the following discussions. To completeness, we also mention the cases
where we do not know the range of the parameters. In this setting, estimation proce-
dures are known as global strategies. For instance, Bayesian estimation protocols rely on
the fact that the parameter is itself a random variable [148, 214]. Examples of Bayesian
bounds are the Ziv-Zakai [368] and Weiss-Weinstein bounds [343].

Moving to the quantum realm, the rapid growth of quantum technologies required
an equally rapid characterization of quantum systems [266, 338]. One of the first theoret-
ical proposals to exploit quantum resources such as squeezing was already analyzed in
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the early 80s [81, 80], and then this idea was employed to enhance sensitivity in currently
used gravitational wave detectors [1, 116]

Generally speaking, the extension of concepts from classical estimation theory to the
quantum realm has caused a great interest in the community. Several results have been
obtained, such as the development of tools to establish the optimal procedure and the
ultimate bounds in parameters estimation [272, 117, 218, 181, 7]. The first results date
back to the 1960s when Helstrom generalized the notion of differential equations to
quantum states, called symmetric logarithmic derivative (SLD) and, derived the multi-
parameter quantum Cramer-Rao bound [173]. This was followed by the study by Yuen
and Lax [360], where they studied the estimation of coherent states in thermal noise,
while one year later the notion of most informative bound was introduced [171]. All
these results were generalized by Holevo in [178], where the Holevo bound was intro-
duced and which now is regarded as the most informative bound in multi-parameter
quantum metrology. The proof of its achievability was only provided recently, using
techniques from the newly developed theory of quantum local asymptotic normality
(QLAN) [162, 197, 164, 358]. For the single parameter estimation, a relevant concep-
tual contribution came from the works of Braunstein and Caves, where they were able
to separate a classical and quantum optimization, clearly showing the necessary condi-
tions for the saturation of the quantum Cramer-Rao bound [56, 57]. They showed that
the classical estimation procedure regards the search for an optimal estimator, whereas
the quantum part concerns the search for the optimal POVM, and the two can be pur-
sued separately. It is also possible to address the problem of the optimal probe achieving
the ultimate limit in channel estimation and with multiple parameters, [144, 6].

It is in the determination of the optimal measurement and the optimal probe that
the quantum feature reveals themselves [332, 117], and the role of incompatibility plays
a fundamental role. We also briefly mention that the geometry of quantum states also
has fundamental consequences in all of the results and bound mentioned, and it has
attracted interest recently, especially in its abstract formulation within differential geom-
etry [324, 255, 256, 96, 95]. Finally, we would also like to highlight that estimation and
discrimination theory are strongly connected. The underlying mathematical structure of
estimation theory, i.e. Fisher information metric, is strongly connected with quantities
related to discrimination theory and the distinguishability measures. Technical insights
of this connection are discussed in [198].

The use of quantum resources to beat the shot-noise limit (SNL), where the achievable
precision �✓2 scales as 1/N with N is the number of probes, has been extensively stud-
ied, especially with quantum resources such as squeezing and entanglement [155, 156].
Indeed, entangled probes, such as GHZ or N00N states, can surpass the SNL scaling
[215, 241, 215, 251], and the so-called Heisenberg scaling �✓2 ⇠ 1/N2 can be attained
[179]. These results have been experimentally tested within many platforms. The ad-
vancements have been particularly rapid for atoms that exploit entanglement [274], or
for squeezed spin states that surpass the SNL [347, 223]. Heisenberg limit has been
proved also for particle and optical interferometry [50, 213]. More in general, spin qubits,
trapped ions, and flux qubits have proved to be excellent platforms in which quantum
enhancements are possible [114], as well as in photonic quantum sensing [277], and in
quantum illumination tasks [219, 367, 27].

Nonetheless, in more recent years, it has been shown that uncorrelated noises
strongly affect such scalings behaviour, which is downscaled back to the SNL scaling
[128]. Indeed, a small amount of noise is sufficient to bring the scaling from 1/N2 to 1/N
[204, 119]. In general, the effect of decoherence is always detrimental and reduces the
scaling, even when the use of quantum resources is allowed [118, 205, 326]. The effect of
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inefficient detectors also has been studied in [32] to figure out how it affects the scaling
behaviour.

Attempt to restore the Heisenberg scaling have been proposed, based again on the
use of entangled ancillary systems [120], or the continuous monitoring of the environ-
ment [8]. At a more fundamental level, techniques to achieve better precision without
using entangled probes, which are difficult to produce and stabilize and not particu-
larly robust to noise, have been addressed, and an extensive review can be found in
[55]. They include the use of more general quantum correlations such as quantum dis-
cord [243], identical particles [33, 34], nontrivial Hamiltonians that exploit non-linearities
[303, 108, 48, 49, 222], or the use of quantum phase transitions [146, 138, 225, 361]. Other
recent attempts try to use also non-causal order to achieve better scaling [366, 87]. The
use of feedback to achieve optimal phase estimation was also studied by [44, 43, 42, 174].

In this section, we are going to provide a review of the mathematical tools developed
to deal with problems in quantum estimation theory. In Sec. 2.2.1 we briefly review the
language of estimation theory, namely probability and statistics. Then, in Sec. 2.2.2 we
move to classical parameter estimation, proving the main results and bounds. Finally, we
present its quantum version, both in the single and multi-parameter case, respectively
in Sec. 2.2.3 and Sec. 2.2.4.

2.2.1 Probability and statistics

The abstract theory of probability was formalized by Kolmogorov in the last century
[203], and here we review its mathematical structure. First, we need to select a collection
of event {Ei} that belongs to the sample space ⌦, i.e. the set of possible outcomes of a
random event. A probability is a way of assigning every event a value between zero and
one. But before this, we need to properly define the set of {Ei}, since not every subset of
⌦ constitutes an event. If we denote with E a collection of subsets of ⌦, then we ask the
following

1. the empty set should be an event, i.e. ; 2 E . This represents an experiment without
an outcome.

2. if E 2 E , then its complement Ec is also in E . This corresponds to having the logical
negation of the event E as a possible event.

3. The union of a countable collection of Ei in E is also an element of E

These properties define a �-algebra, while the pair (⌦, E) is called a measurable space.

The assignment of a numerical counterpart to a single event can be specified by a
new function called probability measure µ, which satisfies the following properties
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Definition 1: Probability space (⌦, E , µ)

A probability space is a triple (⌦, E , µ) where µ where ⌦ is a sample space, E is a
�-algebra and µ is a function from E having the following properties

1. The function µ assigns to each event a non-negative number

µ : E ! R
+; (P.1)

2. The unit measure assumption
µ(⌦) = 1 (P.2)

3. The �-additivity assumption

µ

 
+1[

i=1

Ei

!
=

+1X

i=1

µ(Ei). (P.3)

with {Ei}+1

i=1 a countable collection of mutually disjoint elements of E .

From the three axioms, it immediately follows that 0  µ(E)  1, where the lower
and upper bounds are respectively achieved only with the empty set ; and the full space
⌦. We also mention that quasiprobability distributions, that arise naturally in quantum
mechanics formulated in phase space, relax the first axiom.

A quick comment on these axioms is in order here. The last property is fundamental
to be consistent with the frequentist interpretation of probability, which is the one that
is naturally used when dealing with events in the laboratory. Indeed, Eq. (P.3) represent
the following: if two disjoint events E1 and E2 have respectively the relative frequency
f1 and f2, then the event E1 [ E2 must have the relative frequency f1 + f2. The axiom
extends this property even in the case of countable mutually disjoint events.

The probability measure µ assigns values to elements of the �-algebra E rather than
to the set possible outcomes⌦. One would also like to define a function whose domain is
⌦, which represents more concretely what is observed in experiments. This is described
by a random variable Xr, which so defined [141]

Definition 2: Random variable Xr

Given a probability space (⌦, E , µ) and a measurable space (⌥, Y), a random variable
is a function Xr : ⌦ ! ⌥ that assign to each event a certain quantity y in ⌥. This
function must satisfy the following: if Y is a set of quantities yi that belongs to the
�-algebra Y , then X�1

r
(Y ) is an element of the �-algebra E . The measurable space

(⌥, Y) can be naturally extended to a probability space (⌥, Y, ⌫) with the probability
measure ⌫ : Y ! [0, 1] defined as

⌫(Y ) = µ(X�1
r

(Y )) (2.22)

with Y measurable set in Y . This probability measure is said to be induced by Xr

from µ.
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In other words, ⌥ is the set of values that the random variable can assume, and Y
is a measurable subset of ⌥. The random variable is then a function from any possible
outcomes in ⌦ to a quantity in the set of ⌥ such that the outcomes leading to any useful
subset of quantities, i.e. X�1

r
(Y ) have a well-defined probability, i.e. belongs to the �-

algebra E . We can see that random variable transforms probability space to probability
space. Usually, the distinction between the two probability spaces (⌦, E , µ) and (⌥, Y, ⌫)
is not made clear, and one usually says that the outcomes of a random experiment are
elements of ⌥ rather than event in E [318].

In statistics, random variables are usually limited to real value, i.e. ⌥ = R. In this
case, all the probability measures on this space ⌫ have a clear classification and can be
expressed in terms of distribution functions. Indeed, one can show that the function
P : R ! [0, 1] defined as

P (x) = ⌫((�1, x]) (2.23)

is the distribution function of ⌫. If Xr is the random variable that induces ⌫, then we
will also say that P is the distribution function of Xr. It can be also proven that for
each distribution function there exists a unique probability ⌫ on (R, Y) [141]. The rela-
tionship between the random variable and the distribution is easily understood when P
are strictly increasing and continuous: in this case, Xr and P are simply inverse func-
tions of each other. In the other cases, Xr is left continuous and jumps may occur, that
correspond to intervals of constancy of P , and vice-versa.

If the distribution function admits an integral representation

P (x) =

Z
x

�1

p(t)dt (2.24)

we say that p(x) is the probability density function of P and also of the corresponding
probability measure ⌫ and random variable Xr. This p(x) is unique if we ask for p(x)
to be continuous on the support of P . The concept of probability density can be also
extended where ⌥ is a countable set or finite set. For the technical details, we refer the
reader to Chap. 8 in [141].

The knowledge of p(x) fully characterizes any random experiments whose outcomes
are described by the random variable Xr. Indeed, any probability of any event Y 2 Y
is obtained just by integrating p on the corresponding Y . Henceforth, we will speak of
random outcomes and experiment directly in terms of probability density function p.

Once we have formalized the abstract probability theory, we can move on to the
study of more practical problems. As said before, estimation theory is a branch of statis-
tics, whose main concern is the collection of data ~x = {x1, ..., xM} and their analysis and
interpretations. In classical inference and decision theory, the outcomes are postulated
to come from the observation of a random variable, which now we know is described
in terms of a certain probability distribution p(x). These can be modelled in terms of a
set of parameters ✓, and the goal of statistical analysis is to find proper values of ✓ such
that the observed data is more optimally explained by the probability evaluated at this
value. The specification of a single value of the parameters is known as point estimation,
which is one of the main strategies in statistical inference. Moreover, the precision of the
estimated value will not depend only on the strategy, but also on the definition of the fig-
ure of merit (also known as loss function or risk function) that quantifies the optimality
above mentioned[214]. This will be the topic of the next section.
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2.2.2 Classical estimation theory

After the introduction of the building blocks of probability statistics, we can now present
the usual setting in which a parameter estimation problem is formulated. We consider an
experiment whose outcomes are described by a random variable Xr. Associated with the
random variable there is a probability space (X , B, ⌫) and a true probability density p(x),
which is not known. The goal is to find a procedure that reconstructs the probability
distribution p(x) from a sample of M outcomes ~x = {x1, ..., xM}. In principle, there
might be theoretical or experimental arguments that allow us to guess a functional form
of p that depends on a finite number of parameters n (the case where the number of
parameters is infinite are known as semi-parametric or non-parametric models [206]).
Within this approach, we say that the probability density p(x) belongs to parametric family
of probability densities {p(x|✓)}✓2⇥ where ⇥ ⇢ R

n is the parameter space. The true value
of the parameters ✓? 2 ⇥ is the one such that p(x|✓?) = p(x).

In general, to estimate the true value of the parameter ✓? from a sample of M data ~x =
{x1, ..., xM} we need an estimator ✓̃(M), i.e. a function from the space of M independent,
identically distributed (i.i.d.) random variables to the parameter space ⇥. An estimate of
✓ is a particular realization of this function ✓̃

(M)(~x). Given that this function is a function
of random variables, it is itself a random variable, while the estimate ✓, given the data
~x = {x1, ..., xM}, is a fixed real value, or a fixed real vector in the multi-parameter case.

We define unbiased estimators the one satisfying E✓(✓̃(M) � ✓) = 0 for all ✓, where the
expectation value is given as

E✓

⇣
✓̃

(M)
⌘

=
X

~x2XM

✓̃
(M)(~x)p(~x|✓). (2.25)

where p(~x|✓) =
Q

M

i=1 p(xi|✓) since ~x are i.i.d. . This means that, for every possible value
of ✓, and not only for the true value ✓

?, the estimator can correctly guess it, without bias
on the values of the parameters. If this is not the case, the deviation of ✓̃(M) from the
value of ✓ is quantified by the bias

B✓(✓̃(M)) = E✓(✓̃(M)) � ✓. (2.26)

Systematic errors are the one quantified by a non-null bias B✓(✓̃(M)), hence they are a
property of the estimator ✓̃(M), not of the estimate ✓. In other words, it does not depend
on a particular set of data ~x, but rather on the functional definition of ✓̃(M). We notice
that the unbiasedness condition might be too restrictive: one would like to have a good
estimator for the true values of the parameters ✓

? only. Hence, to enlarge the set of
available functions, we can define locally unbiased estimators as
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Definition 3: Locally unbiased estimators

We define locally unbiased estimators as the ones satisfying

E✓?(✓̃(M) � ✓
?) = 0 (2.27)

for the true value of the parameter ✓ = ✓
?. We also ask that the derivative of this

equation is zero, i.e.
@✓E✓?(✓̃(M) � ✓

?) = 0. (2.28)

This request means that the estimator ✓̃(M) can track the true value of the parameter
up to the first order around the ✓

?, and excludes pathological estimators.

We also introduce asymptotically unbiased estimator as

lim
M!1

E✓(✓̃(M)) = ✓, (2.29)

that are unbiased as the size of the sample goes to infinity.
To quantify how much a sampled data ~x = {x1, ..., xM} deviates from the corre-

sponding expected value, we define the sampling deviation as

�(~x) = ✓̃
(M)(~x) � E✓(✓̃(M)) (2.30)

This quantity depends on the sample, and as a result, it is not a property of the estimator.
Moreover, it is a random quantity that exhibits fluctuations around zero. Hence, averag-
ing the product of the squared sampling deviation we obtain a numerical figure of merit
that quantify the average deviation of the possible samples from the expected value. In
this way, we obtain the covariance matrix

V (✓̃(M))ij = E✓

h⇣
✓̃(M)

i
� E✓(✓̃(M)

i
)
⌘⇣

✓̃(M)
j

� E✓(✓̃(M)
j

)
⌘i

, (2.31)

which is the quantity that captures the performance of an estimator. The diagonal ele-
ments V (✓̃(M))ii are the variance of the single parameters ✓j and indicate, on average,
how far the collection of estimates are from the expected value. Instead, non-zero off-
diagonal elements denote the presence of correlations between the estimators ✓̃(M)

i
.

A similar concept is given by the mean square error

MSE(✓̃(M))ij = E✓

h⇣
✓̃(M)

i
� ✓i)

⌘⇣
✓̃(M)

j
� ✓j)

⌘i
(2.32)

whose diagonal element instead indicate how far, on average, the collection of estimates
is from the value of ✓, rather than from the expected value.

Remarkably, the two quantities are connected by the bias function B✓(✓̃(M)) as

MSE(✓̃(M))ij = V (✓̃(M))ij + B✓(✓̃(M)
i

)B✓(✓̃(M)
j

) (2.33)

This can be interpreted by the fact that the MSE is the second moment (about the origin)
of the error ✓(M)

i
� ✓i. Hence, it includes how much the estimate from data samples is

spread (quantified by the variance), but also how far off the average estimated value is



Introduction to quantum metrology 23

from the true value (quantified by the bias). The connection between bias and variance
here is quite evident: the bias is related to systematic errors, while the variance is to
statistical error. This relationship is analogous to the distinction between accuracy and
precision respectively. We notice that for unbiased estimators the covariance matrix and
MSE matrix coincide. Since our interest is to study the limits of precision using quan-
tum probes, we consider only unbiased estimators. This assumption is not too much
restrictive, since we can always be unbiased in the asymptotic limit, as in Eq. (2.29).

The main result in statistical estimation regards a lower bound on the variance that
is independent of the estimator used. In this way, the lower bound represent a property
of the probability distribution only p(x|✓). To see this, we first rewrite the variance in
matrix form as follows

V (✓̃(M)) =
X

~x

p(|✓)(✓̃(M)(~x) � ✓)(✓̃(M)(~x) � ✓)T , (2.34)

Then, the fundamental result in classical estimation theory is the following theorem

Theorem 3: The Cramer-Rao inequality

Given a parametric family of probability densities {p(x|✓)}✓2⇥, the variance of any
estimator is lower bounded as [286, 105]

V (✓̃(M)) ⌫ min
{✓̃(M)}

V (✓̃(M)) =
1

M
F�1(✓) (2.35)

where M is the number of measurements, and

F(✓)ij =
X

x2X

p(x|✓) (@i ln p(x|✓)) (@j ln p(x|✓)) =

=
X

x2X

1

p(x|✓)
(@ip(x|✓)) (@jp(x|✓)) (2.36)

are the elements of the Fisher information matrix (FIM) [135]. This is a positive
semidefinite matrix. If the estimator is only locally unbiased the inequality holds
only at ✓ = ✓

?. The symbol A ⌫ B means that A � B is semidefinite positive
[14, 105, 168].

As we see from its definition, the FIM is independent of the set of outcomes ~x =
{x1, ..., xM} and on the estimator ✓̃. In this sense, it is a general bound for any estimator
and data sample. For these reasons, we can interpret the FIM as a measure of the amount
of information that the random variable described by the probability distribution p(x|✓)
carries about the parameter ✓. The larger the FIM, the larger the information and the
smaller the lower bound. From a heuristic point of view, the probability distribution is
more sensitive to parameter changes. We also notice that in the Cramer-Rao bound in
Eq. (2.35) the inverse of the FIM is involved. In the case where the FIM is not invertible,
i.e. when one of its eigenvalues is zero, we have a singular statistical model. This implies
that two or more parameters are not independent, and we can estimate only a function
of them.
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We can also interpret the FIM as a distinguishability metric which provides a statisti-
cal distance on the space of probability distributions [14]. It quantifies how easily we can
distinguish neighbouring probability distributions when separated by an infinitesimally
change in the values of the parameters. Seen from this perspective, non-null off-diagonal
elements in the FIM indicate that the coordinate system, i.e. the parametrization, is not
orthogonal.

The saturability of the CRb in Eq. (2.35) is crucial in establishing the relevance of
the FIM. In general, not all estimators saturate the bound, and those that do are called
efficient. In the finite-sample scenario, the existence of an efficient estimator is, in general,
not guaranteed for an arbitrary statistical model. However, in the asymptotic limit and
under some regularity conditions, it can be proved [214] that the lower bound given by
the variance is achieved by maximum likelihood estimator ✓̃(M)

max

lim
M!1

MV (✓̃(M)
max ) = F�1(✓). (2.37)

To summarize, the FIM represent the attainable bound realizing the ultimate precision
in classical estimation theory, and in the worst case is achieved asymptotically.

In general, dealing with matrix inequalities can be problematic, as the order in the
space of matrices is only partial. For this reason, one can introduce scalar bounds using
a suitable cost matrix W and a cost function defined as

C[V (✓̃(M)),W ] = tr
n
WV (✓̃(M))

o
. (2.38)

where we have introduced the tr {•} as the trace over the parameter space, to distinguish
it from Tr {•}, the trace over the Hilbert space of the quantum states. This inequality is
easily translated into a scalar CRb

C[V (✓̃(M)),W ] � tr
�
WF�1(✓)

 
(2.39)

Cost matrices, also referred to as weight matrices, are positive, real n ⇥ n matrices, and
they represent the relative importance between the parameters. Scalar bounds will play
a fundamental role in multi-parameter quantum metrology, as we are going to see soon.

2.2.3 Single parameter quantum metrology

In this section, we discuss what happens when a parametric statistical model emerges
from quantum theory [166, 167]. We first discuss single-parameter estimation, which
significantly differs from the multi-parameter setting, where quantum incompatibility
in the form of non-commutativity makes things more complicated. These results have
been first obtained by Helstrom [172] and Holevo [178] in the 70s. However, a major
breakthrough occurred only 20 years later, when Braunstein and Caves [56] showed the
quantity previously derived can be obtained by maximizing the classical Fisher informa-
tion on the set of all measurements, establishing a clear and operational connection with
classic estimation theory. Our presentation is based on a more recent review of these
results [266].

When we move to the quantum realm, probability distributions naturally emerge
from quantum mechanics postulates. Indeed, the Born rule is

p(|✓) = Tr {%✓⇧} . (2.40)
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Here we have assumed that the parameter is fully encoded in the state of the system,
rather than in the POVM as well1.

An important quantity in quantum metrology is the symmetric logarithmic deriva-
tive bL✓, which is a generalization of the classical notion of logarithmic derivative that
enters the definition of the FI in Eq. (2.36) @✓p(x|✓) = p(x|✓)Lcl. The straightforward
generalization of this is obtained by substituting to the probability the density matrix
and by a proper symmetrization to avoid order ambiguities [324]. We obtain that the
definition of the bL✓ is given as a Lyapunov equation

@✓%✓ =
1

2

⇣
bL✓%✓ + %✓bL✓

⌘
. (2.41)

There are other ways to obtain a generalization of the derivative @✓p(x|✓), essentially
based on other notions of distance in the Hilbert space and symmetrization [166, 324].
In the single-parameter scenario, they are not particularly relevant, since the bound they
provide is less informative than the one obtained with the SLD.

The score of the probability distribution can be written in terms of bL✓ as

@✓p(x|✓) = Tr {@✓%✓⇧x} = <
n

Tr
n
%✓⇧x

bL✓
oo

(2.42)

which allows us to rewrite the FI as

F(✓) =
X

x2X

<
n

Tr
n
%✓⇧x

bL✓
oo2

Tr {%✓⇧x} (2.43)

So far, this is just a rewriting of the classical Cramer-Rao bound in terms of a certain
{⇧x}x2X and state %✓. However, we can try to optimize among the set of POVMs [266].
Using the fact that <{�}2  |�|2, we can write

F(✓) 
X

x2X

������

{Tr
n
%✓⇧x

bL✓
o

p
Tr {%✓⇧x}

������

2

=
X

x2X

�����Tr

( p
%✓

p
⇧xp

Tr {%✓⇧x}

p
⇧x
bL✓

p
%✓

)�����

2

, (2.44)

and this inequality is saturated when Tr
n
%✓⇧x

bL✓
o

is a real number. We can further
lower bound this last expression using the Schwartz inequality

��Tr
�
A†B

 ��2  Tr
�
A†A

 
Tr
�
B†B

 
(2.45)

with A† = Tr
�p

%✓
p
⇧x

 
/
p

Tr {%✓⇧x} and B =
p
⇧x
bL✓

p
%✓. Indeed, we obtain

F(✓) 
X

x2X

Tr

( p
%✓

p
⇧xp

Tr {%✓⇧x}

p
⇧x

p
%✓p

Tr {%✓⇧x}

)
Tr
np

%✓bL✓
p
⇧x

p
⇧x
bL✓

p
%✓
o

=

=
X

x2X

Tr
n
%✓bL✓⇧x

o
= Tr

n
%✓bL2

✓

o
(2.46)

1In the case where also the POVM depends on the parameter, things are more complicated and generaliza-
tion have been studied, see [319].
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which is now independent on the POVM {⇧x}x2X . This last inequality is saturated
when the two A and B are orthogonal, i.e. when

p
⇧x

p
%✓

Tr {%✓⇧x} =

p
⇧x
bL✓

p
%✓

Tr
n
%✓⇧x

bL✓
o (2.47)

for all ✓ and x. This equality is satisfied if and only if the {⇧x} are eigenprojectors of
the bL✓, meaning that the eigenstates of the SLD operator realize the optimal POVM,
given the additional condition Tr

n
%✓⇧bL✓

o
is real. This is a projective measurement

and depends on the true parameter ✓. Paradoxically, one should know the value of the
parameter in advance to implement the optimal measurement. Nonetheless, this chal-
lenge is often solved by using adaptive strategies, in which one accumulates prelimi-
nary statistics to obtain an intermediate estimate, that is then used to perform a more
refined adapted measurement until the optimal measurement is asymptotically reached
[25, 142]. The result is summarized as follows

Theorem 4: The quantum Cramer-Rao bound

Given a statistical model encoded in a density matrix %✓ and the set of all possible
POVM ⇧, we can maximize the FI such as that

F(✓)  max
⇧

F(✓) = Q(✓) = Tr
n
%✓bL2

✓

o
= Tr

n
@✓%✓bL✓

o
(2.48)

where Q(✓) is the quantum Fisher information (QFI). This inequality yields the quan-
tum Cramer-Rao (QCRB) bound

V (✓̃(M)) � 1

MF(✓)
� 1

MQ(✓)
(2.49)

The first inequality is saturated by the PVM given by the eigenprojector of the SLD
operator {|�kih�k|}k, with the additional condition that Tr

n
%✓⇧bL✓

o
is real. The

optimal estimator bO✓ =
P

k
✓̃k|�kih�k| that saturates also the classical inequality is a

function of the eigenvalues of bO✓, and is given by

bO✓ = ✓I +
bL✓

Q(✓)
, (2.50)

The optimality of the estimator can be proved directly by evaluating the variance of
bO✓.

This bound has been derived for measurements on single-copy preparation of the
state %✓. However, if we have M identically prepared state, the most general scenario
consists of a POVM on the whole Hilbert space, which might be also collective. In this
case, the overall variance is written as

V (✓̃(M)) =
X

k

⇣
✓̃(M)(k) � ✓

⌘2
Tr
n
%⌦M

✓
⇧(M)(k)

o
. (2.51)
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Nonetheless, one can show that this quantity is lower bounded by the QFI given in
Eq. (2.48), which means that non-collective strategies are optimal [167]. This differs
significantly from the multi-parameter case, as we are going to see in the next section.

An explicit expression of the QFI can be derived using a formal solution of the Lya-
punov equation (2.41)

bL✓ = 2

Z +1

0
e�t%✓ (@✓%✓)e

�t%✓dt = (2.52)

=
X

n,m

h m|@✓%✓| ni
pm + pn

| mih n| (2.53)

with pm + pn > 0 and where we have used the spectral decomposition %✓ =P
n

pn| ni n|. Using the last expression, the QFI can be written as

Q(✓) =
X

n,m

|h m|%✓| ni|2
pm + pn

(2.54)

or equivalently as

Q(✓) =
X

n

(@✓pn)2

pn

+ 2
X

n,m

(pn � pm)2

pn + pm

|h m|@✓ ni|2 (2.55)

The first term is nothing but the classical FI for the probability distribution {pn} for ✓,
while the second term accounts for the change of the eigenstates with respect to changes
in ✓. Unfortunately, these equations are only useful when it is possible to diagonalise %✓,
otherwise, it is not particularly feasible. Despite that, alternative expressions of the QFI
that do not require diagonalisation of %✓ have been derived [307].

The QFI satisfies a few relevant properties:

(i) Similarly to the classical case, the QFI of uncorrelated states is additive [143]

Q[%✓ ⌦ &✓] = Q[%✓] + Q[&✓] (2.56)

where we have slightly changed the notation for the QFI, i.e. Q[%✓] = Q(✓). The
additivity shows that the QFI for M i.i.d. probes %⌦M scales as M , realizing an
SNL scaling. We conclude that to improve this scaling, correlations are necessary
among the probes.

(ii) It is not a convex function of the input state but satisfies an extended convexity in-
equality [10]

Q
"
X

n

pn%n

#

X

n

pnQ [%n] + F [{pn}] (2.57)

where F [{pn}] is the classical FI of the probability distribution {pn}, similarly to
(2.55). The only way we recover full convexity is if this term vanishes, and this
happens when the parameter is not encoded in the {pn}. In the latter case, we see
that the achievable estimation sensitivity cannot be increased by classically mixing
states with mixing probabilities independent of the parameter [54].
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(iii) The QFI is monotone for quantum operations [273]

Q[%✓] � Q[E [%✓]], (2.58)

where E [•] does not depend on the parameter. Equality occurs when the quantum
operation is unitary.

(iv) In the case of a pure state | ✓i the QFI simplifies as

Q[| ✓i] = 4
�
h@✓ ✓|@✓ ✓i + (h@✓ ✓| ✓i)2

�
(2.59)

Furthermore, if the parameter is encoded via a unitary operator | ✓i =

exp{i✓ bG}| 0i, where bG is the generator, then the QFI is proportional to the variance
of the generator on the initial state | 0i

Q[| ✓i; bG] = 4V ( bG) = 4
⇣
h 0| bG2| 0i � h 0| bG| 0i2

⌘
(2.60)

The latter is upper-bounded as

Q[| ✓i; bG]  (gmax � gmin)2 (2.61)

where gmax (gmin) are the largest (smallest) eigenvalue of bG. The inequality is tight
if | 0i = 2�1/2(|gmaxi + |gmini).

(v) The QFI has a geometrical interpretation in terms of the Bures distance

DB(%1, %2) =
p

2(1 � F [%1, %2]) (2.62)

where the fidelity is F [%1, %2] = Tr
�pp

%1%2
p
%1

 
. The corresponding metric is the

Bures metric
ds2

B
= D2

B
[%✓, %✓+d✓] = 4Q[%✓]d✓

2 (2.63)

This can be also written as the limit

Q[%✓] = lim
"!0

8(1 � F [%✓, %✓+"])

"2
(2.64)

For pure states, the fidelity is the overlap of the two states F [| ✓i, | ✓+"i] =
|h ✓| ✓+"i|, and the QFI can be also written as

Q[| ✓i] = 4@✓0@✓00(log |h ✓0 | ✓00i|)|✓0=✓00=✓ (2.65)

With suitable generalizations, all these properties are also valid in the multi-parameter
case, but the tightness of many bounds might be lost.

We conclude this section by noticing the following: the derivation of the quantum
Cramer-Rao bound has made clear that there are two optimization steps. The first is at
the level of measurement, where we found that the optimal PVM is given by the eigen-
projectors of the SLD operator. The second is at the level of estimator functions, whose
optimization can be considered a classical problem. If we have sufficient control over the
system under study, another degree of freedom is still available: the initial preparation of
the probe. We can formalize this in terms of parameter-dependent channels %✓ = E✓[%],
and the problem of maximizing the QFI and finding the optimal probe has been studied
and solved by Fujiwara in [144].
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2.2.4 Multiparameter quantum metrology

Things become more complicated when we move to multi-parameter quantum metrol-
ogy. We can see this from a heuristic example. Let us consider two parameters
✓ = {✓1, ✓2} encoded in a certain density matrix %✓ . From the previous section, we know
that the two optimal strategies for individual estimation of the parameters are given in
terms of the eigen-projectors of the bL✓i . However, the two optimal observables may not
commute, meaning that an optimal measurement for the simultaneous estimation can
not be performed. One may ask whether there exists another POVM that allows an op-
timal and joint estimate of the two parameters and what is the corresponding bound.
These are the questions multi-parameter metrology deals with and are closely linked
to the peculiar characteristics of quantum mechanics, namely the incompatibility of ob-
servables.

As we have seen, in the multi-parameter setting the usual figure of merit is the co-
variance matrix, that now we can write as

V (✓̃(M)) =
X



⇢⇣
✓̃

(M) � ✓

⌘⇣
✓̃

(M) � ✓

⌘T

Tr
n
%⌦M

✓ ⇧(M)


o�
(2.66)

where {⇧(M)
 } is a POVM on the whole Hilbert space of the M i.i.d. probes %⌦M

✓ . Sim-
ilarly to the single-parameter case, our goal is to minimize such quantity over all the
possible POVMs and the corresponding estimator ✓̃(M).

To do so, we first introduce the generalization of the QFI in the multi-parameter
setting

Definition 4: Quantum Fisher information matrix (QFIM)

Given a density matrix %✓ , then the Quantum Fisher information matrix elements are
defined as

Q(✓)ij =
1

2
Tr
n
%✓{bL✓i , bL✓j}

o
(2.67)

where {•,N} is the anticommutator of • and N. The diagonal elements of the matrix
correspond to the single-parameter QFI of the ith parameter, as defined in (2.48).

A reparametrization affects the QFIM so defined. Indeed, consider a new set of pa-
rameter # that is a function f(✓) of all the old parameters ✓, i.e. # = f(✓). The deriva-
tives with the new variable denoted with a prime are given by

@

@#i

=
X

j

Bij

@

@✓j

, (2.68)

where the matrix elements are Bij = @✓j/@#i. In this way, the SLDs in the new
parametrization are given as

bL# = B bL✓ (2.69)

and as a result, the QFIM is
Q(#) = BQ(✓)BT (2.70)

A similar formula holds for the FIM in Eq. (2.36).
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The QFIM and the variance satisfy a quantum version of the matrix inequality, which
is named SLD-Cramer-Rao bound since it is based on the symmetric generalization of
the logarithmic derivative (RLD). There exist other bounds that rely on different gener-
alizations, such as the right logarithmic derivative [5]. The bound is given as follows

Theorem 5: Matrix and scalar SLD-Cramer-Rao bound

Given a density matrix %✓ and locally unbiased estimator ✓̃
(M), then the variance

satisfy the following matrix inequality known as SLD-Cramer-Rao bound (SLD-CRb)

V (✓̃(M)) ⌫ 1

M
Q�1(✓) (2.71)

A scalar bound can also be introduced with respect to a certain weight matrix W of
the parameters using the cost function defined in Eq. (2.38). We obtain the scalar-
SLD-CRb

C[V (✓̃(M)),W ] � 1

M
Tr
�
WQ�1(✓)

 
=

1

M
CSLD[%✓,W ] (2.72)

These bounds are in general not attainable.

Despite being similar to the one obtained in the single-parameter case, and the QFIM
share many properties with the QFI, this bound also features some differences, given
that this bound is not in general attainable. The reason goes back to the incompatibility
of optimal measurement that we have heuristically discussed at the beginning of the
section. The condition to have a tight bound in Eq. (2.71) can not be directly derived
from the definition of the QFIM. We are going to discuss the possible necessary and
sufficient conditions for the saturability of the SLD-Cramer-Rao bound in the following
section.

Before moving to this discussion, we need to present other relevant bounds in the
multi-parameter scenario, which are more informative compared to the SLD-CRb. The
latter bound can be derived mostly with geometrical arguments, not with constructive
arguments or a true minimization like the classical one. An appropriate minimization
would yield to the most informative bound on a single copy as

CMI[%✓,W ] = min
⇧,✓̃(1)

�
tr
�
WF�1(✓)

  
(2.73)

This bound is achievable by construction, but it must be emphasized that, in general,
a priori knowledge of the value of the parameter is necessary to carry out the optimal
measurement. This issue is already present at the single-parameter level.

A tighter bound was derived by Holevo [178] and is defined as follows
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Definition 5: The Holevo-Cramer-Rao-bound (HCRb)

The Holevo-Cramer-Rao bound is obtained by the following minimization

CH[%✓,W ] = min
V 2Sn, bX2X✓

n
tr {WV } |V ⌫ Z

h
cX
io

(2.74)

where S
n is the set of real symmetric n-dimensional matrices. The n⇥n matrix Z

h
cX
i

is defined as
Z

h
cX
i

ij

= Tr {XiXj%✓} i, j = 1, ..., n, (2.75)

while the collection of n operators cX belongs to the set

X✓ =
n
cX = (X1, ..., Xn)|Xi 2 Lh(H) & Tr {Xi@j%✓} = �ij

o
(2.76)

A pedagogical derivation of the bound can be found in [117]. This bound is regarded
as the most fundamental scalar bound for multi-parameter quantum estimation since it
was proved to be equivalent to the most informative bound of the asymptotic model,
where collective measurements on a large number of copies %⌦M

✓ with M ! 1 are
performed [358]. There are few cases where it is known that the HCRb is achievable
with single copies: for pure states [236], and for displacement estimation with Gaussian
states [178]. Closed formulas for non-trivial cases are known only in a few scenarios: for
instance, for qubits [330], and two-parameter estimation with pure states [236]. In many
other cases, the analytical solution for the minimization is non-trivial, and one has to
resort to numerical methods. Indeed, the minimization in Eq. (2.74) has been proven to
be a semi-definite program for finite-dimensional system [7], and hence its evaluation is
numerically feasible.

There are other equivalent formulations of the HCRb [117, 166, 169, 236], that we
report here for completeness and will be useful in the following. The first one explicitly
performs the minimization over V 2 S

n, obtaining

CH[%✓,W ] = min
bX2X✓

{tr
n
W<{Z[cX]

o
} + k

p
W={Z[cX]}

p
W k1}}. (2.77)

The second expression is

CH[%✓,W ] = min
Yi

⇢
tr
n
WZ[ bY ]

o ����={Z[ bY ]} = 0

�
, (2.78)

with Yi 2 Lh(H � C
n). This has proven to be particularly useful in the proof of sat-

urability for parametric families of pure states. All the bounds discuss so far satisfy the
following hierarchy

C[%✓,W ] � CMI[%✓,W ] � CH[%✓,W ] � CSLD[%✓,W ] (2.79)

In the next section, we discuss the different conditions that have been put forward for
the saturability of these inequalities, with particular concern for the inequality between
the HCRb and the SLD-CRb.
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2.2.4.1 Compatibility conditions

To study the saturability condition of the HCRb with respect to the SLD-CRb, it is useful
to introduce a scalar product in the Hilbert space H

hcX, bY i%✓ =
1

2
Tr
n
%✓{cX, bY }

o
(2.80)

where cX = { bX1, ..., bXd}T is a vector of operator, and {cX, bY } = (cX bY T + cX bY T )/2.
We introduce now a vector of n operators cX (we recall that n is the number of pa-

rameters) and such that
cX =

X



⇣
✓̃() � ✓

⌘
⇧, (2.81)

where {⇧}d̃

=1, and ✓̃ are respectively an arbitrary POVM and a vector of locally unbi-
ased estimators as defined in Def. 3. The conditions for unbiasedness, i.e. Eq.s (2.27)–
(2.28) can be rewritten in terms of cX as

Tr
n
%✓
cX
o

= 0 (2.82)

Tr
n
@✓%✓

cXT

o
= In (2.83)

The second equation in particular can be expressed in terms of the scalar product defined
in Eq. (2.80), and the vector of SLD operators bL = {bL✓1 , ...bL✓n}2 for the parameter ✓ as

hbL,cXi%✓ =
1

2
Tr
n
%✓{bL,cX}

o
=

1

2
Tr
n

{%✓, bL}cXT

o
= (2.84)

= Tr
n
@✓%✓

cXT

o
= In. (2.85)

Actually, the vector of operators cX can be decomposed in the parallel Xk

i
and orthog-

onal component X?

i
for the space spanned by the SLDs. This can be always done if

we restrict the scalar product to the subspace L(H)/L(ker(%✓)), see [117] for more de-
tails. By definition, the parallel component is written in terms of the SLDs operators as
cXk = B bL, where B correspond to a certain n ⇥ n real matrix. Using the last equation
we see that

In = hbL,cXT i%✓ = hbL, (cXk)T i%✓ = BhbL, bLT i%✓ = BQ(✓). (2.86)

Hence, B is nothing but the inverse of the QFIM Q�1(✓), while there is no restriction on
the perpendicular part cX?. We can also evaluate the real part of Z[cX], that enters the
definition of the HCRb, as

<Z[cX] = hcX,cXT i%✓ = <Z[cXk] + <Z[cX?], (2.87)

since hcXk, (cX?)T i%✓ = 0 by definition of scalar product. In particular

<Z[cXk] = <Tr
n
%✓Q�1(✓)bLbLTQ�1(✓)

o
= (2.88)

= Q�1(✓)<Tr
n
%✓
bLbLT

o
Q�1(✓) = Q�1(✓). (2.89)

2Henceforth, we drop the subscript ✓ for the SLDs
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Then, we have that the first term in Eq. (2.77) can be expanded as

tr
n
W<{Z[cX]}

o
= tr

n
W<{Z[cXk]}

o
+ tr

n
W<{Z[cX?]}

o
= (2.90)

= tr
�
WQ�1(✓)

 
+ tr

n
W<{Z[cX?]}

o
= (2.91)

= CSLD[%✓,W ] + tr
n
W<{Z[cX?]}

o
. (2.92)

In this way, we obtain that the HCRb can be written as

CH[%✓,W ] = CSLD[%✓,W ]+ (2.93)

+ min
bX?

⇢
tr
n
W<{Z[cX?]}

o
+ k

p
W={Z[cXk + cX?]}

p
W k1

�
(2.94)

where we have to remember that the parallel component is fixed to be cXk = Q�1(✓)bL.
Moreover, the imaginary component can be expanded as

={Z[cXk + cX?]} = ={Z[cXk]} + ={Z[cX?]} (2.95)

since
={Z[cX]} =

1

2i
Tr
n
%✓[cX,cXT ]

o
(2.96)

and where we used [cX, bY T ] = cX bY T � bY cXT . Then, the first term in Eq. (2.95) can be
written as

={Z[cXk]} =
1

2i
Tr
n
%✓[cXk, (cXk)T ]

o
= (2.97)

=
1

2i
Tr
n
%✓[Q�1(✓)bL, bLTQ�1(✓)]

o
= (2.98)

= Q�1(✓)
1

2i
Tr
n
%✓[bL, bLT ]

o
Q�1(✓) = (2.99)

= Q�1(✓)U(✓)Q�1(✓), (2.100)

where we have defined the asymptotic incompatibility matrix

U(✓) =
1

2i
Tr
n
%✓[bL, bLT ]

o
, (2.101)

which is by definition traceless and hermitian. In the literature, this is known also as
Uhlman curvature [78]. We notice that if

p
WQ�1(✓)U(✓)Q�1(✓)

p
W = 0, (2.102)

then the minimization in Eq. (2.94) is obtained for cX? = 0 and the HCRb and the
SLD-CRb coincide. Things simplify if the weight matrix W is full rank, i.e. we are not
estimating functions of parameters. Then, condition in Eq. (2.102) can be simplified as

={Z[cXk]} = Q�1(✓)U(✓)Q�1(✓) = 0 (2.103)

Further, if the model is not singular, i.e. Q(✓) is invertible, this is completely equivalent
to

U(✓) = 0 (2.104)
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which is also known as weak compatibility condition [5]. We see that this is satisfied if all
the SLDs commute on average. Viceversa, if we ask for CH[%✓,W ] = CSLD[%✓,W ], then we
obtain again that this condition is sufficient [285]. Thus, we conclude that the condition
in Eq. (2.104) is necessary and sufficient for the HCRb and scalar-SLD bound to coincide.

We also want to remark on an important thing here. Assuming the weak compat-
ibility condition, we notice that the operator that realizes the minimum in Eq. (2.77)
coincides with the parallel component cX = cXk = Q�1(✓)bL. Hence, one could imag-
ine that this also realizes the optimal single-copy measurement. If we write the SLDs as
bLk =

P
l
�(k)

l
|�(k)

l
ih�(k)

l
|, with h�(k)

l
|�(k)

l0 i = �ll0 , then we can write

cXi =
nX

k=1

Q�1(✓)ik
bLk =

X



fi()⇧ =
X



⇣
✓̃i() � ✓i

⌘
⇧, (2.105)

where we have identified  as the multi-index (k, l), the function

fi() = fi(k, l) = nQ�1(✓)ik�
(k)
l

, (2.106)

and the POVM as

⇧ = ⇧k,l =
1

n
|�(k)

l
ih�(k)

l
|. (2.107)

Each ⇧ is a projector, but they are not all linear independent. Nonetheless we have

X



⇧ =
nX

k=1

d̃X

l=1

1

n
|�(k)

l
ih�(k)

l
| =

nX

k=1

1

n
I
d̃

= I
d̃
. (2.108)

However, this is not the case, i.e. the optimal measurement that achieves the scalar-SLD
bound in the scenario where (2.104) holds is not given by this one. The issue relies on
the fact that the covariance matrix given by the set of estimator cX does not attain the
matrix nor the scalar-SLD bound as we can see

V (✓̃) =
X



Tr {%✓⇧} (✓̃() � ✓)(✓̃() � ✓)T ⌫ (2.109)

⌫ Tr
n
%✓
cXcXT

o
3 =

1

2
Tr
n
%✓

n
cX,cXT

oo
= Q�1(✓) (2.110)

The equality is only reached if the POVM elements form a set of projective operators
⇧⇧0 = �0 . This in general happens if and only if all the SLDs commute in the opera-
tor sense, i.e. not on average, or in the pure case scenario. A very recent development on
the attainability of scalar-SLD bound in the single-copy scenario was addressed in [101].
We summarize the results in the following
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Result 2: Asymptotically classical model and weak commutativity

A quantum statistical model %✓ is asymptotically classical if all the SLD operators com-
mute on average, i.e. if they satisfy the weak commutativity condition

U(✓) =
1

2i
Tr
n
%✓[bL, bLT ]

o
= 0. (2.111)

This is a necessary and sufficient condition for the HCRb and the scalar SLD-CRb to
coincide

CH[%✓,W ] = CSLD[%✓,W ]. (2.112)

The optimal measurement is in general a collective measurement.

So far, we have analyzed the relationship between the SLD-CRb and the HCRb, and
the conditions under which the two coincide. In the following section, we study the
opposite case in which the SLD-CRb and the HCRb are not equal, and we try to quantify
their difference.

2.2.4.2 Asymptotic incompatibility measure

This section aims to study the difference between the HCRb and SLD-CRb and try to
quantify their difference in a simple way. By looking at Eq. (2.77), we notice that if
we evaluate the argument of the minimum with the set of operators given by cX =

Q�1(✓)bL, this is always larger than the HCRb. Thus, using Eqs. (2.89)–(2.100) and the
decomposition Z[cX] = <Z[cX] + i=Z[cX], we obtain

CH[%✓,W ]  tr
�
WQ�1(✓)

 
+ k

p
WQ�1(✓)U(✓)Q�1(✓)

p
W k1 =

= CSLD[%✓,W ] + k
p
WQ�1(✓)U(✓)Q�1(✓)

p
W k1 (2.113)

Then, we have the following chain of inequalities

CH[%✓,W ] � CSLD[%✓,W ]  k
p
WQ�1(✓)U(✓)Q�1(✓)

p
W k1 

 kQ�1/2(✓)WQ�1(✓)U(✓)Q�1/2(✓)k1 
 kQ�1/2(✓)WQ�1/2(✓)k1kQ�1/2(✓)U(✓)Q�1/2(✓)k1, (2.114)

where, in order, we have used

1. kABk1  kBAk1 for AB normal, with A = WQ�1(✓)U(✓)Q�1/2(✓) and B =
Q�1(✓)

p
W (since the product of the two is a skew-symmetric matrix, it is also

normal) [45]

2. kABk1  kAkpkBkq with 1/p + 1/q = 1 (Hölder’s inequality) for the specific case
of p = 1, q = 1 and A = Q�1/2(✓)WQ�1/2(✓) and B = Q�1/2(✓)U(✓)Q�1/2(✓).
In this case, kBk1 is the operator norm, that for matrices is the largest eigenvalue
of the symmetric matrix B†B.

Furthermore, since the matrix Q�1/2(✓)WQ�1/2(✓) is positive semi-definite, it can be
written as (W�1/2Q�1/2(✓))†(W�1/2Q�1/2(✓)). It follows that the first element in the
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product in Eq. (2.114) is

kQ�1/2(✓)WQ�1/2(✓)k1 = tr
n
Q�1/2(✓)WQ�1/2(✓)

o
= (2.115)

= tr
�
WQ�1(✓)

 
= CSLD[%✓,W ] (2.116)

Regarding the second element in Eq. (2.114), we notice that Q�1(✓)U(✓) and
Q�1/2(✓)U(✓)Q�1/2(✓) have the same eigenvalues. Indeed, suppose that U is the ma-
trix that diagonalize the latter, that is Q�1/2(✓)U(✓)Q�1/2(✓) = U

†
HU , with H diago-

nal matrix. Then, we have

Q�1(✓)U(✓) = Q�1/2(✓)U †
HUQ1/2(✓) = S

�1U(✓)S (2.117)

with S = UQ1/2(✓). Hence the two matrices have the same eigenvalues. To conclude,
Eq. (2.114) becomes

CH[%✓,W ] � CSLD[%✓,W ]

CSLD[%✓,W ]
 kQ�1(✓)U(✓)k1 = R✓ (2.118)

where we have defined the asymptotic incompatibility measure or quantumness R✓ . This
represents an upper bound on the relative difference between the HCRb and the SLD-
CRb [77].

Furthermore, we can prove that the value of R✓ is upper bounded. Indeed, since
Z[cX] ⌫ 0, and that

Z[Q�1(✓)bL] = Q�1(✓)bL + iQ�1(✓)U(✓)Q�1(✓) (2.119)

it follows that

Q1/2(✓)Z[cX]Q1/2(✓) = In + iQ�1/2(✓)U(✓)Q�1/2(✓) ⌫ 0 (2.120)

The main consequence is that the eigenvalues of iQ�1/2(✓)U(✓)Q�1/2(✓) lie in the in-
terval [�1, +1], and since these are the same of Q�1(✓)U(✓), we obtain that

R✓ = kQ�1(✓)U(✓)k1 = kiQ�1(✓)U(✓)k1  1, (2.121)

where we have used the fact that the imaginary unit does not change the 1-norm. This
means that we have the following chain of inequality

CSLD[%✓,W ]  CH[%✓,W ]  (1 + R✓)CSLD[%✓,W ]  2CSLD[%✓,W ] (2.122)

It results that the HCRb is at most twice the SLD-CRb, i.e. the measurement incompat-
ibility add just a factor of two on the overall precision. It also means that any improve-
ment in the scaling present in the HCRb can be already read from the scalar SLC-CRb.
The results can be summarized as follows

Result 3: Asymptotic incompatibility measure R✓ = 1

The relative difference between the HCRb and the scalar SLD-CRb is given as

0  CH[%✓,W ] � CSLD[%✓,W ]

CSLD[%✓,W ]
 R✓  1 (2.123)

Statistical models with R✓ = 1 are maximally incompatible, whereas models R✓ = 0
are asymptotically classical, as defined in Result 2.
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This quantity R✓ = 1 just depends on the two matrices Q(✓) and U(✓), and it is a
way to quantify the incompatibility of the optimal measurements in attaining the scalar
SLD-QCRb. To conclude, we also mention that a notion of probe incompatibility has
been studied in [6], which quantifies the incompatibility between the optimal probes of
the single parameters.





CHAPTER 3

Quantum walks

The classical notion of a walker on a discrete space, usually described by a graph, can
be generalized to the quantum realm [200, 340, 279]. The process can be discrete in
time and governed by an ancillary system named quantum coin, yielding to discrete-
time quantum walks (DTQWs) and firstly introduced in [4, 3]. On the other side, we
can consider continuous time processes, in which the walker, usually a particle, evolves
according to a first-order differential equation, the Schrödinger equation. These systems
are known as continuous-time quantum walks (CTQWs) and were first developed in
[131, 92]. In this thesis, we are going to focus only on the second case, and in particular
how to exploit such systems both in sensing and search protocol.

The study of CTQWs stands at the interface of several disciplines, such as quan-
tum physics [279], computer science [15], biology [244], and even at the foundational
level [161], and for these reasons, its applications are inherently interdisciplinary. In-
terest in these systems is mainly driven by the potential that quantum theory offers in
the enhance of several protocols, such as transport, search and communications. In-
deed, quantum walks have found several applications in these fields. Relevant exam-
ples belongs to quantum computation [175, 90, 352], quantum transport [199, 249, 334],
and environment-assisted transport in photosynthetic complexes [278, 291]. Further, a
relevant field that has been strongly influenced by CTQWs is the field of quantum algo-
rithms. Here, quantum speedup has been proven [91], and they have been also exploited
to find efficiently ground state solutions to spin glass systems [68] or high-quality solu-
tions to certain classes of NP-hard combinatorial problems [229].

Since a CTQW evolves over a graph, it is strongly related to applications over net-
works, including quantum spatial search. Indeed, CTQWs were specifically used to
generalize quantum algorithms for the search problem [94, 322, 82]. Several results have
been proved for the spatial search algorithm [93, 275, 298, 115], finding optimal condi-
tions for spatial search [84], and also for fast quantum search [189]. Great efforts have
focused on the use of oracles to find a target node [83, 265, 351], and on its implemen-
tations [201, 36]. The topic of the spatial search will be addressed in detail in Chapter
8, where we will introduce a novel method for quantum search that relies on another
emergent field, quantum control with continuous measurement.

The use of CTQWs in quantum metrology and quantum sensing was also only re-
cently addressed [317, 289, 362]. In Chapter 4, we follow this path, and we analyze
quantum thermometry within a CTQW perspective. In particular, we try to characterize
systems’ sensitivity in terms of the topological features of the underlying graph.

Different platforms have been proposed to implement CTQWs, or QWs more in gen-
eral, going from ultra-cold Rydberg atoms in optical lattices [104, 269, 281, 239], to op-
tical waveguides [269, 270]. The combination of such platforms with optical tweezers
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has proved to achieve rapid reconfigurability of the network parameters [359]. More-
over, the continuous monitoring of observables in such systems has been considered in
[210]. These two last examples put the basis for possible implementations of control and
feedback operations for CTQWs, which may be related to our theoretical proposal in
Chapter 8. For a comprehensive review, we suggest the reader to [341]. Recently, efforts
have been focused also on photonic chips [335], in superconducting systems [357, 158]
and again in optical waveguides to perform search algorithms [36].

In this chapter, we quickly review CTQWs. First, in Sec. 3.1 we introduce classical
Markov chains, on which the classical and quantum continuous-time walks are based.
We show how the Laplacian matrix emerges and how stochastic evolution is related to
the underlying graph structure. In Sec. 3.2 we generalize the classical scenario to the
quantum one.

3.1 Classical Markov chains

Classical random walks are built upon continuous time classical Markov chains. These
describe the motion over a discrete set of positions of a particle, or more in general, a
walker. The underlying structure is naturally described by a pair G = (V, E), where V is
the set of vertices, while E is the set of edges, i.e. the set of unordered pair of elements
of V which identify the connections between the nodes. We say that two vertices are
adjacent if their corresponding pair is in the set E. We also denote the order of the graph
as the number of nodes N = |V |, and we also restrict our future discussions to graphs
without loops or multiple edges. All these information determines the topology of the
graph and is fully encoded in the adjacency matrix A

Ajk =

(
1 if (j, k) 2 E

0 otherwise
(3.1)

Associated with A there is a Laplacian matrix, defined as

L = D � A, (3.2)

where D is a diagonal matrix, with Dkk = dk =
P

N�1
j=0 Akj the degree of the kth vertex.

A step in a classical random walk can be described by a matrix M that transforms the
probability distribution over V . The entry Mij is related to the probability to go from the
ith vertex to the jth vertex and is constrained by the structure of G, and more specifically
on the set of edges E. If the state of the walker is described by a probability distribution
p

t at a certain time step t, then the probability distribution at the following time step t+1
is given by

p
t+1 = Mp

t. (3.3)

This formalism allows us to transform probabilities at integer times. To derive a contin-
uous in-time evolution, we have to assume that the transitions occur at all times with a
constant-in-time jumping rate �. In other words, � represents the probability of transi-
tion per unit of time. If the jth vertex has degree dj (the number of vertices with which
is connected), then after a time ⌧ , there is a probability of dj�⌧ that the walker jump
from j to one of the connected vertices. Here we tacitly assume that the jumps are all
equiprobable, i.e. the edges are not weighted. Instead, the probability of staying in j is
1 � dj�⌧ . We see that the more the vertex is connected, the more probably the walker
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will jump away from it. Since M describes exactly these transitions rates, we have that
for an infinitesimal ⌧

Mjk(⌧) =

8
><

>:

�⌧ + O(⌧2) if j 6= k and (j, k) 2 E

0 if j 6= k and (j, k) /2 E

1 � dj�⌧ + O(⌧2) if j = k

(3.4)

As the state of a Markov chain only depends on the current-in-time configuration, we
can multiply the transition matrix at different times t and " to obtain the final transition
at time t + "

Mij(t + ") =
X

k

Mik(t)Mkj(") (3.5)

where the sum k runs over all vertices. By explicitly writing down the term k = j, we
obtain

Mij(t + ✏) = Mij(t)Mjj(") +
X

k 6=j

Mik(t)Mkj(") = (3.6)

= Mij(t)(1 � "Hjj) � "
X

k 6=j

Mik(t)Hkj (3.7)

where we have isolated the infinitesimal term " and introduced the time-independent
generating matrix

Hij =

8
><

>:

dj� if i = j

�� if i 6= j and (i, j) 2 E

0 if i 6= j and (i, j) /2 E

. (3.8)

By rearranging the terms in Eq. (3.7) and in the limit of " ! 0 we obtain a differential
equation

dMij(t)

dt
= �

X

k

Mik(t)Hkj . (3.9)

The solution of this equation given the natural initial condition Mij(0) = �ij is

M(t) = e�Ht. (3.10)

Then if the initial distribution of the walker among the nodes is given by p(0), we obtain
that the evolved probability distribution is now

p(t) = M(t)p(0). (3.11)

It is also easy to show that the probability distribution itself satisfies a differential equa-
tion

dpi(t)

dt
= �

X

k

Hkipk(t) ! d

dt
p(t) = �Hp(t), (3.12)

that will be the starting point to generalize continuous-time random walk to the quan-
tum realm. We also notice that the generating matrix is proportional to the Laplacian
matrix

H = �L. (3.13)
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3.2 Continuous-time quantum walks

The extension of continuous-time random walks to the quantum case was addressed by
[131] and can be summarized as follows.

In the standard process of quantization, the vector of probability p(t) is replaced with
a state vector | (t)i that belongs to a N -dimensional Hilbert space H, where N is the size
of the graph. A preferred basis is the position basis |ji, where j 2 V , and the system in
the state |ji represents a localized walker. In such a way, we can write the probability of
finding the walker in the node j as

pj(t) = |hj| (t)i|2. (3.14)

In the quantization procedure, the differential equation in Eq. (3.12) is replaced with a
Schrödinger equation

d

dt
| (t)i = �i bHQW| (t)i (3.15)

where HQW is the Hamiltonian of the quantum walker. As we know, the solution can be
expressed in terms of the unitary operator U(t) as

| (t)i = bU(t)| (0)i = e�i bHQWt| (0)i, (3.16)

There is a natural correspondence we can draw: the transition matrix M(t) in the clas-
sical random walk corresponds to the unitary evolution, while H in the classical corre-
spond to bHQW. Hence, we simply define bHQW = H = �L. Thus, the Laplacian matrix
is promoted to be the generator of the quantum dynamics as well, where the parameter
� > 0 is the hopping rate between the nodes and it accounts for the energy scale of the
system. A more physical argument passes through correspondence between L and the
discretized kinetic operator for regular lattices [353].

We want to remark that the choice of L as the dynamics generator is only one of
the possible (infinitely many) choices for the quantum-walker Hamiltonian bHQW. In-
deed, any Hermitian operator that preserve the topology of the graph can be used as
a legit CTQW Hamiltonian [353, 221, 339, 139, 140]. We also mention that, within this
formulation, the CTQWs is a closed system. As we know, this is an ideal case, since
any physical system inherently interacts with an external environment, yielding deco-
herence processes. For systems like quantum walks, these processes have been studied
and reviewed in [201].



Part II

Thermometry in the quantum

regime





From classical to quantum thermometry

The concept of temperature was originally a qualitative notion connected to the nat-
ural flow of heat, and associated with the intuitive notion of ”hot” and ”cold”. The
first attempt to formalize this concept dates back as far as Galileo. Together Sanctorius,
they invented the thermoscope, an instrument that measured the change of temperature
based on the changes in liquid’s height in a tube [323, 134]. This instrument can be con-
sidered the ancestor of modern thermometers: in fact, the latter does not only display
qualitative differences but also possess a measuring scale, facilitating quantitative anal-
ysis. By the end of the XVII century, the precision of these instruments was improving,
but there were no universal standard thermometers and temperature scales. Conversely,
each thermometer was unique and possessed its scale. The basic reason for this pro-
liferation was that there were no phenomena that were known to take place always at
the same temperature, and for such reason could be used as a universal thermometric
benchmark.

In the early XVIII century, several attempts were made in finding reliable universal
phenomena 1. Here came the main contribution of Fahrenheit [86], who exploited the
property of mercury to build more precise devices. Moreover, his thermometer was
much smaller compared to the previous ones, and as a result, measuring the temperature
was much easier. In addition, it was scalable, i.e. feasible for industrial production.
Not only Fahrenheit introduced such a mercury thermometer, but he also proposed a
universal thermometric scale: the age of precision thermometry was born.

Furthermore, by the middle of the XVIII century, a consensus emerged about us-
ing the boiling and freezing point of water as the preferred fixed point of thermometry,
thanks to the work of Anders Celsius, among others. This caused several debates among
the main scientists of the time, led by the Royal Society of London. For more informa-
tion about that, we suggest the reader to the Book of Chan [86], where the chronology of
the concepts, scale definitions and historical problems regarding a universally accepted
thermometric scale is reported in great historical detail.

The XIX was the century of thermodynamics. Many concepts, like work and heat,
were formalized. Among them, also the concept of temperature was operationally stan-
dardized. Indeed, the measurability of T is now based on the zeroth principle of thermo-
dynamics formulated at the time: if A and B are at thermal equilibrium, i.e. no heat flow
is observed between the two, and B and C are at thermal equilibrium too, then A and C
are at equilibrium with each other. All these objects at equilibrium with each other are

1A nice attempt that I believe is worth mentioning is the one by Joachim Dalencé, which used the melting
point of butter as its upper fixed point.
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said to have the same temperature T . Most classical thermometers work at equilibrium
by having some macroscopic property that depends on the thermometer’s temperature
T in a well-defined way. The operational ways to measure T are based on the zeroth
principle illustrated above: once the thermometer and the system have reached equi-
librium, one can read the temperature of S by looking at the temperature scale on the
thermometer.

Clearly, a possible drawback of this strategy is that one has to ensure that during the
equilibration process the temperature of the system S does not change due to the process
itself, i.e. they do not reach equilibrium at a temperature TEQ different from the one to be
probed. Unfortunately, this happens only in the idealized case: the thermometer needs
to exchange some energy to reach the equilibrium, and this comes from the system S.
If the thermometer and S have respectively heat capacity Ct and CS , and their initial
temperature is Tt and TS (with TS > Tt), we have that the energy exchanged to reach the
equilibrium at temperature TEQ is given by

Ct(TEQ � Tt) = CS(TS � TEQ). (3.17)

With some algebra, we get

TEQ = TS

1 + Ct

CS

Tt

1 + Ct

CS

(3.18)

which approximates the temperature to be probed TS if Ct n CS . Thus, a precise
thermometer should not exchange too much energy during the process, i.e. its heat
capacity should be much smaller than the heat capacity of the system. Mercury, for
instance, satisfies the request properties.

In the last century, the search for optimal thermometers was addressed with the use
of several physical properties having reliable responses to changes in temperature. Even
more recently, the demand for even smaller and less invasive thermometers has emerged
due to the advent of nanotechnologies, given the natural weakness of these systems
[61, 76, 190]. Quantum thermometry has also been found of fundamental relevance in
pushing the limits of technology in measuring temperature within cells or tiny electronic
circuits [224, 208].

However, in moving away from the standard thermodynamic regime, several diffi-
culties arise, even for the definition of temperature [282]. This also happens for other
thermodynamic variables, such as heat and work, and it is even more evident in the
quantum regime. Although these issues affect the concept of the temperature outside the
thermodynamic limit, in the chapters that follow we are interested in the regime where
the temperature, at least from the statistical perspective, is well defined. For this reason,
in the following chapters, the temperature will be nothing but a statistical parameter T
labelling the system at equilibrium.

As we have already observed, the key property for a thermometer based on the ze-
roth principle is to have a small heat capacity. This line of reasoning leads to consider-
ing small thermometers, possibly subject to the laws of quantum mechanics [154]. An
extensive review of the last theoretical and experimental achievement of quantum ther-
mometry can be found in [238, 267]. Here we review some of the most relevant results
that most closely relate to the work presented in this thesis.

As we mentioned, one of the quantities that define the efficiency of a thermometer is
the heat capacity. Since this quantity depends on temperature, one is led to investigate
whether the heat capacity of a thermometer may be tailored for a specific range of tem-
peratures [248]. Moreover, a general expression for the local heat capacity for a locally



47

probed quantum system has been proposed in [112], quantified by the local thermal re-
sponse of arbitrary quantum systems at equilibrium in terms of metrological quantities.

The study of the metrological power in the estimation of temperature has been ex-
tensively studied in the quantum realm with the tools of quantum metrology presented
in Chapter 2. A connection between classical thermometric precision and quantum one
was presented in [264]. Here, the Landau bound on the precision of a temperature esti-
mate for a classical and not too small system is �T 2 � T 2/C, with C the heat capacity,
and it was proved to be valid also for finite quantum systems with vanishing gap in the
low-temperature regime. The tools of quantum estimation theory also provided proof
that energy measurement is the optimal one. However, in the case of a minimum gap
�, the temperature can be estimated efficiently only down to a threshold, below which
the variance of any estimators diverges exponentially as �T 2 � T 4e�/T . This bound
seemed to imply that measuring cold temperatures using a thermalized probe can be
exponentially difficult. However, this is not always the case. Indeed, the limitation of
the latter inequality lies in the fact that it does not hold in the case of continuous spectra
or in the case where we have limited access to the probe. This happens when we do not
have the possibility of performing a projective measurement of the system energy and
the ability to completely distinguish all the energy levels, being both experimental de-
manding requests. These problems have been discussed in [280] where the framework
for finite-resolution quantum thermometry has been introduced, and tighter bound have
been derived in [196] in the limit of T ! 0. Finite resolution thermometry is also studied
in [182].

The manipulation and engineering of single finite quantum systems have raised the
question about the optimal system that can be used as a quantum thermometer. This
question was addressed in [102], where the optimal probe is found to be a two-level
system with a maximally degenerate excited state and an optimal fine-tuned gap. This
is not in contradiction with the previous result by [264], since we assume there are no
restrictions on the value of the gap. Similar results were derived in [69] regardless of the
dimensionality of the probe.

The approach of thermometry discussed so far relies on local estimation theory, i.e.
when the range of the true value of the parameter is well known. In the case of poor data,
a bayesian approach is more appropriate. Hence, it is relevant to mention the recent in-
terest in global quantum thermometry [304, 47], where a method for global thermometry
was presented. The problem of the optimal probe was also addressed in [245], while at-
tainability via adaptive strategies was studied in[237]. Finally, a connection with the
thermodynamic length was established in [195].

We see how the quest for optimal equilibrium thermometry has spanned different
fields and established several results and fundamental bounds. In this thesis, the first
contribution is given by studying the role of the topology in the estimation of T and
showing the optimal topological configurations in the underlying graph structure of our
probe. Results are presented in Chapter 4

The equilibrium paradigm dominated thermometry since the very first definition of
temperature. Nonetheless, a completely different approach has been explored in the
last years that goes beyond the equilibration and thermalization process and exploits
other features of a quantum system that can carry information on T . This is crucial in
the development of novel quantum technologies, where one wants to probe systems at
the nanoscale without destroying the samples. It is clear that at this scale, traditional
strategies are not feasible. These experimental difficulties sparked interest in the search
for new methods to determine the temperature T by using strategies that did not require
reaching equilibrium, departing from the classical scheme established by the zero law of
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thermodynamics. These new methods allow temperature estimation even in the out-of-
equilibrium regime, where the temperature can be read from the statistic of the out-of-
equilibrium probe that has interacted with the sample.

Different methods have been devised that use quantum probes P to measure the tem-
perature. A possible strategy assumes that P interacts with the system S and eventually
thermalizes: if the interaction is sufficiently weak, then, as in the standard paradigm de-
scribed by the zeroth principle of thermodynamics, we can measure the temperature T
measuring the probe P only. However, in the quantum regime, we can go beyond this
standard strategy inherited from classical thermodynamics and exploit the transient evo-
lution [238] to obtain more information compared to equilibrium probes. One of the first
proposals for a quantum out-of-equilibrium probe used an atomic interferometer[327].
In this setting, the temperature is encoded in the relative phase which can be estimated
using interferometer techniques. Exploiting a special class of non-classical states such as
N00N, that yield a Heisenberg scaling in the phase estimation, one can induce the same
scaling in temperature estimation. Similarly, a quantum interferometric thermometer
using single-mode Gaussian state was studied in [191], and it was proved reliable in the
nanokelvin regime and compared to a classical non-invasive thermometer, the pyrome-
ter, which use the thermal radiation to estimate the temperature.

Using out-of-equilibrium probes proved to be particularly successful with a mi-
cromechanical oscillator platform. Here, the temperature can be probed by measuring
the population of an external two-level system interacting via a Jaynes-Cummings in-
teraction [65]. Similarly, the same strategy can be used in qubit-boson couplings in the
mesoscopic regime, again measuring only the qubit [66]. In another study, authors also
went beyond the Jaynes cummings approximation, studying a situation with large cou-
pling strength and large detuning between qubit and oscillator and showed that, exploit-
ing the ac Stark shift, precise thermometry can be performed.

Furthermore, out-of-equilibrium quantum thermometry greatly improved low-
temperature sensing in the field of cold atoms and Fermi gas. Using a technique called
in-situ thermometry, and exploiting non-equilibrium impurities dynamics, it was pos-
sible to probe the system’s temperature with interferometric protocols [242], and also
probing individual atomic wires [110]. The non-invasiveness of such strategies is very
important in the context of cold atom gases, due to the inherent fragility of such systems.

The use of finite quantum systems proved to be useful in temperature estimation.
However, many relevant physical systems that can be engineered belongs to infinite di-
mensional probe. Studying the out-of-equilibrium dynamics of a Gaussian thermometer
[227], entanglement showed to be a useful resource. Nonetheless, differently from the
qubit case, out-of-equilibrium is not always proven to be better than equilibrium probes.
The use also of non-Gaussian interaction was addressed in optomechanical systems used
to measure the temperature [247]. Another thermometer exploits a system undergoing
quantum Brownian motion in the strong coupling regime [103]. A relevant property
that proved to be useful in the temperature estimation is non-markovianity, both in con-
tinuous variable [363], where quantum criticality proved to enhance the temperature
sensitivity, and single qubit systems [365].

Other approaches in quantum thermometry used different properties of quantum
systems, bared from other thermodynamics setups. For instance, the use of thermal
machines is worth to be mentioned [176, 211]. Another interesting approach is the se-
quential probing without reinitialization proposed in [113], which is more robust when
the initial kownledge of T is poor and does not depend too much on the initial state of
the probe. In the same spirit, the use of collisional models in quantum thermometry was
addressed in [260, 313].
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As mentioned, at the beginning of this introduction, distinguishing ”hot” from
”cold” was the most primitive form of thermometry. This primordial statement can be
rephrased in the language of discrimination theory as a binary discrimination problem.
Also for this task, out-of-equilibrium quantum probes proved to be useful compared to
the thermalized ones [192]. In this work, a probe undergoing a markovian Lindblad
master equation in the weak coupling limit was used to probe the temperature of the
reservoir. However, many systems are not properly described in the weak coupling
limit. In Chapter 5, we study another interesting case for temperature discrimination,
i.e. a pure dephasing quantum probe. We assess the role of quantum resources and com-
pare these probes with thermalized ones to see whether pure dephasing can be used as
a resource. Pure dephasing was already found to be useful in temperature estimation
[356, 287], and we found similarities and differences with our results.

A remark is in order here: in the following chapters, we are going to use indistinctly
the temperature Ti or the inverse temperature �i = 1/kBTi and we label them as tem-
perature.





CHAPTER 4

On the role of topology in determining the precision of a

finite thermometer

In this chapter we study the connection between the role of topology and the precision
of a finite thermometer. In particular, upon modeling a finite thermometer as a set of
connected subunits , we employ graph theory, together with QFI, to assess the role of
topology on the thermometric performance of the system. We show that measuring the
energy of the system is the best way to estimate temperature and we explore which topo-
logical features play a role in the temperature estimation. We study whether connectivity
is a useful resource to build precise thermometers and in which regime, i.e low or high
temperature. We also compare the optimal precision with the one achievable by mea-
suring the position of thermal excitations. Our results indicate that quantum probes are
especially useful at low temperatures and that systems with low connectivity provide
more precise thermometers.

Reference models are physical systems in which the connectivity plays a relevant
role, e.g. quantum dots arranged in lattices [22] and qubits in quantum annealers
[212, 258]. Evidences suggest that a system of qubits in D-Wave quantum annealers
quickly thermalizes with the cold environment [67] and that a pause mid-way through
the annealing process increases the probability of successfully finding the ground state of
the problem Hamiltonian, and this has been related to the thermalization of the system
[230].

The chapter is structured as follows. In Sec. 4.1 and 4.2 we consider the sensitivity
of equilibrium states of the Laplacian matrix of simple graphs, both with the optimal
strategy and measuring the position of the walker. In Sec. 4.3 and 4.4 we address the
efficiency of our probes in both the high-temperature and low-temperature regime. In
Sec. 4.5 we derive analytical and numerical results for some remarkable simple graphs
and two-dimensional lattices. Finally, in Sec. 4.6 we analyze the relation between the QFI
and the coherences and in Sec. 4.7 we summarize and discuss our results and findings.
In this chapter we have set the Boltzmann constant kB equal to 1.

4.1 QFI for equilibrium thermometry

In this chapter of the thesis, our focus is mainly on finite-size quantum system described
by an N -dimensional Hilbert space and by a Hamiltonian operator

bH =
N�1X

k=0

Ek|ekihek| (4.1)

The idea is to use such a finite system as a probe to estimate the temperature T of an
external environment. For that reason, we consider the usual thermodynamic situation
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that occurs for thermalized systems, i.e. when a system is in contact with a thermal
bath at temperature T . After undergoing some transient dynamics, we assume that the
former reaches equilibrium at the same temperature of the bath. The final state of the
probe is thus in a Gibbs state form

%P(T ) =
e� bH/T

Z(T )
=

Ng�1X

k=0

gkX

j=1

e�Ek/T

Z(T )
|ek,jihek,j | (4.2)

where we have make explicit the possible degeneracy of the energy levels. Here, Ng

labels the total number of distinct energy levels, while gk is the degeneracy of the corre-
sponding kth energy level. We have also introduced the partition function

Z(T ) =
N�1X

k=0

e�Ek/T =

Ng�1X

k=0

gke�Ek/T . (4.3)

The precision with which we can estimate the temperature can be determined by the
tools of quantum estimation theory introduced in Sec. 2.2. We can immediately notice
that the state in Eq. (4.2) is diagonal in the energy eigenbasis, and the dependence on
the parameter is only in the eigenvalues. This means that estimating the temperature
from such an equilibrium state reduces to classical-like estimation problem, where the
optimal POVM is realized by an energy measurement {|ek,jihek,j |}k,j . We obtain the
following result

Result 4: QFI for equilibrium temperature estimation

The QFI for temperature estimation is given by

Q(T ) =
1

T 4

⇣
h bH2i � h bHi2

⌘
(4.4)

and corresponds to the FI of an energy measurement.

4.2 Fisher information for the position measurement

The focus of this chapter is to study the role of topology in the temperature estimation
using graph theory and CTQW. In this scenario, where a system is confined to a discrete
set of positions, a position measurement is the most natural measurement we can per-
form. For this reason, it may be interesting to compare the corresponding FI for the T
with the QFI obtained in Eq. (4.4).

The POVM is given by {|jihj|}N�1
j=0 , and the probability of observing the system in

the jth position given that the state has thermalized at temperature T is

p(j|T ) = Tr {%P(T )|jihj|} =
N�1X

k=0

e�Ek/T

Z(T )
|hj|eki|2. (4.5)

The FI is given by Eq. (2.36) and reads as

F POS(T ) =
N�1X

j=0

(@T p(j|T ))2

p(j|T )
(4.6)
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To evaluate this, we recall the identity for the partition function

@T Z(T ) =
Zh bHi
T 2

. (4.7)

Then, the first derivative of the probability is given by

@T p(j|T ) =
N�1X

k=0

@T

✓
e�Ek/T

Z(T )

◆
|hj|eki|2 = (4.8)

=
1

T 2

N�1X

k=0

e�Ek/T

 
Ek � h bHi

Z(T )

!
|hj|eki|2 = (4.9)

=
1

T 2

⇣
h bH%Pij � h bHip(j|T )

⌘
, (4.10)

where we have defined

h bH%Pij =
N�1X

k=0

e�Ek/T Ek

Z(T )
|hj|eki|2. (4.11)

From the former expression, we obtain

F POS(T ) =
1

T 4

N�1X

j=0

h bH%Pi2
j

p(j|T )
+

1

T 4
h bHi2

N�1X

j=0

p(j|T ) � 2

T 4
h bHi

N�1X

j=0

h bH%Pij (4.12)

After some algebra and using the completeness relation
P

N�1
j=0 |hj|eki|2 = 1, we have

that
N�1X

j=0

h bH%Pij = h bHi, (4.13)

from which we eventually obtain the following result

Result 5: FI for T estimation with position measurement

The FI for the temperature estimation and with a position measurement of the walker
is

F POS(T ) =
1

T 4

0

@
N�1X

j=0

h bH%Pi2
j

p(j|T )
� h bHi2

1

A (4.14)

Actually, this formula holds true for any projective PVM, since we did not use any
particular properties of the position measurement.

4.3 Thermometry in the low-temperature regime

The first regime we analyze is the low temperature regime. We assume that the system
is mostly in the ground state and can access only the first excitation energy, i.e. that
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En o T for k > 1. Using the fact that E0 = 0 and g0 = 1, we have that the partition
function becomes

ZLOW(T ) = 1 + g1e
�E1/T . (4.15)

For the same reasons, the mean value of the energy is h bHi = g1E1e�E1/T Z�1(T ), and it
follows that the QFI in the low-temperature regime can be approximated as

QLOW(T ) ' fg1(E1/T )

E2
1

(4.16)

where we have defined
fg1(x) =

g1x4e�x

(1 + g1e�x)2
(4.17)

If we define x = E1/T , the QFI now reads as

QLOW(T ) ' 1

T 2

fg1(x)

x2
(4.18)

We see that the latter is maximum for small values of T . Moreover, we can also study
how to maximize the second element in the product, i.e. fg1(x)/x2. As a function of g1,
we obtain that

d

dg1

fg1(x)

x2
=

ex(ex � g1)x4

(ex + g1)3
= 0 (4.19)

Since x > 0 and g1 � 1, ex � g1 has no solution. This means that it is a monotone
function of g1. In particular, if x > log(g1), then it is a monotone increasing function of
g1, otherwise it is monotone decreasing.

Instead, as a function of x, we obtain that
d

dx

fg1(x)

x2
=

exg1x(g1(2 + x) � ex(x � 2))

(ex + g1)3
= 0 (4.20)

The solution to this is in the transcendental equation

exMAX = g1
xMAX + 2

xMAX � 2
. (4.21)

The solutions are reported graphically in Fig. 4.1. The value of xMAX depends only on
the degeneracy g1 and numerical results show that xMAX(g1) is a sub-linear function, i.e.
it increases less than linearly with g1.

To evaluate the FI for a position measurement, we first find the approximated prob-
ability distribution in such regime

p(j|T ) ' Z(T )�1(N�1 + exp(�E1/T⌘j)), (4.22)

where ⌘j =
P

g1

k=1 |hj|e1,ki|2. In this case, since

h bH%Pij ' e�E1/T E1⌘j

Z(T )
(4.23)

we obtain that

F POS
LOW(T ) ' E2

1e�2E1/T

Z(T )T 4

0

@
N�1X

j=0

⌘2
j

N�1 + e�E1/T ⌘j

� g2
1

Z(T )

1

A (4.24)

We conclude observing that the main topological quantity is the degeneracy of the first
eigenvalue. We will study g1 quantity and the metrological quantity for a few relevant
example in a following section.
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Figure 4.1: Graphical solution xMAX(g1) of the transcendental equation (4.21) for different values
of g1.

4.4 Thermometry in the high-temperature regime

In the opposite regime of high temperature, we assume that T o Ek for all k. In this
scenario, we have to stress that the single-walker probe is no longer valid in the high-
temperature regime, where many excitations come into play. Nonetheless, the single
walker approximation can be used for small thermometers with bounded spectrum and
large energy gap E1 � E0, so that we may expect few excitations. In this case, the den-
sity matrix in the energy eignebasis can be approximated by the maximally mixed state
%P(t) ' IN/N , where IN is the identity matrix. Accordingly, the QFI becomes

QHIG(T ) ' 1

T 4

0

@ 1

N

N�1X

k=0

E2
k

� 1

N2

 
N�1X

k=0

Ek

!2
1

A (4.25)

A more compact formula can be derived by rewriting the sum using the spectral
properties of the laplacian matrix. First, the sum of the laplacian eigenvalues can be
written as

N�1X

k=0

Ek = Tr {L} = Tr {D} =
N�1X

k=0

dk = 2M (4.26)

where the last equality was first proved by Euler, and it is known as the degree sum
formula or the handshaking lemma [129, 9]. In this formula we have denoted the degree
of the kth vertex as dk, while M is the total number of edges. Next, we consider the sum
of the squared energy eigenvalues

N�1X

k=0

E2
k

= Tr
�
L2
 

= Tr
�
D2
 

+ Tr
�
A2
 

� Tr {DA} � Tr {AD} (4.27)
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Using the definition of degree and adjacency matrix in Eq. (3.1), we see that

(DA)kj =

(
0 if k = j

dkAkj otherwise
(4.28)

(AD)kj =

(
0 if k = j

Akjdj otherwise
. (4.29)

Clearly we have that Tr {DA} = Tr {AD} = 0, whereas

Tr
�
A2
 

=
N�1X

k=0

(A2)kk =
N�1X

k=0

N�1X

m=0

AkmAmk =
N�1X

k=0

N�1X

m=0

Akm =
N�1X

k=0

dk = 2M (4.30)

where we have used the symmetry of the adjacency matrix, and the fact that for simple
graphs Akm 2 {0, 1}, hence A2

km
= Akm. This is connected with the well-known fact

that (A2)kj represents the number of walks of length 2 connecting the vertexes k and j.
Eventually, we obtain

N�1X

k=0

E2
k

=
N�1X

k=0

d2
k

+ 2M (4.31)

In this way, the QFI at high temperatures can be written in terms of dk and M , that is
quantities that describes the topology of the graph, as

QHIG(T ) ' 1

NT 4

 
N�1X

k=0

d2
k

+ 2M

✓
1 � 2M

N

◆!
. (4.32)

Actually, the sum of the squared degree can be bounded from above and below as

4M2

N


N�1X

k=0

d2
k

 M

✓
2M

N � 1
+ N � 2

◆
. (4.33)

The upper bound is proved in [109] and is saturated by the complete graph. Instead,
the lower bound follows from the Cauchy-Schwartz inequality for the inner product of
two N -dimensional vectors (1, ..., 1) and (d0, ..., dN�1) and using Eq. (4.26). In this case,
two possible graphs saturating the lower bound are the cycle graph and the complete
bipartite graph whose partite sets have both cardinality N/2.

Using these two inequality we can also bound the QFI as

2M

NT 4
 QHIG(T )  M

T 4

✓
1 � 2M(N � 2)

N2(N � 1)

◆
(4.34)

The two bounds are saturated for the same graphs mentioned above. For a more detailed
discussion of this quantity, we refer the reader to the next section, where a series of
examples will be studied in detail. However, some general considerations can be drawn
from these formulae. For instance, that for high temperatures the optimal thermometer
is the complete graph, which, among the simple graphs, has the maximum number of
edges M . Notice also that the complete graph has the maximum energy gap, since E1 �
E0 = N . Thus, unlike the low-temperature regime, the graphs which perform better are
those with high connectivity, quantified by the number of edges M .
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Recalling that in the high-temperature regime %P ' IN/N , we can also derive an
approximate formula for the FI for the position measurement as

F POS
HIG (T ) ' 1

N2T 4

0

@N
N�1X

j=0

�
Ek|hj|eki|2

�2 � 4M2

1

A (4.35)

Using the fact that

N�1X

k=0

Ek|hj|eki|2 =
N�1X

k=0

hj|L|ekihek|ji = hj|L|ji = dj (4.36)

we eventually obtain

F POS
HIG (T ) ' 1

N2T 4

0

@N
N�1X

j=0

d2
j

� 4M2

1

A (4.37)

To understand the discrepancy between the optimal measurement and the position mea-
surement in the high temperature regime, we evaluate the ratio

F POS
HIG (T )

QHIG(T )
=

N
P

N�1
j=0 d2

k
� 4M2

N
⇣P

N�1
k=0 d2

k
+ 2M

�
1 � 2M

N

�⌘ =
1

1 + �N,M

(4.38)

which is temperature independent, and where we have introduced

�N,M =
2M

P
N�1
k=0 d2

k
� 4M2N�1

, (4.39)

a quantity that depends only on topological quantities and that fully capture the differ-
ent scaling of FI and QFI: small values of �N,M means a ratio close to 1, i.e. F POS

HIG (T ) '
QHIG(T ), whereas large values of �N,M means a ratio close to 0, and a position measure-
ment is not optimal.

4.5 Results on network thermometry

This section is fully devoted to the study of the metrological performances of some re-
markable connected simple graphs and some lattice graphs, using the previously found
general results.

To avoid repetitions, we recall that the ground state energy in every graph we will
consider is E0 and is not degenerate, i.e. g0 = 1. The corresponding eigenstate is

|e0i =
1p
N

N�1X

j=0

|ji. (4.40)

Results of QFI and FI for position measurement for graphs (see Fig. 4.2) are shown in
Fig. 4.3 and 4.4, for lattices (see Fig. 4.5) in Fig. 4.6, and results of the ratio of FI and QFI
for both graphs and lattices are summarized in Fig. 4.7. The analytical results suitable
for a comparison are reported in Table 4.1.



58 4.5 Position measurement for circulant graph

(a) (b) (c) (d)
Figure 4.2: Graphs considered in the present chapter (example for N = 5 vertices): (a) Complete
graph K5, (b) cycle graph C5, (c) complete bipartite graph K2,3, and (d) path graph P5.

4.5.1 Position measurement for circulant graph

In this section we prove that, for the special case of circulant graph, the FI for a position
measurement is always zero, i.e. we do not gain any information on the temperature.
Circulant graphs are defined as the regular graph whose adjacency matrix is circulant
[126, 157]. The latter is a special Toeplitz matrix where every row of the matrix is a rich
cyclic shift of the row above it, and remarkably, for this class of matrices the eigenprob-
lem is analytically solved [160]. Indeed, the Laplacian eigenstates of circulant graphs
are

|eki =
1p
N

N�1X

j=0

!kj |ji, (4.41)

where ! = exp(2⇡i/N). This means that |hj|eki|2 = 1/N for all k and the probability
distribution becomes

p(j|T ) =
1

N
(4.42)

which is temperature independent, and hence the corresponding FI is null. We conclude
that for circulant graphs, the position measurement does not carry any information on
the temperature T . This result can be generalized to an arbitrary parameter encoded in
the eigenvalues of a diagonal state in the energy eigenbasis of a circulant graph.

4.5.2 Complete graph

A complete graph is a simple graph whose vertices are pairwise adjacent, i.e. each pair
of distinct vertices is connected by a unique edge (see Fig. 4.2 (a)). The complete graph
with N vertices is denoted KN , is (N � 1)-regular, and has M = N(N � 1)/2 edges. Its
energy spectrum consists of two energy levels: the ground state and the second level
E1 = N with degeneracy g1 = N � 1. The graph is circulant, thus the eigenvectors are
given by (4.41) and the FI for a position measurement is identically null.

In this case, the approximation for the low-temperature regime is actually exact and
holds at all the temperatures, because the system has precisely two distinct energy levels.
Hence, the QFI reads as

Q(T ) =
N2(N � 1)e�N/T

T 4[1 + (N � 1)e�N/T ]2
. (4.43)
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Fpos

Figure 4.3: QFI and FI for position measurement for different graphs of order N : (a) complete
graph, (b) cycle graph, (c) star graph, and (d) path graph. Solid colored line: QFI Q(T ). Dotted
black line: QFI at low temperature QLOW (4.16) (not reported for the complete graph since it co-
incides with Eq. (4.43)). Dashed colored line: FI for position measurement F POS(T ). The FI for
complete graph and cycle graph (circulant graphs) is null, and therefore is not shown. Because of
the different ranges, values of QFI are referred to the left y-axis, and values of FI are referred to the
right y-axis.

The algebraic connectivity E1 = N and the degeneracy g1 = N�1 grow with the order N
of the graph. In Fig. 4.3 (a) we observe that maxima of QFI occur at higher temperatures
as N increases. According to Eq. (4.21) and Fig. 4.1, we expect the maximum of QFI
to occur at increasing values of xMAX = E1/TMAX as g1 (N ) increases. Hence, this means
that TMAX increases less than linearly with N . For this reason the complete graph is not a
good thermometer for low T . On the other hand, the complete graph saturates the upper
bound in (4.34), since M = N(N � 1)/2. It follows that in the high-temperature regime
the complete graph is the optimal thermometer and, accordingly, the QFI is

QHIGH(T ) = (N � 1)/T 4. (4.44)

4.5.3 Cycle graph

A cycle graph with N � 3 vertices (or N -cycle) is a simple graph whose vertices
{vj}j=1,...,N can be (re)labeled such that its edges are v1v2, v2v3, . . . , vN�1vN , and vNv1

(see Fig. 4.2 (b)). In other words, we may think of it as a one-dimensional lattice with N
sites and periodic boundary conditions. The cycle graph with N vertices is denoted CN ,
is 2-regular, and has M = N edges. Its energy spectrum is

Ek = 2[1 � cos(2⇡k/N)], (4.45)

with k = 0, . . . , N �1. The lowest energy level is not degenerate, while the degeneracy of
the highest energy level depends on the parity of N : no degeneracy for even N , gN/2 = 1,
but double degeneracy for odd N , g(N+1)/2 = 2. The remaining energy levels have
degeneracy 2. The cycle graph is circulant, thus the eigenvectors are (4.41), the same of
those of the complete graph, and the FI for a position measurement is identically null.

The algebraic connectivity E1 = 2[1 � cos(2⇡/N)] decreases as N increases, while
g1 = 2 is constant. According to Eq. (4.21) and Fig. 4.1, we expect the maximum of
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QFI to occur at the constant value of xMAX = E1/TMAX independently of N , because g1

is constant. Since E1 decreases as N increases, then TMAX must also decrease to ensure
xMAX constant. Indeed, the maxima of QFI occur at lower temperatures as N increases,
as shown in Fig. 4.3 (b). It follows that the larger N the better the cycle graph behaves as
a low-temperature probe. Instead, the cycle graph saturates the lower bound in (4.34),
since M = N , and so the QFI at high temperatures is the smallest possible

QHIG(T ) = 2/T 4. (4.46)

4.5.4 Complete bipartite graph

A graph G is bipartite if the set of vertices V (G) is the union of two disjoint independent
sets V1 and V2, called partite sets of G, such that every edge of G joins a vertex of V1

and a vertex of V2. A complete bipartite graph is a simple bipartite graph such that two
vertices are adjacent if and only if they are in different partite sets, i.e. if every vertex of
V1 is adjacent to every vertex of V2 (see Fig. 4.2 (c)). The complete bipartite graph having
partite sets with |V1| = N1 and |V2| = N2 vertices is denoted KN1,N2 , has M = N1N2

edges, and the total number of vertices is N = N1 + N2.
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Figure 4.4: Results of the estimation problem of the temperature for the complete bipartite graph
KN1,N2 of order N = N1 +N2. Left-column plots: results for different N at fixed N1 = 5. Right-
column plots: results for different N1 at fixed N = 10. Values of N1 > N/2 are not considered
because of the symmetry of the graph when exchanging the two partite sets and so N1 and N2.
For N1 = N2 = N/2 the FI is identically null because the corresponding complete bipartite graph
is circulant. Top-row plots: QFI Q(T ) (solid colored line), QFI at low temperature QLOW(T ) (4.16)
(dotted black line), and FI for position measurement F POS(T ) (dashed colored line). Because of the
different ranges, values of QFI are referred to the left y-axis, and values of FI are referred to the
right y-axis. Bottom-row plots: ratio F

POS(T )/Q(T ).

Without loss of generality we assume N1  N2. The energy spectrum is given by
E1 = N1, E2 = N2, and E3 = N1 +N2, with degeneracy g0 = 1, g1 = N2 �1, g2 = N1 �1,
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and g3 = 1, respectively. The corresponding eigenvectors are

|en

1 i =
1p

n(n + 1)

 
N1�1+nX

k=N1

|ki � n|N1 + ni
!

(4.47)

|em

2 i =
1p

m(m + 1)

 
m�1X

k=0

|ki � m|mi
!

(4.48)

|e3i =
1p
N

 r
N2

N1

N1�1X

k=0

|ki �
r

N1

N2

N�1X

k=N1

|ki
!

(4.49)

where n = 1, . . . , N2 � 1 and m = 1, . . . , N1 � 1.
Note that for N1 = N2 = N/2 the complete bipartite graph is circulant and the spec-

trum reduces to E0, E1 = N/2, and E2 = N , with degeneracy, respectively, g0 = 1,
g1 = N � 2, and g2 = 1. Instead, for N1 = 1 and N2 = N � 1 we obtain the star graph
SN , whose spectrum reduces to E0, E1 = 1, and E2 = N , with degeneracy, respectively,
g0 = 1, g1 = N � 2, and g2 = 1.

Regarding the low-temperature regime, the algebraic connectivity is E1 = N1 while
g1 = N2�1. The complete bipartite graph is completely defined only by the total number
of vertices N , so we discuss where the maximum of the QFI occur according to Eq. (4.21)
and Fig. 4.1 first for a given value N1, and then for a given value of N = N1 + N2.

For N1 fixed, we expect the maximum of QFI to occur at increasing values of xMAX =
E1/TMAX as N increases, because N2 and thus g1 increase. Since E1 is constant, then
TMAX must decrease to ensure that xMAX increases. Indeed, for a given N1, the maxima of
QFI occur at lower temperatures as N increases, as shown in Fig. 4.4 (a). In particular,
this is also the case of the star graph SN , because it coincides with K1,N�1, even if such
behavior is less evident in Fig. 4.3 (c).

For N fixed, we expect the maximum of QFI to occur at decreasing values of xMAX =
E1/TMAX as N1 increases, because N2 and thus g1 decrease. Since E1 increases as N1

increases, then TMAX must increase more than N1 to ensure that xMAX decreases. Indeed,
for a given N , the maxima of QFI occur at higher temperatures as N1 increases, as shown
in Fig. 4.4 (b). This means that, at fixed N , we can tune the temperature at which the
QFI is maximum just by varying the number of of vertices in the two partite sets. From
Fig. 4.4 (b) we observe that the highest maximum of QFI is provided by the star graph
SN , whose algebraic connectivity E1 = 1 is constant and minimum, while the lowest
maximum of QFI is provided by KN/2,N/2, i.e. for N1 = N2, whose algebraic connectivity
E1 = N/2 is the largest among all the complete bipartite graphs.

In the high-temperature regime, since

N�1X

k=0

d2
k

= N1N2(N1 + N2) (4.50)

and M = N1N2, the QFI is

QHIG(T ) =
N1N2

h
(N1 � N2)

2 + 2(N1 + N2)
i

T 4(N1 + N2)2
(4.51)

Notice that for N1 = N2 = N/2, the complete bipartite graph is N/2-regular, and satu-
rates the lower bound in (4.34), since M = N2/4, and so the QFI at high temperatures
simplifies to QHIG(T ) = N/(2T 4).
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The asymptotic behavior of the ratio F POS
HIG (T )/QHIG(T ) at high temperature (4.38) is

characterized by �N1+N2,N1N2 = 2(N1 + N2)/(N2 � N1)2. Depending on the number
of vertices in the two subsets, results differ. When N1 = N2, the difference N2 � N1 is
null, the complete bipartite graph is circulant and so the FI is identically null, for any T .
Instead, the difference N2�N1 is maximum for the star graph SN . This results in �N,N =
2N/(N �2)2: hence, �N,N ! 0 for large N and, accordingly, the FI approaches the QFI in
the limit of high temperatures. Actually, since for the star graph

P
k
d2

k
= N(N � 1), the

QFI in the high-temperature regime has the same asymptotic behavior of the complete
graph, i.e. QHIG(T ) = (N � 1)/T 4 + O(1/(NT 4)).

In this section we have approximated the QFI for the complete bipartite graph under
the assumptions of low or high temperature. For completeness, we also report the exact
analytical expression of the QFI

Q(T ) =
e�2(N1+N2)/T

Z2T 4

n
N2

1 eN1/T

h
(N1 � 1) + e2N2/T (N2 � 1)

i

+ N2
2 eN2/T

h
e2N1/T (N1 � 1) + (N2 � 1)

i

+ e(N1+N2)/T
⇥
N3

1 (N2 � 1) � N2
2 (N2 � 2)

+N1N
2
2 (N2 + 1) � N2

1 (2N2
2 � N2 � 2)

⇤ 
, (4.52)

4.5.5 Path graph

A path graph with N vertices is a simple graph whose vertices {vj}j=1,...,N can be
(re)labeled such that its edges are v1v2, v2v3, . . . , vN�1vN (see Fig. 4.2 (d)). In other
words, we may think of it as a one-dimensional lattice with N sites and open bound-
ary conditions. The path graph with N vertices is denoted PN , and has M = N � 1
edges. Its nondegenerate energy spectrum is

Ek = 2[1 � cos(⇡k/N)], (4.53)

with k = 0, . . . , N � 1, and the corresponding eigenvectors are

|eki =
N�1X

j=0

cos

✓
⇡k

2N
(2j � 1)

◆
|ji (4.54)

The energy spectrum is similar to that of the cycle, and this is reflected in its thermo-
metric behavior. Indeed, the algebraic connectivity E1 = 2[1 � cos(⇡/N)] decreases as N
increases, while g1 = 1 is constant. Hence, as for the cycle graph, the maximum of the
QFI occurs at lower temperature as N increases, as shown in Fig. 4.3 (d). Further, the
similarity extends also in the high-temperature regime, where, we have that

X

k

d2
k

= 2(2N � 3) (4.55)

Since M = N � 1, the QFI in this limit is

QHIG(T ) = 2/T 4 + O(1/(N2T 4)), (4.56)

which is asymptotically equivalent to that of the cycle.
Nevertheless, there is a difference between the cycle and the path, and this is due to

the different boundary conditions of the two graphs. In the first, the periodic boundary
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conditions ensure that the cycle graph is a circulant graph, and consequently the FI for
the position measurement is null. Instead, in the second, the open boundary conditions
lead to a non-null FI for the position measurement. The asymptotic behavior of the
ratio F POS

HIG (T )/QHIG(T ) at high temperature (4.38) is characterized by �N,N�1 = N(N �
1)/(N � 2), which is monotonically increasing with the order of the graph. Thus, in
the limit of high temperature the FI is very small compared to QFI, but still can provide
some information on the temperature T , differently from the cycle graph.

4.5.6 Lattices

We now consider a different class of graphs, two dimensional lattices, and study their
thermometric properties. In particular, we choose three regular tessellations composed
of regular polygons symmetrically tiling the Euclidean plane: equilateral triangles,
squares, and regular hexagons [Figs. 4.5(a)-(c)]. In addition to these we also consider
the truncated square lattice in Fig. 4.5(d). Triangular and square lattices are Bravais lat-
tices, while honeycomb and truncated square lattice are not. This difference is reflected
in the spreading of CTQWs, which is ballistic on Bravais lattices and subballistic on non-
Bravais lattices [290]. A generic vertex in the triangular lattice has degree 6, in the square
lattice has degree 4, and both in the honeycomb and in the truncated square lattice has
degree 3. We consider the lattices either with open boundary conditions (OBC) or with
periodic boundary conditions (PBC). Notice that the lattices with PBC are regular, while
the lattices with OBC are not, because the vertices at the boundaries have a lower degree
than the vertices within the lattice.

Numerical results of QFI and FI for the lattices with OBC are shown in Fig. 4.6.
We observe that the maximum of the QFI gets sharper and higher, and shifts to lower
temperatures as the size of the lattice, i.e., the number of vertices, increases. A similar
behavior occurs as the degree of the vertex of the lattice decreases: the maximum of
the QFI for honeycomb and truncated square lattices is sharper and higher, and at lower
temperature than the peak of the QFI for the triangular lattice. The predicted behavior of
the QFI at low temperature (4.16) is a good approximation for honeycomb and truncated
square lattices, because it fits the maximum of the QFI, its height and position. For the
square it is fairly good approximation, but for the triangular lattices it fits only the QFI at
the temperatures closer to zero. The FI of position measurement is a couple of orders of
magnitude lower than the QFI [see the ratio F POS(T )/Q(T ) in Fig. 4.7], and its maximum
is at higher temperature than the maximum of the QFI.

For lattices with PBCs the behavior of the QFI is qualitatively the same as regards the
goodness of the lower-temperature approximation (4.16) and the dependence of the QFI
on the size of the lattice and the degree of the vertices. However, the maxima of QFI for
lattices with PBCs are lower and occur at higher temperature than the maxima of QFI
for lattices with OBCs. Remarkably, the FI for these lattices with PBCs is identically null.

Some analytical results can be obtained for the square lattice, both with OBCs and
with PBCs. Indeed, the m ⇥ n square lattice with OBCs is actually a grid graph and is
the Cartesian product of two path graphs, Gm,n = Pm⇤Pn. Instead, the m ⇥ n square
lattice with PBCs is actually the torus grid graph and is the Cartesian product of two
cycle graphs, Tm,n = Cm⇤Cn. For the Cartesian product G1⇤G2 of two graphs G1 and
G2 we can analitically obtain the QFI and FI. To do so, we study the general properties
of the cartesian product G1 � G2 of two graphs. If G1 and G2 are graphs on N1 and N2

vertices, respectively, then the Laplacian matrix of G1⇤G2 is

L(G1 � G2) = L(G1) ⌦ IN2 + IN1 ⌦ L(G2) (4.57)
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(a) (b)

(c) (d)
Figure 4.5: Two-dimensional lattices considered in the present work: (a) triangular, (b) square, (c)
honeycomb, and (d) truncated square lattice. Equivalent vertices are equally represented.

where IN denotes the N ⇥ N identity matrix. If (E(1)
1 , . . . , E(1)

N1
) and (E(2)

1 , . . . , E(2)
N2

) are
the Laplacian spectra of G1 and G2, respectively, then the eigenvalues of L(G1⇤G2) are

E(1)
m

+ E(2)
n

(4.58)

with 1  m  N1 and 1  n  N2. Moreover, if |e(1)
m i is the eigenstate of L(G1)

corresponding to E(1)
m , and |e(2)

n i the eigenstate of L(G2) corresponding to E(2)
n , then

|e(1)
m

i ⌦ |e(2)
n

i (4.59)

is the eigenstate of L(G1⇤G2) corresponding to E(1)
m + E(2)

n [24].
Since the Laplacian matrix L(G) is the Hamiltonian of a CTQW on the graph G1⇤G2,

and according to the energy eigenvalues (4.58), the partition function is

Z(G1 � G2) = Z(G1)Z(G2) (4.60)

where Z(G1) is the partition function for a CTQW on the graph G1, and Z(G2) is the
partition function for a CTQW on the graph G2. It follows that the expectation value of
the energy is

h bH(G1 � G2)i = h bH(G1)i + h bH(G2)i (4.61)

Moreover
h bH2(G1 � G2)i = h bH2(G1)ih bH2(G2)i + 2h bH(G1)ih bH(G2)i (4.62)

and the QFI follows directly from Eq. (4.4) as

Q(G1 � G2|T ) = Q(G1|T ) + Q(G2|T ). (4.63)
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is the sum of the two QFI evaluated on G1 and G2.
Regarding the FI for a position measurement, we have to consider that a position

eigenstate in G1⇤G2 is |ji ⌦ |ki. According to Eqs. (4.58)–(4.60), the Gibbs state is

%P(T )(G1 � G2) = %P(G1) ⌦ %P(T )(G2) (4.64)

Then, the probability of finding the walker in (j, k) at a given temperature T is
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Figure 4.6: QFI and FI for position measurement for different
p
N⇥

p
N lattices with open bound-

ary conditions (OBC): (a) Triangular lattice, (b) square lattice, (c) honeycomb lattice, and (d) trun-
cated square lattice. Solid colored line: QFI Fq . Dotted black line: QFI at low temperature QLOW

(4.16). Dashed colored line: FI for position measurement F POS. Because of the different ranges,
values of QFI are referred to the left y-axis, and values of FI are referred to the right y-axis.

p(j, k|T ) = Tr {%P(T )(G1 � G2)|jihj| ⌦ |kihk|} = (4.65)

=
N1�1X

m=0

e�E
(1)
m

/T

Z(G1)
|hj|e(1)

m
i|2

N2�1X

n=0

e�E
(2)
n

/T

Z(G2)
|hk|e(2)

n
i|2 = (4.66)

= p1(j|T )p2(k|T ) (4.67)

where p1(j|T ) is the probability of finding the walker in the vertex j of G1, and, analo-
gously, p2(k|T ) is the probability of finding the walker in the vertex k of G2. Notice thatP

j
p1(j|T ) =

P
k
p2(k|T ) = 1. Since

@T p(j, k|T ) = @T p1(j|T )p2(k|T ) + p1(j|T )@T p2(k|T ) (4.68)

we find that the FI (4.14) is

F POS(G1 � G2|T ) =
N1�1X

j=0

(@T p1(j|T ))2

p1(j|T )

N2�1X

k=0

p2(k|T )+ (4.69)

+
N2�1X

k=0

(@T p2(k|T ))2

p2(k|T )

N1�1X

j=0

p1(j|T )+ (4.70)

+ 2
N1�1X

j=0

@T p1(j|T )
N2�1X

k=0

@T p2(k|T ) (4.71)
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Figure 4.7: Ratio Fc/Fq of FI and QFI for the graphs of order N and the
p
N ⇥

p
N lattices pro-

viding non-null FI. (a) Star graph, (b) path graph, (c) triangular lattice (OBCs), (d) square lattice
(OBCs), (e) honeycomb lattice (OBCs), and (f) truncated square (OBCs). Note the logarithmic scale
of the temperature axis.

Given that
P

j
@T p1(j|T ) = @T

P
j
p1(j, T ) = 0 and analogously

P
k
@T p2(k|T ) = 0, we

obtain that

F POS(G1 � G2|T ) = F POS(G1|T ) + F POS(G2|T ) (4.72)

We conclude that also the FI of a position measurement is additive with respect to the
cartesian product of graphs.

4.5.6.1 Grid graph and torus grid graph

In this section we offer some details to assess the QFI and the FI for the grid graph and
torus grid graph in Table 4.1. In particular, we report the number of edges M and the
sum of the degrees squared

P
k
d2

k
required to compute the QFI (4.34) and the FI (4.37)

in the high-temperature regime, as well as the energy level E1 and its degeneracy g1

required to compute the QFI (4.16) in the low-temperature regime.
The grid graph GN,N = PN⇤PN is the Cartesian product of two path graphs PN ,

and represents a N ⇥ N square lattice with OBCs. The total number of vertices is N2,
while the number of edges is M = 2N(N � 1). There are four vertices with degree 2 (the
corners), (N � 2) vertices with degree 3 on each side of square lattice, and the remaining
N2 � 4 � 4(N � 2) = (N � 2)2 vertices have degree 4. Hence

P
k
d2

k
= 4(4N2 � 7N + 2).

The path graph PN has nondegenerate energies E0 = 0 and E1 = 2[1 � cos(⇡/N)]. The
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grid graph has exactly the same E1 but with degeneracy g1 = 2, since, according to Eq.
(4.58), it results from the two possible combinations of E0 and E1 of the two PN .

The torus grid graph TN,N = CN⇤CN is the Cartesian product of two cycle graphs
CN , and represents a N ⇥ N square lattice with PBC. The total number of vertices is
N2, while the number of edges is M = 2N2. It is 4-regular, hence

P
k
d2

k
= 16N2.

The cycle graph CN has nondegenerate energy E0 = 0 and 2-degenerate energy E1 =
2[1 � cos(2⇡/N)]. The torus grid graph has exactly the same E1 but with degeneracy
g1 = 4, since, according to Eq. (4.58), it results from the four possible combinations of E0

and E1 of the two CN .

4.6 The role of coherences

Temperature is a classical parameter, i.e. any change in the temperature modifies the
eigenvalues of the Gibbs state but not the eigenvectors, which coincide with the eigen-
vectors of the Hamiltonian at any temperature. As a consequence, one may wonder
whether quantumness is playing any role in our analysis, which also does not rely upon
quantum effects as entanglement. Despite the above arguments, the quantum nature of
the systems under investigation indeed plays a role in determining topological effects
in thermometry. In fact, thermal states (4.2) are diagonal in the Hamiltonian basis, but
show quantum coherence in the position basis, which itself is the reference classical basis
when looking at topological effects in graphs. In turn, as we will see in the following, the
peak of the QFI occurs in the interval of temperatures over which the coherence starts to
decrease.

In order to quantitatively assess the role of coherence, let us consider the l1 norm of
coherence [329]

C[%] =
N�1X

j 6=k

|⇢jk| (4.73)

as a measure of quantum coherence of a state ⇢. For convenience, we normalize this
measure to its maximum value C(⇢N ) = N � 1, thus defining C(⇢) := C(⇢)/(N � 1). At
T = 0, the system is at thermal equilibrium in its ground state and since the Hamilto-
nian of the system is the Laplacian of a simple graph, the ground state is the maximally
coherent state | N i =

P
N

j=1 |ji/
p

N . The normalized coherence is thus equal to one.
As far as the temperature is very low, the ground state is robust, the coherence re-

mains close to one, and the QFI is small, i.e. the robustness of the ground state prevents
the system to effectively monitor any change in temperature. On the other hand, when
temperature increases, thermal effects becomes more relevant, coherence decreases, and
the QFI increases. In other words, it is the fragility of quantum coherence which makes
the system a good sensor for temperature (a common feature in the field of quantum prob-
ing). For higher temperatures, the Gibbs state approaches a flat mixture, almost indepen-
dent of temperature, and both the coherence and the QFI vanish. In order to illustrate
the argument, let us consider the case of complete graphs, for which we have analytic
expressions for the QFI, see Eq. (4.43), and for the normalized coherence

C[%P(T )] =
|1 � e�N/T |

1 + (N � 1)e�N/T
(4.74)

As it is clear from Fig. 4.8, where we show the two quantities, the peak of QFI indeed
occurs in the interval of temperatures over which the coherence is reduced by a factor
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Table 4.1: QFI QLOW(T ) (4.16) in the low-temperature regime and QFI QHIG(T ) (4.34), FI F POS
HIG (T )

(4.37), and their ratio in the high-temperature regime for the graphs considered in the present
work: complete graph KN , cycle graph CN , complete bipartite KN1,N2 , star graph SN , and path
graph PN . Analytical results are also available for the

p
N ⇥

p
N square lattice with OBC (grid

graph Gp
N,

p
N

) and with PBC (torus grid graph Tp
N,

p
N

), since grid graph and torus grid graph
are the Cartesian product of two path graphs and two cycle graphs respectively. To have a fair
comparison in terms of the total number of vertices N , in the table we report the result for

p
N ⇥p

N square lattices, and for the complete bipartite graph KN1,N2 we write results as a function of
N = N1 + N2 and � = N2 � N1 (N2 � N1 as already assumed in the main text), except for the
QFI in the low-temperature regime. The FI F POS

LOW(T ) in the low-temperature regime is not reported,
because an expression suitable for a comparison is not available, see Eq. (4.24). Both QFI and FI
in the high-temperature regime depend on the temperature as T

�4, thus we report their values
multiplied by T

4 to focus on the factor which depends on the topology of the graph. The same
criterion is adopted for the QFI in the low-temperature regime for consistency. Numerical results
show that graphs with low degree, e.g. CN and PN , exhibit the highest maxima of the QFI at low
temperatures. Conversely, at high temperatures and at fixed N , the maximum QFI is obtained
with the complete and the star graph, whose QFI scales linearly with the order N . Indeed, in the
limit of N ! 1, the QFI of PN approaches that of CN , as well as the QFI of Gp

N,
p
N

approaches
that of Tp

N,
p
N

.

1/e (we have numerically observed analogous behavior also for the other graphs). Upon
comparison of Eq. (4.43) with Eq. (4.74) we may also write

T 4Q(T )

N � 1
= (1 � C[%P(T )]) (1 + (N � 1)C[%P(T )]) . (4.75)
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Figure 4.8: QFI Fq (solid line) and normalized coherence C (dashed line) of a Gibbs state ⇢T as
a function of T for a complete graph of order N . The black horizontal dotted line represents the
constant value 1/e.

4.7 Conclusions

In this chapter we have studied the role of topology in determining the precision of ther-
mometers. The key idea is to use a finite system as a probe for estimating the tempera-
ture T of an external environment. The probe is regarded as a connected set of subunits



and may be ultimately modeled as a quantum walker moving continuously in time on a
graph.

In particular, we have considered equilibrium thermometry, and evaluated the quan-
tum Fisher information for temperature parameter for a Gibbs state of the walker. Since
the Hamiltonian of a quantum walker corresponds to the Laplacian matrix of the graph,
the topology is inherently taken into account. We have considered some paradigmatic
graphs and two-dimensional lattices, evaluated the Fisher information (FI) for a position
measurement and compared it with the quantum Fisher information (QFI, energy mea-
surement), providing analytical and numerical results on the performances in the dif-
ferent cases. In particular, we have focused on the low- and high-temperature regimes,
which we have investigated by means of analytic approximations.

We have drawn several conclusions from the analytical and numerical results on the
role of topology in the estimation of T . First, We have proved that the maximum of the
QFI and the corresponding optimal temperature depend on three topological parame-
ters of the graph: the algebraic connectivity E1, and the degeneracy of the first energy
level g1, and the number of edges M . In our system, the algebraic connectivity also rep-
resents the energy gap between the first excited energy level and the ground state. In
particular, we found that the smaller is the algebraic connectivity, the higher is the maximum
of the QFI. These results are supported by a number of examples. In particular, graphs
and lattices whose vertices have low degree, e.g. path and cycle graphs, as well as hon-
eycomb and truncated square lattices, show the highest maxima of QFI. We also notice
that the maximum of the QFI and the corresponding optimal T decrease as N increase
in the complete graph, while in all the other cases we observe the opposite behavior.

At intermediate temperatures, the analytical approximation we have at low temper-
atures is no longer valid, as shown by the discrepancy between the dotted lines (analyti-
cal approximation) and the solid lines (exact results) in Figs. 4.3–4.4, and 4.6). However,
the low-temperature approximation captures quite well the maximum of the QFI, after
which the QFI decreases, tending to zero, as the temperature increases. This behavior
is confirmed by the exact analytical expressions of the QFI we have for the complete
graph, Eq. (4.43), the complete bipartite graph. We also have numerical evidence of it
for the other graphs and lattices. Hence, no relevant structures of the QFI are expected
at intermediate temperatures.

At high temperatures the QFI is of order O(T�4), with a proportionality constant
which depends on the topology of the graph. In this regime, the maximum QFI is at-
tained by the complete graph, which is the simple graph that, at given number of ver-
tices N , has the highest number of edges M . A remarkable thermometer is also obtained
considering the complete bipartite graph. Despite its low QFI (if compared with the cy-
cle and path graphs) it is possible to tune the position of the maximum of QFI just by
varying the number of vertices in the two partite sets of the graph while keeping fixed
their sum.

Finally, we have discussed the role of coherences in the position basis in determining
the precision. Our results provides some general indications on the role of topology in
using quantum probes for thermometry, and provide new insights in the thermometry
of finite-size quantum systems at equilibrium, at least for the class of systems where
the Hamiltonian is in the form of a Laplacian matrix. In particular, our results suggest
that quantum probes are particularly efficient in the low-temperatures regime, where the
QFI reaches its maximum. They also pave the way to investigate the role of topology in
out-of-equilibrium thermometry.



CHAPTER 5

Discrimination of Ohmic thermal baths by quantum

dephasing probes

Direct measure of the temperature is not possible, as already observed in the introduc-
tion of this part of the thesis. For this very reason, direct measurement of temperature
is not available, and one should resort to indirect measurement procedures. During the
last decade, quantum thermometric strategies have emerged, which are mostly based on
using external quantum probes interacting with the system under investigation, with the
assumption that the interaction between the probe and the system does not change the
temperature of the latter. Those strategies are usually termed quantum probing schemes
and are not based on the zeroth principle, but rather on the engineering of the interaction
Hamiltonian, which is exploited to imprint the temperature of the system on the quan-
tum state of the probe. As a matter of fact, quantum probing exploits the inherent fragility of
quantum systems against decoherence, turning it into a resource to realize highly sensitive
metrological schemes.

In this chapter of the thesis, we address the discrimination of structured baths at
different temperatures by dephasing quantum probes. We derive the exact reduced dy-
namics and evaluate the minimum error probability achievable by three different kinds
of quantum probes, namely, a qubit, a qutrit, and a quantum register made of two qubits.
Our results indicate that dephasing quantum probes are useful in discriminating low
values of temperature and that lower probabilities of error are achieved for intermediate
values of the interaction time, where the minimum probability of error scales as 1/(2N),
with N the number of energy levels of the probe.

The chapter is organized as follows. In Sec. 5.1, we first review temperature dis-
crimination at equilibrium with a finite-dimensional probe, establishing our benchmark
for the out-of-equilibrium scenario. In Sec. 5.2 we study in general the discrimination
performances of out-of-equilibrium probes, whereas in Sec. 5.3 we introduce the main
model of pure dephasing, and we provide the derivation of the exact dynamical solution
in Appendix 10. In Sec. 5.4 we finally apply the tools of discrimination theory introduced
in Chapter 2.1 to study the performances of our dephasing probe and compare it with
the equilibrium one. We do this for different finite dimensional systems and using differ-
ent resources: coherence and entanglement. The chapter concludes with Sec. 5.5, where
we summarize the results and provide future perspectives.

5.1 Thermometry discrimination at thermal equilibrium

As a first step, we address the distinguishability problem of two finite dimensional probe
of dimension N that have thermalized at the two possible temperature �1 or �2 [153].
Throughout the chapter, we consider an unbiased case where the two hypothesis are
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equiprobable (p1 = p2 = 1/2 according to the notation in Chapter 2.1). The probe system
P is governed by a certain hamiltonian bH =

P
N�1
n=0 En|enihen|, and the equilibrium state

of the probe is given by the Gibbs state

%eq(�) =
1

Z(�)

N�1X

n=0

e��En |enihen|, (5.1)

where Z(�) =
P

N�1
n=0 e��En is the partition function.

The Gibbs states we want to discriminate %eq(�1) and %eq(�2) are a full-rank density
operators, and we know that they cannot be unambiguously discriminated. Hence, the
minimum error probability is given by Eq. (2.18) and in our case is equal to

pERR
eq;N (�1,�2) =

1

2

 
1 � 1

2

N�1X

n=0

����
e��1En

Z(�1)
� e��2En

Z(�2)

����

!
(5.2)

In the binary discrimination problem, the optimal measurement that attain the
minimum-error in Eq. (5.2) is well known and it is obtained from the operator ⇤ in
Eq. (2.8), that in our case becomes

⇤ =
N�1X

n=0

�n|enihen| =
1

2

N�1X

n=0

✓
e��2En

Z(�2)
� e��1En

Z(�1)

◆
|enihen| (5.3)

The optimal discrimination strategy depends on the sign of the eigenvalues of ⇤. With-
out loss of generality we can assume �1 > �2. In this case, Z(�2) > Z(�1), which means
that there exist a number d � 2 (that depends on �1,�2 and on the full shape of the en-
ergy spectrum {En}N�1

n=0 ) such that �n  0 for n < d. This means that the two detection
operators are given by

⇧1 =
X

�n0

|enihen| =
d�1X

n=0

|enihen| (5.4)

⇧2 =
X

�n>0

|enihen| =
N�1X

n=d

|enihen| (5.5)

From these operators, we see that the optimal discrimination is to accept the first hy-
pothesis �1 if we detect one of the first d energy level En, whereas we accept the second
hypothesis �2 if we detect one of the last N � d energy level En.

Result 6: Optimal strategy for equilibrium discrimination

The optimal strategy in an equilibrium discrimination problem consists of an energy
measurement of the probe P : if the outcomes belongs to {En}d�1

n=0 we accept the first
hypothesis, otherwise the second.

The expressions simplifies for a bunch of special cases. For instance, if the probe P is
a qubit with spacing !0, i.e. E0 = �!0/2 and E1 = !0/2, we have that

pERR
eq;2(�1,�2) =

1

2

✓
1 � 1

2

����tanh

✓
!0�2

2

◆
� tanh

✓
!0�1

2

◆����

◆
(5.6)
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Moreover, some limiting case are also interesting. If the smaller temperature vanishes
T1 = 0 (�1 ! +1), then the first hypothesis corresponds to the ground state |e0ihe0|,
and the probability of error (5.2) becomes

pERR
eq;N (+1,�2) =

1

2

 
1 � 1

2

 
1 � e��2E0

Z(�2)
+

N�1X

n=1

e��2En

Z(�2)

!!
(5.7)

=
1

2

✓
1 �

✓
1 � e��2E0

Z(�2)

◆◆
= (5.8)

=
1

2

e��2E0

Z(�2)
(5.9)

In this case the corresponding strategy is quite natural: the first detection operator ⇧1 is
just the ground state, since the only negative eigenvalue is the first.

In the rest of the chapter and all the subsequent plots, we have set the value of !0

to 3.5 kHz, which corresponds to a realistic experimental situation of a quantum probe
[51].

5.2 Out-of-equilibrium thermometry discrimination

So far we have reviewed the limits of equilibrium discrimination. As we have seen in
the introduction, this is not the only available choice: out-of-equilibrium probes encodes
some information on the temperature that can be suitable extracted. In this paradigm,
the probe P is an open quantum system that interacts with the bath at equilibrium at
one of the two temperatures T1 or T2. The whole dynamics is described by the total
Hamiltonian bHT = bHP + bHB + bHI , where bHP is the Hamiltonian of the probe, bHB is the
Hamiltonian of the thermal bath and bHI describes how the two systems interact.

Before discussing the results for the specific model of the pure dephasing, we ex-
plore some general results regarding an out-of-equilibrium discrimination problem. The
general setting is that we prepare the probe in some initial state %P(0) = %P , while the
thermal bath is at equilibrium with respect to a certain temperature �k, k = 1, 2. The
evolution of the probe is determined by a completely positive and trace-preserving map
(CPTP) �k

t
, also known as quantum channel in Chapter 1.1, that depends on the temper-

ature �k and can be written as

%k

P
(t) = �k

t
[%P ] = TrB

n
bU(t)(%P ⌦ %eq(�k))bU(t)†

o
(5.10)

where bU(t) is the unitary evolution generated by the full Hamiltonian HT . In other
words, the two hypothesis define two distinct CPTP maps and the discrimination prob-
lems turns out to be a discrimination of CPTP maps. We know that the probability of
error depends on the trace distance

D(%1, %2) =
1

2
k%2 � %1k, (5.11)

and the trace distance is contractive under the action of trace preserving operation [257].
Since the partial trace is a trace preserving operation, we can write

D(%1
P

(t), %2
P

(t))  D(bU(t)(%P ⌦ %eq(�1))bU(t)†, bU(t)(%P ⌦ %eq(�2))bU(t)†) (5.12)
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Now we can exploit another property of the trace distance, i.e. the invariance under
unitary operation, that yields us to

D(%1
P

(t), %2
P

(t))  D(%P ⌦ %eq(�1), %P ⌦ %eq(�2)) (5.13)

Using the additivity with respect to the tensor product, we obtain that

D(%1
P

(t), %2
P

(t))  D(%eq(�1), %eq(�2)) (5.14)

Finally, we obtain a lower bound for the probability of error for an out-of-equilibrium
probe, i.e.

pERR
oeq

(�1,�2) � 1

2
(1 � D(%eq(�1), %eq(�2))) (5.15)

We stress that this result is true for every discrimination problem where the quantum
channel is determined by the initial state of the ancillary system that is traced out.

This bound depends only on the Hamiltonian of the bath B and on the two tem-
peratures to be discriminated. This bound may be useful in dealing with a finite-size
environment, whereas in the thermodynamical limit the D(%eq(�1), %eq(�2)) is likely to
vanish.

Although it may seem that probing the full system is the optimal way, since the prob-
ability out of equilibrium is lower bounded by the probability of discriminating directly
the two equilibrium states, this might not be the most feasible approach. For instance,
when the temperatures are low, probing directly the temperature could be extremely in-
vasive. At the same time, this lower bound is achieved with an energy measurement.
However, for large or infinite dimensional systems, such a projective measurement is
not easily implementable. For these reasons, the use of out-of-equilibrium probes can be
helpful, providing an alternative way to indirectly discriminate the two temperatures.

5.3 An exactly solvable pure dephasing model

The probe-bath interaction we are going to study is the pure dephasing model, first in-
troduced to account decoherence in a quantum computer [59, 261]. This model is quite
relevant since the closed unitary dynamics is exactly solvable and allows a clear analysis
of the mechanism of entanglement between qubit and environment. All the mathemat-
ical details regarding the derivation of the unitary evolution are provided in Appendix
10. Here, we briefly discuss the physical model and go directly to the final expression
for the unitary bU(t).

We consider a general N dimensional quantum probes whose Hamiltonian is

bHP =
N�1X

n=0

En|enihen| (5.16)

We can also isolate the energy scale with respect to the scaling defining �n = 2En/!0 and
introducing an adimensional diagonal matrix bH(⌘)

P
=
P

N�1
n=0 �n|enihen|, such that

bHP =
!0

2
bH(⌘)

P
(5.17)

With this diagonal matrix bH(⌘)
P

we can describe both single partite system with N energy
levels, such as a qubit bH(2) = b�z , as well as a quantum register of two qubits bH(2,2) =
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(b�z ⌦ bI2 + bI2 ⌦ b�z). For this reason, we understand the index ⌘, where appropriate,
as a multi-index ⌘ = (N1, N2) with each index N1 and N2 associated respectively with
dimension of the first and the second qubit, for instance.

The thermal reservoir is described by a continuous set of Bosonic modes bHB =P
k !kba†

kbak, where !k, bak, and ba†

k are respectively the frequency, the annihilation, and
the creation operator of the of the kth bosonic mode. The pure dephasing interaction is
given by

bHI = bH(⌘)
P

⌦
X

k

⇣
gkba†

k + g⇤

kbak

⌘
, (5.18)

where gk are the coupling constants. We see that each energy level interacts with the
same coupling constant gk, namely they all feel the same local environment. This is
justified by the assumption that the system is small compared to the size of the reservoir
and a collective interaction is a good approximation. This also means that, in the case of
a multipartite system, this Hamiltonian bHI models an evolution in which each partition
interacts locally with the same Bosonic modes.

This bHI is an example of a spin-boson model, where we have used the adimensional
matrix bH(⌘)

P
in such a way that [ bHP , bHI ] = 0. The latter condition exactly characterizes

a model of pure dephasing. In fact, during the evolution the population of the P are
constant, i.e. the probe does not change energy during the dynamics. Conversely, the
interaction just affect the off-diagonal elements of %P(t), i.e. coherences in the energy
basis are suppressed. As we already mentioned, this model is exactly solvable for the
full closed system P + B, and the exact derivation is given in Appendix 10. The CPTP
that describe the evolution of the probe only is given by

��
t
[•] = V�(t) � R(t) � • (5.19)

where the � is the Hadamard product (entrywise product), while V�(t) and R(t) are
N ⇥N matrices. We stress that this evolution is given in the interaction picture. The first
depends on the temperature

V�(t) =
N�1X

j,l=0

e
(�j��

l
)2

4 �(t|�)|ejihel|, (5.20)

and depends on the function �(t|�), also known as the decoherence function, defined as

�(t|�) = �4
X

k

|gk|2
!2

k

(1 � cos(!k)) coth

✓
!k�

2

◆
(5.21)

This encodes the rate of the damping due to the interaction and it is the one that depends
on the temperature. Different temperatures yields different damping, and this is exactly
the mechanism that allow us to distinguish between the two hypothesis.

The second contribution to the dynamics affects only the coherences between the
energy levels and is a temperature independent contribution to the dynamics

R(t) =
N�1X

j,l=0

ei⇠(t)
�
2
j
��

2
l

4 |ejihel|., (5.22)
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where the function ⇠(t) is given by

⇠(t) = �4
X

k

|gk|2
!2

k

(!kt � sin(!kt)) , (5.23)

Being a temperature-independent phase function, it is the same for the two hypothesis
and does not contribute to the probability of error. We notice also that for a qubit, this is
the identity matrix I2.

In the continuous limit of the Bosonic modes, we replace
P

k with
R

d!f(!), where
f(!) is the density of the modes at frequency ! (henceforth we neglect the index k), while
the absolute value of the coupling constants |gk|2 is replaced with a function of the fre-
quencies |g(!)|2. In this limit, we also define the spectral density as J(!) = 4f(!)|g(!)|2.
In this way the decoherence and the phase function reads as

�(t|�) = �
Z +1

0
d!J(!) coth

✓
!�

2

◆
1 � cos(!t)

!2
(5.24)

⇠(t) = �
Z +1

0
d!J(!)

!t � sin(!t)

!2
(5.25)

Furthermore, we can split the decoherence function in two contribution

�(t|�) = �
Z +1

0
d!J(!)2hn(!)i�

1 � cos(!t)

!2
�
Z +1

0
d!J(!)

1 � cos(!t)

!2
(5.26)

with the average number excitations at frequency ! and temperature � given by

hn(!)i� = exp

✓
�!�

2

◆
cosech

✓
!�

2

◆
(5.27)

The first addendum in (5.26) is the contribution from the thermal noise and is tempera-
ture dependent, whereas the second is a vacuum quantum contribution to the dephas-
ing, since it is present even in the case of a 0 temperature reservoir. The contribution
due to this term is relevant only for t < T�1, where the coherence loss are caused by
quantum vacuum fluctuations. Instead for t > T�1, the thermal contributions are larger.

In general, the spectral density J(!) is characterized by a cut-off frequency which
depends on the physical structure of the interaction between the probe and the thermal
reservoir, and on the number of dimensions of the field. This can be modeled by an
Ohmic-like spectral density

Js(!|!c) = !c

✓
!

!c

◆s

e�
!

!c (5.28)

where s is the Ohmicity and !c is the cut-off frequency. The first in general depends
on the dimensions of the field, i.e. on the density of state f(!), while !c is related to
the environmental correlation time. In general in the case of quantum-optical systems,
g(!) /

p
!, while G(!) can be constant for one-dimensional field or G(!) / !2 for three-

dimensional field [261]. In the first case s = 1 (Ohmic environment), while in the second
s = 3 (superohmic environment). In the following analysis, we will consider generic
values of !c and s, keeping in mind that these two particular values of s have a special
physical relevance.



Discrimination of Ohmic thermal baths by quantum dephasing probes 77

To conclude this section, we explicitly write the density matrix of the probe at time t
in the interaction picture, highlighting its dependence on the hypothesis �k

%k

P
(t) =

N�1X

j,l=0

hej |%P |eliei⇠(t)
�
2
j
��

2
l

4 e
(�j��

l
)2

4 �(t|�k)|ejihel|, (5.29)

which will be the starting point of the following sections, where we present numerical
results regarding our discrimination task.

5.4 Thermometry discrimination with pure dephasing probes

In this section, we study different systems with different dimensions that can be used
as quantum probes for our task. We start with a qubit, then we consider a qutrit and a
qudit. Eventually, we also consider a multipartite systems, also referred to as a quantum
register.

5.4.1 Qubit probe

The qubit probe is given by bH(2)
P

= b�z , or equivalently by �0 = �1 and �1 = +1 in our
notation, with |e0i ! |0i and |e1i ! |1i. As we have already noticed, for the special cose
of the qubit R(t) is equal to I , and we eventually obtain that

%k

P
(t) =

✓
1 e�(t|�k)

e�(t|�k) 1

◆
� %P (5.30)

We can easily evaluate the ⇤ operator in Eq. (2.8) as

⇤ =

✓
0 h1|%P |0i

h0|%P |1i 0

◆
e�(t|�2) � e�(t|�1)

2
(5.31)

The eigenvalues of ⇤ determines the probability of error, which is given by

pERR
oeq

(�1,�2) =
1

2

⇣
1 �

���h1|%P |0i
⇣
e�(t|�2) � e�(t|�1)

⌘���
⌘

(5.32)

This does not depend on the initial population of the energy levels and on the frequency
!0 of the qubit, while just on the absolute value of the coherences |h1|%P |0i| between the
two. This means that the optimal probe is the maximal coherent state %P = |±2ih±2|,
where |±2i = 1/

p
2(|0i ± |1i).

We can also interpret this result in terms of the l1 norm of coherence [329]

C[%] =
X

i 6=j

|hi|%|ji| (5.33)

which in this case reads as

C[%k

P
(t)] = 2|h1|%P |0i|e�(t|�k) (5.34)

In this way we can write the probability of error in Eq. (5.32) as

pERR
oeq

(�1,�2) =
1

2

�
1 � |C[%2

P
(t)] � C[%1

P
(t)]|

�
(5.35)
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Figure 5.1: Probability of error pERR
oeq(�1,�2) as a function of time and T2 for a qubit (5.32) initially

prepared in a maximally coherent state. Left panel: T1 = 1 mK; right panel: T1 = 0. We fixed
!c = 7 kHz and s = 1.

Better discrimination is obtained in the time-regime in which the difference between the
coherences is larger. This is the main reason why maximally coherent states are optimal
states, since they are more sensible to decoherence, which is the sole effect of the pure
dephasing model.

Instead, the eigenvector of ⇤ determines the optimal measurement. Choosing the
optimal initial state as |+i (the case with |�i is analogous but with a reversed role of the
two detectors), we see that the optimal POVM saturating the Helstrom bound is given
by

⇧1 =
1

2
(I2 + �x) (5.36)

⇧2 =
1

2
(I2 � �x) (5.37)

This is a measurement of the spin along the x axis, and remarkably does not depend
niether on the two temperatures �1 and �2 nor in general on the structure of the thermal
bath, i.e. the Ohmicity paramter s or the cut-off frequency !c. Not surprisingly, this is
also the optimal measurement for the estimating temperature again in a pure dephasing
probe [287].

Result 7: Optimal strategy for out-of-equilibrium qubit discrimination

The optimal qubit preparation is the maximally coherent state, to which correspond
the optimal strategy of measuring the qubit observable �x. The key quantum re-
source is the coherence of the energy levels, quantified by the l1 norm of coherence.

In order to understand the role of time, we numerically evaluate the probability of
error in Eq. (5.32) for an Ohmic environment s = 1 with cut-off frequency !c = 7 kHz
and we report the results in Fig. 5.1. In the left panel of Fig. 5.1, we fix one of the
two temperature to a finite value T1 = 1 mK, and we plot pERR

oeq
as a function of t and

T2. We see that there is an optimal time topt(T1, T2), that depends on both temperatures,
which minimize the overall value of pERR

oeq
. Furthermore, the minimum values of pERR

oeq
are

obtained when T2 is smaller than the fixed value of T1, as one would expect.
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Figure 5.2: Gain factor ⌘ for the equilibrium vs out-of-equilibrium qubit prepared in a maximally
coherent state given in Eq. (5.38). We report the result as a function of time t and the second
temperature T2, while we fix T1 = 1 mK (left panel), and T1 = 0K (right panel). We set !c = 7kHz

and s = 1.

Instead, in the right panel of Fig. 5.1, we consider the case in which T1 = 0 K. Here,
for times of order 10�5 s, we see that there is a large optimal time interval, i.e. the darker
red area where the pERR

oeq
reaches the minimum. The main reason is that the decoher-

ence function of the probe undergoing dephasing with the reservoir at zero-temperature
does not feel the temperature-dependent term in Eq. (5.26), but only the loss due to the
quantum vacuum fluctuations. As already discussed, quantum vacuum fluctuations are
dominant in the early stage of the dephasing, but are temperature independent. Hence,
the probe feel the same dephasing independently of the reservoir at temperature T1 or
T2 for earlier times and the two hypothesis are indistinguishable. On the other side,
when thermal fluctuations becomes dominant, the loss of coherences when the probe
interacts with T2 6= 0 significantly deviate from the loss only due to quantum vacuum
fluctuations, i.e. when T1 = 0. As a result, the probe undergoes a significantly differ-
ent dynamics during the thermal regime and hence the probability of error achieve its
minimum.1

The results discussed above are qualitatively similar to the cases with s 6= 1, in which
numerical results show just that the optimal time decreases. The same effect occurs for
smaller cut-off frequency !c.

After having studied the performances of the out-of-equilibrium probe, it is particu-
larly relevant to compare them with the discrimination performance of the equilibrium
one. To have a faithful comparison, we define the gain factor

⌘(T1, T2) = 1 �
pERR

eq
(�1,�2)

pERR
oeq

(�1,�2)
. (5.38)

Positive values of ⌘(T1, T2) indicate regions of parameters where the the out-of-
equilibrium probe is better in the discrimination task and hence is preferable, whereas
negative values indicate when the equilibrium outperforms the out-of-equilibrium. Usu-
ally, in the early time of the pure dephasing evolution the information about the temper-
ature has not be transferred yet to the probe and hence its discrimination performances
are poor. For this reasons we are more interested in the gain factor at the transient. This
is reported in Fig. 5.2 for the same values of s, !c, T1 and T2 used before. In the left

1Forse si può dire meglio?
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panel with T1 = 1 mK, we notice that there is a threshold time: before this time, out-
of-equilibrium probe outperform equilibrium one. After this time, equilibrium probe is
better in discriminating. Again, this can be understood with the fact that, at larger times
the pure dephasing probe looses information about the temperature. In the right panel,
with T1 = 0 K, we observe a completely different behavior. Here the reason lies in the
fact that in the limit of T1 ! 0, and for T2 of the order of 10�3 K, the probability of error
for the discrimination of equilibrium probes pERR

eq
is approximately 1/4, i.e. we are in the

region where equilibrium probes are optimal. Hence, in principle, equilibrium are better
if one is able to perform the corresponding POVM, i.e. the detection of the ground state
⇧1 = |e0ihe0|, as explained in Result 6.

5.4.2 Qutrit probe

Before moving to the general case of N dimensional systems, it may be interesting to
explore the case of a three level probe to already grasp the peculiarities with respect to
the paradigmatic and quite simple example of the qubit. To have a faithful comparison,
we consider the same spacing of the energy levels as we have used for the qubit, which
means that �0 = �2, �1 = 0 and �2 = +2. We also identify |e0i ! |0i, |e1i ! |1i and
|e2i ! |2i. The reduced dynamics is given by (5.19), with

V�(t) =

0

@
1 e�(t|�) e4�(t|�)

e�(t|�) 1 e�(t|�)

e4�(t|�) e�(t|�) 1

1

A (5.39)

The other matrix now R(t) is not the identity. Despite being irrelevant for the evaluation
of the probability of error, it is important to find the optimal POVM.

The formula of pERR
oeq

for a general superposition of the energy levels is quite cumber-
some and it does not yield to any physical insights. However, since in the qubit we have
realized that coherences are the key resource, and to have a fai comparison, we consider
two initial preparations: the maximally coherent state |+3i = (|0i + |1i + |2i)/

p
3, and a

qubit-like coherent state |'qi = (|0i + |2i)/
p

2. To have compact formulas, we define the
following function

DN (t;�1,�2) = e(N�1)2�(t|�2) � e(N�1)2�(t|�1) (5.40)

which will be used extensively in the following and sometimes it will be shortened just
to DN .

For the maximally coherent state we have that the probability of error is

pERR
oeq

(�1,�2; |+3i) =
1

2

0

@1 � 1

6
|D3(t;�1,�2)|

0

@1 +

s

1 + 8

✓
D2(t;�1,�2)

D3(t;�1,�2)

◆2
1

A

1

A (5.41)

Here the optimal POVM is obtained as ⇧1 = I3 �⇧2 and ⇧2 = |�0ih�0|, where

|�0i =
1q

2 + |c(3)
+ |2

⇣
|ẽ0i + c(3)

+ |ẽ1i + |ẽ2i
⌘

(5.42)

where the coefficient c(3)
+ is

c(3)
+ = �4D2

2 � D2
3 + D3

p
8D2

2 + D2
3

D2(3D3 +
p

8D2
2 + D2

3)
(5.43)



Discrimination of Ohmic thermal baths by quantum dephasing probes 81

and with the modified energy eigenbasis that now depends explicitly on time from ⇠(t),
and is given by

|ẽji = exp(i⇠(t)�2
j
/4)|eji (5.44)

We conclude that in this case the optimal POVM depends on the structure of the thermal
bath, i.e. Ohmicity s and cut-off frequency omegac, as well as on the temperatures.

For the second state under studying |'qi, the probability is much similar to that ob-
tained for a qubit and reads as

pERR
oeq

(�1,�2; |'qi) =
1

2
� 1

4

���e4�(t|�1) � e4�(t|�2)
��� (5.45)

The only difference the qubit’s one is that the exponential have a more rapid decrease.
As a result, the qualitative behavior is the same, but the minimum is achieved at smaller
times.

We now want to compare the out-of-equilibrium qutrit with an equilibrium qutrit
to study again under which conditions an enhancement is possible. Again, we define a
gain function

⌘(�1,�2) = 1 �
pERR

oeq
(�1,�2; |+3i)

pERR
eq;3(�1,�2)

(5.46)

For positive values of the gain factor, the probability of error for the out-of-equilibrium
probe has lower probability of error, i.e. the discrimination is better. We report the
numerical results in Fig. 5.3, left panel, for the usual values of the parameters and with
T1 = 1 mK. We see that the gain factor is always positive for times smaller than a certain
threshold, as already observed for the qubit.

To better understand the the enhancement coming from the dimension of the probe,
we compare the performances for qubit and qutrit prepared in a maximally coherent
state, i.e.

⌘+(�1,�2) = 1 �
pERR

oeq
(�1,�2; |+3i)

pERR
oeq

(�1,�2; |+2i)
(5.47)

where the subscript + denotes that we are comparing the maximally coherent states and
pERR

oeq
(�1,�2; |+2i) is Eq. (5.32) evaluated for |+2i. The numerical results are showed in

Fig. 5.3, right panel, for T1 = 1 mK. Positive values indicates a an improvement in the
discrimination task when we use a qutrit instead of a qubit. As we may expect, the
improvement occurs only for times smaller than a certain threshold and especially for a
very small temperature T2. The physical intuition behind this is that quantum coherence
becomes more fragile for increasing dimension, and thus a qutrit probe is more sensitive
than a qubit one, and this sensitivity is obtained at earlier times. In the next section we
try to quantify the gain for a general N dimensional probe.

5.4.3 Qudit probe

We now address the question of whether and how much an N dimensional probe can
improve the probability of error in the discrimination of the two temperatures. We focus
again on the maximally coherent state, whose representation with a density matrix is
given as %P = 1/NJN , where JN is the N ⇥ N matrix with all the entries equal to 1. In



82 5.4 Qudit probe

��

���

��

��×��-�

��×��-�

��×��-�

��×��-�

��×��-�

�(
�
)

�� ��×��-� ��×��-� ��×��-� ��×��-� ��×��-�

�(�)

-���

��

���

���

���

���

���

���

���

��

���

��

��×��-�

��×��-�

��×��-�

��×��-�

��×��-�

�(
�
)

�� ��×��-� ��×��-� ���×��-� ��×��-� ���×��-� ��×��-�

�(�)

-����

��

����

���

����

���

����

���

Figure 5.3: Left panel: gain factor ⌘ for the equilibrium vs out-of-equilibrium qutrit prepared in a
maximally coherent state given in Eq. (5.46). Right panel: gain factor ⌘+ for the out-of-equilibrium
qubit vs out-of-equilibrium qutriti given in Eq. (5.47). We report the result as a function of time t

and the second temperature T2, while we fix T1 = 1 mK. We set !c = 7 kHz, and s = 1.

this case the ⇤ operator reads as

⇤ =
1

2N

�
V�2(t) � V�1(t)

�
� R(t) = (5.48)

=
1

2N

X

jl

✓
e

(�j��
l
)2

4 �(t|�2) � e
(�j��

l
)2

4 �(t|�1)

◆
|ẽjihẽl| (5.49)

where the modified energy eigenbasis is defined in Eq. (5.44). To study how much we
can gain with an N dimensional probe, we study the regime in which we already know
there is an advantage, as we have concluded studying the qutrit probe. This is when
�(t|�1) n 0 and �(t|�2), i.e. when under the first temperature the probe has already
decohered, while under the second temperature has not yet decohered. In this case, the
operator ⇤ takes a much simpler expression, i.e.

⇤ ' 1

2N

0

BBB@

0 1 . . . 1
1 0 . . . 1
...

...
. . .

...
1 1 . . . 0

1

CCCA
(5.50)

Under these conditions, the trace of |⇤| is equal to 1 � 1/N and as a result

pERR
oeq

(�1,�2; |+ni) � 1

2N
(5.51)

In this regime, the optimal POVM can be approximated by {⇧1 = IN � ⇧2,⇧2|�0ih�0|},
where

|�0i =
1p
N

NX

i=0

|ẽii (5.52)

We see that in general the POVM depends non trivially on time t, on the temperatures
and on the structure of the bath, apart from the case N = 2, in which the optimal mea-
surement is universal, i.e. is the same whatever the values of parameters and time.
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Finally, comparing two out-of-equilibrium probes of dimension N1 and N2 in the
regime just discussed, we obtain that

⌘+(�1,�2; N1, N2) = 1 �
pERR

oeq
(�1,�2; |+N1i)

pERR
oeq

(�1,�2; |+N2i)
' 1 � N2

N1
(5.53)

In the case of qubit vs qutrit, ⌘+(�1,�2; 2, 3) ' 1/3, matching the maximum ⌘+ we see in
the right panel of Fig. 5.3.

5.4.4 Out-of-equilibrium quantum register made of two qubits

Now, we investigate the performance of a quantum register interacting locally with the
thermal bath [147, 292]. The idea is study the role of entanglement in the discrimination
of pure dephasing probes.

In this case the matrix of the levels spacing is given by

bH(2,2)
P

= (b�z ⌦bI2 +bI2 ⌦ b�z) (5.54)

We thus obtain that �00 = �2, �01 = 0 = �10 and �11 = +2 and make the identifications
|e0i ! |00i, |e1i ! |01i, |e2i ! |10i and |e3i ! |11i. The reduced dynamics is given by
Eq. (5.19), with the matrix V�(t) now given by

V�(t) =

0

BB@

1 e�(t|�) e�(t|�) e4�(t|�)

e�(t|�) 1 1 e�(t|�)

e�(t|�) 1 1 e�(t|�)

e4�(t|�) e�(t|�) e�(t|�) 1

1

CCA (5.55)

For the register initially prepared in a maximally coherent state |'4i = 1
4

P
k
|eki we

have

Tr {|⇤|} =
1

8
|D3(t;�1,�2)|

2

41 +

s

1 + 16

✓
D2(t;�1,�2)

D3(t;�1,�2)

◆2
3

5 . (5.56)

The corresponding probability of error is denoted as pERR
oeq

(�1,�2; |'4i), and the POVM is
given by {⇧1 = I4 �⇧2,⇧2 = |�0ih�0|} where

|�0i =
1q

2 + 2|c(2,2)
+ |2

⇣
|ẽ0i + c(2,2)

+ |ẽ1i + c(2,2)
+ |ẽ2i + |ẽ3i

⌘
(5.57)

with

c(2,2)
+ =

D2(3D3 +
p

16D2
2 + D2

3)

4D2
2 + D2

3 + B
p

16D2
2 + D2

3

(5.58)

Again, the optimal POVM depends both on time t and temperatures �1,�2.
Moreover, having at disposal two qubits, one may wonder whether entanglement

may play a role in the discrimination task. We thus consider the four Bell states as
possibile initial preparation of the probe register. As it may be easily seen, the states
| ±i = 1/

p
2(|01i ± |10i) are useless since they are invariant under dynamics (5.55).

Concerning the states |�±i = 1/
p

2(|00i± |11i) the probability of error pERR
oeq

(�1,�2; |�+i)
is equal to that of the qutrit prepared in the state |'qi.
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Figure 5.4: Gain factor ⌘e (max-coherent vs entangled probes) given in (5.59) as a function of time
t and T2. We fixed !c = 7 kHz and s = 1 and T1 = 1 mK

In order to evaluate whether entanglement is a resource or not in the discrimination
task, we compare the error probability obtained wit a maximally coherent probe with
that obtained with the Bell state |�+i by the factor

⌘e(�1,�2; |�+i, |'4i) = 1 �
pERR

oeq
(�1,�2; |�+i)

pERR
oeq

(�1,�2; |'4i)
. (5.59)

In Fig. 5.4, we clearly see a threshold time that splits the plot into two parts: the first, at
smaller times, where entangled probes lead to a lower probability of error. In the second
region, i.e. for larger times, maximally coherent probes outperform entangled ones.

5.4.5 Out-of-equilibrium entangled states in a quantum register of N qubits

In this section we explore more in detail the performance of multipartite entangled
probes, providing an explanation of why entangled states are better probes at smaller
times, and discussing also the optimal POVM. Our system of interest is a N -dimensional
quantum register.

Firstly, let’s consider N dimensional GHZ states

|GHZN i =
1p
2
(|0 · · · 0i + |1 · · · 1i (5.60)

In the basis |ẽji we have that

⇤ =
1

4

0

B@
0 · · · DN (t;�1,�2)
...

. . .
...

DN (t;�1,�2) · · · 0

1

CA (5.61)

It is straightforward to see that

pERR
oeq

(�1,�2; N) =
1

2

✓
1 � |DN (t;�1,�2)|

2

◆
(5.62)

The probability of error has the same form of that of the qubit, with the only difference
in the pre-factor of �(t|�), which results only in a rescaling of the optimal time, as it has



been discussed for the quantum register of two qubits. The optimal POVM is given by
{⇧1 = |GHZN ihGHZN |,⇧2 = I2N � ⇧1} and it is time and temperature independent.
We notice also that this is a collective measure. In addition, we notice that in the optimal
region �(t|�1) ⌧ 0 and �(t|�2) ' 0 we have that pERR

oeq
� 1/4, so there is no scaling

advantage in term of dimension N .
Secondly, we consider W states,

|WN i =
1p
N

(|10 · · · 0i + |01 · · · 0i + . . . |0 · · · 01i). (5.63)

All the elements in the superposition have the same energy, so the state is stationary.
Thus, there is no dephasing in the state and consequently the probability of error is
maximum pERR

oeq
= 1/2.

We conclude that entanglement is not always necessary in temperature discrimina-
tion. Indeed, entangled state might not be sensitive at all.

5.5 Conclusion

In this chapter, we have analyzed in detail the use of quantum probes to discriminate two
structured baths at different temperatures. In particular, we have addressed quantum
probes interacting with their environment by a dephasing Hamiltonian and compared
the discrimination performance with those at equilibrium.

At first, we have addressed the discrimination problem for an equilibrium probe and
evaluated the probability of error, showing that energy measurement is optimal in this
regime. We have then moved to out-of-equilibrium dephasing probes, and derived the
exact reduced dynamics for a finite quantum system locally interacting with an Ohmic-
like thermal bath. Upon exploiting this result, we have studied the behavior of the proba-
bility of error as a function of the interaction time and found that in the low-temperature
regime out-of-equilibrium probes outperform equilibrium ones at finite times. We also
found that there is a finite value of the interaction time minimizing the probability of
error. In turn, it results that for qubit systems, maximally coherent states generally rep-
resent the best preparation of the probe for the discrimination task. On the other hand,
when one of the two temperatures is zero, equilibrium probes may represent the opti-
mal choice. For maximally coherent qubit probes, we have obtained the optimal POVM,
which is a spin measurement along the x-axis. Remarkably, this POVM is independent
of time and temperatures (except for the free evolution phase factor). Instead, for max-
imally coherent qudits of dimension N , we found that under some conditions, there is
an optimal region where the minimum probability of error scales as 1/2N . In general,
for qudits, the optimal POVM is time and temperatures dependent, but the temperature
dependency disappears in the optimal region.

We have compared qubit probes with qutrit ones, and have shown numerically that
qutrits allow one to achieve lower error probability. Finally, we have also investigated
the role of entanglement, showing that at variance with maximally coherent probes,
there is no scaling in the minimum of the probability of error, but only a decrease in
the optimal time scale. Moreover, the optimal POVM for GHZ states does not depend
on the temperatures. Overall, we conclude that the optimal POVM may be easily im-
plemented for qubit and GHZ probes, whereas it may be more challenging to realize in
practice optimal discrimination with higher dimensional probes.

Our results indicate that dephasing quantum probes are useful for the task of dis-
criminating temperatures at intermediate interaction times, and that out-of-equilibrium
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coherent quantum probes represent a resource not only for quantum estimation but also
for quantum discrimination.
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systems





CHAPTER 6

Quantum probes for the characterization of nonlinear

media

Squeezed states and entangled pairs of photons are crucial resources in current imple-
mentations of quantum technologies [62], including quantum-enhanced sensing, quan-
tum repeaters and the realization of quantum gates in several platforms. The experimen-
tal generation of these states exploits the nonlinear response of active materials. In turn,
the precise characterization of the nonlinear behaviour of active optical media represents
a crucial tool for the development of novel and reliable sensors, aimed at improving pro-
tocols for non-invasive diagnosis and secure communication, among others.

The quantitative characterization of the nonlinear coupling may be in principle
achieved using semiclassical probes, e.g. laser beams in optical systems [18], or ther-
mal perturbations in optomechanical ones [58, 65]. On the other hand, quantum probes,
i.e. probes with nonclassical properties, are naturally very sensitive to the environment,
and can be therefore used to improve precision and make very accurate sensors. As a
result of steady progress in material quality and control, cost reduction and the minia-
turisation of components, these devices are now ready to be carried over into numerous
applications.

From a metrological point of view, the problem of designing a characterization
scheme for the nonlinearities is twofold. On the one hand, one should find the opti-
mal measurement and evaluate the corresponding ultimate bounds to precision: this
will serve as a benchmark in the design of any device using nonlinear media. On the
other hand, it is necessary to determine the optimal probe signals among those achiev-
able with current technology.

The aim of this chapter is to address the above problems for nonlinear interactions
corresponding to Hamiltonians of the form bH = �̃(ba + ba†)⇣ , where ba is the annihilation
bosonic field operator satisfying

⇥
ba,ba†

⇤
= I. In particular, we consider situations where

both the coupling parameter �̃ and the order of nonlinearity ⇣ are to be estimated by probing
the medium with suitable optical signals. These Hamiltonians are encountered rather
commonly in quantum optics, and provide an effective description of the interaction
between radiation and matter. In fact, they follow from the quantum interaction between
a quantized single-mode field and an active medium treated parametrically [228].

As a matter of fact, the larger is the nonlinear order, the less effective is the nonlin-
earity. For instance, the non-linear processes naturally occurring in the optical fibers are
tiny. On the other hand, they can grow and become relevant as the length of the fiber
and, thus, the interaction time, increases. Effects are particularly important in single-
mode fibres, in which the small field-mode dimension results in substantially high light
intensities despite relatively modest input powers [321]. In turn, a long-standing goal in
optical science has been the implementation of non-linear effects at progressively lower
light powers or pulse energies [16].
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Here, we investigate the scaling of the precision as a function of the average num-
ber of photons of the probe, and we assess the performance of different probing sig-
nals, with the goal of quantifying the improvement achievable by using nonclassical
resources as squeezing. Indeed, there have been several indications in the recent years
[46, 35, 60, 147, 299] that quantum probes offer advantages in terms of precision and
stability compared to their classical counterparts. In particular, upon using tools from
quantum estimation theory [266, 5], we are going to determine the optimal measurement
to be performed at the output, and to evaluate the corresponding ultimate quantum limit
to precision. Additionally, we will investigate the performance of different probe prepa-
rations in order to assess whether a nonclassical preparation of the probe may improve
precision in some realistic scenarios.

Our results may find applications in different fields ranging from quantum optics to
optomechanics and to more general systems involving phonons [253]. Nonetheless, in
order to make the presentation more concrete, we will mostly refer to a light beam inter-
acting with optical media. In particular, to illustrate the basic features of our proposal,
we consider two kinds of probes: customary coherent signals and squeezed ones. We let
the probe interact with the nonlinear medium, and then we perform a measurement in
order to extract information about the parameters we want to estimate. Finally, we eval-
uate the corresponding quantum Fisher information (QFI) and we determine the optimal
probe preparation. We will show that squeezing is indeed a resource to enhance charac-
terization at the quantum level, especially for fragile samples where a strong constraint
on the probe energy is present.

The chapter is structured as follows. In Section 6.1, we briefly review the tools of
quantum estimation theory applied to unitary-encoded statistical models. We obtain the
ultimate bounds to precision in Section 6.2, and illustrate our results in Sections 6.3 and
6.4, where we discuss optimal estimation for separate and joint estimation, respectively.
Finally, Section 6.5 closes the chapter with some concluding remarks.

6.1 Multi-parameter metrology with unitary-encoded parameters

In this first section, we review the basic tools of local multi-parameter quantum estima-
tion theory with unitary-encoded parameters, following the introduction given in Sec.
2.2.4 . Our case of study consists of a family of pure states

%� = | �ih �| = bU�| 0ih 0|bU †

�, (6.1)

for whom the SLD can be simply evaluated. Since for pure states

%2
� = %� (6.2)

it follows from a direct calculation that

@�n
%� = (@�n

%�)%� + %�(@�n
%�) (6.3)

Hence, we recognize the Lyapunov Equation that defines the SLD operators in Eq. (2.41),
whose solution in this case is simply

bL�n
= 2@�n

%�. (6.4)
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Since every unitary operator can be written as bU� = exp{�it bH�} and assuming that
[@�n

bH�, bH�] = 0 1, we obtain that

bL�n
= �2itbU�[@�n

bH�, %0]bU†

�, (6.6)

from which we can obtain the optimal POVM for the individual estimations of the pa-
rameters. Furthermore, it is easy to extended the QFI for pure states in Eq. (2.59) to the
QFIM matrix and the Uhlmann matrix, as

[Q(�)]
nm

= 4<e
⇥
h@�n

 �|@�m
 �i + h@�n

 �| �ih@�m
 �| �i

⇤
, (6.7a)

⇥
U(�)

⇤
nm

= 4=m
⇥
h@�n

 �|@�m
 �i

⇤
. (6.7b)

The inverse of the QFIM is a lower bound for the covariance matrix of any estimator, see
Theorem 5. In general this bound is not tight. This is due to the lack of commutativity
of the SLDs {bL�n

}d

n=1. Nonetheless, the achievability of the bound given by the QFIM is
subject to a weaker condition given by Eq. (2.29), which involves the Uhlmann matrix,
see Result 2 for details. In our case of unitary-encode parameters, this condition reads as

⇥
U(�)

⇤
nm

= 4t2h 0|[@�n

bH�, @�m

bH�]| 0i = 0 (6.8)

We notice that this condition is equivalent to the one used to derive Eq. (6.6) and which
is satisfied in our estimation problem. Hence, we conclude that a sufficient condition for
the attainability of the matrix and scalar SLD-CRb in Eq. (2.72) is that [@�n

bH�, bH�] = 0.
Moreover, since the SLDs do not commute only on average, but also as operator, the
optimal POVM is projective and given by their common eigen-projectors. Hence, the
statistical model is quasi classical, according to [5], and the bound is attainable with
single-copy measurements.

6.2 QFI matrix for optical non-linearities

Let us now go into more detail and analyze multi-parameter estimation by specifying
our physical system. The hamiltonian that generates the unitary depends on two pa-
rameters: the coupling parameter �̃ and the order ⇣ of a non-linear interaction

bH = �̃ bG⇣ , (6.9)

where the generator bG⇣ is given by

bG⇣ = (ba + ba†)⇣ . (6.10)

Accordingly, the time evolution of a pure probe state | 0i under the Hamiltonian (6.9)
reads:

| �i ⌘ | �(t)i = e�i bH t| 0i = e�i� bG⇣ | 0i. (6.11)
1In general, the derivative of the exponential map is given by

d

d�
e
H� = e

H�
1� e

�adH
�

adH�

d

d�
H�, (6.5)

where adX(Y ) = [X,Y ]. This simplifies if adX(Y ) = 0, as discussed in the main text. In our case, this is not
restrictive for us, given the form of the Hamiltonian.
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where � = �̃t. For the sake of brevity, we can consider a reparametrization, and by using
Eq. (2.70), we can write

Q(�̃, ⇣) = BQ(�, ⇣)BT , (6.12)

where the matrix elements of B are all null but [B]11 = t. In this way, we can focus only
on the joint estimation of � and ⇣, being this totally equivalent to the joint estimation of
�̃ and ⇣.

We notice that for the individual estimation of �, the element of the QFI matrix is
given by Eq. (2.59), and, from the Hamiltonian (6.9), the QFI can be written as

Q�� = 4
h
h 0| bG2⇣ | 0i � h 0| bG⇣ | 0i2

i
.2 (6.13)

Analogously, for the estimation of the order of nonlinearity ⇣ only, we have:

|@⇣ �i = �i�⇣ bG⇣�1| �i , (6.14)

and the corresponding QFI matrix element reads

Q⇣⇣ = 4 (�⇣)2
h
h 0| bG2(⇣�1)| 0i � h 0| bG⇣�1| 0i2

i
. (6.15)

By using the expression for |@⇣ �i, it is straightforward to evaluate also the off-diagonal
elements, obtaining

Q⇣� = 4 �⇣
h
h 0| bG2⇣�1| 0i � h 0| bG⇣ | 0ih 0| bG⇣�1| 0i

i
. (6.16)

According to the above expressions, the bound to precision for the individual estimation
of ⇣ may be derived from that for the estimation of �, apart from a rescaling. Together
with Eq. (6.16) this confirms that all the QFI matrix elements depend on combinations
of the expectation value h 0| bGk| 0i for different values of k, therefore this quantity will
be studied in great detail in the following sections.

6.3 Optimal probes for individual estimation

After having studied the estimation problem from the point of view of the measurement
process, i.e. the QFI matrix corresponding to the optimal measurement, we address
now the problem of finding the optimal probe, i.e. the optimal input state to achieve
the ultimate bound in the precision of the estimation [6]. In this section, we separately
optimize the probe for the individual estimation of � and ⇣, i.e. we find the initial states
that maximize respectively Q�� and Q⇣⇣ . These optimal probes may not be the same,
meaning that different preparations are necessary in order to optimally estimate � or ⇣.
The joint estimation of both parameters will be discussed in the next Section.

In our analysis, we focus on the relevant class of Gaussian probes, namely, states that
exhibit a Gaussian Wigner function [259, 314]. In particular, we consider the performance
of the so-called displaced coherent states, that can be easily generated and manipulated by
current quantum optics technology [97]. Coherent states are usually considered to be

2For the sake of brevity, we suppress the explicit dependence of the matrix elements from the parameters
from here onwards.
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the closest quantum states to classical ones. They are eigenstates of the annihilation
operator, ba|↵i = ↵|↵i, where ↵ 2 C, and can be written as

|↵i = bD(↵)|0i = e�|↵|
2
/2
X

n

↵n

p
n!

|ni , (6.17)

where bD(↵) = e↵a
†
�↵

⇤
a is the displacement operator, |0i the vacuum state and {|ni}n2

is the Fock basis. A displaced squeezed state is defined as follows [259]

|↵, ⇠i = bD(↵) bS(⇠)|0i (6.18)

where bS(⇠) = exp
�

1
2

⇥
⇠(ba†)2 � ⇠⇤ba2

⇤ 
is the single-mode squeezing operator and ⇠ 2 C

is the complex squeezing parameter. If ↵ = 0, we obtain the so-called squeezed vacuum
state, whereas for ⇠ = 0 we have a coherent state. Given the state |↵, ⇠i, it is convenient
to introduce the total number of photons N and the squeezing fraction �, namely:

N = h↵, ⇠| bN |↵, ⇠i = Nch + Nsq and � =
Nsq

Nch + Nsq
, (6.19)

where we set ⇠ = r ei✓, bN = ba†ba is the number operator and we defined the number
of squeezing photons Nsq = sinh2 r = �N , whereas the number of coherent photons is
Nch = |↵|2 = (1 � �)N . If � = 0, we have a coherent state |↵i, whereas for � = 1 we
obtain the squeezed vacuum |0, ⇠i. Our ultimate goal is thus determining the optimal
parameters ↵ and ⇠, which realize the maximum of the QFI at fixed N and, eventually,
to determine the optimal state to probe the non-linear medium in order to estimate the
two non-linearity parameters.

Following the previous section, given the probe state | 0i = |↵, ⇠i, we have to evalu-
ate the expectation value of bG⇣ . To this aim, we start writing the following identity

bG⇣ = (ba + ba†)⇣ = ⇣!
1X

=0

�⇣
1

!
(ba + ba†) (6.20)

Moreover, we use the following expression for the Kronecker delta

�⇣ =
1

2⇡

Z
⇡

�⇡

dx ei(�⇣)x, (6.21)

which lead us to

bG⇣ = ⇣!

Z
⇡

�⇡

dx

2⇡
e�i⇣x

+1X

=0

eix

!
(ba + ba†) (6.22)

= ⇣!

Z
⇡

�⇡

dx

2⇡
e�i⇣xeix(ba+ba†). (6.23)

Now, considering that the creation and annihilation operator satisfy [ba,ba†] = I, we can
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� = 0.01
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<latexit sha1_base64="3Q5cBkpPz6E2YH9qysY0UK9AAhE=">AAAB+HicbVBNSwMxFMz6WetX1aOXYBE8yJIVRT0IBS8eK7i20F3K2zTbhia7S5IVytK/4VU9iVd/jf4b03YP2joQGObN8F4mygTXhpBvZ2l5ZXVtvbJR3dza3tmt7e0/6jRXlPk0FalqR6CZ4AnzDTeCtTPFQEaCtaLh7WTeemJK8zR5MKOMhRL6CY85BWOlIOiDlIBvMHEvurU6cckUeJF4JamjEs1u7SvopTSXLDFUgNYdj2QmLEAZTgUbV4NcswzoEPqsY2kCkumwmN48xsdW6eE4VfYlBk/V34kCpNYjGZ0abmPWL8EM9LxjIv436+QmvgoLnmS5YQmdrYtzgU2KJzXgHleMGjGyBKji9mJMB6CAGltW1VbhzX98kfhn7rVL7s/rDVJ2UkGH6AidIA9doga6Q03kI4oy9Ixe0KtTOG/Ou/Mxsy45ZeYA/YHz+QOoMZKU</latexit><latexit sha1_base64="3Q5cBkpPz6E2YH9qysY0UK9AAhE=">AAAB+HicbVBNSwMxFMz6WetX1aOXYBE8yJIVRT0IBS8eK7i20F3K2zTbhia7S5IVytK/4VU9iVd/jf4b03YP2joQGObN8F4mygTXhpBvZ2l5ZXVtvbJR3dza3tmt7e0/6jRXlPk0FalqR6CZ4AnzDTeCtTPFQEaCtaLh7WTeemJK8zR5MKOMhRL6CY85BWOlIOiDlIBvMHEvurU6cckUeJF4JamjEs1u7SvopTSXLDFUgNYdj2QmLEAZTgUbV4NcswzoEPqsY2kCkumwmN48xsdW6eE4VfYlBk/V34kCpNYjGZ0abmPWL8EM9LxjIv436+QmvgoLnmS5YQmdrYtzgU2KJzXgHleMGjGyBKji9mJMB6CAGltW1VbhzX98kfhn7rVL7s/rDVJ2UkGH6AidIA9doga6Q03kI4oy9Ixe0KtTOG/Ou/Mxsy45ZeYA/YHz+QOoMZKU</latexit><latexit sha1_base64="3Q5cBkpPz6E2YH9qysY0UK9AAhE=">AAAB+HicbVBNSwMxFMz6WetX1aOXYBE8yJIVRT0IBS8eK7i20F3K2zTbhia7S5IVytK/4VU9iVd/jf4b03YP2joQGObN8F4mygTXhpBvZ2l5ZXVtvbJR3dza3tmt7e0/6jRXlPk0FalqR6CZ4AnzDTeCtTPFQEaCtaLh7WTeemJK8zR5MKOMhRL6CY85BWOlIOiDlIBvMHEvurU6cckUeJF4JamjEs1u7SvopTSXLDFUgNYdj2QmLEAZTgUbV4NcswzoEPqsY2kCkumwmN48xsdW6eE4VfYlBk/V34kCpNYjGZ0abmPWL8EM9LxjIv436+QmvgoLnmS5YQmdrYtzgU2KJzXgHleMGjGyBKji9mJMB6CAGltW1VbhzX98kfhn7rVL7s/rDVJ2UkGH6AidIA9doga6Q03kI4oy9Ixe0KtTOG/Ou/Mxsy45ZeYA/YHz+QOoMZKU</latexit>

� = 0.99
<latexit sha1_base64="ta3US+lpFP9OVIqkyiT15z7xl64=">AAAB+XicbVBNSwMxFHzrZ61fVY9egkXwIEtWBO1BKHjxWMG1hXYp2TTbhia7a5IVytrf4VU9iVf/jP4b03YP2joQGObN8F4mTAXXBuNvZ2l5ZXVtvbRR3tza3tmt7O3f6yRTlPk0EYlqhUQzwWPmG24Ea6WKERkK1gyH15N585EpzZP4zoxSFkjSj3nEKTFWCjp9IiVBVwi7tVq3UsUungItEq8gVSjQ6Fa+Or2EZpLFhgqiddvDqQlyogyngo3LnUyzlNAh6bO2pTGRTAf59OgxOrZKD0WJsi82aKr+TuREaj2S4anhNmb9kpiBnndMxP9m7cxEl0HO4zQzLKazdVEmkEnQpAfU44pRI0aWEKq4vRjRAVGEGttW2VbhzX98kfhnbs3Ft+fVOi46KcEhHMEJeHABdbiBBvhA4QGe4QVenSfnzXl3PmbWJafIHMAfOJ8/LleS2w==</latexit><latexit sha1_base64="ta3US+lpFP9OVIqkyiT15z7xl64=">AAAB+XicbVBNSwMxFHzrZ61fVY9egkXwIEtWBO1BKHjxWMG1hXYp2TTbhia7a5IVytrf4VU9iVf/jP4b03YP2joQGObN8F4mTAXXBuNvZ2l5ZXVtvbRR3tza3tmt7O3f6yRTlPk0EYlqhUQzwWPmG24Ea6WKERkK1gyH15N585EpzZP4zoxSFkjSj3nEKTFWCjp9IiVBVwi7tVq3UsUungItEq8gVSjQ6Fa+Or2EZpLFhgqiddvDqQlyogyngo3LnUyzlNAh6bO2pTGRTAf59OgxOrZKD0WJsi82aKr+TuREaj2S4anhNmb9kpiBnndMxP9m7cxEl0HO4zQzLKazdVEmkEnQpAfU44pRI0aWEKq4vRjRAVGEGttW2VbhzX98kfhnbs3Ft+fVOi46KcEhHMEJeHABdbiBBvhA4QGe4QVenSfnzXl3PmbWJafIHMAfOJ8/LleS2w==</latexit><latexit sha1_base64="ta3US+lpFP9OVIqkyiT15z7xl64=">AAAB+XicbVBNSwMxFHzrZ61fVY9egkXwIEtWBO1BKHjxWMG1hXYp2TTbhia7a5IVytrf4VU9iVf/jP4b03YP2joQGObN8F4mTAXXBuNvZ2l5ZXVtvbRR3tza3tmt7O3f6yRTlPk0EYlqhUQzwWPmG24Ea6WKERkK1gyH15N585EpzZP4zoxSFkjSj3nEKTFWCjp9IiVBVwi7tVq3UsUungItEq8gVSjQ6Fa+Or2EZpLFhgqiddvDqQlyogyngo3LnUyzlNAh6bO2pTGRTAf59OgxOrZKD0WJsi82aKr+TuREaj2S4anhNmb9kpiBnndMxP9m7cxEl0HO4zQzLKazdVEmkEnQpAfU44pRI0aWEKq4vRjRAVGEGttW2VbhzX98kfhnbs3Ft+fVOi46KcEhHMEJeHABdbiBBvhA4QGe4QVenSfnzXl3PmbWJafIHMAfOJ8/LleS2w==</latexit>

<latexit sha1_base64="/l8oj3N2Ar1Rj93Tm4+tPSKCaq0=">AAACEXicbVC7SgNREL3rM8ZX1FKEi0GwCrsS1DJoY5mAeUASwuzNJF5y98G9s0JYUvkJfoWtVnZi6xdY+C/urlto4mnmcM4MM3PcUElDtv1pLS2vrK6tFzaKm1vbO7ulvf2WCSItsCkCFeiOCwaV9LFJkhR2Qo3guQrb7uQ69dv3qI0M/Fuahtj3YOzLkRRAiTQoHfU8oDsBKm7MBnFPJZNDyMuMD0plu2Jn4IvEyUmZ5agPSl+9YSAiD30SCozpOnZI/Rg0SaFwVuxFBkMQExhjN6E+eGj6cfbGjJ9EBijgIWouFc9E/D0Rg2fM1HOTzvRoM++l4n9eN6LRZT+WfhgR+iJdRFJhtsgILZN8kA+lRiJIL0cufS5AAxFqyUGIRIySwIpJHs7894ukdVZxzivVRrVcu8qTKbBDdsxOmcMuWI3dsDprMsEe2BN7Zi/Wo/VqvVnvP61LVj5zwP7A+vgGzyOdyw==</latexit>

Q��

<latexit sha1_base64="/l8oj3N2Ar1Rj93Tm4+tPSKCaq0=">AAACEXicbVC7SgNREL3rM8ZX1FKEi0GwCrsS1DJoY5mAeUASwuzNJF5y98G9s0JYUvkJfoWtVnZi6xdY+C/urlto4mnmcM4MM3PcUElDtv1pLS2vrK6tFzaKm1vbO7ulvf2WCSItsCkCFeiOCwaV9LFJkhR2Qo3guQrb7uQ69dv3qI0M/Fuahtj3YOzLkRRAiTQoHfU8oDsBKm7MBnFPJZNDyMuMD0plu2Jn4IvEyUmZ5agPSl+9YSAiD30SCozpOnZI/Rg0SaFwVuxFBkMQExhjN6E+eGj6cfbGjJ9EBijgIWouFc9E/D0Rg2fM1HOTzvRoM++l4n9eN6LRZT+WfhgR+iJdRFJhtsgILZN8kA+lRiJIL0cufS5AAxFqyUGIRIySwIpJHs7894ukdVZxzivVRrVcu8qTKbBDdsxOmcMuWI3dsDprMsEe2BN7Zi/Wo/VqvVnvP61LVj5zwP7A+vgGzyOdyw==</latexit>

Q��

<latexit sha1_base64="/l8oj3N2Ar1Rj93Tm4+tPSKCaq0=">AAACEXicbVC7SgNREL3rM8ZX1FKEi0GwCrsS1DJoY5mAeUASwuzNJF5y98G9s0JYUvkJfoWtVnZi6xdY+C/urlto4mnmcM4MM3PcUElDtv1pLS2vrK6tFzaKm1vbO7ulvf2WCSItsCkCFeiOCwaV9LFJkhR2Qo3guQrb7uQ69dv3qI0M/Fuahtj3YOzLkRRAiTQoHfU8oDsBKm7MBnFPJZNDyMuMD0plu2Jn4IvEyUmZ5agPSl+9YSAiD30SCozpOnZI/Rg0SaFwVuxFBkMQExhjN6E+eGj6cfbGjJ9EBijgIWouFc9E/D0Rg2fM1HOTzvRoM++l4n9eN6LRZT+WfhgR+iJdRFJhtsgILZN8kA+lRiJIL0cufS5AAxFqyUGIRIySwIpJHs7894ukdVZxzivVRrVcu8qTKbBDdsxOmcMuWI3dsDprMsEe2BN7Zi/Wo/VqvVnvP61LVj5zwP7A+vgGzyOdyw==</latexit>

Q��

f1a_3d_coupling

� = 0.01
<latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="qmx6A14X1oK3/FriAEotsg96h3s=">AAAB3nicbZBNSwMxEIZn61ddq9azl2ARPEjJelFvghePFVxbaJeSzWbb0Gx2SWaFsvQPeNWT+MP035h+HLT1hcDDOzNk5o0LJS1S+u3VtrZ3dvfq+/5Bwz88Om42nm1eGi5Cnqvc9GJmhZJahChRiV5hBMtiJbrx5H5e774IY2Wun3BaiChjIy1TyRk6qzNstmibLkQ2IVhBC1YaNr8GSc7LTGjkilnbD2iBUcUMSq7EzB+UVhSMT9hI9B1qlgkbVYs1Z+TcOQlJc+OeRrJwf09ULLN2msWXKN2Y688Yju16x9z8r9YvMb2JKqmLEoXmy+/SUhHMyfxykkgjOKqpA8aNdBsTPmaGcXT5+C6JYP3uTQiv2rdt+kihDqdwBhcQwDXcwQN0IAQOCbzCm6e9d+9jGVjNWyV3An/kff4ApHiMeA==</latexit><latexit sha1_base64="bZhvU0MdXpDOv1kqSlmIfpi2Ueo=">AAAB7nicbZDNSgMxFIXv+Ftr1erWTbAILqTMuFEXguDGZQXHFtqh3EkzbWiSGZOMUMY+h1t1JT6Rvo3pz0JbD4R8nHsvuTlxJrixvv/trayurW9slrbK25Wd3b3qfuXBpLmmLKSpSHUrRsMEVyy03ArWyjRDGQvWjIc3k3rziWnDU3VvRxmLJPYVTzhF66yo00cpkVwRv+4H3WrNXVORZQjmUIO5Gt3qV6eX0lwyZalAY9qBn9moQG05FWxc7uSGZUiH2GdthwolM1ExXXpMjp3TI0mq3VGWTN3fEwVKY0YyPrXcjbl+iXZgFjsm5n+1dm6Ti6jgKsstU3T2XJILYlMyyYH0uGbUipEDpJq7jQkdoEZqXVplF0Ww+PFlCM/ql3X/zocSHMIRnEAA53ANt9CAECg8wgu8wpv37L17H7PMVrx5eAfwR97nD8a2kXg=</latexit><latexit sha1_base64="bZhvU0MdXpDOv1kqSlmIfpi2Ueo=">AAAB7nicbZDNSgMxFIXv+Ftr1erWTbAILqTMuFEXguDGZQXHFtqh3EkzbWiSGZOMUMY+h1t1JT6Rvo3pz0JbD4R8nHsvuTlxJrixvv/trayurW9slrbK25Wd3b3qfuXBpLmmLKSpSHUrRsMEVyy03ArWyjRDGQvWjIc3k3rziWnDU3VvRxmLJPYVTzhF66yo00cpkVwRv+4H3WrNXVORZQjmUIO5Gt3qV6eX0lwyZalAY9qBn9moQG05FWxc7uSGZUiH2GdthwolM1ExXXpMjp3TI0mq3VGWTN3fEwVKY0YyPrXcjbl+iXZgFjsm5n+1dm6Ti6jgKsstU3T2XJILYlMyyYH0uGbUipEDpJq7jQkdoEZqXVplF0Ww+PFlCM/ql3X/zocSHMIRnEAA53ANt9CAECg8wgu8wpv37L17H7PMVrx5eAfwR97nD8a2kXg=</latexit><latexit sha1_base64="IPzhe8cht0cmwfIU5wHT/2RyfNQ=">AAAB+XicbVDNSgMxGMz6W+tf1aOXYBE8SMl6UQ9CwYvHCq4ttEvJptk2NMmuybdCWfscXtWTePVl9G1M2z1o60DIMN8M+TJRKoUFQr69peWV1bX10kZ5c2t7Z7eyt39vk8wwHrBEJqYVUcul0DwAAZK3UsOpiiRvRsPrybz5yI0Vib6DUcpDRftaxIJRcFLY6VOlKL7CpEb8bqXqrinwIvELUkUFGt3KV6eXsExxDUxSa9s+SSHMqQHBJB+XO5nlKWVD2udtRzVV3Ib5dOkxPnZKD8eJcUcDnqq/EzlV1o5UdArCxZxfURjYecdE/G/WziC+CHOh0wy4ZrPn4kxiSPCkB9wThjOQI0coM8JtjNmAGsrAtVV2VfjzH18kwVntskZuSbVOik5K6BAdoRPko3NURzeogQLE0AN6Ri/o1Xvy3rx372NmXfKKzAH6A+/zBxL1ksY=</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit>

� = 0.5
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<latexit sha1_base64="ta3US+lpFP9OVIqkyiT15z7xl64=">AAAB+XicbVBNSwMxFHzrZ61fVY9egkXwIEtWBO1BKHjxWMG1hXYp2TTbhia7a5IVytrf4VU9iVf/jP4b03YP2joQGObN8F4mTAXXBuNvZ2l5ZXVtvbRR3tza3tmt7O3f6yRTlPk0EYlqhUQzwWPmG24Ea6WKERkK1gyH15N585EpzZP4zoxSFkjSj3nEKTFWCjp9IiVBVwi7tVq3UsUungItEq8gVSjQ6Fa+Or2EZpLFhgqiddvDqQlyogyngo3LnUyzlNAh6bO2pTGRTAf59OgxOrZKD0WJsi82aKr+TuREaj2S4anhNmb9kpiBnndMxP9m7cxEl0HO4zQzLKazdVEmkEnQpAfU44pRI0aWEKq4vRjRAVGEGttW2VbhzX98kfhnbs3Ft+fVOi46KcEhHMEJeHABdbiBBvhA4QGe4QVenSfnzXl3PmbWJafIHMAfOJ8/LleS2w==</latexit><latexit sha1_base64="ta3US+lpFP9OVIqkyiT15z7xl64=">AAAB+XicbVBNSwMxFHzrZ61fVY9egkXwIEtWBO1BKHjxWMG1hXYp2TTbhia7a5IVytrf4VU9iVf/jP4b03YP2joQGObN8F4mTAXXBuNvZ2l5ZXVtvbRR3tza3tmt7O3f6yRTlPk0EYlqhUQzwWPmG24Ea6WKERkK1gyH15N585EpzZP4zoxSFkjSj3nEKTFWCjp9IiVBVwi7tVq3UsUungItEq8gVSjQ6Fa+Or2EZpLFhgqiddvDqQlyogyngo3LnUyzlNAh6bO2pTGRTAf59OgxOrZKD0WJsi82aKr+TuREaj2S4anhNmb9kpiBnndMxP9m7cxEl0HO4zQzLKazdVEmkEnQpAfU44pRI0aWEKq4vRjRAVGEGttW2VbhzX98kfhnbs3Ft+fVOi46KcEhHMEJeHABdbiBBvhA4QGe4QVenSfnzXl3PmbWJafIHMAfOJ8/LleS2w==</latexit><latexit sha1_base64="ta3US+lpFP9OVIqkyiT15z7xl64=">AAAB+XicbVBNSwMxFHzrZ61fVY9egkXwIEtWBO1BKHjxWMG1hXYp2TTbhia7a5IVytrf4VU9iVf/jP4b03YP2joQGObN8F4mTAXXBuNvZ2l5ZXVtvbRR3tza3tmt7O3f6yRTlPk0EYlqhUQzwWPmG24Ea6WKERkK1gyH15N585EpzZP4zoxSFkjSj3nEKTFWCjp9IiVBVwi7tVq3UsUungItEq8gVSjQ6Fa+Or2EZpLFhgqiddvDqQlyogyngo3LnUyzlNAh6bO2pTGRTAf59OgxOrZKD0WJsi82aKr+TuREaj2S4anhNmb9kpiBnndMxP9m7cxEl0HO4zQzLKazdVEmkEnQpAfU44pRI0aWEKq4vRjRAVGEGttW2VbhzX98kfhnbs3Ft+fVOi46KcEhHMEJeHABdbiBBvhA4QGe4QVenSfnzXl3PmbWJafIHMAfOJ8/LleS2w==</latexit>

f1b_3d_ordNL

<latexit sha1_base64="EIowmQLFu42UvSS35bNcpo6LvPE=">AAACHnicbVC7TsNAEDyHVwgvAyXNiQgJUUR2FAElgoYykUhAikO0vmzgxPmhuzUSWP4HPoGvoIWKDtFCwb9gmxS8pjiNZnZvd8ePlTTkOO9WZWp6ZnauOl9bWFxaXrFX13omSrTArohUpM98MKhkiF2SpPAs1giBr/DUvzoq/NNr1EZG4QndxDgI4CKUYymAcmlo73hjDSL1AqBLASrtZMPUu0WC8smy1FP5ZyM4b2ZDu+40nBL8L3EnpM4maA/tD28UiSTAkIQCY/quE9MgBU1SKMxqXmIwBnEFF9jPaQgBmkFa3pTxrcQARTxGzaXipYjfO1IIjLkJ/Lyy2N389grxP6+f0Hh/kMowTghDUQwiqbAcZISWeVjIR1IjERSbI5chF6CBCLXkIEQuJnl6tTwP9/f1f0mv2XB3G61Oq35wOEmmyjbYJttmLttjB+yYtVmXCXbHHtgje7LurWfrxXr9Kq1Yk5519gPW2ydhc6QI</latexit>

Q⇣⇣

�2

<latexit sha1_base64="EIowmQLFu42UvSS35bNcpo6LvPE=">AAACHnicbVC7TsNAEDyHVwgvAyXNiQgJUUR2FAElgoYykUhAikO0vmzgxPmhuzUSWP4HPoGvoIWKDtFCwb9gmxS8pjiNZnZvd8ePlTTkOO9WZWp6ZnauOl9bWFxaXrFX13omSrTArohUpM98MKhkiF2SpPAs1giBr/DUvzoq/NNr1EZG4QndxDgI4CKUYymAcmlo73hjDSL1AqBLASrtZMPUu0WC8smy1FP5ZyM4b2ZDu+40nBL8L3EnpM4maA/tD28UiSTAkIQCY/quE9MgBU1SKMxqXmIwBnEFF9jPaQgBmkFa3pTxrcQARTxGzaXipYjfO1IIjLkJ/Lyy2N389grxP6+f0Hh/kMowTghDUQwiqbAcZISWeVjIR1IjERSbI5chF6CBCLXkIEQuJnl6tTwP9/f1f0mv2XB3G61Oq35wOEmmyjbYJttmLttjB+yYtVmXCXbHHtgje7LurWfrxXr9Kq1Yk5519gPW2ydhc6QI</latexit>

Q⇣⇣

�2

<latexit sha1_base64="EIowmQLFu42UvSS35bNcpo6LvPE=">AAACHnicbVC7TsNAEDyHVwgvAyXNiQgJUUR2FAElgoYykUhAikO0vmzgxPmhuzUSWP4HPoGvoIWKDtFCwb9gmxS8pjiNZnZvd8ePlTTkOO9WZWp6ZnauOl9bWFxaXrFX13omSrTArohUpM98MKhkiF2SpPAs1giBr/DUvzoq/NNr1EZG4QndxDgI4CKUYymAcmlo73hjDSL1AqBLASrtZMPUu0WC8smy1FP5ZyM4b2ZDu+40nBL8L3EnpM4maA/tD28UiSTAkIQCY/quE9MgBU1SKMxqXmIwBnEFF9jPaQgBmkFa3pTxrcQARTxGzaXipYjfO1IIjLkJ/Lyy2N389grxP6+f0Hh/kMowTghDUQwiqbAcZISWeVjIR1IjERSbI5chF6CBCLXkIEQuJnl6tTwP9/f1f0mv2XB3G61Oq35wOEmmyjbYJttmLttjB+yYtVmXCXbHHtgje7LurWfrxXr9Kq1Yk5519gPW2ydhc6QI</latexit>

Q⇣⇣

�2

� = 0.01
<latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="qmx6A14X1oK3/FriAEotsg96h3s=">AAAB3nicbZBNSwMxEIZn61ddq9azl2ARPEjJelFvghePFVxbaJeSzWbb0Gx2SWaFsvQPeNWT+MP035h+HLT1hcDDOzNk5o0LJS1S+u3VtrZ3dvfq+/5Bwz88Om42nm1eGi5Cnqvc9GJmhZJahChRiV5hBMtiJbrx5H5e774IY2Wun3BaiChjIy1TyRk6qzNstmibLkQ2IVhBC1YaNr8GSc7LTGjkilnbD2iBUcUMSq7EzB+UVhSMT9hI9B1qlgkbVYs1Z+TcOQlJc+OeRrJwf09ULLN2msWXKN2Y688Yju16x9z8r9YvMb2JKqmLEoXmy+/SUhHMyfxykkgjOKqpA8aNdBsTPmaGcXT5+C6JYP3uTQiv2rdt+kihDqdwBhcQwDXcwQN0IAQOCbzCm6e9d+9jGVjNWyV3An/kff4ApHiMeA==</latexit><latexit sha1_base64="bZhvU0MdXpDOv1kqSlmIfpi2Ueo=">AAAB7nicbZDNSgMxFIXv+Ftr1erWTbAILqTMuFEXguDGZQXHFtqh3EkzbWiSGZOMUMY+h1t1JT6Rvo3pz0JbD4R8nHsvuTlxJrixvv/trayurW9slrbK25Wd3b3qfuXBpLmmLKSpSHUrRsMEVyy03ArWyjRDGQvWjIc3k3rziWnDU3VvRxmLJPYVTzhF66yo00cpkVwRv+4H3WrNXVORZQjmUIO5Gt3qV6eX0lwyZalAY9qBn9moQG05FWxc7uSGZUiH2GdthwolM1ExXXpMjp3TI0mq3VGWTN3fEwVKY0YyPrXcjbl+iXZgFjsm5n+1dm6Ti6jgKsstU3T2XJILYlMyyYH0uGbUipEDpJq7jQkdoEZqXVplF0Ww+PFlCM/ql3X/zocSHMIRnEAA53ANt9CAECg8wgu8wpv37L17H7PMVrx5eAfwR97nD8a2kXg=</latexit><latexit sha1_base64="bZhvU0MdXpDOv1kqSlmIfpi2Ueo=">AAAB7nicbZDNSgMxFIXv+Ftr1erWTbAILqTMuFEXguDGZQXHFtqh3EkzbWiSGZOMUMY+h1t1JT6Rvo3pz0JbD4R8nHsvuTlxJrixvv/trayurW9slrbK25Wd3b3qfuXBpLmmLKSpSHUrRsMEVyy03ArWyjRDGQvWjIc3k3rziWnDU3VvRxmLJPYVTzhF66yo00cpkVwRv+4H3WrNXVORZQjmUIO5Gt3qV6eX0lwyZalAY9qBn9moQG05FWxc7uSGZUiH2GdthwolM1ExXXpMjp3TI0mq3VGWTN3fEwVKY0YyPrXcjbl+iXZgFjsm5n+1dm6Ti6jgKsstU3T2XJILYlMyyYH0uGbUipEDpJq7jQkdoEZqXVplF0Ww+PFlCM/ql3X/zocSHMIRnEAA53ANt9CAECg8wgu8wpv37L17H7PMVrx5eAfwR97nD8a2kXg=</latexit><latexit sha1_base64="IPzhe8cht0cmwfIU5wHT/2RyfNQ=">AAAB+XicbVDNSgMxGMz6W+tf1aOXYBE8SMl6UQ9CwYvHCq4ttEvJptk2NMmuybdCWfscXtWTePVl9G1M2z1o60DIMN8M+TJRKoUFQr69peWV1bX10kZ5c2t7Z7eyt39vk8wwHrBEJqYVUcul0DwAAZK3UsOpiiRvRsPrybz5yI0Vib6DUcpDRftaxIJRcFLY6VOlKL7CpEb8bqXqrinwIvELUkUFGt3KV6eXsExxDUxSa9s+SSHMqQHBJB+XO5nlKWVD2udtRzVV3Ib5dOkxPnZKD8eJcUcDnqq/EzlV1o5UdArCxZxfURjYecdE/G/WziC+CHOh0wy4ZrPn4kxiSPCkB9wThjOQI0coM8JtjNmAGsrAtVV2VfjzH18kwVntskZuSbVOik5K6BAdoRPko3NURzeogQLE0AN6Ri/o1Xvy3rx372NmXfKKzAH6A+/zBxL1ksY=</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit>

� = 0.5
<latexit sha1_base64="3Q5cBkpPz6E2YH9qysY0UK9AAhE=">AAAB+HicbVBNSwMxFMz6WetX1aOXYBE8yJIVRT0IBS8eK7i20F3K2zTbhia7S5IVytK/4VU9iVd/jf4b03YP2joQGObN8F4mygTXhpBvZ2l5ZXVtvbJR3dza3tmt7e0/6jRXlPk0FalqR6CZ4AnzDTeCtTPFQEaCtaLh7WTeemJK8zR5MKOMhRL6CY85BWOlIOiDlIBvMHEvurU6cckUeJF4JamjEs1u7SvopTSXLDFUgNYdj2QmLEAZTgUbV4NcswzoEPqsY2kCkumwmN48xsdW6eE4VfYlBk/V34kCpNYjGZ0abmPWL8EM9LxjIv436+QmvgoLnmS5YQmdrYtzgU2KJzXgHleMGjGyBKji9mJMB6CAGltW1VbhzX98kfhn7rVL7s/rDVJ2UkGH6AidIA9doga6Q03kI4oy9Ixe0KtTOG/Ou/Mxsy45ZeYA/YHz+QOoMZKU</latexit><latexit sha1_base64="3Q5cBkpPz6E2YH9qysY0UK9AAhE=">AAAB+HicbVBNSwMxFMz6WetX1aOXYBE8yJIVRT0IBS8eK7i20F3K2zTbhia7S5IVytK/4VU9iVd/jf4b03YP2joQGObN8F4mygTXhpBvZ2l5ZXVtvbJR3dza3tmt7e0/6jRXlPk0FalqR6CZ4AnzDTeCtTPFQEaCtaLh7WTeemJK8zR5MKOMhRL6CY85BWOlIOiDlIBvMHEvurU6cckUeJF4JamjEs1u7SvopTSXLDFUgNYdj2QmLEAZTgUbV4NcswzoEPqsY2kCkumwmN48xsdW6eE4VfYlBk/V34kCpNYjGZ0abmPWL8EM9LxjIv436+QmvgoLnmS5YQmdrYtzgU2KJzXgHleMGjGyBKji9mJMB6CAGltW1VbhzX98kfhn7rVL7s/rDVJ2UkGH6AidIA9doga6Q03kI4oy9Ixe0KtTOG/Ou/Mxsy45ZeYA/YHz+QOoMZKU</latexit><latexit sha1_base64="3Q5cBkpPz6E2YH9qysY0UK9AAhE=">AAAB+HicbVBNSwMxFMz6WetX1aOXYBE8yJIVRT0IBS8eK7i20F3K2zTbhia7S5IVytK/4VU9iVd/jf4b03YP2joQGObN8F4mygTXhpBvZ2l5ZXVtvbJR3dza3tmt7e0/6jRXlPk0FalqR6CZ4AnzDTeCtTPFQEaCtaLh7WTeemJK8zR5MKOMhRL6CY85BWOlIOiDlIBvMHEvurU6cckUeJF4JamjEs1u7SvopTSXLDFUgNYdj2QmLEAZTgUbV4NcswzoEPqsY2kCkumwmN48xsdW6eE4VfYlBk/V34kCpNYjGZ0abmPWL8EM9LxjIv436+QmvgoLnmS5YQmdrYtzgU2KJzXgHleMGjGyBKji9mJMB6CAGltW1VbhzX98kfhn7rVL7s/rDVJ2UkGH6AidIA9doga6Q03kI4oy9Ixe0KtTOG/Ou/Mxsy45ZeYA/YHz+QOoMZKU</latexit>

� = 0.99
<latexit sha1_base64="ta3US+lpFP9OVIqkyiT15z7xl64=">AAAB+XicbVBNSwMxFHzrZ61fVY9egkXwIEtWBO1BKHjxWMG1hXYp2TTbhia7a5IVytrf4VU9iVf/jP4b03YP2joQGObN8F4mTAXXBuNvZ2l5ZXVtvbRR3tza3tmt7O3f6yRTlPk0EYlqhUQzwWPmG24Ea6WKERkK1gyH15N585EpzZP4zoxSFkjSj3nEKTFWCjp9IiVBVwi7tVq3UsUungItEq8gVSjQ6Fa+Or2EZpLFhgqiddvDqQlyogyngo3LnUyzlNAh6bO2pTGRTAf59OgxOrZKD0WJsi82aKr+TuREaj2S4anhNmb9kpiBnndMxP9m7cxEl0HO4zQzLKazdVEmkEnQpAfU44pRI0aWEKq4vRjRAVGEGttW2VbhzX98kfhnbs3Ft+fVOi46KcEhHMEJeHABdbiBBvhA4QGe4QVenSfnzXl3PmbWJafIHMAfOJ8/LleS2w==</latexit><latexit sha1_base64="ta3US+lpFP9OVIqkyiT15z7xl64=">AAAB+XicbVBNSwMxFHzrZ61fVY9egkXwIEtWBO1BKHjxWMG1hXYp2TTbhia7a5IVytrf4VU9iVf/jP4b03YP2joQGObN8F4mTAXXBuNvZ2l5ZXVtvbRR3tza3tmt7O3f6yRTlPk0EYlqhUQzwWPmG24Ea6WKERkK1gyH15N585EpzZP4zoxSFkjSj3nEKTFWCjp9IiVBVwi7tVq3UsUungItEq8gVSjQ6Fa+Or2EZpLFhgqiddvDqQlyogyngo3LnUyzlNAh6bO2pTGRTAf59OgxOrZKD0WJsi82aKr+TuREaj2S4anhNmb9kpiBnndMxP9m7cxEl0HO4zQzLKazdVEmkEnQpAfU44pRI0aWEKq4vRjRAVGEGttW2VbhzX98kfhnbs3Ft+fVOi46KcEhHMEJeHABdbiBBvhA4QGe4QVenSfnzXl3PmbWJafIHMAfOJ8/LleS2w==</latexit><latexit sha1_base64="ta3US+lpFP9OVIqkyiT15z7xl64=">AAAB+XicbVBNSwMxFHzrZ61fVY9egkXwIEtWBO1BKHjxWMG1hXYp2TTbhia7a5IVytrf4VU9iVf/jP4b03YP2joQGObN8F4mTAXXBuNvZ2l5ZXVtvbRR3tza3tmt7O3f6yRTlPk0EYlqhUQzwWPmG24Ea6WKERkK1gyH15N585EpzZP4zoxSFkjSj3nEKTFWCjp9IiVBVwi7tVq3UsUungItEq8gVSjQ6Fa+Or2EZpLFhgqiddvDqQlyogyngo3LnUyzlNAh6bO2pTGRTAf59OgxOrZKD0WJsi82aKr+TuREaj2S4anhNmb9kpiBnndMxP9m7cxEl0HO4zQzLKazdVEmkEnQpAfU44pRI0aWEKq4vRjRAVGEGttW2VbhzX98kfhnbs3Ft+fVOi46KcEhHMEJeHABdbiBBvhA4QGe4QVenSfnzXl3PmbWJafIHMAfOJ8/LleS2w==</latexit>

� = 0.01
<latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="qmx6A14X1oK3/FriAEotsg96h3s=">AAAB3nicbZBNSwMxEIZn61ddq9azl2ARPEjJelFvghePFVxbaJeSzWbb0Gx2SWaFsvQPeNWT+MP035h+HLT1hcDDOzNk5o0LJS1S+u3VtrZ3dvfq+/5Bwz88Om42nm1eGi5Cnqvc9GJmhZJahChRiV5hBMtiJbrx5H5e774IY2Wun3BaiChjIy1TyRk6qzNstmibLkQ2IVhBC1YaNr8GSc7LTGjkilnbD2iBUcUMSq7EzB+UVhSMT9hI9B1qlgkbVYs1Z+TcOQlJc+OeRrJwf09ULLN2msWXKN2Y688Yju16x9z8r9YvMb2JKqmLEoXmy+/SUhHMyfxykkgjOKqpA8aNdBsTPmaGcXT5+C6JYP3uTQiv2rdt+kihDqdwBhcQwDXcwQN0IAQOCbzCm6e9d+9jGVjNWyV3An/kff4ApHiMeA==</latexit><latexit sha1_base64="bZhvU0MdXpDOv1kqSlmIfpi2Ueo=">AAAB7nicbZDNSgMxFIXv+Ftr1erWTbAILqTMuFEXguDGZQXHFtqh3EkzbWiSGZOMUMY+h1t1JT6Rvo3pz0JbD4R8nHsvuTlxJrixvv/trayurW9slrbK25Wd3b3qfuXBpLmmLKSpSHUrRsMEVyy03ArWyjRDGQvWjIc3k3rziWnDU3VvRxmLJPYVTzhF66yo00cpkVwRv+4H3WrNXVORZQjmUIO5Gt3qV6eX0lwyZalAY9qBn9moQG05FWxc7uSGZUiH2GdthwolM1ExXXpMjp3TI0mq3VGWTN3fEwVKY0YyPrXcjbl+iXZgFjsm5n+1dm6Ti6jgKsstU3T2XJILYlMyyYH0uGbUipEDpJq7jQkdoEZqXVplF0Ww+PFlCM/ql3X/zocSHMIRnEAA53ANt9CAECg8wgu8wpv37L17H7PMVrx5eAfwR97nD8a2kXg=</latexit><latexit sha1_base64="bZhvU0MdXpDOv1kqSlmIfpi2Ueo=">AAAB7nicbZDNSgMxFIXv+Ftr1erWTbAILqTMuFEXguDGZQXHFtqh3EkzbWiSGZOMUMY+h1t1JT6Rvo3pz0JbD4R8nHsvuTlxJrixvv/trayurW9slrbK25Wd3b3qfuXBpLmmLKSpSHUrRsMEVyy03ArWyjRDGQvWjIc3k3rziWnDU3VvRxmLJPYVTzhF66yo00cpkVwRv+4H3WrNXVORZQjmUIO5Gt3qV6eX0lwyZalAY9qBn9moQG05FWxc7uSGZUiH2GdthwolM1ExXXpMjp3TI0mq3VGWTN3fEwVKY0YyPrXcjbl+iXZgFjsm5n+1dm6Ti6jgKsstU3T2XJILYlMyyYH0uGbUipEDpJq7jQkdoEZqXVplF0Ww+PFlCM/ql3X/zocSHMIRnEAA53ANt9CAECg8wgu8wpv37L17H7PMVrx5eAfwR97nD8a2kXg=</latexit><latexit sha1_base64="IPzhe8cht0cmwfIU5wHT/2RyfNQ=">AAAB+XicbVDNSgMxGMz6W+tf1aOXYBE8SMl6UQ9CwYvHCq4ttEvJptk2NMmuybdCWfscXtWTePVl9G1M2z1o60DIMN8M+TJRKoUFQr69peWV1bX10kZ5c2t7Z7eyt39vk8wwHrBEJqYVUcul0DwAAZK3UsOpiiRvRsPrybz5yI0Vib6DUcpDRftaxIJRcFLY6VOlKL7CpEb8bqXqrinwIvELUkUFGt3KV6eXsExxDUxSa9s+SSHMqQHBJB+XO5nlKWVD2udtRzVV3Ib5dOkxPnZKD8eJcUcDnqq/EzlV1o5UdArCxZxfURjYecdE/G/WziC+CHOh0wy4ZrPn4kxiSPCkB9wThjOQI0coM8JtjNmAGsrAtVV2VfjzH18kwVntskZuSbVOik5K6BAdoRPko3NURzeogQLE0AN6Ri/o1Xvy3rx372NmXfKKzAH6A+/zBxL1ksY=</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit>

� = 0.5
<latexit sha1_base64="3Q5cBkpPz6E2YH9qysY0UK9AAhE=">AAAB+HicbVBNSwMxFMz6WetX1aOXYBE8yJIVRT0IBS8eK7i20F3K2zTbhia7S5IVytK/4VU9iVd/jf4b03YP2joQGObN8F4mygTXhpBvZ2l5ZXVtvbJR3dza3tmt7e0/6jRXlPk0FalqR6CZ4AnzDTeCtTPFQEaCtaLh7WTeemJK8zR5MKOMhRL6CY85BWOlIOiDlIBvMHEvurU6cckUeJF4JamjEs1u7SvopTSXLDFUgNYdj2QmLEAZTgUbV4NcswzoEPqsY2kCkumwmN48xsdW6eE4VfYlBk/V34kCpNYjGZ0abmPWL8EM9LxjIv436+QmvgoLnmS5YQmdrYtzgU2KJzXgHleMGjGyBKji9mJMB6CAGltW1VbhzX98kfhn7rVL7s/rDVJ2UkGH6AidIA9doga6Q03kI4oy9Ixe0KtTOG/Ou/Mxsy45ZeYA/YHz+QOoMZKU</latexit><latexit sha1_base64="3Q5cBkpPz6E2YH9qysY0UK9AAhE=">AAAB+HicbVBNSwMxFMz6WetX1aOXYBE8yJIVRT0IBS8eK7i20F3K2zTbhia7S5IVytK/4VU9iVd/jf4b03YP2joQGObN8F4mygTXhpBvZ2l5ZXVtvbJR3dza3tmt7e0/6jRXlPk0FalqR6CZ4AnzDTeCtTPFQEaCtaLh7WTeemJK8zR5MKOMhRL6CY85BWOlIOiDlIBvMHEvurU6cckUeJF4JamjEs1u7SvopTSXLDFUgNYdj2QmLEAZTgUbV4NcswzoEPqsY2kCkumwmN48xsdW6eE4VfYlBk/V34kCpNYjGZ0abmPWL8EM9LxjIv436+QmvgoLnmS5YQmdrYtzgU2KJzXgHleMGjGyBKji9mJMB6CAGltW1VbhzX98kfhn7rVL7s/rDVJ2UkGH6AidIA9doga6Q03kI4oy9Ixe0KtTOG/Ou/Mxsy45ZeYA/YHz+QOoMZKU</latexit><latexit sha1_base64="3Q5cBkpPz6E2YH9qysY0UK9AAhE=">AAAB+HicbVBNSwMxFMz6WetX1aOXYBE8yJIVRT0IBS8eK7i20F3K2zTbhia7S5IVytK/4VU9iVd/jf4b03YP2joQGObN8F4mygTXhpBvZ2l5ZXVtvbJR3dza3tmt7e0/6jRXlPk0FalqR6CZ4AnzDTeCtTPFQEaCtaLh7WTeemJK8zR5MKOMhRL6CY85BWOlIOiDlIBvMHEvurU6cckUeJF4JamjEs1u7SvopTSXLDFUgNYdj2QmLEAZTgUbV4NcswzoEPqsY2kCkumwmN48xsdW6eE4VfYlBk/V34kCpNYjGZ0abmPWL8EM9LxjIv436+QmvgoLnmS5YQmdrYtzgU2KJzXgHleMGjGyBKji9mJMB6CAGltW1VbhzX98kfhn7rVL7s/rDVJ2UkGH6AidIA9doga6Q03kI4oy9Ixe0KtTOG/Ou/Mxsy45ZeYA/YHz+QOoMZKU</latexit>

� = 0.99
<latexit sha1_base64="ta3US+lpFP9OVIqkyiT15z7xl64=">AAAB+XicbVBNSwMxFHzrZ61fVY9egkXwIEtWBO1BKHjxWMG1hXYp2TTbhia7a5IVytrf4VU9iVf/jP4b03YP2joQGObN8F4mTAXXBuNvZ2l5ZXVtvbRR3tza3tmt7O3f6yRTlPk0EYlqhUQzwWPmG24Ea6WKERkK1gyH15N585EpzZP4zoxSFkjSj3nEKTFWCjp9IiVBVwi7tVq3UsUungItEq8gVSjQ6Fa+Or2EZpLFhgqiddvDqQlyogyngo3LnUyzlNAh6bO2pTGRTAf59OgxOrZKD0WJsi82aKr+TuREaj2S4anhNmb9kpiBnndMxP9m7cxEl0HO4zQzLKazdVEmkEnQpAfU44pRI0aWEKq4vRjRAVGEGttW2VbhzX98kfhnbs3Ft+fVOi46KcEhHMEJeHABdbiBBvhA4QGe4QVenSfnzXl3PmbWJafIHMAfOJ8/LleS2w==</latexit><latexit sha1_base64="ta3US+lpFP9OVIqkyiT15z7xl64=">AAAB+XicbVBNSwMxFHzrZ61fVY9egkXwIEtWBO1BKHjxWMG1hXYp2TTbhia7a5IVytrf4VU9iVf/jP4b03YP2joQGObN8F4mTAXXBuNvZ2l5ZXVtvbRR3tza3tmt7O3f6yRTlPk0EYlqhUQzwWPmG24Ea6WKERkK1gyH15N585EpzZP4zoxSFkjSj3nEKTFWCjp9IiVBVwi7tVq3UsUungItEq8gVSjQ6Fa+Or2EZpLFhgqiddvDqQlyogyngo3LnUyzlNAh6bO2pTGRTAf59OgxOrZKD0WJsi82aKr+TuREaj2S4anhNmb9kpiBnndMxP9m7cxEl0HO4zQzLKazdVEmkEnQpAfU44pRI0aWEKq4vRjRAVGEGttW2VbhzX98kfhnbs3Ft+fVOi46KcEhHMEJeHABdbiBBvhA4QGe4QVenSfnzXl3PmbWJafIHMAfOJ8/LleS2w==</latexit><latexit sha1_base64="ta3US+lpFP9OVIqkyiT15z7xl64=">AAAB+XicbVBNSwMxFHzrZ61fVY9egkXwIEtWBO1BKHjxWMG1hXYp2TTbhia7a5IVytrf4VU9iVf/jP4b03YP2joQGObN8F4mTAXXBuNvZ2l5ZXVtvbRR3tza3tmt7O3f6yRTlPk0EYlqhUQzwWPmG24Ea6WKERkK1gyH15N585EpzZP4zoxSFkjSj3nEKTFWCjp9IiVBVwi7tVq3UsUungItEq8gVSjQ6Fa+Or2EZpLFhgqiddvDqQlyogyngo3LnUyzlNAh6bO2pTGRTAf59OgxOrZKD0WJsi82aKr+TuREaj2S4anhNmb9kpiBnndMxP9m7cxEl0HO4zQzLKazdVEmkEnQpAfU44pRI0aWEKq4vRjRAVGEGttW2VbhzX98kfhnbs3Ft+fVOi46KcEhHMEJeHABdbiBBvhA4QGe4QVenSfnzXl3PmbWJafIHMAfOJ8/LleS2w==</latexit>

<latexit sha1_base64="/l8oj3N2Ar1Rj93Tm4+tPSKCaq0=">AAACEXicbVC7SgNREL3rM8ZX1FKEi0GwCrsS1DJoY5mAeUASwuzNJF5y98G9s0JYUvkJfoWtVnZi6xdY+C/urlto4mnmcM4MM3PcUElDtv1pLS2vrK6tFzaKm1vbO7ulvf2WCSItsCkCFeiOCwaV9LFJkhR2Qo3guQrb7uQ69dv3qI0M/Fuahtj3YOzLkRRAiTQoHfU8oDsBKm7MBnFPJZNDyMuMD0plu2Jn4IvEyUmZ5agPSl+9YSAiD30SCozpOnZI/Rg0SaFwVuxFBkMQExhjN6E+eGj6cfbGjJ9EBijgIWouFc9E/D0Rg2fM1HOTzvRoM++l4n9eN6LRZT+WfhgR+iJdRFJhtsgILZN8kA+lRiJIL0cufS5AAxFqyUGIRIySwIpJHs7894ukdVZxzivVRrVcu8qTKbBDdsxOmcMuWI3dsDprMsEe2BN7Zi/Wo/VqvVnvP61LVj5zwP7A+vgGzyOdyw==</latexit>

Q��

<latexit sha1_base64="/l8oj3N2Ar1Rj93Tm4+tPSKCaq0=">AAACEXicbVC7SgNREL3rM8ZX1FKEi0GwCrsS1DJoY5mAeUASwuzNJF5y98G9s0JYUvkJfoWtVnZi6xdY+C/urlto4mnmcM4MM3PcUElDtv1pLS2vrK6tFzaKm1vbO7ulvf2WCSItsCkCFeiOCwaV9LFJkhR2Qo3guQrb7uQ69dv3qI0M/Fuahtj3YOzLkRRAiTQoHfU8oDsBKm7MBnFPJZNDyMuMD0plu2Jn4IvEyUmZ5agPSl+9YSAiD30SCozpOnZI/Rg0SaFwVuxFBkMQExhjN6E+eGj6cfbGjJ9EBijgIWouFc9E/D0Rg2fM1HOTzvRoM++l4n9eN6LRZT+WfhgR+iJdRFJhtsgILZN8kA+lRiJIL0cufS5AAxFqyUGIRIySwIpJHs7894ukdVZxzivVRrVcu8qTKbBDdsxOmcMuWI3dsDprMsEe2BN7Zi/Wo/VqvVnvP61LVj5zwP7A+vgGzyOdyw==</latexit>

Q��

<latexit sha1_base64="/l8oj3N2Ar1Rj93Tm4+tPSKCaq0=">AAACEXicbVC7SgNREL3rM8ZX1FKEi0GwCrsS1DJoY5mAeUASwuzNJF5y98G9s0JYUvkJfoWtVnZi6xdY+C/urlto4mnmcM4MM3PcUElDtv1pLS2vrK6tFzaKm1vbO7ulvf2WCSItsCkCFeiOCwaV9LFJkhR2Qo3guQrb7uQ69dv3qI0M/Fuahtj3YOzLkRRAiTQoHfU8oDsBKm7MBnFPJZNDyMuMD0plu2Jn4IvEyUmZ5agPSl+9YSAiD30SCozpOnZI/Rg0SaFwVuxFBkMQExhjN6E+eGj6cfbGjJ9EBijgIWouFc9E/D0Rg2fM1HOTzvRoM++l4n9eN6LRZT+WfhgR+iJdRFJhtsgILZN8kA+lRiJIL0cufS5AAxFqyUGIRIySwIpJHs7894ukdVZxzivVRrVcu8qTKbBDdsxOmcMuWI3dsDprMsEe2BN7Zi/Wo/VqvVnvP61LVj5zwP7A+vgGzyOdyw==</latexit>

Q��

f1a_3d_coupling

� = 0.01
<latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="qmx6A14X1oK3/FriAEotsg96h3s=">AAAB3nicbZBNSwMxEIZn61ddq9azl2ARPEjJelFvghePFVxbaJeSzWbb0Gx2SWaFsvQPeNWT+MP035h+HLT1hcDDOzNk5o0LJS1S+u3VtrZ3dvfq+/5Bwz88Om42nm1eGi5Cnqvc9GJmhZJahChRiV5hBMtiJbrx5H5e774IY2Wun3BaiChjIy1TyRk6qzNstmibLkQ2IVhBC1YaNr8GSc7LTGjkilnbD2iBUcUMSq7EzB+UVhSMT9hI9B1qlgkbVYs1Z+TcOQlJc+OeRrJwf09ULLN2msWXKN2Y688Yju16x9z8r9YvMb2JKqmLEoXmy+/SUhHMyfxykkgjOKqpA8aNdBsTPmaGcXT5+C6JYP3uTQiv2rdt+kihDqdwBhcQwDXcwQN0IAQOCbzCm6e9d+9jGVjNWyV3An/kff4ApHiMeA==</latexit><latexit sha1_base64="bZhvU0MdXpDOv1kqSlmIfpi2Ueo=">AAAB7nicbZDNSgMxFIXv+Ftr1erWTbAILqTMuFEXguDGZQXHFtqh3EkzbWiSGZOMUMY+h1t1JT6Rvo3pz0JbD4R8nHsvuTlxJrixvv/trayurW9slrbK25Wd3b3qfuXBpLmmLKSpSHUrRsMEVyy03ArWyjRDGQvWjIc3k3rziWnDU3VvRxmLJPYVTzhF66yo00cpkVwRv+4H3WrNXVORZQjmUIO5Gt3qV6eX0lwyZalAY9qBn9moQG05FWxc7uSGZUiH2GdthwolM1ExXXpMjp3TI0mq3VGWTN3fEwVKY0YyPrXcjbl+iXZgFjsm5n+1dm6Ti6jgKsstU3T2XJILYlMyyYH0uGbUipEDpJq7jQkdoEZqXVplF0Ww+PFlCM/ql3X/zocSHMIRnEAA53ANt9CAECg8wgu8wpv37L17H7PMVrx5eAfwR97nD8a2kXg=</latexit><latexit sha1_base64="bZhvU0MdXpDOv1kqSlmIfpi2Ueo=">AAAB7nicbZDNSgMxFIXv+Ftr1erWTbAILqTMuFEXguDGZQXHFtqh3EkzbWiSGZOMUMY+h1t1JT6Rvo3pz0JbD4R8nHsvuTlxJrixvv/trayurW9slrbK25Wd3b3qfuXBpLmmLKSpSHUrRsMEVyy03ArWyjRDGQvWjIc3k3rziWnDU3VvRxmLJPYVTzhF66yo00cpkVwRv+4H3WrNXVORZQjmUIO5Gt3qV6eX0lwyZalAY9qBn9moQG05FWxc7uSGZUiH2GdthwolM1ExXXpMjp3TI0mq3VGWTN3fEwVKY0YyPrXcjbl+iXZgFjsm5n+1dm6Ti6jgKsstU3T2XJILYlMyyYH0uGbUipEDpJq7jQkdoEZqXVplF0Ww+PFlCM/ql3X/zocSHMIRnEAA53ANt9CAECg8wgu8wpv37L17H7PMVrx5eAfwR97nD8a2kXg=</latexit><latexit sha1_base64="IPzhe8cht0cmwfIU5wHT/2RyfNQ=">AAAB+XicbVDNSgMxGMz6W+tf1aOXYBE8SMl6UQ9CwYvHCq4ttEvJptk2NMmuybdCWfscXtWTePVl9G1M2z1o60DIMN8M+TJRKoUFQr69peWV1bX10kZ5c2t7Z7eyt39vk8wwHrBEJqYVUcul0DwAAZK3UsOpiiRvRsPrybz5yI0Vib6DUcpDRftaxIJRcFLY6VOlKL7CpEb8bqXqrinwIvELUkUFGt3KV6eXsExxDUxSa9s+SSHMqQHBJB+XO5nlKWVD2udtRzVV3Ib5dOkxPnZKD8eJcUcDnqq/EzlV1o5UdArCxZxfURjYecdE/G/WziC+CHOh0wy4ZrPn4kxiSPCkB9wThjOQI0coM8JtjNmAGsrAtVV2VfjzH18kwVntskZuSbVOik5K6BAdoRPko3NURzeogQLE0AN6Ri/o1Xvy3rx372NmXfKKzAH6A+/zBxL1ksY=</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit><latexit sha1_base64="aFQ3fOd8f6tB9kfViCQP+kcJMCM=">AAAB+XicbVDLSgMxFM3UV62vqks3wSK4kDIjgroQCm5cVnBsoR3KnTTThiYzY3JHKGO/w626Erf+jP6N6WOhrQdCDueeQ25OmEph0HW/ncLS8srqWnG9tLG5tb1T3t27N0mmGfdZIhPdDMFwKWLuo0DJm6nmoELJG+HgejxvPHJtRBLf4TDlgYJeLCLBAK0UtHugFNAr6lZdr1Ou2GsCuki8GamQGeqd8le7m7BM8RiZBGNanptikINGwSQfldqZ4SmwAfR4y9IYFDdBPll6RI+s0qVRou2JkU7U34kclDFDFZ6gsDHrV4B9M+8Yi//NWhlGF0Eu4jRDHrPpc1EmKSZ03APtCs0ZyqElwLSwG1PWBw0MbVslW4U3//FF4p9WL6vu7Vml5s46KZIDckiOiUfOSY3ckDrxCSMP5Jm8kFfnyXlz3p2PqbXgzDL75A+czx8UNZLK</latexit>

� = 0.5
<latexit sha1_base64="3Q5cBkpPz6E2YH9qysY0UK9AAhE=">AAAB+HicbVBNSwMxFMz6WetX1aOXYBE8yJIVRT0IBS8eK7i20F3K2zTbhia7S5IVytK/4VU9iVd/jf4b03YP2joQGObN8F4mygTXhpBvZ2l5ZXVtvbJR3dza3tmt7e0/6jRXlPk0FalqR6CZ4AnzDTeCtTPFQEaCtaLh7WTeemJK8zR5MKOMhRL6CY85BWOlIOiDlIBvMHEvurU6cckUeJF4JamjEs1u7SvopTSXLDFUgNYdj2QmLEAZTgUbV4NcswzoEPqsY2kCkumwmN48xsdW6eE4VfYlBk/V34kCpNYjGZ0abmPWL8EM9LxjIv436+QmvgoLnmS5YQmdrYtzgU2KJzXgHleMGjGyBKji9mJMB6CAGltW1VbhzX98kfhn7rVL7s/rDVJ2UkGH6AidIA9doga6Q03kI4oy9Ixe0KtTOG/Ou/Mxsy45ZeYA/YHz+QOoMZKU</latexit><latexit sha1_base64="3Q5cBkpPz6E2YH9qysY0UK9AAhE=">AAAB+HicbVBNSwMxFMz6WetX1aOXYBE8yJIVRT0IBS8eK7i20F3K2zTbhia7S5IVytK/4VU9iVd/jf4b03YP2joQGObN8F4mygTXhpBvZ2l5ZXVtvbJR3dza3tmt7e0/6jRXlPk0FalqR6CZ4AnzDTeCtTPFQEaCtaLh7WTeemJK8zR5MKOMhRL6CY85BWOlIOiDlIBvMHEvurU6cckUeJF4JamjEs1u7SvopTSXLDFUgNYdj2QmLEAZTgUbV4NcswzoEPqsY2kCkumwmN48xsdW6eE4VfYlBk/V34kCpNYjGZ0abmPWL8EM9LxjIv436+QmvgoLnmS5YQmdrYtzgU2KJzXgHleMGjGyBKji9mJMB6CAGltW1VbhzX98kfhn7rVL7s/rDVJ2UkGH6AidIA9doga6Q03kI4oy9Ixe0KtTOG/Ou/Mxsy45ZeYA/YHz+QOoMZKU</latexit><latexit sha1_base64="3Q5cBkpPz6E2YH9qysY0UK9AAhE=">AAAB+HicbVBNSwMxFMz6WetX1aOXYBE8yJIVRT0IBS8eK7i20F3K2zTbhia7S5IVytK/4VU9iVd/jf4b03YP2joQGObN8F4mygTXhpBvZ2l5ZXVtvbJR3dza3tmt7e0/6jRXlPk0FalqR6CZ4AnzDTeCtTPFQEaCtaLh7WTeemJK8zR5MKOMhRL6CY85BWOlIOiDlIBvMHEvurU6cckUeJF4JamjEs1u7SvopTSXLDFUgNYdj2QmLEAZTgUbV4NcswzoEPqsY2kCkumwmN48xsdW6eE4VfYlBk/V34kCpNYjGZ0abmPWL8EM9LxjIv436+QmvgoLnmS5YQmdrYtzgU2KJzXgHleMGjGyBKji9mJMB6CAGltW1VbhzX98kfhn7rVL7s/rDVJ2UkGH6AidIA9doga6Q03kI4oy9Ixe0KtTOG/Ou/Mxsy45ZeYA/YHz+QOoMZKU</latexit>

� = 0.99
<latexit sha1_base64="ta3US+lpFP9OVIqkyiT15z7xl64=">AAAB+XicbVBNSwMxFHzrZ61fVY9egkXwIEtWBO1BKHjxWMG1hXYp2TTbhia7a5IVytrf4VU9iVf/jP4b03YP2joQGObN8F4mTAXXBuNvZ2l5ZXVtvbRR3tza3tmt7O3f6yRTlPk0EYlqhUQzwWPmG24Ea6WKERkK1gyH15N585EpzZP4zoxSFkjSj3nEKTFWCjp9IiVBVwi7tVq3UsUungItEq8gVSjQ6Fa+Or2EZpLFhgqiddvDqQlyogyngo3LnUyzlNAh6bO2pTGRTAf59OgxOrZKD0WJsi82aKr+TuREaj2S4anhNmb9kpiBnndMxP9m7cxEl0HO4zQzLKazdVEmkEnQpAfU44pRI0aWEKq4vRjRAVGEGttW2VbhzX98kfhnbs3Ft+fVOi46KcEhHMEJeHABdbiBBvhA4QGe4QVenSfnzXl3PmbWJafIHMAfOJ8/LleS2w==</latexit><latexit sha1_base64="ta3US+lpFP9OVIqkyiT15z7xl64=">AAAB+XicbVBNSwMxFHzrZ61fVY9egkXwIEtWBO1BKHjxWMG1hXYp2TTbhia7a5IVytrf4VU9iVf/jP4b03YP2joQGObN8F4mTAXXBuNvZ2l5ZXVtvbRR3tza3tmt7O3f6yRTlPk0EYlqhUQzwWPmG24Ea6WKERkK1gyH15N585EpzZP4zoxSFkjSj3nEKTFWCjp9IiVBVwi7tVq3UsUungItEq8gVSjQ6Fa+Or2EZpLFhgqiddvDqQlyogyngo3LnUyzlNAh6bO2pTGRTAf59OgxOrZKD0WJsi82aKr+TuREaj2S4anhNmb9kpiBnndMxP9m7cxEl0HO4zQzLKazdVEmkEnQpAfU44pRI0aWEKq4vRjRAVGEGttW2VbhzX98kfhnbs3Ft+fVOi46KcEhHMEJeHABdbiBBvhA4QGe4QVenSfnzXl3PmbWJafIHMAfOJ8/LleS2w==</latexit><latexit sha1_base64="ta3US+lpFP9OVIqkyiT15z7xl64=">AAAB+XicbVBNSwMxFHzrZ61fVY9egkXwIEtWBO1BKHjxWMG1hXYp2TTbhia7a5IVytrf4VU9iVf/jP4b03YP2joQGObN8F4mTAXXBuNvZ2l5ZXVtvbRR3tza3tmt7O3f6yRTlPk0EYlqhUQzwWPmG24Ea6WKERkK1gyH15N585EpzZP4zoxSFkjSj3nEKTFWCjp9IiVBVwi7tVq3UsUungItEq8gVSjQ6Fa+Or2EZpLFhgqiddvDqQlyogyngo3LnUyzlNAh6bO2pTGRTAf59OgxOrZKD0WJsi82aKr+TuREaj2S4anhNmb9kpiBnndMxP9m7cxEl0HO4zQzLKazdVEmkEnQpAfU44pRI0aWEKq4vRjRAVGEGttW2VbhzX98kfhnbs3Ft+fVOi46KcEhHMEJeHABdbiBBvhA4QGe4QVenSfnzXl3PmbWJafIHMAfOJ8/LleS2w==</latexit>

� = 0.01
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Figure 6.1: First line: The QFI Q�� of Eq. (6.13) as a function of the squeezing phase ✓ and coherent
amplitude phase � for N = 3 and for different values of the order of nonlinearity ⇣: from bottom
to top ⇣ = 2, 3 and 4. Second line: The QFI Q⇣⇣ of Eq. (6.15) rescaled by �

2 as a function of the
squeezing parameter phase ✓ and coherent amplitude phase � for N = 3 and for different values
of the order of nonlinearity ⇣: from bottom to top ⇣ = 2, 3 and 4. On both lines, the plots refer to
different values of the squeezing ratio: (left panels) � = 0.01 , (middle panels) � = 0.5 and (right
panels) panel: � = 0.99. Notice that the quantity Q⇣⇣/�

2 is independent of �.

write eix(ba+ba†) = exp{eixba†} exp{eixba} exp{e2ix/2}, and consequently we obtain

bG⇣ = ⇣!

Z
⇡

�⇡

dx

2⇡
e�i⇣x

+1X

s=0

(eixba†)s

s!

+1X

t=0

(eixba)t

t!

+1X

m=0

(e2ix)m

2mm!
= (6.24)

= ⇣!
+1X

s,t,m=0

(ba†)s(ba)t

s!t!m!2m

Z
⇡

�⇡

dx

2⇡
eix(s+t+2m�⇣) = (6.25)

=
+1X

s,t,m=0

⇣!

s!t!m!2m
(ba†)s(ba)t�⇣,s+t+2m. (6.26)

In the last expression, we may perform the sum over t and, noticing that s can be at most
⇣ � 2m, while m can be at most b⇣/2c, we finally obtain [346, 220]

bG⇣ =

b⇣/2cX

m=0

⇣�2mX

s=0

C(⇣, m, s)(ba†)s(ba)⇣�2m�s , (6.27)

where

C(⇣, m, s) =
⇣!

2mm!s!(⇣ � 2m � s)!
. (6.28)

More generally, the normal order of (ei ba + e�i ba†)⇣ may be obtained. In this case,
we redefine the ladder operators as bb = ei ba,bb† = e�i ba†, which satisfy the canonical
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commutation relations
h
bb,bb†

i
= I. Then, it results that

(ei ba + e�i )⇣ = (bb +bb†)⇣ = (6.29)

=

b⇣/2cX

m=0

⇣�2mX

s=0

⇣!

2ms!m!(⇣ � s � 2m)!
(bb†)s(bb)⇣�s�2m = (6.30)

=

b⇣/2cX

m=0

⇣�2mX

s=0

⇣!ei (⇣�2l�2m)

2ms!m!(⇣ � s � 2m)!
(ba†)s(ba)⇣�s�2m. (6.31)

In turn, we have that

h↵, ⇠| bG⇣ |↵, ⇠i = h0| bS†(⇠) bD†(↵) (ba + ba†)⇣ bD(↵) bS(⇠) |0i

= h�|
⇥
(µ + ⌫⇤)ba + (µ + ⌫)ba†

⇤⇣ |�i = ⌘⇣h�|
�
baei + ba†e�i 

�⇣ |�i =

= ⌘⇣
b⇣/2cX

k=0

⇣�2kX

s=0

C(⇣, k, s)ei (⇣�2k�2s) (�⇤)s �⇣�2k�s, (6.32)

where we have introduced � = µ↵+⌫↵⇤, ⌘ = |µ+⌫| and  = Arg(µ+⌫⇤), with µ = cosh r
and ⌫ = ei✓ sinh r. Starting from Eq. (6.32) we can evaluate the QFI of Eqs. (6.13) and
(6.15), which are shown in Figure 6.1. As one may expect, the behaviour is qualitatively
similar, except for the case ⇣ = 2 and for � ! 0, i.e. for a coherent probe: in this case the
QFI associated with the estimation of the order of nonlinearity ⇣ does not depend on the
parameters of the probe state and reads Q⇣⇣ = 16�2.

In Figure 6.2 we show the QFIs for the two extreme cases, i.e a coherent probe and
a squeezed vacuum one, respectively, as a function of the relevant phases. From the
Figures above, it is clear that both Q�� and Q⇣⇣ are periodic functions of the phases �
and ✓ of the probe state. Since we are interested in finding the optimal probes, i.e. states
maximizing the QFIs, we set ✓ = � = 0. Thereafter, we have ↵ 2 R, � = ↵ er and ⌘ = er

and Eq. (6.32) can be rewritten as

h↵, r| bG⇣ |↵, ri = (↵ e2r)⇣
b⇣/2cX

k=0

(↵ er)�2k

⇣�2kX

s=0

C(⇣, k, s) , (6.33)

and, being [2]
⇣�2kX

s=0

C(⇣, k, s) =
2⇣�3k⇣!

k!(⇣ � 2k)!
, (6.34)

we eventually obtain:

h↵, r| bG⇣ |↵, ri = (2↵ e2r)⇣⇣!

b⇣/2cX

k=0

(2
p

2↵ er)�2k

k!(⇣ � 2k)!
. (6.35)

We can now use this last result to evaluate the corresponding QFIs and look for the
optimal squeezing fraction � maximizing them.

At first, we study the low energy regime N ⌧ 1, where we may write

Q�� ' 4
A(⇣)

2⇣

⇣
1 + 2⇣

p
�N
⌘

(N ⌧ 1) (6.36)
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<latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit>

N = 2
<latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit>

N = 3
<latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit>

N = 2
<latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit>

N = 3
<latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit>

N = 2
<latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit>

N = 3
<latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit>

f2a_ch

� π/� π/� �π/� π

����

��

���

���

ϕ

ℱλλ
(�)

� π/� π/� �π/� π

����

��

���

���

ϕ

ℱζζ
(�)

λ�

� π/� π �π/� � π

����

��

���

���

θ

ℱλλ
(�)

� π/� π �π/� � π
����

��

���

���

θ

ℱζζ
(�)

λ�

� = 1
<latexit sha1_base64="XzPFrIXiIidBfTlBZNYhMCNrBr4=">AAAB9nicbVDLSgMxFL3js9ZX1aWbYBFcSJkRQV0IBTcuKzi22A4lk2ba0CQzJHeEUvoXbtWVuPVz9G9MHwttPRA4nHsO9+bEmRQWff/bW1peWV1bL2wUN7e2d3ZLe/sPNs0N4yFLZWoaMbVcCs1DFCh5IzOcqljyety/Gc/rT9xYkep7HGQ8UrSrRSIYRSc9trpUKUquSdAulf2KPwFZJMGMlGGGWrv01eqkLFdcI5PU2mbgZxgNqUHBJB8VW7nlGWV92uVNRzVV3EbDycUjcuyUDklS455GMlF/J4ZUWTtQ8SkKF3N+RbFn5x1j8b9ZM8fkMhoKneXINZuuS3JJMCXjEkhHGM5QDhyhzAh3MWE9aihDV1XRVRHMf3yRhGeVq4p/d16u+rNOCnAIR3ACAVxAFW6hBiEw0PAML/DqDbw37937mFqXvFnmAP7A+/wBwXKSHg==</latexit><latexit sha1_base64="XzPFrIXiIidBfTlBZNYhMCNrBr4=">AAAB9nicbVDLSgMxFL3js9ZX1aWbYBFcSJkRQV0IBTcuKzi22A4lk2ba0CQzJHeEUvoXbtWVuPVz9G9MHwttPRA4nHsO9+bEmRQWff/bW1peWV1bL2wUN7e2d3ZLe/sPNs0N4yFLZWoaMbVcCs1DFCh5IzOcqljyety/Gc/rT9xYkep7HGQ8UrSrRSIYRSc9trpUKUquSdAulf2KPwFZJMGMlGGGWrv01eqkLFdcI5PU2mbgZxgNqUHBJB8VW7nlGWV92uVNRzVV3EbDycUjcuyUDklS455GMlF/J4ZUWTtQ8SkKF3N+RbFn5x1j8b9ZM8fkMhoKneXINZuuS3JJMCXjEkhHGM5QDhyhzAh3MWE9aihDV1XRVRHMf3yRhGeVq4p/d16u+rNOCnAIR3ACAVxAFW6hBiEw0PAML/DqDbw37937mFqXvFnmAP7A+/wBwXKSHg==</latexit><latexit sha1_base64="XzPFrIXiIidBfTlBZNYhMCNrBr4=">AAAB9nicbVDLSgMxFL3js9ZX1aWbYBFcSJkRQV0IBTcuKzi22A4lk2ba0CQzJHeEUvoXbtWVuPVz9G9MHwttPRA4nHsO9+bEmRQWff/bW1peWV1bL2wUN7e2d3ZLe/sPNs0N4yFLZWoaMbVcCs1DFCh5IzOcqljyety/Gc/rT9xYkep7HGQ8UrSrRSIYRSc9trpUKUquSdAulf2KPwFZJMGMlGGGWrv01eqkLFdcI5PU2mbgZxgNqUHBJB8VW7nlGWV92uVNRzVV3EbDycUjcuyUDklS455GMlF/J4ZUWTtQ8SkKF3N+RbFn5x1j8b9ZM8fkMhoKneXINZuuS3JJMCXjEkhHGM5QDhyhzAh3MWE9aihDV1XRVRHMf3yRhGeVq4p/d16u+rNOCnAIR3ACAVxAFW6hBiEw0PAML/DqDbw37937mFqXvFnmAP7A+/wBwXKSHg==</latexit>

� = 1
<latexit sha1_base64="XzPFrIXiIidBfTlBZNYhMCNrBr4=">AAAB9nicbVDLSgMxFL3js9ZX1aWbYBFcSJkRQV0IBTcuKzi22A4lk2ba0CQzJHeEUvoXbtWVuPVz9G9MHwttPRA4nHsO9+bEmRQWff/bW1peWV1bL2wUN7e2d3ZLe/sPNs0N4yFLZWoaMbVcCs1DFCh5IzOcqljyety/Gc/rT9xYkep7HGQ8UrSrRSIYRSc9trpUKUquSdAulf2KPwFZJMGMlGGGWrv01eqkLFdcI5PU2mbgZxgNqUHBJB8VW7nlGWV92uVNRzVV3EbDycUjcuyUDklS455GMlF/J4ZUWTtQ8SkKF3N+RbFn5x1j8b9ZM8fkMhoKneXINZuuS3JJMCXjEkhHGM5QDhyhzAh3MWE9aihDV1XRVRHMf3yRhGeVq4p/d16u+rNOCnAIR3ACAVxAFW6hBiEw0PAML/DqDbw37937mFqXvFnmAP7A+/wBwXKSHg==</latexit><latexit sha1_base64="XzPFrIXiIidBfTlBZNYhMCNrBr4=">AAAB9nicbVDLSgMxFL3js9ZX1aWbYBFcSJkRQV0IBTcuKzi22A4lk2ba0CQzJHeEUvoXbtWVuPVz9G9MHwttPRA4nHsO9+bEmRQWff/bW1peWV1bL2wUN7e2d3ZLe/sPNs0N4yFLZWoaMbVcCs1DFCh5IzOcqljyety/Gc/rT9xYkep7HGQ8UrSrRSIYRSc9trpUKUquSdAulf2KPwFZJMGMlGGGWrv01eqkLFdcI5PU2mbgZxgNqUHBJB8VW7nlGWV92uVNRzVV3EbDycUjcuyUDklS455GMlF/J4ZUWTtQ8SkKF3N+RbFn5x1j8b9ZM8fkMhoKneXINZuuS3JJMCXjEkhHGM5QDhyhzAh3MWE9aihDV1XRVRHMf3yRhGeVq4p/d16u+rNOCnAIR3ACAVxAFW6hBiEw0PAML/DqDbw37937mFqXvFnmAP7A+/wBwXKSHg==</latexit><latexit sha1_base64="XzPFrIXiIidBfTlBZNYhMCNrBr4=">AAAB9nicbVDLSgMxFL3js9ZX1aWbYBFcSJkRQV0IBTcuKzi22A4lk2ba0CQzJHeEUvoXbtWVuPVz9G9MHwttPRA4nHsO9+bEmRQWff/bW1peWV1bL2wUN7e2d3ZLe/sPNs0N4yFLZWoaMbVcCs1DFCh5IzOcqljyety/Gc/rT9xYkep7HGQ8UrSrRSIYRSc9trpUKUquSdAulf2KPwFZJMGMlGGGWrv01eqkLFdcI5PU2mbgZxgNqUHBJB8VW7nlGWV92uVNRzVV3EbDycUjcuyUDklS455GMlF/J4ZUWTtQ8SkKF3N+RbFn5x1j8b9ZM8fkMhoKneXINZuuS3JJMCXjEkhHGM5QDhyhzAh3MWE9aihDV1XRVRHMf3yRhGeVq4p/d16u+rNOCnAIR3ACAVxAFW6hBiEw0PAML/DqDbw37937mFqXvFnmAP7A+/wBwXKSHg==</latexit>

� = 0
<latexit sha1_base64="rOFoL/IJTSwDjsmJf8/jOQZISm4=">AAAB9nicbVBNSwMxFMz6WetX1aOXYBE8SElFUA9CwYvHCq4ttkvJptk2NMkuyVthWfovvKon8erP0X9j2u5BWwcCw7wZ3suEiRQWCPn2lpZXVtfWSxvlza3tnd3K3v6DjVPDuM9iGZt2SC2XQnMfBEjeTgynKpS8FY5uJvPWEzdWxPoesoQHig60iASj4KTH7oAqRfE1Jr1KldTIFHiR1AtSRQWavcpXtx+zVHENTFJrO3WSQJBTA4JJPi53U8sTykZ0wDuOaqq4DfLpxWN87JQ+jmLjngY8VX8ncqqszVR4CsLFnF9RGNp5x0T8b9ZJIboMcqGTFLhms3VRKjHEeFIC7gvDGcjMEcqMcBdjNqSGMnBVlV0V9fmPLxL/rHZVI3fn1QYpOimhQ3SETlAdXaAGukVN5COGNHpGL+jVy7w37937mFmXvCJzgP7A+/wBv+mSHQ==</latexit><latexit sha1_base64="rOFoL/IJTSwDjsmJf8/jOQZISm4=">AAAB9nicbVBNSwMxFMz6WetX1aOXYBE8SElFUA9CwYvHCq4ttkvJptk2NMkuyVthWfovvKon8erP0X9j2u5BWwcCw7wZ3suEiRQWCPn2lpZXVtfWSxvlza3tnd3K3v6DjVPDuM9iGZt2SC2XQnMfBEjeTgynKpS8FY5uJvPWEzdWxPoesoQHig60iASj4KTH7oAqRfE1Jr1KldTIFHiR1AtSRQWavcpXtx+zVHENTFJrO3WSQJBTA4JJPi53U8sTykZ0wDuOaqq4DfLpxWN87JQ+jmLjngY8VX8ncqqszVR4CsLFnF9RGNp5x0T8b9ZJIboMcqGTFLhms3VRKjHEeFIC7gvDGcjMEcqMcBdjNqSGMnBVlV0V9fmPLxL/rHZVI3fn1QYpOimhQ3SETlAdXaAGukVN5COGNHpGL+jVy7w37937mFmXvCJzgP7A+/wBv+mSHQ==</latexit><latexit sha1_base64="rOFoL/IJTSwDjsmJf8/jOQZISm4=">AAAB9nicbVBNSwMxFMz6WetX1aOXYBE8SElFUA9CwYvHCq4ttkvJptk2NMkuyVthWfovvKon8erP0X9j2u5BWwcCw7wZ3suEiRQWCPn2lpZXVtfWSxvlza3tnd3K3v6DjVPDuM9iGZt2SC2XQnMfBEjeTgynKpS8FY5uJvPWEzdWxPoesoQHig60iASj4KTH7oAqRfE1Jr1KldTIFHiR1AtSRQWavcpXtx+zVHENTFJrO3WSQJBTA4JJPi53U8sTykZ0wDuOaqq4DfLpxWN87JQ+jmLjngY8VX8ncqqszVR4CsLFnF9RGNp5x0T8b9ZJIboMcqGTFLhms3VRKjHEeFIC7gvDGcjMEcqMcBdjNqSGMnBVlV0V9fmPLxL/rHZVI3fn1QYpOimhQ3SETlAdXaAGukVN5COGNHpGL+jVy7w37937mFmXvCJzgP7A+/wBv+mSHQ==</latexit>

� = 0
<latexit sha1_base64="rOFoL/IJTSwDjsmJf8/jOQZISm4=">AAAB9nicbVBNSwMxFMz6WetX1aOXYBE8SElFUA9CwYvHCq4ttkvJptk2NMkuyVthWfovvKon8erP0X9j2u5BWwcCw7wZ3suEiRQWCPn2lpZXVtfWSxvlza3tnd3K3v6DjVPDuM9iGZt2SC2XQnMfBEjeTgynKpS8FY5uJvPWEzdWxPoesoQHig60iASj4KTH7oAqRfE1Jr1KldTIFHiR1AtSRQWavcpXtx+zVHENTFJrO3WSQJBTA4JJPi53U8sTykZ0wDuOaqq4DfLpxWN87JQ+jmLjngY8VX8ncqqszVR4CsLFnF9RGNp5x0T8b9ZJIboMcqGTFLhms3VRKjHEeFIC7gvDGcjMEcqMcBdjNqSGMnBVlV0V9fmPLxL/rHZVI3fn1QYpOimhQ3SETlAdXaAGukVN5COGNHpGL+jVy7w37937mFmXvCJzgP7A+/wBv+mSHQ==</latexit><latexit sha1_base64="rOFoL/IJTSwDjsmJf8/jOQZISm4=">AAAB9nicbVBNSwMxFMz6WetX1aOXYBE8SElFUA9CwYvHCq4ttkvJptk2NMkuyVthWfovvKon8erP0X9j2u5BWwcCw7wZ3suEiRQWCPn2lpZXVtfWSxvlza3tnd3K3v6DjVPDuM9iGZt2SC2XQnMfBEjeTgynKpS8FY5uJvPWEzdWxPoesoQHig60iASj4KTH7oAqRfE1Jr1KldTIFHiR1AtSRQWavcpXtx+zVHENTFJrO3WSQJBTA4JJPi53U8sTykZ0wDuOaqq4DfLpxWN87JQ+jmLjngY8VX8ncqqszVR4CsLFnF9RGNp5x0T8b9ZJIboMcqGTFLhms3VRKjHEeFIC7gvDGcjMEcqMcBdjNqSGMnBVlV0V9fmPLxL/rHZVI3fn1QYpOimhQ3SETlAdXaAGukVN5COGNHpGL+jVy7w37937mFmXvCJzgP7A+/wBv+mSHQ==</latexit><latexit sha1_base64="rOFoL/IJTSwDjsmJf8/jOQZISm4=">AAAB9nicbVBNSwMxFMz6WetX1aOXYBE8SElFUA9CwYvHCq4ttkvJptk2NMkuyVthWfovvKon8erP0X9j2u5BWwcCw7wZ3suEiRQWCPn2lpZXVtfWSxvlza3tnd3K3v6DjVPDuM9iGZt2SC2XQnMfBEjeTgynKpS8FY5uJvPWEzdWxPoesoQHig60iASj4KTH7oAqRfE1Jr1KldTIFHiR1AtSRQWavcpXtx+zVHENTFJrO3WSQJBTA4JJPi53U8sTykZ0wDuOaqq4DfLpxWN87JQ+jmLjngY8VX8ncqqszVR4CsLFnF9RGNp5x0T8b9ZJIboMcqGTFLhms3VRKjHEeFIC7gvDGcjMEcqMcBdjNqSGMnBVlV0V9fmPLxL/rHZVI3fn1QYpOimhQ3SETlAdXaAGukVN5COGNHpGL+jVy7w37937mFmXvCJzgP7A+/wBv+mSHQ==</latexit>

N = 2
<latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit>

N = 3
<latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit>

N = 2
<latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit>

N = 3
<latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit>

N = 2
<latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit>

N = 3
<latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit>

N = 2
<latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit>

N = 3
<latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit>

f2b_sq

<latexit sha1_base64="/l8oj3N2Ar1Rj93Tm4+tPSKCaq0=">AAACEXicbVC7SgNREL3rM8ZX1FKEi0GwCrsS1DJoY5mAeUASwuzNJF5y98G9s0JYUvkJfoWtVnZi6xdY+C/urlto4mnmcM4MM3PcUElDtv1pLS2vrK6tFzaKm1vbO7ulvf2WCSItsCkCFeiOCwaV9LFJkhR2Qo3guQrb7uQ69dv3qI0M/Fuahtj3YOzLkRRAiTQoHfU8oDsBKm7MBnFPJZNDyMuMD0plu2Jn4IvEyUmZ5agPSl+9YSAiD30SCozpOnZI/Rg0SaFwVuxFBkMQExhjN6E+eGj6cfbGjJ9EBijgIWouFc9E/D0Rg2fM1HOTzvRoM++l4n9eN6LRZT+WfhgR+iJdRFJhtsgILZN8kA+lRiJIL0cufS5AAxFqyUGIRIySwIpJHs7894ukdVZxzivVRrVcu8qTKbBDdsxOmcMuWI3dsDprMsEe2BN7Zi/Wo/VqvVnvP61LVj5zwP7A+vgGzyOdyw==</latexit>

Q��

<latexit sha1_base64="/l8oj3N2Ar1Rj93Tm4+tPSKCaq0=">AAACEXicbVC7SgNREL3rM8ZX1FKEi0GwCrsS1DJoY5mAeUASwuzNJF5y98G9s0JYUvkJfoWtVnZi6xdY+C/urlto4mnmcM4MM3PcUElDtv1pLS2vrK6tFzaKm1vbO7ulvf2WCSItsCkCFeiOCwaV9LFJkhR2Qo3guQrb7uQ69dv3qI0M/Fuahtj3YOzLkRRAiTQoHfU8oDsBKm7MBnFPJZNDyMuMD0plu2Jn4IvEyUmZ5agPSl+9YSAiD30SCozpOnZI/Rg0SaFwVuxFBkMQExhjN6E+eGj6cfbGjJ9EBijgIWouFc9E/D0Rg2fM1HOTzvRoM++l4n9eN6LRZT+WfhgR+iJdRFJhtsgILZN8kA+lRiJIL0cufS5AAxFqyUGIRIySwIpJHs7894ukdVZxzivVRrVcu8qTKbBDdsxOmcMuWI3dsDprMsEe2BN7Zi/Wo/VqvVnvP61LVj5zwP7A+vgGzyOdyw==</latexit>

Q��

<latexit sha1_base64="EIowmQLFu42UvSS35bNcpo6LvPE=">AAACHnicbVC7TsNAEDyHVwgvAyXNiQgJUUR2FAElgoYykUhAikO0vmzgxPmhuzUSWP4HPoGvoIWKDtFCwb9gmxS8pjiNZnZvd8ePlTTkOO9WZWp6ZnauOl9bWFxaXrFX13omSrTArohUpM98MKhkiF2SpPAs1giBr/DUvzoq/NNr1EZG4QndxDgI4CKUYymAcmlo73hjDSL1AqBLASrtZMPUu0WC8smy1FP5ZyM4b2ZDu+40nBL8L3EnpM4maA/tD28UiSTAkIQCY/quE9MgBU1SKMxqXmIwBnEFF9jPaQgBmkFa3pTxrcQARTxGzaXipYjfO1IIjLkJ/Lyy2N389grxP6+f0Hh/kMowTghDUQwiqbAcZISWeVjIR1IjERSbI5chF6CBCLXkIEQuJnl6tTwP9/f1f0mv2XB3G61Oq35wOEmmyjbYJttmLttjB+yYtVmXCXbHHtgje7LurWfrxXr9Kq1Yk5519gPW2ydhc6QI</latexit>

Q⇣⇣

�2

<latexit sha1_base64="EIowmQLFu42UvSS35bNcpo6LvPE=">AAACHnicbVC7TsNAEDyHVwgvAyXNiQgJUUR2FAElgoYykUhAikO0vmzgxPmhuzUSWP4HPoGvoIWKDtFCwb9gmxS8pjiNZnZvd8ePlTTkOO9WZWp6ZnauOl9bWFxaXrFX13omSrTArohUpM98MKhkiF2SpPAs1giBr/DUvzoq/NNr1EZG4QndxDgI4CKUYymAcmlo73hjDSL1AqBLASrtZMPUu0WC8smy1FP5ZyM4b2ZDu+40nBL8L3EnpM4maA/tD28UiSTAkIQCY/quE9MgBU1SKMxqXmIwBnEFF9jPaQgBmkFa3pTxrcQARTxGzaXipYjfO1IIjLkJ/Lyy2N389grxP6+f0Hh/kMowTghDUQwiqbAcZISWeVjIR1IjERSbI5chF6CBCLXkIEQuJnl6tTwP9/f1f0mv2XB3G61Oq35wOEmmyjbYJttmLttjB+yYtVmXCXbHHtgje7LurWfrxXr9Kq1Yk5519gPW2ydhc6QI</latexit>

Q⇣⇣

�2
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� = 1
<latexit sha1_base64="XzPFrIXiIidBfTlBZNYhMCNrBr4=">AAAB9nicbVDLSgMxFL3js9ZX1aWbYBFcSJkRQV0IBTcuKzi22A4lk2ba0CQzJHeEUvoXbtWVuPVz9G9MHwttPRA4nHsO9+bEmRQWff/bW1peWV1bL2wUN7e2d3ZLe/sPNs0N4yFLZWoaMbVcCs1DFCh5IzOcqljyety/Gc/rT9xYkep7HGQ8UrSrRSIYRSc9trpUKUquSdAulf2KPwFZJMGMlGGGWrv01eqkLFdcI5PU2mbgZxgNqUHBJB8VW7nlGWV92uVNRzVV3EbDycUjcuyUDklS455GMlF/J4ZUWTtQ8SkKF3N+RbFn5x1j8b9ZM8fkMhoKneXINZuuS3JJMCXjEkhHGM5QDhyhzAh3MWE9aihDV1XRVRHMf3yRhGeVq4p/d16u+rNOCnAIR3ACAVxAFW6hBiEw0PAML/DqDbw37937mFqXvFnmAP7A+/wBwXKSHg==</latexit><latexit sha1_base64="XzPFrIXiIidBfTlBZNYhMCNrBr4=">AAAB9nicbVDLSgMxFL3js9ZX1aWbYBFcSJkRQV0IBTcuKzi22A4lk2ba0CQzJHeEUvoXbtWVuPVz9G9MHwttPRA4nHsO9+bEmRQWff/bW1peWV1bL2wUN7e2d3ZLe/sPNs0N4yFLZWoaMbVcCs1DFCh5IzOcqljyety/Gc/rT9xYkep7HGQ8UrSrRSIYRSc9trpUKUquSdAulf2KPwFZJMGMlGGGWrv01eqkLFdcI5PU2mbgZxgNqUHBJB8VW7nlGWV92uVNRzVV3EbDycUjcuyUDklS455GMlF/J4ZUWTtQ8SkKF3N+RbFn5x1j8b9ZM8fkMhoKneXINZuuS3JJMCXjEkhHGM5QDhyhzAh3MWE9aihDV1XRVRHMf3yRhGeVq4p/d16u+rNOCnAIR3ACAVxAFW6hBiEw0PAML/DqDbw37937mFqXvFnmAP7A+/wBwXKSHg==</latexit><latexit sha1_base64="XzPFrIXiIidBfTlBZNYhMCNrBr4=">AAAB9nicbVDLSgMxFL3js9ZX1aWbYBFcSJkRQV0IBTcuKzi22A4lk2ba0CQzJHeEUvoXbtWVuPVz9G9MHwttPRA4nHsO9+bEmRQWff/bW1peWV1bL2wUN7e2d3ZLe/sPNs0N4yFLZWoaMbVcCs1DFCh5IzOcqljyety/Gc/rT9xYkep7HGQ8UrSrRSIYRSc9trpUKUquSdAulf2KPwFZJMGMlGGGWrv01eqkLFdcI5PU2mbgZxgNqUHBJB8VW7nlGWV92uVNRzVV3EbDycUjcuyUDklS455GMlF/J4ZUWTtQ8SkKF3N+RbFn5x1j8b9ZM8fkMhoKneXINZuuS3JJMCXjEkhHGM5QDhyhzAh3MWE9aihDV1XRVRHMf3yRhGeVq4p/d16u+rNOCnAIR3ACAVxAFW6hBiEw0PAML/DqDbw37937mFqXvFnmAP7A+/wBwXKSHg==</latexit>

� = 1
<latexit sha1_base64="XzPFrIXiIidBfTlBZNYhMCNrBr4=">AAAB9nicbVDLSgMxFL3js9ZX1aWbYBFcSJkRQV0IBTcuKzi22A4lk2ba0CQzJHeEUvoXbtWVuPVz9G9MHwttPRA4nHsO9+bEmRQWff/bW1peWV1bL2wUN7e2d3ZLe/sPNs0N4yFLZWoaMbVcCs1DFCh5IzOcqljyety/Gc/rT9xYkep7HGQ8UrSrRSIYRSc9trpUKUquSdAulf2KPwFZJMGMlGGGWrv01eqkLFdcI5PU2mbgZxgNqUHBJB8VW7nlGWV92uVNRzVV3EbDycUjcuyUDklS455GMlF/J4ZUWTtQ8SkKF3N+RbFn5x1j8b9ZM8fkMhoKneXINZuuS3JJMCXjEkhHGM5QDhyhzAh3MWE9aihDV1XRVRHMf3yRhGeVq4p/d16u+rNOCnAIR3ACAVxAFW6hBiEw0PAML/DqDbw37937mFqXvFnmAP7A+/wBwXKSHg==</latexit><latexit sha1_base64="XzPFrIXiIidBfTlBZNYhMCNrBr4=">AAAB9nicbVDLSgMxFL3js9ZX1aWbYBFcSJkRQV0IBTcuKzi22A4lk2ba0CQzJHeEUvoXbtWVuPVz9G9MHwttPRA4nHsO9+bEmRQWff/bW1peWV1bL2wUN7e2d3ZLe/sPNs0N4yFLZWoaMbVcCs1DFCh5IzOcqljyety/Gc/rT9xYkep7HGQ8UrSrRSIYRSc9trpUKUquSdAulf2KPwFZJMGMlGGGWrv01eqkLFdcI5PU2mbgZxgNqUHBJB8VW7nlGWV92uVNRzVV3EbDycUjcuyUDklS455GMlF/J4ZUWTtQ8SkKF3N+RbFn5x1j8b9ZM8fkMhoKneXINZuuS3JJMCXjEkhHGM5QDhyhzAh3MWE9aihDV1XRVRHMf3yRhGeVq4p/d16u+rNOCnAIR3ACAVxAFW6hBiEw0PAML/DqDbw37937mFqXvFnmAP7A+/wBwXKSHg==</latexit><latexit sha1_base64="XzPFrIXiIidBfTlBZNYhMCNrBr4=">AAAB9nicbVDLSgMxFL3js9ZX1aWbYBFcSJkRQV0IBTcuKzi22A4lk2ba0CQzJHeEUvoXbtWVuPVz9G9MHwttPRA4nHsO9+bEmRQWff/bW1peWV1bL2wUN7e2d3ZLe/sPNs0N4yFLZWoaMbVcCs1DFCh5IzOcqljyety/Gc/rT9xYkep7HGQ8UrSrRSIYRSc9trpUKUquSdAulf2KPwFZJMGMlGGGWrv01eqkLFdcI5PU2mbgZxgNqUHBJB8VW7nlGWV92uVNRzVV3EbDycUjcuyUDklS455GMlF/J4ZUWTtQ8SkKF3N+RbFn5x1j8b9ZM8fkMhoKneXINZuuS3JJMCXjEkhHGM5QDhyhzAh3MWE9aihDV1XRVRHMf3yRhGeVq4p/d16u+rNOCnAIR3ACAVxAFW6hBiEw0PAML/DqDbw37937mFqXvFnmAP7A+/wBwXKSHg==</latexit>

� = 0
<latexit sha1_base64="rOFoL/IJTSwDjsmJf8/jOQZISm4=">AAAB9nicbVBNSwMxFMz6WetX1aOXYBE8SElFUA9CwYvHCq4ttkvJptk2NMkuyVthWfovvKon8erP0X9j2u5BWwcCw7wZ3suEiRQWCPn2lpZXVtfWSxvlza3tnd3K3v6DjVPDuM9iGZt2SC2XQnMfBEjeTgynKpS8FY5uJvPWEzdWxPoesoQHig60iASj4KTH7oAqRfE1Jr1KldTIFHiR1AtSRQWavcpXtx+zVHENTFJrO3WSQJBTA4JJPi53U8sTykZ0wDuOaqq4DfLpxWN87JQ+jmLjngY8VX8ncqqszVR4CsLFnF9RGNp5x0T8b9ZJIboMcqGTFLhms3VRKjHEeFIC7gvDGcjMEcqMcBdjNqSGMnBVlV0V9fmPLxL/rHZVI3fn1QYpOimhQ3SETlAdXaAGukVN5COGNHpGL+jVy7w37937mFmXvCJzgP7A+/wBv+mSHQ==</latexit><latexit sha1_base64="rOFoL/IJTSwDjsmJf8/jOQZISm4=">AAAB9nicbVBNSwMxFMz6WetX1aOXYBE8SElFUA9CwYvHCq4ttkvJptk2NMkuyVthWfovvKon8erP0X9j2u5BWwcCw7wZ3suEiRQWCPn2lpZXVtfWSxvlza3tnd3K3v6DjVPDuM9iGZt2SC2XQnMfBEjeTgynKpS8FY5uJvPWEzdWxPoesoQHig60iASj4KTH7oAqRfE1Jr1KldTIFHiR1AtSRQWavcpXtx+zVHENTFJrO3WSQJBTA4JJPi53U8sTykZ0wDuOaqq4DfLpxWN87JQ+jmLjngY8VX8ncqqszVR4CsLFnF9RGNp5x0T8b9ZJIboMcqGTFLhms3VRKjHEeFIC7gvDGcjMEcqMcBdjNqSGMnBVlV0V9fmPLxL/rHZVI3fn1QYpOimhQ3SETlAdXaAGukVN5COGNHpGL+jVy7w37937mFmXvCJzgP7A+/wBv+mSHQ==</latexit><latexit sha1_base64="rOFoL/IJTSwDjsmJf8/jOQZISm4=">AAAB9nicbVBNSwMxFMz6WetX1aOXYBE8SElFUA9CwYvHCq4ttkvJptk2NMkuyVthWfovvKon8erP0X9j2u5BWwcCw7wZ3suEiRQWCPn2lpZXVtfWSxvlza3tnd3K3v6DjVPDuM9iGZt2SC2XQnMfBEjeTgynKpS8FY5uJvPWEzdWxPoesoQHig60iASj4KTH7oAqRfE1Jr1KldTIFHiR1AtSRQWavcpXtx+zVHENTFJrO3WSQJBTA4JJPi53U8sTykZ0wDuOaqq4DfLpxWN87JQ+jmLjngY8VX8ncqqszVR4CsLFnF9RGNp5x0T8b9ZJIboMcqGTFLhms3VRKjHEeFIC7gvDGcjMEcqMcBdjNqSGMnBVlV0V9fmPLxL/rHZVI3fn1QYpOimhQ3SETlAdXaAGukVN5COGNHpGL+jVy7w37937mFmXvCJzgP7A+/wBv+mSHQ==</latexit>

� = 0
<latexit sha1_base64="rOFoL/IJTSwDjsmJf8/jOQZISm4=">AAAB9nicbVBNSwMxFMz6WetX1aOXYBE8SElFUA9CwYvHCq4ttkvJptk2NMkuyVthWfovvKon8erP0X9j2u5BWwcCw7wZ3suEiRQWCPn2lpZXVtfWSxvlza3tnd3K3v6DjVPDuM9iGZt2SC2XQnMfBEjeTgynKpS8FY5uJvPWEzdWxPoesoQHig60iASj4KTH7oAqRfE1Jr1KldTIFHiR1AtSRQWavcpXtx+zVHENTFJrO3WSQJBTA4JJPi53U8sTykZ0wDuOaqq4DfLpxWN87JQ+jmLjngY8VX8ncqqszVR4CsLFnF9RGNp5x0T8b9ZJIboMcqGTFLhms3VRKjHEeFIC7gvDGcjMEcqMcBdjNqSGMnBVlV0V9fmPLxL/rHZVI3fn1QYpOimhQ3SETlAdXaAGukVN5COGNHpGL+jVy7w37937mFmXvCJzgP7A+/wBv+mSHQ==</latexit><latexit sha1_base64="rOFoL/IJTSwDjsmJf8/jOQZISm4=">AAAB9nicbVBNSwMxFMz6WetX1aOXYBE8SElFUA9CwYvHCq4ttkvJptk2NMkuyVthWfovvKon8erP0X9j2u5BWwcCw7wZ3suEiRQWCPn2lpZXVtfWSxvlza3tnd3K3v6DjVPDuM9iGZt2SC2XQnMfBEjeTgynKpS8FY5uJvPWEzdWxPoesoQHig60iASj4KTH7oAqRfE1Jr1KldTIFHiR1AtSRQWavcpXtx+zVHENTFJrO3WSQJBTA4JJPi53U8sTykZ0wDuOaqq4DfLpxWN87JQ+jmLjngY8VX8ncqqszVR4CsLFnF9RGNp5x0T8b9ZJIboMcqGTFLhms3VRKjHEeFIC7gvDGcjMEcqMcBdjNqSGMnBVlV0V9fmPLxL/rHZVI3fn1QYpOimhQ3SETlAdXaAGukVN5COGNHpGL+jVy7w37937mFmXvCJzgP7A+/wBv+mSHQ==</latexit><latexit sha1_base64="rOFoL/IJTSwDjsmJf8/jOQZISm4=">AAAB9nicbVBNSwMxFMz6WetX1aOXYBE8SElFUA9CwYvHCq4ttkvJptk2NMkuyVthWfovvKon8erP0X9j2u5BWwcCw7wZ3suEiRQWCPn2lpZXVtfWSxvlza3tnd3K3v6DjVPDuM9iGZt2SC2XQnMfBEjeTgynKpS8FY5uJvPWEzdWxPoesoQHig60iASj4KTH7oAqRfE1Jr1KldTIFHiR1AtSRQWavcpXtx+zVHENTFJrO3WSQJBTA4JJPi53U8sTykZ0wDuOaqq4DfLpxWN87JQ+jmLjngY8VX8ncqqszVR4CsLFnF9RGNp5x0T8b9ZJIboMcqGTFLhms3VRKjHEeFIC7gvDGcjMEcqMcBdjNqSGMnBVlV0V9fmPLxL/rHZVI3fn1QYpOimhQ3SETlAdXaAGukVN5COGNHpGL+jVy7w37937mFmXvCJzgP7A+/wBv+mSHQ==</latexit>

N = 2
<latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit>

N = 3
<latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit>

N = 2
<latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit>

N = 3
<latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit>

N = 2
<latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit>

N = 3
<latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit>

N = 2
<latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit>

N = 3
<latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit>
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� = 1
<latexit sha1_base64="XzPFrIXiIidBfTlBZNYhMCNrBr4=">AAAB9nicbVDLSgMxFL3js9ZX1aWbYBFcSJkRQV0IBTcuKzi22A4lk2ba0CQzJHeEUvoXbtWVuPVz9G9MHwttPRA4nHsO9+bEmRQWff/bW1peWV1bL2wUN7e2d3ZLe/sPNs0N4yFLZWoaMbVcCs1DFCh5IzOcqljyety/Gc/rT9xYkep7HGQ8UrSrRSIYRSc9trpUKUquSdAulf2KPwFZJMGMlGGGWrv01eqkLFdcI5PU2mbgZxgNqUHBJB8VW7nlGWV92uVNRzVV3EbDycUjcuyUDklS455GMlF/J4ZUWTtQ8SkKF3N+RbFn5x1j8b9ZM8fkMhoKneXINZuuS3JJMCXjEkhHGM5QDhyhzAh3MWE9aihDV1XRVRHMf3yRhGeVq4p/d16u+rNOCnAIR3ACAVxAFW6hBiEw0PAML/DqDbw37937mFqXvFnmAP7A+/wBwXKSHg==</latexit><latexit sha1_base64="XzPFrIXiIidBfTlBZNYhMCNrBr4=">AAAB9nicbVDLSgMxFL3js9ZX1aWbYBFcSJkRQV0IBTcuKzi22A4lk2ba0CQzJHeEUvoXbtWVuPVz9G9MHwttPRA4nHsO9+bEmRQWff/bW1peWV1bL2wUN7e2d3ZLe/sPNs0N4yFLZWoaMbVcCs1DFCh5IzOcqljyety/Gc/rT9xYkep7HGQ8UrSrRSIYRSc9trpUKUquSdAulf2KPwFZJMGMlGGGWrv01eqkLFdcI5PU2mbgZxgNqUHBJB8VW7nlGWV92uVNRzVV3EbDycUjcuyUDklS455GMlF/J4ZUWTtQ8SkKF3N+RbFn5x1j8b9ZM8fkMhoKneXINZuuS3JJMCXjEkhHGM5QDhyhzAh3MWE9aihDV1XRVRHMf3yRhGeVq4p/d16u+rNOCnAIR3ACAVxAFW6hBiEw0PAML/DqDbw37937mFqXvFnmAP7A+/wBwXKSHg==</latexit><latexit sha1_base64="XzPFrIXiIidBfTlBZNYhMCNrBr4=">AAAB9nicbVDLSgMxFL3js9ZX1aWbYBFcSJkRQV0IBTcuKzi22A4lk2ba0CQzJHeEUvoXbtWVuPVz9G9MHwttPRA4nHsO9+bEmRQWff/bW1peWV1bL2wUN7e2d3ZLe/sPNs0N4yFLZWoaMbVcCs1DFCh5IzOcqljyety/Gc/rT9xYkep7HGQ8UrSrRSIYRSc9trpUKUquSdAulf2KPwFZJMGMlGGGWrv01eqkLFdcI5PU2mbgZxgNqUHBJB8VW7nlGWV92uVNRzVV3EbDycUjcuyUDklS455GMlF/J4ZUWTtQ8SkKF3N+RbFn5x1j8b9ZM8fkMhoKneXINZuuS3JJMCXjEkhHGM5QDhyhzAh3MWE9aihDV1XRVRHMf3yRhGeVq4p/d16u+rNOCnAIR3ACAVxAFW6hBiEw0PAML/DqDbw37937mFqXvFnmAP7A+/wBwXKSHg==</latexit>

� = 1
<latexit sha1_base64="XzPFrIXiIidBfTlBZNYhMCNrBr4=">AAAB9nicbVDLSgMxFL3js9ZX1aWbYBFcSJkRQV0IBTcuKzi22A4lk2ba0CQzJHeEUvoXbtWVuPVz9G9MHwttPRA4nHsO9+bEmRQWff/bW1peWV1bL2wUN7e2d3ZLe/sPNs0N4yFLZWoaMbVcCs1DFCh5IzOcqljyety/Gc/rT9xYkep7HGQ8UrSrRSIYRSc9trpUKUquSdAulf2KPwFZJMGMlGGGWrv01eqkLFdcI5PU2mbgZxgNqUHBJB8VW7nlGWV92uVNRzVV3EbDycUjcuyUDklS455GMlF/J4ZUWTtQ8SkKF3N+RbFn5x1j8b9ZM8fkMhoKneXINZuuS3JJMCXjEkhHGM5QDhyhzAh3MWE9aihDV1XRVRHMf3yRhGeVq4p/d16u+rNOCnAIR3ACAVxAFW6hBiEw0PAML/DqDbw37937mFqXvFnmAP7A+/wBwXKSHg==</latexit><latexit sha1_base64="XzPFrIXiIidBfTlBZNYhMCNrBr4=">AAAB9nicbVDLSgMxFL3js9ZX1aWbYBFcSJkRQV0IBTcuKzi22A4lk2ba0CQzJHeEUvoXbtWVuPVz9G9MHwttPRA4nHsO9+bEmRQWff/bW1peWV1bL2wUN7e2d3ZLe/sPNs0N4yFLZWoaMbVcCs1DFCh5IzOcqljyety/Gc/rT9xYkep7HGQ8UrSrRSIYRSc9trpUKUquSdAulf2KPwFZJMGMlGGGWrv01eqkLFdcI5PU2mbgZxgNqUHBJB8VW7nlGWV92uVNRzVV3EbDycUjcuyUDklS455GMlF/J4ZUWTtQ8SkKF3N+RbFn5x1j8b9ZM8fkMhoKneXINZuuS3JJMCXjEkhHGM5QDhyhzAh3MWE9aihDV1XRVRHMf3yRhGeVq4p/d16u+rNOCnAIR3ACAVxAFW6hBiEw0PAML/DqDbw37937mFqXvFnmAP7A+/wBwXKSHg==</latexit><latexit sha1_base64="XzPFrIXiIidBfTlBZNYhMCNrBr4=">AAAB9nicbVDLSgMxFL3js9ZX1aWbYBFcSJkRQV0IBTcuKzi22A4lk2ba0CQzJHeEUvoXbtWVuPVz9G9MHwttPRA4nHsO9+bEmRQWff/bW1peWV1bL2wUN7e2d3ZLe/sPNs0N4yFLZWoaMbVcCs1DFCh5IzOcqljyety/Gc/rT9xYkep7HGQ8UrSrRSIYRSc9trpUKUquSdAulf2KPwFZJMGMlGGGWrv01eqkLFdcI5PU2mbgZxgNqUHBJB8VW7nlGWV92uVNRzVV3EbDycUjcuyUDklS455GMlF/J4ZUWTtQ8SkKF3N+RbFn5x1j8b9ZM8fkMhoKneXINZuuS3JJMCXjEkhHGM5QDhyhzAh3MWE9aihDV1XRVRHMf3yRhGeVq4p/d16u+rNOCnAIR3ACAVxAFW6hBiEw0PAML/DqDbw37937mFqXvFnmAP7A+/wBwXKSHg==</latexit>

� = 0
<latexit sha1_base64="rOFoL/IJTSwDjsmJf8/jOQZISm4=">AAAB9nicbVBNSwMxFMz6WetX1aOXYBE8SElFUA9CwYvHCq4ttkvJptk2NMkuyVthWfovvKon8erP0X9j2u5BWwcCw7wZ3suEiRQWCPn2lpZXVtfWSxvlza3tnd3K3v6DjVPDuM9iGZt2SC2XQnMfBEjeTgynKpS8FY5uJvPWEzdWxPoesoQHig60iASj4KTH7oAqRfE1Jr1KldTIFHiR1AtSRQWavcpXtx+zVHENTFJrO3WSQJBTA4JJPi53U8sTykZ0wDuOaqq4DfLpxWN87JQ+jmLjngY8VX8ncqqszVR4CsLFnF9RGNp5x0T8b9ZJIboMcqGTFLhms3VRKjHEeFIC7gvDGcjMEcqMcBdjNqSGMnBVlV0V9fmPLxL/rHZVI3fn1QYpOimhQ3SETlAdXaAGukVN5COGNHpGL+jVy7w37937mFmXvCJzgP7A+/wBv+mSHQ==</latexit><latexit sha1_base64="rOFoL/IJTSwDjsmJf8/jOQZISm4=">AAAB9nicbVBNSwMxFMz6WetX1aOXYBE8SElFUA9CwYvHCq4ttkvJptk2NMkuyVthWfovvKon8erP0X9j2u5BWwcCw7wZ3suEiRQWCPn2lpZXVtfWSxvlza3tnd3K3v6DjVPDuM9iGZt2SC2XQnMfBEjeTgynKpS8FY5uJvPWEzdWxPoesoQHig60iASj4KTH7oAqRfE1Jr1KldTIFHiR1AtSRQWavcpXtx+zVHENTFJrO3WSQJBTA4JJPi53U8sTykZ0wDuOaqq4DfLpxWN87JQ+jmLjngY8VX8ncqqszVR4CsLFnF9RGNp5x0T8b9ZJIboMcqGTFLhms3VRKjHEeFIC7gvDGcjMEcqMcBdjNqSGMnBVlV0V9fmPLxL/rHZVI3fn1QYpOimhQ3SETlAdXaAGukVN5COGNHpGL+jVy7w37937mFmXvCJzgP7A+/wBv+mSHQ==</latexit><latexit sha1_base64="rOFoL/IJTSwDjsmJf8/jOQZISm4=">AAAB9nicbVBNSwMxFMz6WetX1aOXYBE8SElFUA9CwYvHCq4ttkvJptk2NMkuyVthWfovvKon8erP0X9j2u5BWwcCw7wZ3suEiRQWCPn2lpZXVtfWSxvlza3tnd3K3v6DjVPDuM9iGZt2SC2XQnMfBEjeTgynKpS8FY5uJvPWEzdWxPoesoQHig60iASj4KTH7oAqRfE1Jr1KldTIFHiR1AtSRQWavcpXtx+zVHENTFJrO3WSQJBTA4JJPi53U8sTykZ0wDuOaqq4DfLpxWN87JQ+jmLjngY8VX8ncqqszVR4CsLFnF9RGNp5x0T8b9ZJIboMcqGTFLhms3VRKjHEeFIC7gvDGcjMEcqMcBdjNqSGMnBVlV0V9fmPLxL/rHZVI3fn1QYpOimhQ3SETlAdXaAGukVN5COGNHpGL+jVy7w37937mFmXvCJzgP7A+/wBv+mSHQ==</latexit>

� = 0
<latexit sha1_base64="rOFoL/IJTSwDjsmJf8/jOQZISm4=">AAAB9nicbVBNSwMxFMz6WetX1aOXYBE8SElFUA9CwYvHCq4ttkvJptk2NMkuyVthWfovvKon8erP0X9j2u5BWwcCw7wZ3suEiRQWCPn2lpZXVtfWSxvlza3tnd3K3v6DjVPDuM9iGZt2SC2XQnMfBEjeTgynKpS8FY5uJvPWEzdWxPoesoQHig60iASj4KTH7oAqRfE1Jr1KldTIFHiR1AtSRQWavcpXtx+zVHENTFJrO3WSQJBTA4JJPi53U8sTykZ0wDuOaqq4DfLpxWN87JQ+jmLjngY8VX8ncqqszVR4CsLFnF9RGNp5x0T8b9ZJIboMcqGTFLhms3VRKjHEeFIC7gvDGcjMEcqMcBdjNqSGMnBVlV0V9fmPLxL/rHZVI3fn1QYpOimhQ3SETlAdXaAGukVN5COGNHpGL+jVy7w37937mFmXvCJzgP7A+/wBv+mSHQ==</latexit><latexit sha1_base64="rOFoL/IJTSwDjsmJf8/jOQZISm4=">AAAB9nicbVBNSwMxFMz6WetX1aOXYBE8SElFUA9CwYvHCq4ttkvJptk2NMkuyVthWfovvKon8erP0X9j2u5BWwcCw7wZ3suEiRQWCPn2lpZXVtfWSxvlza3tnd3K3v6DjVPDuM9iGZt2SC2XQnMfBEjeTgynKpS8FY5uJvPWEzdWxPoesoQHig60iASj4KTH7oAqRfE1Jr1KldTIFHiR1AtSRQWavcpXtx+zVHENTFJrO3WSQJBTA4JJPi53U8sTykZ0wDuOaqq4DfLpxWN87JQ+jmLjngY8VX8ncqqszVR4CsLFnF9RGNp5x0T8b9ZJIboMcqGTFLhms3VRKjHEeFIC7gvDGcjMEcqMcBdjNqSGMnBVlV0V9fmPLxL/rHZVI3fn1QYpOimhQ3SETlAdXaAGukVN5COGNHpGL+jVy7w37937mFmXvCJzgP7A+/wBv+mSHQ==</latexit><latexit sha1_base64="rOFoL/IJTSwDjsmJf8/jOQZISm4=">AAAB9nicbVBNSwMxFMz6WetX1aOXYBE8SElFUA9CwYvHCq4ttkvJptk2NMkuyVthWfovvKon8erP0X9j2u5BWwcCw7wZ3suEiRQWCPn2lpZXVtfWSxvlza3tnd3K3v6DjVPDuM9iGZt2SC2XQnMfBEjeTgynKpS8FY5uJvPWEzdWxPoesoQHig60iASj4KTH7oAqRfE1Jr1KldTIFHiR1AtSRQWavcpXtx+zVHENTFJrO3WSQJBTA4JJPi53U8sTykZ0wDuOaqq4DfLpxWN87JQ+jmLjngY8VX8ncqqszVR4CsLFnF9RGNp5x0T8b9ZJIboMcqGTFLhms3VRKjHEeFIC7gvDGcjMEcqMcBdjNqSGMnBVlV0V9fmPLxL/rHZVI3fn1QYpOimhQ3SETlAdXaAGukVN5COGNHpGL+jVy7w37937mFmXvCJzgP7A+/wBv+mSHQ==</latexit>

N = 2
<latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit>

N = 3
<latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit>

N = 2
<latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit>

N = 3
<latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit>

N = 2
<latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit>

N = 3
<latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit>

N = 2
<latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit><latexit sha1_base64="1sRNPNl2evTQy6/VKVOqNhuWUB4=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGVbBPUgFLx4koquLbRLyabZNjSbXZK3Qln6E7yqJ/HqP9J/Y9ruQVsHAsO8GfLeBIkUBl3321laXlldWy9sFDe3tnd2S3v7jyZONeMei2WsWwE1XArFPRQoeSvRnEaB5M1geD2ZN5+4NiJWDzhKuB/RvhKhYBStdH97VeuWym7FnYIskmpOypCj0S19dXoxSyOukElqTLvqJuhnVKNgko+LndTwhLIh7fO2pYpG3PjZdNUxObZKj4Sxtk8hmaq/ExmNjBlFwSkKG7P+iOLAzDsm4n+zdorhhZ8JlaTIFZt9F6aSYEwm15Oe0JyhHFlCmRZ2Y8IGVFOGtqOiraI6f/gi8WqVy4p7d1auu3knBTiEIziBKpxDHW6gAR4w6MMzvMCro5035935mFmXnDxzAH/gfP4AIlKPiA==</latexit>

N = 3
<latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit><latexit sha1_base64="KgzdHE154d7z39g5epAD6P2uhiA=">AAAB73icbVBNSwMxFHzrZ61fVY9egkXwIGWrgnoQCl48SUXXFtqlZNNsG5rNLslboSz9CV7Vk3j1H+m/MW33oK0DgWHeDHlvgkQKg6777SwsLi2vrBbWiusbm1vbpZ3dRxOnmnGPxTLWzYAaLoXiHgqUvJloTqNA8kYwuB7PG09cGxGrBxwm3I9oT4lQMIpWur+9Ou2Uym7FnYDMk2pOypCj3il9tbsxSyOukElqTKvqJuhnVKNgko+K7dTwhLIB7fGWpYpG3PjZZNURObRKl4Sxtk8hmai/ExmNjBlGwTEKG7P+iGLfzDrG4n+zVorhhZ8JlaTIFZt+F6aSYEzG15Ou0JyhHFpCmRZ2Y8L6VFOGtqOiraI6e/g88U4qlxX37qxcc/NOCrAPB3AEVTiHGtxAHTxg0INneIFXRztvzrvzMbUuOHlmD/7A+fwBI9uPiQ==</latexit>

f2b_sq

<latexit sha1_base64="/l8oj3N2Ar1Rj93Tm4+tPSKCaq0=">AAACEXicbVC7SgNREL3rM8ZX1FKEi0GwCrsS1DJoY5mAeUASwuzNJF5y98G9s0JYUvkJfoWtVnZi6xdY+C/urlto4mnmcM4MM3PcUElDtv1pLS2vrK6tFzaKm1vbO7ulvf2WCSItsCkCFeiOCwaV9LFJkhR2Qo3guQrb7uQ69dv3qI0M/Fuahtj3YOzLkRRAiTQoHfU8oDsBKm7MBnFPJZNDyMuMD0plu2Jn4IvEyUmZ5agPSl+9YSAiD30SCozpOnZI/Rg0SaFwVuxFBkMQExhjN6E+eGj6cfbGjJ9EBijgIWouFc9E/D0Rg2fM1HOTzvRoM++l4n9eN6LRZT+WfhgR+iJdRFJhtsgILZN8kA+lRiJIL0cufS5AAxFqyUGIRIySwIpJHs7894ukdVZxzivVRrVcu8qTKbBDdsxOmcMuWI3dsDprMsEe2BN7Zi/Wo/VqvVnvP61LVj5zwP7A+vgGzyOdyw==</latexit>

Q��

<latexit sha1_base64="/l8oj3N2Ar1Rj93Tm4+tPSKCaq0=">AAACEXicbVC7SgNREL3rM8ZX1FKEi0GwCrsS1DJoY5mAeUASwuzNJF5y98G9s0JYUvkJfoWtVnZi6xdY+C/urlto4mnmcM4MM3PcUElDtv1pLS2vrK6tFzaKm1vbO7ulvf2WCSItsCkCFeiOCwaV9LFJkhR2Qo3guQrb7uQ69dv3qI0M/Fuahtj3YOzLkRRAiTQoHfU8oDsBKm7MBnFPJZNDyMuMD0plu2Jn4IvEyUmZ5agPSl+9YSAiD30SCozpOnZI/Rg0SaFwVuxFBkMQExhjN6E+eGj6cfbGjJ9EBijgIWouFc9E/D0Rg2fM1HOTzvRoM++l4n9eN6LRZT+WfhgR+iJdRFJhtsgILZN8kA+lRiJIL0cufS5AAxFqyUGIRIySwIpJHs7894ukdVZxzivVRrVcu8qTKbBDdsxOmcMuWI3dsDprMsEe2BN7Zi/Wo/VqvVnvP61LVj5zwP7A+vgGzyOdyw==</latexit>

Q��

<latexit sha1_base64="EIowmQLFu42UvSS35bNcpo6LvPE=">AAACHnicbVC7TsNAEDyHVwgvAyXNiQgJUUR2FAElgoYykUhAikO0vmzgxPmhuzUSWP4HPoGvoIWKDtFCwb9gmxS8pjiNZnZvd8ePlTTkOO9WZWp6ZnauOl9bWFxaXrFX13omSrTArohUpM98MKhkiF2SpPAs1giBr/DUvzoq/NNr1EZG4QndxDgI4CKUYymAcmlo73hjDSL1AqBLASrtZMPUu0WC8smy1FP5ZyM4b2ZDu+40nBL8L3EnpM4maA/tD28UiSTAkIQCY/quE9MgBU1SKMxqXmIwBnEFF9jPaQgBmkFa3pTxrcQARTxGzaXipYjfO1IIjLkJ/Lyy2N389grxP6+f0Hh/kMowTghDUQwiqbAcZISWeVjIR1IjERSbI5chF6CBCLXkIEQuJnl6tTwP9/f1f0mv2XB3G61Oq35wOEmmyjbYJttmLttjB+yYtVmXCXbHHtgje7LurWfrxXr9Kq1Yk5519gPW2ydhc6QI</latexit>

Q⇣⇣

�2

<latexit sha1_base64="EIowmQLFu42UvSS35bNcpo6LvPE=">AAACHnicbVC7TsNAEDyHVwgvAyXNiQgJUUR2FAElgoYykUhAikO0vmzgxPmhuzUSWP4HPoGvoIWKDtFCwb9gmxS8pjiNZnZvd8ePlTTkOO9WZWp6ZnauOl9bWFxaXrFX13omSrTArohUpM98MKhkiF2SpPAs1giBr/DUvzoq/NNr1EZG4QndxDgI4CKUYymAcmlo73hjDSL1AqBLASrtZMPUu0WC8smy1FP5ZyM4b2ZDu+40nBL8L3EnpM4maA/tD28UiSTAkIQCY/quE9MgBU1SKMxqXmIwBnEFF9jPaQgBmkFa3pTxrcQARTxGzaXipYjfO1IIjLkJ/Lyy2N389grxP6+f0Hh/kMowTghDUQwiqbAcZISWeVjIR1IjERSbI5chF6CBCLXkIEQuJnl6tTwP9/f1f0mv2XB3G61Oq35wOEmmyjbYJttmLttjB+yYtVmXCXbHHtgje7LurWfrxXr9Kq1Yk5519gPW2ydhc6QI</latexit>

Q⇣⇣

�2

Figure 6.2: Upper plots: Q�� and Q⇣⇣/�
2 for a coherent probe, i.e. � = 0, as a function of the

coherent state phase � for N = |↵|2 = 2 (dashed lines) and N = |↵|2 = 3 (solid lines) and different
values of the order of nonlinearity: form bottom to top ⇣ = 2, 3 and 4. Note that for ⇣ = 2 we have
Q⇣⇣/�

2 = 16 (lower line the right panel). Lower plots: Q�� and Q⇣⇣/�
2 for a squeezed vacuum

probe, i.e. � = 1, as functions of the squeezing phase ✓ for N = sinh2
r = 2 (dashed lines) and

N = sinh2
r = 3 (solid lines) and different values of the order of nonlinearity: from bottom to top

⇣ = 2, 3 and 4.

and

Q⇣⇣ ' 4�2⇣2 A(⇣ � 1)

2⇣�1

h
1 + 2(⇣ � 1)

p
�N
i

(N ⌧ 1) (6.37)

where

A(⇣) =

8
>>><

>>>:

(2⇣)!

⇣!
if ⇣ odd;

(2⇣)!

⇣!
�


⇣!

(⇣/2)!

�2
if ⇣ even.

(6.38)

These expansions suggest the existence of a threshold value of N , which depends on ⇣,
below which the QFI reaches the maximum for � = 1 (i.e. for a squeezed vacuum probe).
Indeed, the maximization at fixed N confirms this intuition. In Figure 6.3 we show the
optimal value of �, maximizing the QFIs, as a function of N for two values of ⇣.

As we can see from Figure 6.3, due to the particular mathematical relations between
Q�� and Q⇣⇣ , the same optimal squeezing fraction �opt maximizing Q⇣⇣ for a given ⇣
maximizes also Q�� for the order of nonlinearity ⇣ � 1. We have an exception for ⇣ = 2:
in this peculiar case, to reach the maximum value of Q⇣⇣ , one should always choose
� = 1 (squeezed vacuum probe), as we can see by its rather simple analytic expression:

Q⇣⇣ = 16�2
h
1 + 2�N + 2

p
�N(1 + �N)

i
(⇣ = 2). (6.39)
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���� ���� � �� ���

���

���

���

���

���

�

γ���

���� ���� � �� ���

���

���

���

���

���

�

γ���

Optimal � for F (q)
��

with ⇣ = 2

Optimal � for F (q)
⇣⇣

with ⇣ = 3
<latexit sha1_base64="UKWthSsasebK+7w7FLh7zlxRbM8="></latexit><latexit sha1_base64="UKWthSsasebK+7w7FLh7zlxRbM8="></latexit><latexit sha1_base64="UKWthSsasebK+7w7FLh7zlxRbM8="></latexit>

Optimal � for F (q)
��

with ⇣ = 3

Optimal � for F (q)
⇣⇣

with ⇣ = 4
<latexit sha1_base64="kdOujCtkS2hAkBdw/UAASfsx3Eg="></latexit><latexit sha1_base64="kdOujCtkS2hAkBdw/UAASfsx3Eg="></latexit><latexit sha1_base64="kdOujCtkS2hAkBdw/UAASfsx3Eg=">AAAConiclVHNbtQwEHbCT9vlbwtHLhabSkVCS5ZWantAqoSEkEDQCpZWWi+riePsWrXjYE9alihPw1PxCLwFTjYH6HJhDvbnmW/GM98khZIO4/hnEN64eev2xuZW787de/cf9LcffnamtFyMuVHGnifghJK5GKNEJc4LK0AnSpwlF6+a+NmlsE6a/BMuCzHVMM9lJjmgd836P5hOzLfqQ4FSg6IRm4PWENHMWP/QgAsOqnpdf6l2vz6tZxVTvnYK3VVH9EriwjO/CwT6ku5FNWO9/61pbPr+3epcq7gf1bP+IB7GrdF1MOrAgHR2Muv/YqnhpRY5cgXOTUZxgdMKLEquRN1jpRMF8AuYi4mHOWjhplUrZk13vCdte81MjrT1/plRgXZuqZNnfjrhPL8ZyF1nNM5/xSYlZofTSuZFiSLnq++yUlE0tNkPTaUVHNXSA+BW+o4pX4AFjn6LPZaKbCVU1QrUaDO6rsQ6GL8YHg3j0/3BcdyJtEkekydkl4zIATkmb8gJGRMebAXPg8PgKNwJ34an4ccVNQy6nEfkLwvZb2FmzOY=</latexit>

<latexit sha1_base64="/l8oj3N2Ar1Rj93Tm4+tPSKCaq0=">AAACEXicbVC7SgNREL3rM8ZX1FKEi0GwCrsS1DJoY5mAeUASwuzNJF5y98G9s0JYUvkJfoWtVnZi6xdY+C/urlto4mnmcM4MM3PcUElDtv1pLS2vrK6tFzaKm1vbO7ulvf2WCSItsCkCFeiOCwaV9LFJkhR2Qo3guQrb7uQ69dv3qI0M/Fuahtj3YOzLkRRAiTQoHfU8oDsBKm7MBnFPJZNDyMuMD0plu2Jn4IvEyUmZ5agPSl+9YSAiD30SCozpOnZI/Rg0SaFwVuxFBkMQExhjN6E+eGj6cfbGjJ9EBijgIWouFc9E/D0Rg2fM1HOTzvRoM++l4n9eN6LRZT+WfhgR+iJdRFJhtsgILZN8kA+lRiJIL0cufS5AAxFqyUGIRIySwIpJHs7894ukdVZxzivVRrVcu8qTKbBDdsxOmcMuWI3dsDprMsEe2BN7Zi/Wo/VqvVnvP61LVj5zwP7A+vgGzyOdyw==</latexit>

Q��

<latexit sha1_base64="/l8oj3N2Ar1Rj93Tm4+tPSKCaq0=">AAACEXicbVC7SgNREL3rM8ZX1FKEi0GwCrsS1DJoY5mAeUASwuzNJF5y98G9s0JYUvkJfoWtVnZi6xdY+C/urlto4mnmcM4MM3PcUElDtv1pLS2vrK6tFzaKm1vbO7ulvf2WCSItsCkCFeiOCwaV9LFJkhR2Qo3guQrb7uQ69dv3qI0M/Fuahtj3YOzLkRRAiTQoHfU8oDsBKm7MBnFPJZNDyMuMD0plu2Jn4IvEyUmZ5agPSl+9YSAiD30SCozpOnZI/Rg0SaFwVuxFBkMQExhjN6E+eGj6cfbGjJ9EBijgIWouFc9E/D0Rg2fM1HOTzvRoM++l4n9eN6LRZT+WfhgR+iJdRFJhtsgILZN8kA+lRiJIL0cufS5AAxFqyUGIRIySwIpJHs7894ukdVZxzivVRrVcu8qTKbBDdsxOmcMuWI3dsDprMsEe2BN7Zi/Wo/VqvVnvP61LVj5zwP7A+vgGzyOdyw==</latexit>

Q��

<latexit sha1_base64="rpF77u5SM1Ulwdbn03P4rXYlsq4=">AAACDHicbVC7SgNREL0bXzG+ojaCzcUgWIVdCWoZtLFMwDwgCWH2ZhIvufvg3lkhLvET/ApbrezE1n+w8F/cXVNo4imGwzkzzMxxQyUN2fanlVtaXlldy68XNja3tneKu3tNE0RaYEMEKtBtFwwq6WODJClshxrBcxW23PFV6rfuUBsZ+Dc0CbHnwciXQymAEqlfPOh6QLcCVFyf9uPuPRJkZdovluyynYEvEmdGSmyGWr/41R0EIvLQJ6HAmI5jh9SLQZMUCqeFbmQwBDGGEXYS6oOHphdnH0z5cWSAAh6i5lLxTMTfEzF4xkw8N+lM7zXzXir+53UiGl70YumHEaEv0kUkFWaLjNAyiQb5QGokgvRy5NLnAjQQoZYchEjEKMmqkOThzH+/SJqnZeesXKlXStXLWTJ5dsiO2Alz2DmrsmtWYw0m2AN7Ys/sxXq0Xq036/2nNWfNZvbZH1gf35RxnB8=</latexit>

Q⇣⇣

<latexit sha1_base64="rpF77u5SM1Ulwdbn03P4rXYlsq4=">AAACDHicbVC7SgNREL0bXzG+ojaCzcUgWIVdCWoZtLFMwDwgCWH2ZhIvufvg3lkhLvET/ApbrezE1n+w8F/cXVNo4imGwzkzzMxxQyUN2fanlVtaXlldy68XNja3tneKu3tNE0RaYEMEKtBtFwwq6WODJClshxrBcxW23PFV6rfuUBsZ+Dc0CbHnwciXQymAEqlfPOh6QLcCVFyf9uPuPRJkZdovluyynYEvEmdGSmyGWr/41R0EIvLQJ6HAmI5jh9SLQZMUCqeFbmQwBDGGEXYS6oOHphdnH0z5cWSAAh6i5lLxTMTfEzF4xkw8N+lM7zXzXir+53UiGl70YumHEaEv0kUkFWaLjNAyiQb5QGokgvRy5NLnAjQQoZYchEjEKMmqkOThzH+/SJqnZeesXKlXStXLWTJ5dsiO2Alz2DmrsmtWYw0m2AN7Ys/sxXq0Xq036/2nNWfNZvbZH1gf35RxnB8=</latexit>

Q⇣⇣

f3_optimal_gamma

Figure 6.3: The optimal squeezing fraction �opt maximizing Q�� and Q⇣⇣ for different values of the
nonlinearity order ⇣. The horizontal lines corresponds to the asymptotic value given in Eq. (6.43).
See the text for details.

Apart from this case, we observe a threshold value Nth for �opt < 1, i.e the squeezed
vacuum is no longer the optimal probes. The values of Nth depends on the order of the
non-linearity: for the estimation of � and for even values ⇣ or for the estimation of ⇣ and
for odd values of ⇣ (left panel of Figure 6.3) it is equal to Nth = (3

p
2�4)/8 ' 0.03, while

for the other cases (right panel of Figure 6.3) the Nth approaches (3
p

2 � 4)/8 for ⇣ � 5.
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γ���

Optimal � for F (q)
��

with ⇣ = 2

Optimal � for F (q)
⇣⇣

with ⇣ = 3
<latexit sha1_base64="UKWthSsasebK+7w7FLh7zlxRbM8="></latexit><latexit sha1_base64="UKWthSsasebK+7w7FLh7zlxRbM8="></latexit><latexit sha1_base64="UKWthSsasebK+7w7FLh7zlxRbM8="></latexit>

Optimal � for F (q)
��

with ⇣ = 3

Optimal � for F (q)
⇣⇣

with ⇣ = 4
<latexit sha1_base64="kdOujCtkS2hAkBdw/UAASfsx3Eg="></latexit><latexit sha1_base64="kdOujCtkS2hAkBdw/UAASfsx3Eg=">AAAConiclVHNbtQwEHbCT9vlbwtHLhabSkVCS5ZWantAqoSEkEDQCpZWWi+riePsWrXjYE9alihPw1PxCLwFTjYH6HJhDvbnmW/GM98khZIO4/hnEN64eev2xuZW787de/cf9LcffnamtFyMuVHGnifghJK5GKNEJc4LK0AnSpwlF6+a+NmlsE6a/BMuCzHVMM9lJjmgd836P5hOzLfqQ4FSg6IRm4PWENHMWP/QgAsOqnpdf6l2vz6tZxVTvnYK3VVH9EriwjO/CwT6ku5FNWO9/61pbPr+3epcq7gf1bP+IB7GrdF1MOrAgHR2Muv/YqnhpRY5cgXOTUZxgdMKLEquRN1jpRMF8AuYi4mHOWjhplUrZk13vCdte81MjrT1/plRgXZuqZNnfjrhPL8ZyF1nNM5/xSYlZofTSuZFiSLnq++yUlE0tNkPTaUVHNXSA+BW+o4pX4AFjn6LPZaKbCVU1QrUaDO6rsQ6GL8YHg3j0/3BcdyJtEkekydkl4zIATkmb8gJGRMebAXPg8PgKNwJ34an4ccVNQy6nEfkLwvZb2FmzOY=</latexit><latexit sha1_base64="kdOujCtkS2hAkBdw/UAASfsx3Eg="></latexit>
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Q��

Figure 6.4: Plot of Q�� as a function of � and N for ⇣ = 3. The right panel is a magnification of
the left one to highlight the behaviour of the QFI in the regime N ⌧ 1. The blue line refers to the
maximum of the QFI (see also the right panel of Figure 6.3). Analogous results can be obtained for
Q⇣⇣ and other values of ⇣. See the text for details.

In the large energy regime, the QFIs are found to grow as

Q�� ' B�(⇣) N3⇣�2 (N � 1) (6.40)

and

Q⇣⇣ ' �2⇣2B�(⇣ � 1) N3(⇣�1)�2 (N � 1) (6.41)

respectively, with
B�(⇣) = 43⇣�1⇣2(1 � �)⇣�1�2⇣�1 . (6.42)
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Using the results in the large energy regime N � 1 it is easy to find that the optimal
squeezing fraction maximizing Q�� is given by (the optimal squeezing fraction max-
imizing Q⇣⇣ can be obtained replacing ⇣ with ⇣ � 1, as it is clear from the previous
equations):

�opt(N � 1) =
2⇣ � 1

3⇣ � 1
, (6.43)

and, therefore, �opt ! 2/3 as ⇣ increases, as one can also see from Figure 6.3.

Result 8: Optimal probes for individual estimation

Considering the class of pure Gaussian states |↵, ⇠i, we want to find the optimal
preparation for the estimation of � and ⇣, i.e. the fraction of squeezing �(�)

opt and �(⇣)
opt,

given a fixed total energy N . We find that:

1. In the low energy regime N ⌧ 1, there are N (�)
th and N (⇣)

th respectively for the
optimal estimation of � and ⇣ such that

(
�(j)
opt = 1 N < N (j)

th

�(j)
opt < 1 N > N (j)

th

, j = �, ⇣. (6.44)

The threshold values depend in general from ⇣, and the two optimal probes at
fixed values of � and ⇣ are not the same.

2. In the high energy regime N � 1 the fraction of squeezing maximizing Q��

and Q⇣⇣ is given respectively by

�(�)
opt =

2⇣ � 1

3⇣ � 1
, �(⇣)

opt =
2⇣ � 3

3⇣ � 4
(6.45)

We notice that, for order ⇣ > 2, the fraction of squeezing belongs to �(�)
opt 2

[3/5, 2/3], while �(⇣)
opt 2 [1/2, 2/3]. The two optimal squeezing coincide only in

the limit of ⇣ ! 1.

We summarize results in Figure 6.4, where we show the QFI as a function of � and
N for a given value of the order of nonlinearity ⇣. The blue lines denote the maxima of
the QFI, which are of course obtained for the value of hte optimal squeezing ratio �opt

displayed in the right plot of Figure 6.3.

6.4 Optimal probes for joint estimation

In the previous Section we evaluated the optimal probes for the individual estimation of
� and ⇣, and we have seen that they do not match, i.e. given a nonlinear media, the
optimal probe for the estimation of � may not be optimal for ⇣.

In this Section we address the joint, or simultaneous, estimation of both � and ⇣ and
we find the optimal probe for the multiparameter scenario. In this case, the figure of
merit to be maximised is neither the F�� or the F⇣⇣ , but the inverse of the scalar bound
given in Eq. (2.72). For the estimation of two parameters, this can be explicitly evaluated.
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If we consider the weight matrix to be W = I2, i.e. we equally weight the estimation of
� and ⇣, we eventually obtain

CSLD[%�, I2] =
Q��Q⇣⇣ � Q�⇣

2

Q�� + Q⇣⇣

. (6.46)

where %� = | �ih �|, with | �i defined in Eq. (6.11) and with initial state |↵, ⇠i. Due
to the periodicity of the matrix elements of the QFI matrix, we still focus on the case
✓ = � = 0. In this way, we can optimize the inverse of the scalar bound CSLD[%�, I2]
in a similar way as we did in the previous Section for the individual QFIs. However,
here the expression of the scalar bound is more involved, and we have to address the
problem numerically. Results are reported in Figure 6.5. From the left panel, we may
see that squeezed vacuum is optimal for N < N si

th, while in the limit of large N the
optimal fraction of squeezing �si

opt depends only on the order of non linearity. Looking
at the right panel, we see that threshold value N si

th depends both on ⇣ and �, even though
there are no significant difference for the different values of � we have considered. As
for the individual estimation, the N si

th approaches an asymptotic value as the order of
non-linearity increases. The value is slightly larger than the one found in the previous
section.
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Figure 6.5: Left panel: optimal value of the fraction of squeezing � for the scalar bound CSLD[%�, I2]
as a function of N and for � = 0.01 (solid lines), � = 1 (dashed lines) and � = 100 (dotted lines).
Right panel: threshold value Nth we observe in the left panel. If N < Nth the squeezed vacuum is
optimal, otherwise the optimal probe has �opt < 1.

In Figure 6.6 we plot the quantity CSLD[%�, I2]�1 as a function of � and N and for
⇣ = 3. We have highlighted the optimal value of the scalar bound with a blue line.
Comparing this Figure with the corresponding one for individual estimation (see Figure
6.4), we see that the qualitative behaviour is the same, while we notice that the N si

th is
slightly larger, as we already outlined in previous considerations. This behaviour can be
understood by the fact that we have to find a trade-off between the optimality for � and
⇣.

6.5 Conclusions

In this chapter of the thesis, we have addressed the use of squeezed states to improve
precision in the characterization of nonlinear media. This is inherently a multiparameter
estimation problem since it involves both the nonlinear coupling and the order of non-
linearity. Using tools from quantum estimation theory we have firstly proved that the
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Figure 6.6: Plot of CSLD[%�, I2]
�1 as a function of � and N for ⇣ = 3. The right panel is a magni-

fication of the left one to highlight the behaviour of the QFI in the regime N ⌧ 1. The blue line
refers to the maximum of the QFI at fixed N .

two parameters are compatible, i.e. they may be jointly estimated without introducing
any noise of quantum origin. In turn, this opens the possibility of exploiting squeezing
as a resource to overcome the limitation of coherent probes.

We have found that using squeezed probes improves the estimation precision in any
working regime, i.e. either for fragile media where one is led to use low energy probes,
or when this constraint is not present, and one is free to choose probes with high energy.
In the first case, squeezed vacuum represents a universally optimal probe [262, 145],
where, for higher energy, squeezing should be tuned and depends itself on the value of
the nonlinearity. This results hold both for the separate estimation of the two parameters,
as well as for their joint estimation. In all regimes, using squeezing improves the scaling
of the precision with the energy of the probe.

We conclude that quantum probes exploiting squeezing are indeed a resource for the
characterization of nonlinear media. In view of the current development in quantum
optics, we foresee potential applications with current technology.



CHAPTER 7

On the properties of the asymptotic incompatibility

measure in multiparameter quantum estimation

The difference between the scalar SLD-CRb (2.72) and the HCRb in Eq. (2.74) bound
has attracted much attention in recent times, focusing on measurement incompatibility
[170, 101] and leading to the definition of measures able to capture this particular as-
pect [77, 31]. In particular, as we have seen in the introduction of this thesis, a quantity
has been introduced in [77] to quantify the quantumness of a quantum multi-parameter
problem. This quantity, denoted by R�, is equal to zero if and only if the Holevo bound
coincides with the SLD based bound, and thus if the parameters to be estimated are
asymptotically compatible. Similarly, it takes its largest value R� = 1 when the difference
between the Holevo and the SLD bound is maximum, that is when the parameters are
highly incompatible even in the asymptotic regime. Given these properties, in the fol-
lowing we will refer to R� as asymptotic incompatibility (AI). The properties of AI has
been discussed in relationship with the phase diagram of a quantum many-body system
in [77], while its main properties and its behaviour for estimation problems encoded in
qubit systems have been thoroughly investigated in [288].

In this chapter, we focus on the fundamental properties of the AI measure R� in lo-
cal quantum estimation theory. We study its relationship with the purity of the density
operators of the quantum statistical model, and prove that for some classes of states,
the two quantities are indeed in one-to-one correspondence. More in general, we find
evidence that the maximum amount of incompatibility may be achieved only for purity
exceeding a threshold depending on the dimension of the Hilbert space. We conjecture
that this may be a general property of quantum statistical models. Moreover, we de-
rive some bounds on the AI measure for quantum statistical submodels, and provide a
method to directly identify the maximum number of compatible parameters in specific
estimation problems.

The chapter is organized as follows: in Sec. 7.1 we review the main aspects of mul-
tiparameter quantum estimation and we introduce the AI measure R�. In Sec. 7.2, we
show our main results concerning the relationship between the AI measure and the pu-
rity of the quantum states, while in Sec. 7.3 we will derive further properties regarding
the AI of parameters of specific quantum statistical models. Sec. 7.4 closes the chapter
with some concluding remarks.

7.1 Local quantum multiparameter estimation

In this section we briefly review the tools of local quantum multi-parameter estimation
introduced in Chapter 2 in order to standardize the notation.
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In the quantum realm, the parameters are encoded in a family of density operators
%� referred to as a quantum statistical model. We remark that in the following we will
restrict ourselves to quantum statistical models described by quantum states %� whose
rank in the Hilbert space does not change by varying the parameters � in the allowed
region of the parameters’ space. This will allow us to avoid discontinuities in the be-
haviour of the figures of merit we will consider [305, 316]. In this scenario, a lower
bound to the covariance matrix of any estimator �̃ is given by the QFIM defined in Eq.
(2.67), whose definition we report here

Q(✓)ij =
1

2
tr
n
%✓{bL✓i , bL✓j}

o
(7.1)

and that satisfy the matrix SLD-CRb (2.71)

V (�̃) � Q(�)�1. (7.2)

It can be shown that his bound is in fact achievable for single-parameter estimation
[173, 56, 266]. This means that for a single-copy of the state %�, a POVM whose Fisher
Information is equal to the SLD-QFI exists, and remarkably one can prove that this op-
timal POVM corresponds to the projectors over the eigenstates of the SLD operator. If
we now consider the multiparameter case p > 1, the different SLD operators may not
commute, and an optimal simultaneous estimation of all the parameters can not be in
general obtained. As a consequence, the QCR matrix bound may not always be achiev-
able in the single-copy scenario and more informative bounds than the one provided by
the SLD operators may exist.

When dealing with matrix inequalities, an additional problem arises already in clas-
sical estimation theory, i.e. the order of the CFIM is partial. This means that, given two
experimental strategies specified by two distinct POVM ⇧(1) and ⇧(2) to which corre-
sponds F (1) and F (2), it might be that both F (1)

⇤ F (2) and F (2)
⇤ F (1). Thus, to

understand which strategies is better, scalar bounds have been introduced. Here, we
study the one defined in terms of a weight matrix W , a real and positive definite matrix
of dimension p ⇥ p. The SLD-QCR scalar bound obtainable from (7.2) can be written as
follow

tr
n
W Cov�[b�]

o
� C(�,W ) = tr

�
WQ(�)�1

 
= CSLD[%�,W ]. (7.3)

The role of the weight matrix W is to balance the precision of different parameters. In
addition, there is a correspondence between W and a change of parametrization. Given
a new set of parameter � = �(�) defined in terms of the previous one, the changes in
the QFI-SLD matrix is determined by the reparametrization matrix B↵� = @��/@�↵. The
SLD-QFI matrix for the new parameter is [149]

Q(�) = BQ(�)BT . (7.4)

Besides, any real symmetric positive definite matrix can be decomposed as W = LL
T ,

where L is unique. We see that if L = B
�1, then a particular choice of W corresponds to

a unique change of parametrization induced by B. We stress that a weight matrix may
not be symmetric. Then the decomposition is not unique and it may correspond to differ-
ent reparametrization. To summarize: to a given reparametrization, the corresponding
weight matrix is unique, while the existence of a unique reperamatrization given W is
true if W is symmetric.
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As its matrix counterpart, the SLD-QCR scalar bound (7.3) is not in general attainable
due to the incompatibility of the optimal measurements corresponding to the different
parameters. The problem of finding the most informative scalar bound was addressed
by Holevo in [178]. The solution takes the name of Holevo Cramér-Rao bound (HCRb)
and it will be denoted by CH[%�,W ]. It represents the most informative bound for the
asymptotic model in which a collective measurement is performed on an asymptotically
large number of copies of the state %⌦n

� =
N

n

j=1 %�, with n ! 1 [169, 163]. In this limit,
the bound is indeed achievable and for this reason it is typically considered as the most
fundamental scalar bound for quantum multiparameter estimation. However, the evalu-
ation of the HCRB requires a non-trivial minimization, see Definition in 5. Nonetheless,
some results have been obtained both numerically and even analytically under some
assumptions on the quantum statistical model [107, 28, 330, 52, 53, 7, 325, 331, 159, 17]

7.1.1 Asymptotic incompatibility measure

As observed before, in a multiparameter scenario the optimal strategies for each single
parameter estimation may not be compatible and as a result the lower bound (7.3) can
not always be attained. A key object in this respect is the commutator [bL↵, bL� ] between
the different SLD-operators: if this commutator is equal to zero for all the parameters
in �, all the SLD-bounds for each single parameter are simultaneously achievable in the
single-copy scenario by performing the same POVM, and as a result, both the matrix
and scalar SLD-QCR bound given in Eq. (7.2) and (7.3). These models are known in the
litterature as quasi-classical model [5, 331]. However, as we will describe in a moment,
its average value over the quantum statistical model %� plays an important role too.
Typically this quantity is introduced via the so-called Uhlmann (or Berry) curvature [78,
218], defined via its matrix elements

U↵�(�) = � i

2
Tr
n
%�

h
bL↵, bL�

io
. (7.5)

One proves that a necessary and sufficient condition for the attainability of the SLD-QCR
scalar bound (7.3) in the asymptotic limit is given by the compatibility condition, or weak
commutativity, U = 0 [285]. If this condition is fulfilled, that is if all the SLD operators
commute on average, then CH[%�,W ] = CSLD[%�,W ], i.e. the SLD-QCR scalar bound
can be attained in the asymptotic model %⌦n

� with n ! 1. In the following, we will refer
to models that satisfy this condition as asymptotically classical model and parameters
belonging to these models as asymptotic compatible parameters [5, 331].

More recent results have shown how the HCRB can be bounded from above as

CSLD[%�,W ]  CH[%�,W ]  (1 + R�)CSLD[%�,W ]  2 CSLD[%�,W ] (7.6)

that is CH[%�,W ] cannot be larger than two times the SLD QCR scalar bound. In the
chain of inequalities above, we have introduced the following parameter

R� = ||iQ(�)�1U(�)||1 , (7.7)

where ||A||1 denotes the largest eigenvalue of the matrix A. In the rest of the chapter
we will focus on this quantity, that has been introduced, as a quantumness parameter, in
[77] and studied in detail for qubit systems in [288]. As already suggested in Eq. (7.6),
one can prove that

0  �C[%�,W ]  R�  1 ,
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where we have defined the renormalized difference between the Holevo and SLD-bound

�C[%�,W ] =
CH[%�,W ] � CSLD[%�,W ]

CSLD[%�,W ]
. (7.8)

Moreover one also proves two relevant properties [77, 288]: (i) R� = 0 if and only if
U(�) = 0, that is when the model is asymptotically classical; (ii) R� is a property of the
quantum statistical model %� only, being also independent on possible reparametriza-
tion and, as a consequence, on the weight matrix W . In [288] it was also studied its
relationship with the quantity

�Cmax = max
W>0

�C[%�,W ] , (7.9)

for quantum statistical models encoded in qubit systems. The quantity�Cmax stands out
as a natural measure of asymptotic incompatibility (AI) and it is in general upper bounded
by R�. It was shown that, while for several quantum statistical model the bound is in-
deed tight, that is one finds �Cmax = R�, there exist counterexamples where �Cmax is
strictly smaller than R�. However, also in these examples one observes that the two
quantities have the same general behaviour and in general that the order relations in-
duced by them are equivalent.

For all these reasons, and also considering the fact that the evaluation of the quantity
R� is quite straightforward and, at difference with �Cmax, does not rely on the evalua-
tion of the Holevo bound and on its (non trivial) maximization over the weight matrices
W, in the following we will restrict to it and we will in general refer to R� as a AI measure
of the quantum statistical model %�.

7.2 Asymptotic incompatibility and purity of the quantum statistical

model

In this section we discuss the relationship between the AI measure R� and the purity of
the quantum state %� corresponding to the quantum statistical model under exam. We
will mainly focus to scenarios where %� describes the most general quantum state of a
particular quantum system, starting from the simplest cases of a qubit and of a single-
mode Gaussian continuous-variable quantum state, and then moving our attention to
qudits, that is to quantum states living in a d-dimensional Hilbert space.

7.2.1 Asymptotic incompatibility of state parameters in full tomography of qubit

systems

A generic mixed qubit state is typically written as

%� =
1

2

0

@ +
3X

j=1

�j�j

1

A , (7.10)

where the matrices �j denote the Pauli matrices, while �1 = r sin ✓ cos�, �2 = r sin ✓ sin�,
�3 = r cos ✓. By considering the set of p = 3 parameters � = (r, ✓,�) characterizing
the vector in the Bloch sphere, one can readily derive the SLD operators by solving the
corresponding Lyapunov equations, and obtains the SLD-QFI and the Ulhman curvature
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matrices

Q(�) =

0

@
1/(1 � r2) 0 0

0 r2 0
0 0 r2 sin2 ✓

1

A , (7.11)

U(�) =

0

@
0 0 0
0 0 r3 sin ✓
0 �r3 sin ✓ 0

1

A . (7.12)

The corresponding AI measure has been already derived in [288], obtaining Rqubit = r.
The purity of the quantum state %� can be easily evaluated, obtaining µ = Tr

�
%2

�

 
=

(1 + r2)/2, and thus leading to the result

Rqubit =
p

2µ � 1 . (7.13)

We thus observe that the AI for the full tomography Rqubit is indeed a monotonous
function of the purity of the quantum state, and that in particular it takes its limiting
values Rqubit = 0 for the maximally mixed state, and Rqubit = 1 for pure states only.

7.2.2 Asymptotic incompatibility for a single-mode continuous-variable Gaussian

system

As a second example we now consider a single-mode continuous-variable quantum sys-
tem, described by annihilation and creation operators satisfying the canonical commuta-
tion relation [ba,ba†] = . Quantum states describing such systems belongs to an infinite-
dimensional Hilbert space. A well known subclass of such states is given by Gaussian
states, typically defined as those states having a Gaussian Wigner function [132, 314].
These states have been indeed studied in great detail, both for the simple mathematical
formulation (they can be fully described by first and second moments of the quadrature
operators bq = (ba + ba†)/

p
2 and bp = i(ba† � ba)/

p
2) and for practical and fundamental

reasons (they can be easily generated in the lab, and they can be exploited for imple-
menting quantum technology protocols as quantum teleportation). We leave more de-
tails on Gaussian states in Appendix 7.A, along with the formulas needed to evaluate
the SLD-QFI and the Uhlmann curvature matrices.

We here address the problem of complete estimating an arbitrary single mode Gaus-
sian state, which can be parametrized by p = 5 parameters, resulting from the appli-
cation of a complex squeezing operator S(⇠) = exp

�
1
2⇠(a

†)2 � 1
2⇠

⇤a2
�

and a complex
displacement operator D(↵) = exp

�
↵a† � ↵⇤a

�
on a thermal state ⌫N = e��ba†ba/Z with

average photon number Tr
�
⌫Nba†ba

 
= N . The corresponding quantum statistical model

is thus represented by the family of density operators [314]

%� = D(↵)S(⇠)⌫NS(⇠)†D(↵)† , (7.14)

with a parametrization in terms of the set � = {Re↵, Im↵, r,', N}, and where we have
written the two complex parameters as ⇠ = rei' and ↵ = Re↵+iIm↵. The first moments
vector d = (Tr {%�bq} , Tr {%�bp})T has elements

Tr {%�bq} =
p

2Re↵ , (7.15)
Tr {%�bp} =

p
2Im↵ , (7.16)
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while the elements of the covariance matrix (CM) (see 7.A for details) can be expanded
in terms of symmetric 2⇥2 matrices, i.e. � = s1�x+s2I2+s3�z (with �x and �z denoting
the standard Pauli matrices), obtaining

s1 = �(2N + 1) sinh(2r) sin('), (7.17)
s2 = (2N + 1) cosh(2r), (7.18)
s3 = (2N + 1) sinh(2r) cos('). (7.19)

The matrix elements for the SLD-QFI matrix and for the Uhlmann curvature matrix can
be directly evaluated via the formulas

Q↵� =
1

2

Tr
�
(��1@↵�)(��1@��)

 

1 + µ2
+

2@↵µ@�µ

1 � µ4

+ 2 (@↵d)T
�

�1(@�d) (7.20)

U↵� =
µ2

2(µ2 + 1)2
Tr
�
�⌦

⇥
@↵��

�1, @���
�1
⇤ 

+ 2µ2(@↵d)⌦(@�d), (7.21)

where the purity of single-mode Gaussian states is given by µ = 1/
p

det� = 1/(2N +
1). Notice that our result differ from that in [254] by a factor 2 in the first term of the
Uhlmann matrix (for a detailed derivation, see Appendix 7.A).

In particular, for the quantum statistical model defined above, we obtain

QRe↵,Re↵ = 4µ (cosh(2r) � cos(') sinh(2r)) , (7.22a)
QIm↵,Im↵ = 4µ (cosh(2r) + cos(') sinh(2r)) , (7.22b)
QRe↵,Im↵ = 4µ sinh(2r) sin('), (7.22c)

Qr,r =
4

1 + µ2
, (7.22d)

Q',' =
sinh(2r)2

1 + µ2
, (7.22e)

QN,N =
4µ2

1 � µ2
, (7.22f)

and

URe↵,Im↵ = 4µ2 , (7.23a)

U',r =
4µ sinh(2r)

(1 + µ2)2
, (7.23b)

while the matrix elements not reported are null. We emphasize that these values do not
depend on (<↵, =↵), and we also osberve that the SLD-QFI matrix is block diagonal.
In particular, the second block regarding the parameters (r,', N) is exactly diagonal.
Moreover, since most of the entries of the Uhlmann matrix are equal to 0, we conclude
that most of the parameters are orthogonal globally with respect to the SLD-QFI, with
the exception of the pairs (<↵, =↵) and (r,').

The AI measure can be readily evaluated, obtaining
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Result 9: AI for single-mode Gaussian states

The AI for a Gaussian state given in Eq. (7.14) is given by

RGS =
2µ

1 + µ2
. (7.24)

This depend only on the purity µ of the state.

Remarkably, we see that the contribution depending on (r,') cancel out in the AI
RGS. Also in this case we have thus obtained that AI is a monotonous function of purity
µ, and that one obtains that all the parameters become asymptotically compatible only
in the limit of a maximally mixed state (that is RGS = 0 only for µ ! 0), while the
maximum value of incompatibility RGS = 1 is obtained if and only if %� is a pure state.

7.2.3 Asymptotic incompatibility for of state parameters in full tomography in qudit

systems

Let us now move back to consider finite-dimensional quantum systems described via
Hilbert spaces with dimension d larger than two. The most natural way to describe the
most general quantum states in this scenario is by the following parametrization

%� =
1

d

0

@ +
d
2
�1X

j=1

�i⌃i

1

A (7.25)

where the matrices ⌃i denotes the generators of the Lie algebra su(d), and thus corre-
spond to Pauli matrices for d = 2 and to Gell-Mann matrices for d = 3. The p = d2 � 1
coordinates � represent the normalized Cartesian vector in the d2 �1-dimensional Bloch
space and are also known as the components of the d2 � 1-dimensional Bloch vector or
as mixture coordinates [37]. In the following we consider the estimation of the parame-
ters �, i.e. the full tomography of the state. It is known that this model is a D-invariant
model and hence the Holevo bound is equal to the right logarithmic derivative scalar
bound [183].

Analytical solutions for the AI measure are very hard to derive with arbitrary dimen-
sion d. Hence, we address the problem numerically by randomly generating quantum
density matrices corresponding to d = 3, d = 4 and d = 5. The method we used to
generate random density matrix follows two steps:

1. First, we generate the eigenvalues of the density matrix %� , which belongs to the
probability simplex Xd = {x = (x1, ..., xd)|

P
d

i=1 xi = 1}.

2. Second, we randomly generate unitary matrix U . We remind that different U cor-
responds to different eigenvectors of %� and thus to different quantum states and
more importantly to different values of the parameters �.

For each random state we evaluate the AI measure from the definition (7.7) by numeri-
cally solving the Lyapunov equation for the SLD operators and then by evaluating the
SLD-QFI and Uhlmann curvature matrices. The results are reported in Fig. 7.1 as func-
tion of the purity of the state. We clearly see that there is no one-to-one correspondence
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Figure 7.1: Left panel: scatter plot of the AI measure (y-axis) vs purity (x-axis) for qutrit systems.
The black lines are the AI for fixed spectrum of H , see main text for details. The most left line
refers to a choice of H with 2 degenerate eigenvalues. Right panel: scatter plot of the AI measure
(y-axis) vs purity (x-axis) for 4-dimensional quantum systems. Again, the black lines are the AI
for a fixed spectrum of H . The red-dashed lines refers to choice of H with at least 2 degenerate
eigenvalues.

between the value of µ and the value of R(d). However, we see that the AI is strictly less
than one whenever the purity of the state is lower than µ = 1/(d� 1). Thus, we can state
the following conjecture:

Conjecture 1: Maximal amount of AI and purity

Given a quantum statistical model described by a family quantum states %� living
in a d-dimensional Hilbert space, the maximum amount of the AI measure R� = 1
may be observed only if the purity of the quantum state is larger than a minimum
threshold µmin = 1/(d � 1).

This conjecture is clearly consistent for the two cases discussed above, i.e. qubit and
single-mode Gaussian states, whose AI was exactly derived, and it is surrogated by the
numerical evidence in Fig. 7.1.

We now introduce a second way to parametrize a d-dimensional quantum system
that will be particularly useful fo our purposes, i.e.

%� =
e��H

Tr {e��H} , H =
d
2
�1X

j=1

�j⌃j (7.26)

The coordinates � are known as exponential coordinates [37] while the parameter � play
the role of the inverse temperature of the state with respect to the Hamiltonian operator
H , clearly recalling the Gibbs state form used in statistical mechanics. However, this is
not a true coordinate since it can be included in the definition of the �, hence must be
considered more as a rescaling parameter which allow us to constrain the exponential
coordinates to be in a finite interval (|�i|  1 in our simulations).
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In general, a closed formula for the AI is hard to derive also with this parameteriza-
tion. Hence, we investigate the problem by considering a simplified case, i.e. a diagonal
H = diag {�0,�1, ...,�d�1}, with the constraint |�i|  1. In other words, we set �j = 0
for the indexes j corresponding to non-diagonal operators ⌃j , and we address the es-
timation for all the parameters corresponding to the exponential coordinates �. The
reason why we study this class of states is twofold: the first is that the calculations are
greatly simplified, the second is that the results we find seem to be valid more generally,
as we will explain later in more detail.
We have evaluated analytically the AI measure corresponding to the estimation of all the
d2 � 1 parameters encoded in this particular quantum statistical model, finding

Rqudit = tanh

✓
��M

2

◆
(7.27)

where �M = maxi�i � minj �j , i.e. the maximum difference between the eigenvalues
of H (we remark that the calculations are much simpler by evaluating the matrices for
the parameters �, and exploiting the fact that R� is invariant under reparametrization).
The result in (7.27) is consistent with the AI for a qubit states, as for d = 2 the purity µ
and the argument of the tanh are in one-to-one correspondence. Indeed, the purity can
be written in terms of � as µ = (1 + tanh(�|� · �|)2)/2. In the case of a diagonal H , we
have �1 = �2 = 0 and �M = 2|�3|, and thus

µ =
1

2
(1 + tanh(�|�3|)2 =

1

2

 
1 + tanh

✓
��M

2

◆2
!

. (7.28)

By simply using (7.27) we indeed obtain the result in Eq. (7.13). Remarkably, also the
Gaussian case might be reduced to this expression if we consider that the purity in terms
of the average number of excitation N is µ = (2N +1)�1. By replacing the value of N by
the formula for the Bose-Einstein statistics N = 1/(exp�!�1), we obtain that the purity
can be written as µ = tanh(�!/2). Then, the AI (7.24) becomes exactly equal to (7.27) by
fixing �M = 2!.

This line of reasoning of course does not prove that the AI is equal to (7.27) for arbi-
trary d-dimensional density matrix %�. To try to answer this question, we addressed the
problem by studying these quantities for the numerically generated random quantum
states of dimension d = 3, 4, 5. In more detaiil

1. We evaluate the quantity ��M for each random states %� we generate (see pre-
vious paragraph for the details of the random generation of %�) via the for-
mulas �(rand)�(rand)

i
= � log(xi) , and �(rand)�(rand)

M
= maxi �(rand)�(rand)

i
�

minj �(rand)�(rand)
j

(we remind that the quantities {xi} correspond to the eigen-
values of %�).

2. For each random state we evaluate the AI measure corresponding to its full esti-
mation via Eq. (7.7), and we compare it with the formula (7.27) evaluated via the
parameter �(rand)�(rand)

M
.

3. We find that the two quantities match for all the quantum states that we have nu-
merical generated.

We conclude that for d = 3, 4, 5 the AI is fully determined only by ��M , i.e. it corre-
sponds to a property of the spectrum of H only (to be more precise it depends only on
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the maximum and minimum eigenvalues of H). For these reasons, we state a second
conjecture here

Conjecture 2: AI for qudit full tomography

Given a quantum statistical model described by a family quantum states %� living
in a d-dimensional Hilbert space, the AI corresponding to the full estimation of the
state is given by (7.27), where � is the fictious temperature of the state with respect
to the Hamiltonian operator H in the exponential coordinates (7.26).

A further element in favour of this conjecture comes from Fig. 7.1, in which we clearly
see that the AI for a fixed spectrum (black lines) span the whole area covered by the AI
measure values corresponding to the random states generated. In addition, we see that
the AI for a 4-dimensional system with H having two eigenvalues with degeneracy 2
reaches the maximum value of R = 1 when the purity is µ = 1/2, since in the case in
which �0 = �1 and �2 = �3, we have that µ ! 1/2 for � ! 1.

We finally remark again that, as we described above, the formula in Eq. (7.27) can be
readily evaluated, after diagonalizing the quantum state describing the quantum statis-
tical model %� =

P
i
xi| iih i|, and by observing that ��i = � log(xi).

7.3 Further properties of asymptotic incompatibility measure

In this section we analyze in more detail some further properties of the AI measure R�,
sheding more light on the relationship between a given quantum statistical model %� and
possible sub-models that arise when one or more parameters of the set � are considered
known and thus not to be estimated.

In the definition of R� in Eq. (7.7), only the the largest eigenvalue of the matrix
I = iQ(�)�1U(�) is considered. In the following we will study more in detail the role
of the spectrum of I in the characterization of the quantum statistical model. To do so,
we first introduce the Cauchy interlace theorem [185]:

Theorem 6: Cauchy interlace theorem

Consider a N⇥N hermitian matrix A and any (N�1)⇥(N�1) principal sub-matrix B
of A. Consider the corresponding eigenvalues in decreasing order a = {a1, . . . , aN}
and b = {b1, . . . , bN�1}. Then, a interlace b, that is

aN  bN�1  aN�1  . . .  b2  a2  b1  a1. (7.29)

This result can now be applied for our purposes to the matrix I , leading to the fol-
lowing theorem:
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Theorem 7: Bound on AI measure for quantum statistical sub-models

Given a quantum statistical model defined by a set of p�parameters �, and any other
possible sub-model defined by a set of (possibly reparametrized) (p � 1) parameters
�̃, then the two corresponding AI measures R(p)

� and R(p�1)

�̃
satisfy the inequality

r2  R(p�1)

�̃
 R(p)

� , (7.30)

where r2 denotes the second largest eigenvalue of the matrix I corresponding to the
quantum statistical model %�.

Proof. As observed in [77], the eigenvalues of I are either 0 or given in pairs hi = ±ri,
with 0 < ri  1, i = 1, . . . , � and �  b(p + 1)/2c. The thesis of the theorem is thus a
simple corollary of the Cauchy interlace Theorem 6 stated above.

One can further show that, if we consider smaller sub-matrices of I , we can recur-
sively apply this argument to smaller statistical sub-model �̄ with (p � j) parameters.
Eventually one obtains that the AI measure for the corresponding statistical sub-model
is bounded as

rj+1  R(p�j)
�̄

 R(p)
� . (7.31)

In particular we see that any statistical sub-model with (p�j) parameters is incompatible
if we restrict ourselves to j  ��1, since for those j we have that ri > 0. This observation
leads to the following corollary:

Corollary 1: Upper bound on the number of compatible parameters

By denoting with � the number of strictly positive eigenvalues of I , then the quan-
tum statistical model %� contains at number of compatible parameters that is upper
bounded as

pcomp  p(bound)
comp = p � � . (7.32)

This result can be easily applied to the full estimation problem we studied in the
previous section. Indeed, we can use the same evidence we have for Conjecture 2 to
conjecture that the eigenvalues of the matrix I are

Eig(I) =
�
0, ..., 0, ±r(1,0), ±r(2,0), ±r(2,1), ..., ±r(d�1,d�3), ±r(d�1,d�2)

 
(7.33)

where
ri,j = tanh

✓
�(�i ��j)

2

◆
(7.34)

and (�0, ...,�d�1) are the �-normalized eigenvalues in ascending order of H , defined in
Eq. (7.26). If the eigenvalues of H are non-degenerate, the number of strictly positive
eigenvalues of I is simply

�ndg =

✓
d
2

◆
=

d(d � 1)

2
. (7.35)
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Instead, for H with degenerate spectrum, the result slightly change. Indeed, if we denote
with  the number of distinct degenerate eigenvalues and with ⌘i the corresponding
degeneracies (with i = 1, ...,), then the number of strictly positive eigenvalues is

�dg =

✓
d
2

◆
�

X

i=1

✓
⌘i

2

◆
=

d(d � 1)

2
�

X

i=1

⌘i(⌘i � 1)

2
. (7.36)

Thus, given the numerical evidence we obtained from our simulations, we conjecture
the following

Conjecture 3: Upper bound on the number of compatible parameters for the full

estimation of a d-dimensional quantum system

By denoting with d the dimension of the quantum system %�, the number of compat-
ible parameters pcomp in the full estimation of the d2 � 1-parameters describing %� is
upper bounded by the quantity

p(bound)
comp = d2 � 1 � �dg

=
(d + 2)(d � 1)

2
+

X

i=1

⌘i(⌘i � 1)

2
, (7.37)

where  is the number of distinct degenerate eigenvalues and ⌘i the degeneracy de-
gree, with i = 1, ...,.

This conjecture shows that the value of p(bound)
comp depends on the values of the pa-

rameters, and in particular on the values that makes the corresponding density matrix
degenerate. Indeed, the larger is the number of degenerate eigenvalues, the larger is the
maximum number of possible compatible parameters. In the limit of full degeneracy, i.e.
 = 1 and ⌘i = d, we see that p(bound)

comp ! d2 � 1, i.e equals the number the number of
parameters of the model. Instead, in the case with no degeneracy in the spectrum of H ,
we have the minimum value, i.e. p(bound)

comp = (d+2)(d�1)/2. We would also like to stress
that the model is always full-rank as far as the value of � is finite, independently on the
number of degenerate eigenvalues of H .

An upper bound on the number of compatible parameters has been also derived
recently in [209] by following a different approach and exploiting the algebraic structure
of the quantum statistical model. We have compared this bound with our bound for
the full estimation of a qubit, that is by considering the estimation of the Bloch sphere
parameters � = (r, ✓,�). We found that the matrix I has eigenvalues Eig(I) = {r, �r, 0},
leading to the upper bound p(bound)

comp = 2. This results does indeed coincide with the one
obtained in [209].

We also remark that, while the bound in [209] was derived for finite dimensional
Hilbert space, in our case we made no assumption on the dimension of the Hilbert space.
Hence we can apply our result also for infinite dimensional system. For instance, let
us consider the paradigmatic case of the estimation of the parameters characterizing a
single-mode Gaussian state defined as in Eq. (7.14) and already treated in Sec. 7.2. The
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spectrum of the corresponding matrix I is given by

Eig(I) =

⇢
2µ

1 + µ2
, µ, 0, �µ, � 2µ

1 + µ2

�
. (7.38)

This leads to the AI measure for the complete statistical model R(5)
� = 2µ/(1 + µ2) we

discussed above. By further inspecting the set of eigenvalues above we can however
also conclude that for any subset of p = 4 parameters �̃, the corresponding AI parameter
is bounded as

µ  R(4)

�̃
 2µ

1 + µ2
, (7.39)

and that there is a maximum of p(bound)
comp = 3 compatible parameters. In general, by

observing the form of the Uhlmann curvature matrix we also see that the only incom-
patible models are the one which deals with the simultaneous estimation of {r,'} or
{Re↵, Im↵}.

In the examples above, if we restrict to subsets of the original parameters � =
{Re↵, Im↵, r,', N}, all the results are directly availabe from the explicit solution of the
SLD-QFIM (7.22a) – (7.22f) and the Uhlmann matrix (7.23a) – (7.23b). Here below we
rather present an example where the results cannot be obtained straightforwardly in
analytical form, while the properties discussed above can still provide a first insight
without needing to solve exactly the estimation problem.

We address the estimation of two dynamical parameters, the frequency and the loss
rate �̈ = {!, �} that characterize the evolution due to the Markovian master equation

%̇ = �i
!

2
[bq2 + bp2, %] + �D[ba]%, (7.40)

with D[ba]% = ba%ba† � 1
2

�
ba†ba%+ %ba†ba

�
. By consider an initial Gaussian state %(0) as the

one in Eq. (7.14), the dynamics remains Gaussian and thus can be fully described by
means of the first and second moments of its quadrature operators. In particular one can
readily evaluate analytically the purity of the quantum state, obtaining

µ(t) =
p

(1 � e��t)(1 � e��t(1 � 2s2(0))) + e�2�tµ(0)2, (7.41)

From this result and via Eq. (7.24), we can directly evaluate R(5)
� , whereas the AI mea-

sure R(2)

�̈
for the quantum statistical model defined above is evaluated numerically by

exploiting the techniques reported in Appendix 7.A. To present the results, we choose
the initial state to be a pure state N = 0 and we parametrize it in terms of its average
excitations number hba†bai and its fraction of squeezing ⌘ defined as

hba†bai = |↵|2 + sinh(r)2, (7.42)

⌘ =
sinh(r)2

hba†bai . (7.43)

We plot the results in Fig. 7.2 and we see that R(5)
� is, as expected, always larger than

R(2)

�̈
, confirming that R(5)

� can be used as an upper bound for the quantumness for any
other sub-statistical model. Besides, as we see from the left panel in Fig. 7.2, the upper
bound may not be much informative, since the evolution of R(5)

� and R(2)

�̈
in time are op-

posite. In addition, this example shows that the condition on the number of eigenvalue
is not sufficient to have a compatible model.
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Figure 7.2: Plot of R(5)
� (red line) and R(2)

�̈
(blue line). Left panel: hba†bai = 4; thick line: ⌘ = 1;

dashed line: ⌘ = 0.5. Right panel: ⌘ = 0.1; thick line hba†bai = 4; dashed line: hba†bai = 20. Both
panel: � = ! = 1.

7.4 Conclusions

In this chapter, we have studied in details the properties of the AI measure R� of incom-
patibility and discussed its use in assessing the quantumness of multiparameter estima-
tion problems. At first, we have focused on the estimation of the full set of parameters
characterizing a given quantum system, showing that for qubits and single-mode Gaus-
sian systems R� is a simple monotonous function of the purity µ of the state. We have
then considered a generic d-dimensional quantum systems and, using analytical and nu-
merical tools, we found that in general the one-to-one correspondence between R� and
µ does not hold anymore. However, numerical results suggest that the maximum num-
ber of AI is attainable only for quantum statistical models having a purity µ � 1/(d � 1).
We conjecture that this may be a general property of d-dimensional quantum systems.
Upon considering quantum statistical models described as Gibbs state of a given Hamil-
tonian, we have also shown that the AI measure can be written as a simple function of
the fictitious temperature parameter and the spectrum of the Hamiltonian.

We have then studied in detail the role of the spectrum of the matrix I =
iQ(�)�1U(�) and have determined bounds on R� for quantum statistical submodels.
In particular, we have shown that the number of strictly positive eigenvalues of I deter-
mines the maximum number of compatible parameters in a given statistical model.

Very recently there has been much interest in deriving bounds that apply when one
allows measurements on a finite number of copies [100, 89]; we thus expect that our
approach can be extended from the asymptotic model, identifying and studying a hi-
erarchy of incompatibility measures in this finite copies scenario. More in general our
results pave the way to a deeper understanding of the fundamental properties of multi-
parameter quantum estimation, and provide potentially useful tools to approach multi-
parameter problems that cannot be addressed analytically.



Appendix

7.A Multiparameter estimation for continuous-variable Gaussian

states

In this section we focus on estimation problems in bosonic continuous variable systems.
In particular, we study n modes Gaussian state [132, 314], which are properly described
in terms of quadrature operators br = {bq1, bp1, . . . , bqn, bpn}. They satisfy the canonical
commutation relation

[brj , brk] = i⌦jk, (7.44)

where ⌦ = i��n

y
. A Gaussian state % is completely determined by its vector of first

moments d = Tr {%br} and its covariance matrix (CM) � = Tr
�
%{(br � d), (br � d)T }

 
,

with {bl,blT }jk = bljblk + blkblj [132, 314].
In order to derive the SLD-QFI matrix elements, several approaches have been pro-

posed in the literature [276, 194, 23, 314, 254, 306] . As we are interested also in the
Uhlmann curvature matrix, in the following we will focus on the derivations pursued
in [314, 254] that are indeed based on the writing the SLD operators in terms of the mo-
ments of the Guassian states defining the quantum statistical model. Let us then assume
that a set of parameters � defines a quantum statistical models in a family of Gaussian
quantum states %�. One shows that the SLD for a parameter ↵ 2 � is at most quadratic
in the moments [314] and can be written as

bL↵ = L(0)
↵

I + L
(1)
↵

· br + brT · L(2)
↵

· br, (7.45)

where L(0)
↵ is a real number, L(1)

↵ is 2n real vector and L
(2)
↵ is a 2n ⇥ 2n real symmetric

matrix. After some algebra, one can find that the SLD-QFI matrix elements are given by
[314, 254]

Q↵� =
1

2
Tr
n

L(2)
↵

(@��)
o

+ 2(@↵d
T )��1(@�d) (7.46)

Here below we derive the analogous result for the Uhlmann curvature matrix. First, we
evaluate the commutator of bL↵ and bL� , that is

h
bL↵, bL�

i
=
h
L

(1)T

↵
br,L(1)T

�
br
i

+
h
L

(1)T

↵
br, brT

L
(2)
�
br
i
+

+
h
brT

L
(2)
↵
br,L(1)T

�
br
i

+
h
brT

L
(2)
↵
br, brT

L
(2)
�
br
i
. (7.47)
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By recalling that [brj , brk] = i⌦jk, the first term of the latter is (we use Einstein convention
on indexes summations)

h
L

(1)T

↵
br,L(1)T

�
br
i

= L(1)
↵,i

L(1)
�,j

[bri, brj ] = iL(1)T

↵
⌦L(1)

�
I; (7.48)

the second term is ( we recall that L(2)
↵,jk

= L(2)
↵,kj

)
h
L

(1)T

↵
br, brT

L
(2)
�
br
i

= L(1)
↵,i

L(2)
�,jk

[bri, brjbrk] =

= L(1)
↵,i

L(2)
�,jk

([bri, brj ] brk + brj [bri, brk]) =

= L(1)
↵,i

L(2)
�,jk

(i⌦ijbrk + brji⌦ik) =

= 2iL(1)T

↵
⌦L(2)

�
br; (7.49)

while the third term is
h
brT

L
(2)
↵
br,L(1)T

�
br
i

= 2ibrT
L

(2)
↵
⌦L(1)

�
; (7.50)

and eventually the fourth term is (we used the symmetry of L(2)
↵ and the skew-symmetry

of ⌦)
h
brT

L
(2)
↵
br, brT

L
(2)
�
br
i

= L(2)
↵,ij

L(2)
�,kl

[bribrj , brkbrl] =

= L(2)
↵,ij

L(2)
�,kl

(i⌦jkbribrl + i⌦ikbrjbrl + i⌦jlbrkbri + i⌦ilbrkbrj) =

= 2ibrT

⇣
L

(2)
↵
⌦L(2)

�
� L

(2)
�
⌦L(2)

↵

⌘
br. (7.51)

So eventually we obtain
h
bL↵, bL�

i
= i
⇣
L

(1)T

↵
⌦L(1)

�
I + 2BT br + 2brT

Abr
⌘

(7.52)

where A and B are respectively a d ⇥ d symmetric matrix and a d vector

A = L
(2)
↵
⌦L(2)

�
� L

(2)
�
⌦L(2)

↵
= 2L(2)

↵
⌦L(2)

�
, (7.53)

B = L
(2)
↵
⌦L(1)

�
� L

(2)
�
⌦L(1)

↵
(7.54)

Now we can evaluate

U↵� = � i

2
Tr
n
%�

h
bL↵, bL�

io
= (7.55)

=
1

2
L

(1)T

↵
⌦L(1)

�
+ L

(1)T

↵
⌦L(2)

�
d + d

T
L

(2)
↵
⌦L(1)

�
+ Tr

�
%�brT

Abr
 

(7.56)

Since Aij⌦ij = 0, we obtain that

Tr
�
%�brT

Abr
 

= AijTr {%�bribrj} =

= Aij

✓
�ij

2
+

i⌦ij

2
+ didj

◆
=

=
1

2
Tr {A�} + d

T
Ad =

= Tr
n
L

(2)
↵
⌦L(2)

�
�

o
+ 2dT

L
(2)
↵
⌦L(2)

�
d (7.57)



From [314] we recall that L(1)
↵ = 2��1(@↵d) � 2L(2)

↵ d and so we derive the following

1

2
L

(1)T

↵
⌦L(1)

�
= 2

✓
(@↵d)T

�
�1⌦��1(@�d) � d

T
L

(2)
↵
⌦��1(@�d)+ (7.58)

� (@↵d)T
�

�1⌦L(2)
�

d + d
T
L

(2)
↵
⌦L(2)

�
d

◆
(7.59)

L
(1)T

↵
⌦L(2)

�
d = 2

⇣
(@↵d)T

�
�1⌦L(2)

�
d � d

T
L

(2)
↵
⌦L(2)

�
d

⌘
(7.60)

d
T
L

(2)
↵
⌦L(1)

�
= 2

⇣
d

T
L

(2)
↵
⌦��1(@�d) � d

T
L

(2)
↵
⌦L(2)

�
d

⌘
(7.61)

By inserting these last calculations, we end up with the following Uhlmann matrix

U↵� = Tr
n
L

(2)
↵
⌦L(2)

�
�

o
+ 2(@↵d)��1⌦��1(@�d). (7.62)

Please notice that our result differ from that in [254] by a factor 2 in the first term of the
Uhlmann matrix.

If we now focus on single-mode Gaussian state, we can write (7.46) and (7.62) only in
terms of the covariance matrix �, the vector d and the purity of the state µ = 1/

p
det�

as

Q↵� =
1

2

Tr[(��1@↵�)(��1@��)]

1 + µ2
+

2@↵µ@�µ

1 � µ4
+ 2 (@↵d)T

�
�1(@�d) (7.63)

U↵� =
µ2

2(µ2 + 1)2
Tr
�
�⌦

⇥
@↵��

�1, @���
�1
⇤ 

+ 2µ2(@↵d)⌦(@�d). (7.64)
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CHAPTER 8

Feedback-assisted quantum search by continuous-time

quantum walks

Continuous-time quantum walk (CTQW) have been introduced in Sec. 3.2 to model the
evolution of a quantum particle, or excitation, over a discrete set of positions [131, 200,
340]. Since a CTQW evolves over a graph, it is strongly related to applications over
networks, including quantum spatial search [94, 189, 93, 83, 265, 36, 279]. The ability to
redirect or control information over a graph in an efficient way is essential to develop
protocols involving quantum networks and to deal with a large amount of structured
data. To this aim, in this chapter we develop a protocol to guide the walker toward a
target node on a graph by exploiting the tools of quantum control.

The theory of quantum control [350] addresses the problem of preparing a quantum
system in a desired quantum state or with some desired quantum properties. In quan-
tum feedback-control strategies the quantum system under control is measured (typi-
cally continuously in time) and the information acquired is exploited in order to opti-
mize a feedback operation on the system itself. This kind of strategies has been studied
in great detail, in particular with the aim of generating quantum states with non-classical
properties such as squeezing or entanglement [349, 348, 123, 337, 315, 333, 150, 152, 177,
231, 233, 232, 64, 234, 193, 364, 300, 121] or to cool optomehcanical systems towards their
ground states, with the experimental results recently demonstrated in [297, 226, 336].

In this chapter, we propose a novel approach to quantum search on graphs and estab-
lish a new and unexplored line of research combining CTQWs with quantum feedback-
control protocols. In our system, the walker is interacting with an environment that is
continuously monitored. As a result, the system evolution is a quantum stochastic tra-
jectory and, based on the result of the measurement, a feedback protocol is applied. We
will prove that it is possible to drive the walker towards a target state by optimizing the
corresponding target fidelity at each step. Our method differs from other methods that
have been developed since it allows the walker to be guided continuously to the target
node. In the standard spatial search protocol the oracle is described as a projector op-
erator onto the target state. With our approach we modify this paradigm. We consider
a dynamical oracle encoded in the feedback operation. This means that the final projec-
tive measurement on the walker, to be performed at any time t after a certain threshold
time tth, has a high probability of success. In particular, we find that once the walker
reaches the target node it remains stuck in it thanks to the feedback operation. This lift
the burden of performing a final measurement at a very specific time, by allowing us to
measure the walker position at any time t � tth.

The chapter is organized as follows: in Sec. 8.1 we give a brief introduction to
continuous-time quantum walks focusing on quantum spatial search on graphs. In Sec.
8.2 we introduce continuously monitored quantum systems and unitary (measurement-
based) feedback strategies. In Sec. 8.3, we present our search scheme and we describe
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Figure 8.1.1: Cycle graph embedded in a plane on a circle of unit radius. Left panel: N = 5;
Central panel: N = 11; Right panel: N = 15.

the idea behind our feedback protocol. In Sec. 8.4 we analyze our results for the different
control strategies we have considered. In Sec. 8.5 we conclude the chapter with some
remarks and outlooks. The chapter is followed by an Appendix where we analyze some
side aspects of the work and results. We also mention that throughout the chapter we
set ~ = 1.

8.1 Quantum walks and spatial search on graphs

A continuous-time quantum walk describes the continuous motion of a quantum parti-
cle over a discrete set of positions. As we have already discussed, underlying every walk
there is a graph G, which is described as a pair G = (V, E) where V = {0, 1, . . . , N � 1}
is the set of vertices and E is the set of undirected edges, i.e. all the pairs of adjacent ver-
tices in V . For a CTQW, the vertices represent the positions that the particle can occupy
while the edges encode all the possible paths that a walker can move across. We denote
the order of the graph as the number of nodes N = |V |. For a more detailed presentation
of CTQWs we refer the reader to Chapter 3.2 in the introduction.

In this chapter, we are going to focus mainly on the cycle graph, see Fig. 8.1.1. Each
vertex is adjacent to two other vertices, hence dj = 2 for all js. This means that the cycle
graph is a regular graph whose Laplacian matrix is given by

L = 2IN �
N�1X0

k=0

(|k � 1ihk| + |k + 1ihk|) (8.1)

The primed summation symbol denotes that periodic boundary conditions: the terms
| � 1ih0| corresponds to |N � 1ih0|, while NihN � 1| corresponds to |0ihN � 1|. The cycle
is also a circulant graph, whose nice properties have been discussed in Sec. 4.5.3.

Among all the applications, CTQWs have been used to improve spatial search algo-
rithms. In this problem, the main goal is to exploit the coherent evolution of a quantum
walker to find a marked vertex on a graph faster than its classical counterpart. In the
quantum spatial search of a marked node |wi, the walker evolves under the Hamilto-
nian:

HS = �L � �|wihw| (8.2)

where � is a real parameter and the operator |wihw| is the oracle Hamiltonian i.e. a pro-
jector onto the target state. The walker is usually initialized in the uniform superposition
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of all nodes

| 0i =
1p
N

N�1X

k=0

|ki, (8.3)

with no bias toward the target state. The algorithm is successful if the probability of
finding the target node pw(ts) = |hw|e�iHSts | 0i|2 is as close as 1 as possible in a time
ts = O(

p
N). It was shown that a

p
N speedup can be obtained for specific topologies,

such as the complete and hypercube graphs and (d > 4)-dimensional lattices [94, 131].
Later studies proved fast search for different kinds of graphs [82, 275, 352, 85, 354, 342],
and a comprehensive analysis of the algorithm’s performances was carried out in [84],
which recovers previous graph-dependent results as special cases. It is worth mention-
ing here that considering different oracle operators, such as those which modify the
edges connected to the target node, allows to reach a search time ts = O(

p
N ln N) in

two-dimensional (d = 2) lattices, by building Hamiltonians that exhibit Dirac points
in their dispersion relation [93, 137]. Since low dimensional lattices, such as the cycle
graph, do not sustain fast search with the standard algorithm defined by Hamiltonian
(8.2), novel strategies must be envisaged to boost the spatial search on these structures.

We report here the success probability of the standard search algorithm on the cycle
graph to set a benchmark for our approach. The parameter �/� in Eq. (8.2) is the oracle
parameter that we need to optimize to improve the search. In this way, we can compare
the different search strategies, by showing the dynamical quantities of interest in terms
of the re-scaled time �t. If we apply this algorithm to one-dimensional lattices, such as
the cycle graph, the success probability of finding the target does not scale well with the
size of the graph. In figure 8.1.2, we show how the spatial search algorithm performs
in the case of a cycle graph. We compare three different sizes: N = 5, 11, 15. For each
graph, we numerically optimize the oracle parameter and then compute the probability
of finding the target, also called reward function and defined in Eq. (8.23), as a function
of time �t. We see that for already N = 15 the maximum probability of finding the target
is less than 0.5 in the time interval considered.

8.2 Continuous monitoring and Feedback control

8.2.1 Continuously monitored quantum systems

We here provide a very basic introduction to continuously monitored quantum systems.
We refer to the following references [350, 188, 63] for a more detailed introduction and
for the derivation of the formulas provided in this Section.

We assume that the quantum system under exam interacts with a large Markovian
environment described by a train of input bosonic operators baj(t) satisfying the canoni-
cal commutation relation [baj(t0),ba†

k
(t)] = �jk�(t � t0). The interaction with the system is

then given in terms of the time-dependent interaction Hamiltonian

bHint(t) = i
X

j

p
j

⇣
bcjba†

j
(t) � bc†

j
baj(t)

⌘
, (8.4)

in which j represent the coupling strengths, while bcj are operators acting on the sys-
tem Hilbert space (one should also notice that the parameter t in the operators baj(t)
is just a label denoting the time at which each operator is interacting with the quan-
tum system via the Hamiltonian). We also assume that the environmental modes baj(t)
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Figure 8.1.2: Reward function F|0i for the optimized standard algorithm with the projective oracle
for N = 5 (red line), N = 11 (blue dashed line) and N = 15 (orange dotted line). For each size
N , we found the optimal value for the �/� parameter that gives the maximum value of F|0i in
the considered time interval. We obtain the following: for N = 5, �topt = 5.38,�opt/� = 2.24
and the maximum is F|0i(topt,�opt) = 0.91; for N = 11, �topt = 6.23,�opt/� = 1.19 and the
maximum is F|0i(topt,�opt) = 0.60; for N = 15, �topt = 11.28,�opt/� = 0.92 and the maximum is
F|0i(topt,�opt) = 0.44.

can be measured continuously in time, just after the interaction, in order to gain in-
formation on the state of the system itself. Notice that the interaction with the envi-
ronment can be either considered already present, and that some degree of control on
this environment is achievable in order to perform such a measurement, or that such
an interaction can be effectively engineered with the purpose of weakly monitoring the
system. Both these approaches are nowadays pursued efficiently in different physical
platforms, in particular in circuit QED [250, 252, 165, 133, 240] and in optomechanical
systems [344, 297, 296, 226, 336].

It is known that in quantum mechanics a measurement modifies the state of the quan-
tum system that is (directly or indirectly) measured, and that the corresponding condi-
tional state will depend both on the kind of measurement performed and on the outcome
of the measurement. We will focus on continuous homodyne detection of the environ-
mental modes with monitoring efficiencies ⌘j , corresponding to a set of continuous pho-
tocurrents

dy(j)
t

=
p
⌘jjTr

n⇣
bcj + bc†

j

⌘
%c

o
dt + dW (j)

t
, (8.5)

where dW (j)
t

denotes the innovation, that is the difference between the result of the mea-
surement dy(j)

t
and the expected results, and mathematically correspond to independent

Wiener increments satisfying dW (j)
t

dW (k)
t

= �jkdt. The evolution of the quantum state
%c(t) conditioned on the photocurrents dy(j)

t
is then given by the following stochastic
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master equation (SME)

d%c = �i
h
bHs, %

c(t)
i
dt +

X

j

jD [bcj ] %
c(t)dt

+
X

j

p
⌘jjH [bcj ] %

c(t) dW (j)
t

(8.6)

where bHs is the Hamiltonian describing the evolution of the quantum system only, and
where we have introduced the two following superoperators

D [bc] • = bc • bc† � 1

2

�
bc†bc • + • bc†bc

�
, (8.7)

H [bc] • = bc • + • bc† � Tr
�
(bc + bc†)•

 
• . (8.8)

The continuous outcomes of the photocurrents {dy(j)
t

} thus define a particular condi-
tional trajectory for the conditional state of the quantum system. By averaging over
all the possible trajectories, i.e. over all the possible outcomes of the measurements,
we obtain the evolution of the unconditional state %u = traj[%c] that, by exploiting the
property traj

h
dW (j)

t

i
= 0, is desribed by a Markovian master equation in the Lindblad

form

d%u

dt
= �i

h
bHs, %

u(t)
i

+
X

j

jD [bcj ] %
u(t). (8.9)

The evolution of the conditional states described by the SME (8.6) can be equivalently
described via the formula [301, 302]

%c(t + dt) =
cMdy

t
%c(t)cM†

dy
t

+
P

j
(1 � ⌘j)bcj%c(t)bc†

j
dt

Tr
n
cMdy

t
%c(t)cM†

dy
t

+
P

j
(1 � ⌘j)bcj%c(t)bc†

j
dt
o , (8.10)

where we have introduced the family of Kraus operators

cMdy
t
= I � i bHsdt �

X

j

⇣j

2
bc†

j
bcjdt � p

⌘jj bcj dy(j)
t

⌘
, (8.11)

with dy
t
= {dy(1)

t
, ..., dy(K)

t
} denoting the vector of the outcomes of the K mesaurement

channels.
In our protocol we consider an initial pure state and perfect monitoring efficiency, i.e.
⌘j = 1 for all channels. Under these assumptions the conditional evolution is described
by a stochastic Schrödinger equation, or equivalently via the Kraus operators as follows

| c(t + dt)i =
cMdy

t
| c(t)i

q
h c(t)|cM†

dy
t

cMdy
t
| c(t)i

. (8.12)

This will be extensively used in our numerical simulations to generate single trajectories
at each infinitesimal time step.
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8.2.2 Unitary quantum feedback

In addition to conditioning the evolution of the quantum state, the outcomes of the mea-
surement performed can in principle be exploited to further modify the dynamics of the
system. In this respect, here we briefly introduce unitary measurement-based quantum
feedback. The idea is that, once the measurement outcomes dy

t
are obtained, one per-

forms a unitary operation bUfb(t) on the quantum state, typically optimized in order to
achieve a certain goal as, for example, the preparation of a certain target quantum state.

This unitary operation may depend only on the last measurement outcomes, or on
the whole history of outcomes, and thus on the whole trajectory of the conditional state.
In the first instance one talks about Markovian quantum feedback and one can derive
a corresponding Markovian feedback master equation [348, 350]. In this work we will
focus on the second kind of feedback, and thus our feedback strategy will be optimized
by knowing both the last measurement outcomes and the conditional state | c(t)i (and
as a consequence the whole measurement history). In order to obtain the corresponding
evolution, we exploit the formulas involving the Kraus operators.

In particular, if the feedback operation is performed after the measurement, by as-
suming unit measuring efficiency, initial pure states and no-delay between measurement
and feedback, the conditional state at each instant is described via the formula

| fb(t + dt)i =
bUfb
cMdy

t
| fb(t)i

q
h fb(t)|cM†

dy
t

cMdy
t
| fb(t)i

. (8.13)

This formula is particularly useful for our numerical approach where one needs to sub-
stitute the time differential dt with a finite but small time increment�t, while the Wiener
increment dW (j)

t
must be replaced by a Gaussian random variable �W (j)

t
with zero

mean and variance �t. The explicit formula for the finite increments to the measure-
ment records is

�y(j)
t

=
p
jh c(t)|

⇣
bc†

j
+ bcj

⌘
| c(t)i�t +�W (j)

t
. (8.14)

Due to the finite nature of �t, the deterministic identity �W (j)2
t

= �t is no longer satis-
fied, thus corrections must be considered. This is accomplished by adding an extra term,
known as Euler-Millstein correction [302], in the Kraus operators that now read

cM�y
t
= I � i bHs�t

�
X

j

✓
j

2
bc†

j
bcj�t � p

jbcj�y(j)
t

� j

2
bc2
j

⇣
�y(j)

t

2
��t

⌘◆
. (8.15)

This is the operator that will generate each stochastic trajectory according to (8.13).

8.3 Quantum search assisted by feedback

Our idea is to continuously monitor the position of a quantum walker during its evolu-
tion on a cycle graph, and then to use this information to apply feedback unitary opera-
tions as a dynamical oracle with the aim of finding a particular target node. The walker
is initially prepared in the uniform superposition of all nodes of the graph as in Eq. (8.3).



Feedback-assisted quantum search by continuous-time quantum walks 127

The first step is to describe the continuous monitoring. In particular we assume to be
able to couple our system to two different environments via the following jump opera-
tors

bc1 = bx =
N�1X

k=0

cos

✓
2⇡k

N

◆
|kihk| , (8.16)

bc2 = by =
N�1X

k=0

sin

✓
2⇡k

N

◆
|kihk| , (8.17)

whose eigenvalues exactly correspond to the coordinates of the position of the N nodes
of the graph, corresponding to equally spaced points on a unit radius ring centered on
(0, 0) in the (x, y) plane (see Fig. 8.1.1 for cycle graphs with N = 5, 11, 15). By performing
continuous homodyne detections one obtains two photocurrents (8.5) whose average
values are indeed proportional to the the expectation values of the operators bx and by on
the conditional state %c.

We show in Appendix 8.A that the unconditional evolution, corresponding to the
master equation (8.9) with the cycle graph Hamiltonian HS = �L and jump operators
(8.16)-(8.17), leads to a symmetric dephasing-like evolution in the position basis, thus re-
flecting the translation invariance of the graph’s nodes and further validating our choice.
In Appendix 8.B we also mention an alternative choice for the jump operator, i.e. the sin-
gle non-Hermitian jump operator

bc0 =
N�1X

k=0

ei2⇡k/N |kihk| , (8.18)

that satisfies the properties discussed above. We show that the results are comparable
with the one obtained via the two Hermitian jump operators bc1 and bc2.

The second step is to define our feedback strategy. We parametrize the unitary feed-
back operator as

bUfb(✓) = e�i bHfb(✓)dt , (8.19)

where, in general, we assume to have a finite number of control parameters ✓ = {✓k}
corresponding to a set of control operators {bhk}, such that the feedback Hamiltonian
reads

bHfb(✓) =
X

k

✓k
bhk . (8.20)

The definition of the control operators is indeed crucial. Two natural choices can be
considered: the first one is to choose the on-site projectors, i.e.

bh(os)
k

= |kihk|. (8.21)

From a physical point of view, this would mean being able to modify the on-site energies
of graph. However preliminary numerical simulations show that this choice is in general
not efficient. In order to understand why this is the case, one can for example observe
that, being {|ki} eigenstates of the control operators above, if the walker during the
evolution happens to be in a node |k̄i different from the target, the unitary operation
will not be able to change its state and thus the feedback is useless for our purposes.
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The second natural choice is to consider the hopping operators

bh(hop)
k

= |kihk + 1| + |k + 1ihk| , (8.22)

with the usual boundary condition |Ni ⌘ |0i. This set of feedback control operations
represents the ability of individually controlling each coupling between adjacent nodes.
Finally, one needs to decide how to optimize the feedback operation, that is the set of
control parameters ✓, in order to find the target node on the graph. This is typically
done by defining a reward function ⇤(| fbi), that in our case naturally corresponds to
the fidelity between the conditional state after the feedback operation | fbi in Eq. (8.13),
and the target state (that we will hereafter denote as |0i), i.e.

⇤
�
| fb(t)i

�
= F|0i

�
| fb(t)i

�
= |h0| fb(t)i|2. (8.23)

We will thus choose the parameters ✓ as the ones maximizing the fidelity at each step of
the trajectory. The same figure of merit will be then used in order to assess the perfor-
mance of our protocol. We will indeed numerically evaluate

F |0i = traj[F|0i(| fb(t)i)] , (8.24)

that is the fidelity averaged over all the possible trajectories conditioned by the continu-
ous monitoring.

8.4 Results

In the following, we present our main results, dividing them in three different settings:
in Sec. 8.4.1 we address the numerical optimization of the feedback operation with un-
bounded control parameters, that is without posing any bound on the search domain for
the parameters {✓i}. Then, in Sec. 8.4.2 we consider numerical optimization of the feed-
back but with a bounded domain, that from the physical point of view may represent
constraints on the physical implementation of the feedback operations. In Sec. 8.4.3 we
study the case of digital feedback [295], in which the value of the feedback couplings are
not only bounded, but can take values only from a discrete set (one should notice that
unlike previous examples of digital feedback [295], we still have a continuous measure-
ment output, and only the feedback operations are discrete). In all these examples we
consider the system initially prepared in the quantum state defined in Eq. (8.3), corre-
sponding to the uniform superposition over the N nodes of the graph.

The algorithm we used to numerically optimize the feedback couplings is provided
by the SciPi library, and in particular the scipy.optimize.minimize function
[312]. The method used for the different strategies are the following: for the unbounded
optimization (Sec. 8.4.1) we use the BFGS method; for the bounded optimization (Sec.
8.4.2) we used the L-BFGS-B method. Differently, the method used for digital feedback
(Sec. 8.4.3) is a brute force one, i.e. we consider all the possible combinations of the finite
discrete values and we select the optimal one.

We remark that we have also investigated the scenario with a single feedback Hamil-
tonian controlling collectively all the couplings via a single parameter ✓, i.e. via the
Hamiltonian

bHfb = ✓
X

k

bh(hop)
k

. (8.25)

However, as we show in Appendix 8.C, this kind of feedback is not particularly efficient
for our purposes.
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F |0i

Figure 8.4.1: Results for multiple feedback control Hamiltonians bh(hop)
k

defined in Eq. (8.22). (a):
average reward function F |0i as a function of time (black dashed line: threshold F th = 0.95).
(b1) � (b4): averaged feedback couplings ✓̄k, corresponding to the kth Hamiltonian in (8.20): (b1)
and (b3): short time behavior; (b2) and (b4) time-asymptotic behavior. Red line: N = 5; blue line:
N = 11; orange line: N = 15. Other parameters: ⌘ = 1, dt = 0.01, number of stochastic trajectory
Ntj = 5000.

8.4.1 Numerical optimization with unbounded controls

We here show the results of our protocol when considering a feedback operation via
the control operators introduced in Eq. (8.22) and optimized control parameters {✓k}
with unbounded domain. A remark is in order here: the first attempt we have pursued
was to follow the approach described by Martin et al. in [364, 234], where the feedback
operation is assumed to be infinitesimal, i.e. via couplings written as

✓ dt = AdW + B dt , (8.26)

where ✓ = (✓1, . . . , ✓K)T is the vector of the feedback couplings, dW = (dW (x)
t

, dW (y)
t

)
is the vector of the Wiener increments describing the measurement, while A and B are
respectively a (N ⇥ 2)-dimensional matrix and a 2-dimensional vector describing the
feedback strategy. The optimization in this scenario could be done analytically if some
conditions are fulfilled, as described in [234] (see Appendix 8.C for further details on this
method). However for our problem we verify that these conditions are never satisfied
and thus a numerical optimization with unbounded couplings has to be performed.

The results are depicted in Fig. 8.4.1 for N = 5, 11, 15, where we observe that the
protocol is particularly efficient in reaching the target state. In order to quantify the effi-
ciency of our protocol, we fix a threshold value for the average fidelity F th = 0.95, such
that whenever the reward function is larger than this threshold value, the target search
is considered successful. This efficiency decreases as the size of the graph increases, al-
though the threshold value is reached on rather small time scales �t < 1. This is a great
improvement with respect to the performance of the standard quantum spatial search al-
gorithm, reported in Sec. 8.1, where the success probability never reaches the threshold
value (see Fig. 8.1.2 for a comparison).

In Fig. 8.4.1 we also consider the average feedback coupling ✓̄0 between nodes |0i
and |1i and the coupling ✓̄1 between nodes |1i and |2i (see Fig. 8.1.1 for reference):
after an initial transient, the average value of the feedback couplings reaches an asymp-
totic value, meaning that the feedback operation is stable after having reached the target
node. We notice that the average coupling ✓̄0, between nodes |0i and |1i, tends to the
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asymptotic value ✓̄0 ! ��. In fact, when the protocol has almost localized the walker
in the desired node, the role of the feedback is to try to stop the dynamics by nullifying
the corresponding couplings in the Hamiltonian. We have also numerical evidence that,
within numerical noise, the average feedback couplings are symmetric with respect to
the x-axis, i.e. ✓̄0 = ✓̄N�1, ✓̄1 = ✓̄N�2, etc., in the configuration in which the target node
is placed in (1, 0), see Fig. 8.1.1.

The average feedback couplings reported in Fig. 8.4.1 show however large fluctu-
ations, especially ✓̄1, suggesting that in some trajectories larger values of the optimal
couplings are chosen by the optimization algorithm. We propose two possible justifica-
tions for this behaviour: i) the first one is based on the stochasticity of the single random
trajectory, i.e. there might be a time-step in which the measurement project the state
far away from the target node, and thus a large correction is needed; ii) the second one
is based on the shape of the landscape functions of the feedback couplings for a single
trajectory. One can indeed observe that these landscape functions are periodic and thus
have many local and equal maxima that can be reached by different values of the feed-
back couplings. The large fluctuations thus may arise from the fact that the algorithm
does not always choose the maximum in the neighbourhood of the maximum found
at the previous step (further details on the couplings’ landscape functions are given in
Appendix 8.D).

8.4.2 Numerical optimization with bounded controls

As we have seen in the previous Section, not only numerical optimization of the feed-
back strategy is necessary, but also large absolute values of the feedback couplings might
be needed to perform an efficient search. Hence, to test the limits of our protocol, we con-
sider the case where the feedback couplings ✓ belong to a bounded domain. In this case
each ✓k can take values from the interval [�⇠�, ⇠�], where we introduced the bounding
(dimensionless) parameter ⇠ that quantifies the range of values admitted for the feed-
back couplings ✓. We consider the bounding parameter ⇠ � 1. We have indeed numer-
ical evidence that for ⇠ < 1, that is for feedback couplings smaller than the Laplacian
parameter �, the protocol fails. As we noticed in the example above, once the walker has
been localized over the target the role of the feedback is to stop the dynamics and this
effect cannot be achieved efficiently if in general |✓0| < �.

The numerical results are provided in Fig. 8.4.2 for N = 11 (the results are qualita-
tively similar also for N = 5 and N = 15), and for different values of ⇠ ranging between
⇠ = 1 and ⇠ = 100. As expected, as ⇠ grows, the efficiency of the protocol improves,
i.e. the minimum time tth required to reach the threshold F th decreases on average.
Moreover, even for small values of ⇠, this protocol is able to identify the target node with
higher probability than the standard quantum algorithm in the same time interval, see
again Fig. 8.1.2.

The decreasing of the optimal time �tth for increasing values of ⇠ can also be seen
from Fig. 8.4.3, where we plot the ratio of �tth/F th, a quantity that corresponds to the
effective time necessary to reach the target on average [79]. We observe that this quantity
in general quantitatively depends on the chosen threshold value F th but it gives always
the same qualitative behaviour. We see that above a certain value of ⇠, the ratio reaches a
minimum asymptotic value. Larger values of ⇠ are necessary to reduce the effective time
�tth/Fth when the size N is increased. From Fig. 8.4.2 and 8.4.3, we notice that the order
of magnitude of the tth is larger if compared with the one obtained for the unbounded
feedback (see Fig. 8.4.1).

In Fig. 8.4.2 we also report the average values of the feedback couplings ✓̄0 and
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F |0i

Figure 8.4.2: Results for multiple feedback Hamiltonians bh(hop)
k

with bounded control parameters
✓ and for a graph with N = 11 nodes. (a): average reward function F |0i as a function of time
(black thick line: threshold F th = 0.95); (b) and (c): average feedback coupling ✓̄0 and ✓̄1 respec-
tively, as a function of time (short time behavior). Insets: average feedback coupling ✓̄0 and ✓̄1 for
a larger time t (asymptotic behavior). In all plots we used ⇠ = 1 (red thick line), ⇠ = 5 (blue dot-
dashed line) ⇠ = 50 (orange dashed line), ⇠ = 100 (purple dotted line), ⌘ = 1, dt = 0.01, number
of stochastic trajectories Ntj = 5000.
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�tth
F th

Figure 8.4.3: Plot of �tth/F th as a function of the bounding parameter ⇠ for different graph sizes:
N = 5 (red line) N = 11 (blue line) and N = 15 (orange line). The value tth is the time at which
the F th = 0.95 is reached on average. By changing the value of the threshold parameter F th the
qualitative behavior of the curves does not change and the values obtained for different ⇠ have the
same order of magnitude. We used the same data and the same set of parameters of Fig. 8.4.2.
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�tth �tth

Figure 8.4.4: Single trajectory for the multiple-feedback Hamiltonian protocol with bounded do-
main. (a): reward function F|0i(•) as a function of time for N = 5, ⇠ = 1 (red line) and N = 11,
⇠ = 5 (blue line). In this case, we have respectively �tth = 1.80 and �tth = 2.23, highlighted by
the red circles. (b): feedback couplings ✓ dt as a function of time for the N = 5 trajectory: Red line:
✓0; Blue line: ✓1; Orange line: ✓2; Purple line: ✓3; Green line: ✓4. (c): feedback couplings ✓ dt as
a function of time for the N = 11 trajectory: Red line: ✓0; Blue line: ✓1; Orange line: ✓2. All the
other feedback couplings are null (apart for some numerical noise of order 10�8) and we do not
report them here. In (b) and (c) the vertical dashed line corresponds to the threshold time �tth of
the single trajectory. The parameters considered are ⌘ = 1 and dt = 0.01.

✓̄1. Differently from the unbounded controls scenario, here the noisy fluctuations are
much smaller (again, for a more detailed discussion, we refer the reader to Appendix
8.D), and we have numerical evidence that the time behaviour of ✓̄0 and ✓̄1 is equal
to their symmetric counterpart ✓̄10 and ✓̄9. The qualitative behavior of ✓̄0 is the same
also for the other values of N and ⇠ considered: after a first positive peak, it follows a
minimum and then a second maximum, which is smaller than the first, and eventually it
tends to the finite asymptotically value ✓̄0 ! ��, confirming our previous intuition. The
situation is slightly different for ✓̄1, where for N = 11 and N = 15 there is a sequence
of minima and maxima which asymptotically tend to a value close to 0 while for N = 5
the asymptotic values remains positive. This behaviour leads to the observation that, for
smaller graphs, the couplings ✓1 and ✓N�2 are more relevant with respect to graphs with
a larger size. The other feedback couplings are not particularly interesting, since their
average is approximately 0 everywhere, so we decide to not report them.

So far we have discussed only averaged results on a large number of trajectories. To
understand in detail the behavior of the protocol, in Fig. 8.4.4 we report the results for
a single stochastic trajectory with bounded domain for N = 5 with ⇠ = 1 and N = 11
with ⇠ = 5. During the transient evolution, when the feedback is driving the walker to
the target node |0i, the value of the reward function is particularly affected by the mea-
surement. After reaching the threshold value, the feedback operation tries to keep the
walker into the target vertex. However, the stabilization procedure is not given by con-
stant values of the feedback couplings. Similar to what we have previously discussed,
this means that corrections are necessary also after having reached the target state with
high fidelity. These corrections are responsible for the noise we see in the averaged feed-
back couplings reported in Fig. 8.4.2. By inspecting the single trajectories, we also notice
that most of the values taken by ✓ during the evolution are either equal to 0 or to ±�. So
it is worth exploring a scenario where the feedback couplings ✓ belong to discrete set of
possible values.
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Figure 8.4.5: Digital feedback control for N = 5. Left panel: three possible value of the control
parameters: {0,±�}. Right panel: five possible value of the control parameters: {0,±�,±⇠�} with
⇠ = 5. Main plot: averaged fidelity F |0i as a function time. Inset: averaged feedback couplings
✓ as a function of time: Red line: ✓0; Orange line: ✓1; Blue line: ✓2; Purple dashed line: ✓3; Green
dashed line: ✓4. The red and the green line are superposed, as well as the the orange and the
purple. The number of trajectories is Ntj = 5000, and the parameters considered are ⌘ = 1 and
dt = 0.01.

8.4.3 Numerical optimization with digital feedback control

We now explore a digital feedback protocol, where the feedback control parameters ✓

are picked, at each time step, from a discrete number of values. We study this strategy
only for a cycle graph of order N = 5 since the numerical algorithm we employed is
particularly demanding.

First, we consider only three possible values for the couplings ✓k, belonging to the
set {0, ±�}. In this case the optimization algorithm explores all the values of the reward
function for all the possible combinations that the five feedback couplings ✓ may realize
(53 = 125 possible combinations), and select the one that realizes the maximum F|0i(•).
In the left panel of Fig. 8.4.5 we report the results obtained by repeating this algorithm
at each step and averaging over Ntj = 5000 trajectories. We see that the threshold value
of Fth is reached for a time �tth = 6.40, which is slightly larger than the value obtained
via the continuous bounded protocol �tth = 6.39. Regarding the feedback couplings ✓,
their average values oscillate in the transient time, and after the threshold time tth, they
stabilize around asymptotic values. We found that approximately ✓̄0 = ✓̄4 = ��, while
✓̄1, ✓̄2 and ✓̄3 correspond in general to positive values.

Then, we consider five possible values for the feedback couplings ✓k, belonging to
the set {0, ±�, ±⇠�}, with ⇠ playing the same role of the bounding factor we introduced
before. Here, we may consider the two extra switchers as a boosted feedback operation,
i.e. a larger coupling strength than the standard �. In this case, the number of possible
combination increase and it is equal to 55 = 3125. The averaged results are reported in
the right panel of Fig. 8.4.5 for ⇠ = 5 and for Ntj = 5000 trajectories. The threshold
value is reached, on average, by the time �tth = 1.12, which in this case is slightly
smaller than the continuous-bounded protocol threshold time �tth = 1.24. This result
is indeed unexpected since the digital feedback is an instance of the strategies allowed
by the continuous bounded domain. This suggests that all the algorithms we employed
for the optimization of the continuous bounded domain are not particularly efficient in
finding the optimal values of the parameters ✓, while the brute-force spanning algorithm
we considered in this Section cannot fail, as all the possible combinations are tested.

The averaged values of the feedback couplings reported in the inset of Fig.s 8.4.5
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show that the extra switchers are considerably used in the initial stage of the evolution.
As time increases, also in this case the values of ✓̄0 and ✓̄4 reach the asymptotic value of
✓̄0 = ✓̄4 = ��. The other couplings, instead, reach an asymptotic value larger than one
and are particularly noisy. This is a sign that, in each trajectory, the walker dynamics
must often be corrected by the boosted positive feedback couplings.

8.5 Conclusions

The ability to control or manipulate the dynamics of a quantum walker over a network
is important for the development of quantum computation, quantum algorithms and
simulations. In this work we proposed a new protocol for searching a target node over
a cycle graph by means of a continuous-time quantum walk. The CTQW interacts with
environmental bosonic modes that are continuously monitored and then a proper feed-
back operation is applied to drive the walker toward the target state. The feedback thus
plays the role of a dynamic oracle, able to recognize the marked vertex and to change
the values of the couplings between the nodes. In this work we analyzed and compared
the performances of three different feedback strategies. In the first one, we optimized
the feedback couplings without posing any bound on their values; then we considered
the case of bounded control, by introducing a bounding parameter ⇠; finally, we studied
the case of digital feedback, where the optimal couplings were picked from a discrete set
of values.

We show how all the three strategies are able to localize the walker on the target
node, with higher probability with respect to the quantum spatial search algorithm with
a projective oracle. In particular, as expected, the minimum time necessary to reach a
threshold target fidelity is lower in the unbounded case, while the continuous bounded
control and the digital feedback strategies achieve similar results. Furthermore, for all
considered strategies, we show that once the target vertex is reached, the feedback oper-
ates to keep the walker in this position. This is an important difference with respect to
standard spatial search protocols [94, 279], where the target is found, with higher proba-
bility, at a specific time or in a very narrow time window. The implications are relevant,
especially at the experimental and operational level, as in our protocol one does not need
to perform the final position measurement at a specific time, but rather at any time larger
than the known threshold.

Concerning possible implementations of our scheme, we mention the cold-atom plat-
form, where several realizations of continuous-time quantum walks have been proposed
[281, 239]. Recently it has been demonstrated how one can also achieve rapid reconfig-
urability of the network parameters by combination with optical tweezers [359]. More-
over promising steps towards continuous monitoring of observables in this framework
have been put forward [210]. Although in this work we focus on the cycle graph, our
scheme can be, in principle, generalized to more general topologies with appropriate
adaptations both in the feedback operations and system dynamics, i.e. respectively by
changing the feedback Hamiltonian and the system-environment coupling.



Appendix

8.A Unconditional master equation and the monitoring operators bcj
In this appendix, we provide some details regarding the choice of the jump operators in
Eq.s (8.16)–(8.17). We recall that the evolution of an unconditional state is described by
the following master equation

d%u = �i�[L, %u(t)]dt + 
X

j

D[bcj ]%
u(t)dt , (8.27)

where {bcj} is the set of jump operators describing the coupling of the system’s degrees
of freedom with the surrounding environment, and L denotes the Laplacian operator
characterizing the quantum walk defined in Sec. 8.1. Since the cycle graph is symmetric
under translations of the node’s index and all nodes are equivalent, we expect an un-
conditioned dynamics to reflect this invariance. We will show how this requirement sets
some constraints on the choice of bcj .

Since our goal is to monitor the position of the walker, one may consider to start with
any operator diagonal in the position basis {|ki}, such as for example

bcK = bK =
N�1X

k=0

k|kihk| . (8.28)

Physically, each node couples with the bosonic operator of the external field and this
coupling is proportional to the index of the node itself. The unconditioned dynamics in
(8.27) for an initially equally superposed state given in Eq. (8.3) would eventually lead
to a maximally mixed state at long times, as one expects. However, as we show in Fig.
8.A.1, during the time evolution, one observes that the symmetry of the graph is lost,
as the different probabilities pk(t) = hk|%u(t)|ki have different behaviours in time. The
reason behind the broken symmetry is that one has to fix the node having eigenvalue
k = 0.

Indeed, with a single real jump operator diagonal in the position basis, it is not possi-
ble to have an unconditioned dynamics that preserve the cycle symmetry. There are two
possible ways to circumvent this problem: the first is to consider a non-Hermitian jump
operator

bc0 =
N�1X

k=0

ei2⇡k/N |kihk|. (8.29)

135
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Figure 8.A.1: Time-evolution of diagonal elements of the unconditioned density matrix pk =
hk|⇢u(t)|ki in the position basis for the unconditioned dynamics (8.27) in a cycle graph with N = 5
and  = �. Pair of jump operators bc1 and bc2 in Eqs. (8.16) and (8.17) or single non-Hermitian jump
operator bc0 in Eq. (8.29): black dashed line p0 = p1 = p2 = p3 = p4 = 1/5. Single jump operator
bcK in Eq. (8.28): green dot dashed line: p0(t); red line p4(t); purple dot dashed line: p1(t); orange
line p3(t); blue dashed line: p2(t). The initial state is the uniform superposition of all nodes of the
graph as in Eq. (8.3).

The second way is to use two jump operators, each diagonal in the position basis, like
the one given in Eqs. (8.16)–(8.17). As remarked in the main text, the eigenvalues of
these operators correspond to the coordinates of the nodes in the (x, y)-plane.

We now discuss the evolution corresponding to the unconditional dynamics for the
three choices of jump operators. In Fig. 8.A.1 we report the probabilities pk(t) =
hk|%u(t)|ki of the diagonal element of the density matrix in the position basis under the
master equation (8.27). We see that, both with the non-Hermitian jump operator (8.29)
or with the pair of jump operators (8.16) – (8.17), the probabilities pk(t) are constant in
time, and thus describe a proper pure dephasing evolution, keeping the nodes popula-
tions constant and preserving the node symmetry. This instead is lost in the evolution
with the single jump operator in (8.28).

One can also show that the two unconditioned dynamics that preserve this sym-
metry are not equivalent. This can be seen by looking at the off diagonal elements
%ij(t) = hi|%u(t)|ji. In fact we first observe that the absolute values of these off-diagonal
elements have an identical behaviour as a function of time for the same choice of the
coupling constant , leading to the same mixed steady-state diagonal in the position ba-
sis. However a different behaviour is observed if we focus on the imaginary and real
parts of these quantities. Just as an example, in Fig. 8.A.2 we report their evolution for
the element %01(t). While for the pair of jump operators (bc1,bc2) the imaginary part is al-
ways equal to zero, and the real part decreases exponentially to zero, for the single jump
operator bc0, one observes damped oscillations for both quantities.

In the main text we have focused on the evolution due to the pair of jump operators
bc1 and bc2, as their eigenvalues directly correspond to the coordinates of the walker po-
sition. In this sense one could think to be able to couple the walker to two independent
environments via quantum non demolition-like interactions, in order to perform contin-
uous monitoring of these observables. In this sense this choice is the one that, in our



Feedback-assisted quantum search by continuous-time quantum walks 137

Figure 8.A.2: Real (red lines) and imaginary (blue lines) parts of the off-diagonal element %01(t)
for the unconditioned dynamics (8.27) in a cycle graph with N = 5 and  = � for the single jump
operator bc0 (dashed lines) and for the pair of jump operators (bc1,bc2) (solid lines). The initial state
is prepared in the uniform superposition of all nodes of the graph as in Eq. (8.3).

opinion, better fits the description in terms of continuous monitoring. However in the
next Appendix we show that similar results are obtained by considering the dynamics
with a single jump operator bc0 and with continuous heterodyne detection.

8.B Results for the single complex jump operator bc0

In this appendix, we report the results of the bounded feedback protocol with the non-
Hermitian jump operator bc0 given in Eq. (8.29), analysing the reward function (8.23) for
a single case of study, analogously to Fig. 8.4.2.

In this scenario, we can still obtain two distinct photocurrents yielding information
on the pair of position operators (bx, by) by performing an heterodyne detection instead
of two homodyne detections. In fact, in this case, one has two photocurrents given by
[350, 151]

dy(1)
t

=

r
⌘

2
Tr
h⇣
bc0 + bc†

0

⌘
%c

i
dt + dW (1)

t

=
p

2⌘Tr [bx%c] dt + dW (1)
t

(8.30)

dy(2)
t

=

r
⌘

2
Tr
h⇣

�ibc0 + ibc†

0

⌘
%c

i
dt + dW (2)

t

=
p

2⌘Tr[by%c]dt + dW (2)
t

(8.31)

where dW (1)
t

and dW (2)
t

denotes two independent Wiener increments. As explained in
Sec. (8.2), the evolution of the conditional state %c(t + dt), described by Eq. (8.10), is
determined by a single Kraus operator, that for an heterodyne detection can be written
as

cMdy
t
= I � 

2
bc†

0bc0dt +

r
⌘

2
bc0

⇣
dy(1)

t
� idy(2)

t

⌘
. (8.32)
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Figure 8.B.1: Comparison between the average reward function F |0i for multiple feedback Hamil-
tonians bh(hop)

k
with the single non-Hermitian jump operator bc0 (solid) and the protocol with two

jump operator (thick) already reported in Fig. 8.4.2. We consider bounded control parameters ✓
and a graph with N = 11 nodes. Black dashed line: threshold F th = 0.95). We used ⇠ = 1 (red
line), ⇠ = 5 (blue line) ⇠ = 50 (orange line), ⇠ = 100 (purple line),  = �, ⌘ = 1, �dt = 0.01,
number of stochastic trajectories Ntj = 5000.

By looking at the two photocurrents, we can use the same algorithm we used in the main
text to drive the walker to the target node.

In Fig. 8.B.1 we report the behavior of the average reward function for the multiple
feedback Hamiltonians protocol described in Sec. 8.3 and with bounded domains. The
results reported are comparable with the one obtained in Fig. 8.4.2, meaning that the
two protocols have similar performances. In particular we observe that the curves at
fixed ⇠ are almost coincident, except for the case of ⇠ = 1. We may thus conjecture that
in general the two strategies corresponding to the different jump operators lead to the
similar results, but for small ⇠ and for the jump operator bc0 the algorithm implemented
does not find the optimal feedback strategy, leading to smaller values of the average
fidelity.

8.C Unitary Feedback: analytic expression of the feedback couplings

In this appendix we provide a detailed and analytical derivation for the expression of
the feedback couplings in the case of a single feedback Hamiltonian, assuming that they
are of the order of dt and dWi, by following the results presented in [234].

In the interaction picture, the conditioned evolution for the density matrix due to dM

measurements is given by Eq. (8.6), and can be recasted as

%c(t + dt) = %c(t) +
p


dMX

i=1

H[bci]%
c(t)dWi+

+
dMX

i=1

D[bci]%
c(t)dt, (8.33)

where the superoperator D[bci]• and H[bci]• are defined in Eq. (8.7) and (8.8) respectively.
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As explained in the Sec. 8.3, our feedback Hamiltonian is identified with the adja-
cency matrix and is written as

bHfb(✓) = ✓
N�1X

i=0

bh(hop)
i

, (8.34)

with bh(hop)
i

defined in (8.22). The single-feedback Hamiltonian protocol proposed here
is nothing but the multiple-feedback protocol in which the single couplings change syn-
chronously and with equal strength. Here we assume that the expression for the feed-
back coupling ✓ for the step t + dt can be expanded as a linear function of the Wiener
increments and the time-step

✓̃ = ✓ dt =
2X

k=1

AkdW (k)
t

+ Bdt , (8.35)

with A = {A1, A2} and B are respectively a 2-dimensional real vector and a real number.
Then, the unitary evolution due to the feedback can be written as

bU = exp
n

�i bHfb(✓) dt
o

= exp

(
�ibhfb

2X

k=1

AkdW (k)
t

� ibhfb Bdt

)
, (8.36)

where we have introduced the single feedback operator bhfb =
P

N�1
i=0

bh(hop)
i

. The Taylor
expansion of such operator up to first order in dt is obtained

bU = I � ibhfb

2X

k=1

AkdW (k)
t

� ibhfb Bdt � 1

2
bh2

fb

2X

k=1

A2
i
dt. (8.37)

From the latter expression, we can derive the infinitesimal evolution after the feedback
(remember that dW (i)

t
dW (j)

t
= dt�ij) as

%f

✓̃
(t + dt) = bU%c(t + dt)bU † = %f

✓̃
(t) +

p


2X

i=1

H[bci]%
f

✓̃
(t)dW (i)

t
+ (8.38)

+ 
2X

i=1

D[bci]%
f

✓̃
(t)dt � i

h
bhfb, %

f

✓̃
(t)
i 2X

i=1

AidW (i)
t

(8.39)

� i
p

h
bhfb, H[bci]%

f

✓̃
(t)
i 2X

i=1

Aidt � i
h
bhfb, %

f

✓̃
(t)
i
Bdt+ (8.40)

+
2X

i=1

A2
i
D[bhfb]%

f

✓̃
(t)dt = (8.41)

= %f

✓̃
(t) +

2X

i=1

cWi dW (i)
t

+

 
2X

i=1

bTi � i
h
bhfb, %

f

✓̃
(t)
i!

Bdt, (8.42)

where in the last passage we have grouped the differential factors together and defining
the superoperators

cWi =
p
H[bci]%

f

✓̃
(t) � iAi

h
bhfb, %

f

✓̃
(t)
i

(8.43)

bTi = D[bci]%
f

✓̃
(t) � i

p
Ai

h
bhfb, H[bci

i
%f

✓̃
(t)] + A2

i
D[bhfb]%

f

✓̃
(t) (8.44)
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To obtain the value of A and B which determines the feedback operation at each time-
step, we require that the derivative of the linear reward function ⇤(%(t)) with respect to
✓̃ at the following time step of the evolution

G(t + dt) =
@

@✓̃

⇣
⇤
⇣
%f

✓̃
(t + dt)

⌘⌘ ����
✓̃=✓̃opt

= ⇤

 
@

@✓̃
%f

✓̃
(t + dt)

����
✓̃=✓̃opt

!
(8.45)

satisfy the extremality condition
G(t + dt) = 0. (8.46)

In addition, since we are interested in maximizing ⇤(•), we ask also that the second
derivative of the reward function is negative, i.e.

V = ⇤

 
@2%f

✓̃
(t + dt)

@✓̃2

����
✓̃=✓̃opt

!
< 0 (8.47)

which ensures that the feedback operation maximize the reward function. To find the
solution, we first evaluate

@
✓̃
%f

✓̃
(t + dt) = i

h
bHfb(✓), %

f

✓̃
(t + dt)

i
. (8.48)

Then, the condition (8.46) can be expanded as follows

G(t + dt) = �i⇤
⇣h
bhfb, %

f

✓̃
(t)
i⌘

� i
2X

j=1

⇤
⇣h
bhfb, cWj

i⌘
dW (j)

t
� (8.49)

� i
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bhfb, bTj
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� iB⇤

⇣h
bhfb,

h
bhfb, %

f

✓̃
(t)
ii⌘
1

A dt (8.50)

Now, the first term in the latter equation is null since we assume that at the previous
time step the reward function satisfy the extremality condition. Then, considering the
terms proportional to dW j

t
we have that ⇤([bhfb, cWj ]) = 0 for j = 1, 2, which is nothing

but

Aj = �i
p


h0|
h
bhfb, H[bcj ]%

f

✓̃
(t)
i
|0i

h0|
h
bhfb,

h
bhfb, %

f

✓̃
(t)
ii

|0i
(8.51)

where we have considered as reward function the one defined in (8.23), i.e. ⇤(•) =
h0| • |0i. With the same line of reasoning, taking the term proportional to dt we can
obtain the scalar function

B = �i

P2
j=1h0|

h
bhfb, bTj

i
|0i

h0|
h
bhfb,

h
bhfb, %

f

✓̃
(t)
ii

|0i
, (8.52)

We notice that these equations are valid if h0|[bhfb, [bhfb, %
f

✓̃
(t)]]|0i 6= 0, a condition that

must be checked at each step of the feedback operation.
In addition, the condition for maximizing the reward function at each time can be

simply written as
V|0i(t + dt) = �i[bhfb, [bhfb, %

f

✓
(t + dt)]] < 0. (8.53)
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Figure 8.C.1: Single-feedback Hamiltonian protocol with bHF defined in Eq. (8.34) for Ntj = 5000
trajectories and parameters ⌘ =  = 1 and dt = 0.01. (a): average reward function F̄|0i with
respect to the target state as a function of time t. Dashed line: threshold fidelity Fth. (b): average
of the second derivative V̄ defined in Eq. (8.47) as a function of time t. Red line N = 5; Blue line
N = 11; Orange line N = 15.

If this condition fails, we chose not to act with the feedback operation and skip to the
next time-step, even though numerical evidence shows that this situation rarely occurs.

The numerical results of this protocol are reported in Fig. 8.C.1, left panel. The aver-
age fidelity F |0i for Ntj = 5000 trajectories for three different values of N = 5, 11, 15. As
the size increases, the efficiency of the protocol worsens. Moreover, it never reaches the
threshold value F th

|0i
.

In the right panel of 8.C.1 we report the average value of the second derivative, i.e.
V |0i = Etraj [V|0i(t+dt)]. The results obtained show that the feedback operation is always
optimal on average at each time step. However, since the threshold value F th

|0i
is never

reached, we conclude that the single-feedback Hamiltonian is inefficient in achieving
the targeting goal, even though the feedback coupling ✓, found according to Eq. and
(8.51) and (8.52), is the optimal one. In addition, the absolute values of V decrease as N
increases, showing that the efficiency of the protocol worsens as the size increases, as we
have already observed in the main text for the multi-coupling feedback Hamiltonian.

8.D Shape of the landscape for the reward function F|0i

In this section, we discuss some details regarding the landscape of the reward function
F|0i for the protocol used in the main text, i.e. with the pair of jump operators given in
Eqs. (8.16)–(8.17). The aim is to provide an heuristic argument for the large fluctuations
we observe in the average feedback couplings in the unbounded domain, (see Fig. 8.4.1).

The landscape is, by definition, a function of the domain of the reward function
(which is R

N , with N is the size of the cycle graph, i.e. the number of feedback cou-
plings); for this reason it is not possible to plot the full landscape even for the smallest
case we considered, i.e. N = 5. Nonetheless, driven by the numerical results obtained in
the main text and by symmetry considerations, we can restrict the domain of our anal-
ysis. Considering the notation of Fig. 8.1.1, we can assume that ✓0 = ✓4 and ✓1 = ✓3,
as confirmed by the results shown in Fig. 8.4.1, where we can clearly see this symmetry,
up to some fluctuations. We further assume that ✓2 = 0, which is supported by numeri-
cal results in both the unbounded and bounded case, even though we did not reported
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Figure 8.D.1: Landscapes for the reward function F|0i in a single trajectory at different time step.
Panels (a)� (e) are the landscapes, panel (f) is the evolution of the reward function as a function
of �t. Comparing the two, we see the changes in the landscape as soon as the reward function
increase. The parameters considered are N = 5, ⇠ = 1,  = �, �dt = 0.01, ⌘ = 1. Please notice that
the algorithm see only a smaller square of the values reported, as explained in Appendix 8.D.

them explicitly in the main text. In this way, we can now picture the landscape as a 3D
function with two free feedback couplings, ✓0 and ✓1.

The landscapes for a single trajectory and at different times are reported in Fig. 8.D.1,
with N = 5 and ⇠ = 1, which is the smallest domain we have studied. Please, no-
tice that the landscape in the figure is plotted for a larger domain, i.e. {✓0/�, ✓1/�} 2
{[�10, 10], [�10, 10]}. This means that the bounded algorithm is going to pick values in
a smaller square centered in the 3D plots we have reported. We show this larger domain
to illustrate why smaller domains (i.e. smaller ⇠) leads to a slower increase of the average
fidelity: one indeed observes that the maxima of the reward function are not accessible
if ⇠ is smaller than a certain threshold. We also stress that the algorithm that drives the
walker does not assume that the angles are equal, i.e. ✓0 = ✓4 and ✓1 = ✓3 and ✓2 = 0.

The landscapes reported in Fig. 8.D.1 show an oscillatory shape without a single
global maximum but with many local maxima with the same height. This means that
when the domain is enlarged (or even unbounded), at each step the algorithm might
found a maximum outside the neighbourhood of the maximum found at the previous
step. In the case of an unbounded domain, the periodicity of the landscape allows the
algorithm to find maxima at very large values of the feedback coupling, which gives rise
to the large fluctuations in the average feedback couplings in Fig. 8.4.1. To circumvent
the problem, one could consider an algorithm in which, at each step, the feedback cou-
plings are allowed to change in a small neighbourhood around the optimal value found
at the previous step. We leave this to future investigations but we believe that this pro-
tocol should not substantially change the performance of the one used but should solve
the large fluctuations problem we have observed.
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CHAPTER 9

Concluding remarks and future perspectives

This PhD thesis has been devoted to the study of quantum information theory, more
specifically quantum metrology and quantum feedback. We have focused our theoretical
investigations on finding the resources, the limits and the optimal protocols to sense and
control quantum systems. Besides fundamental interests, we believe that our results can
pave the way to potential new applications in the field of quantum sensing and quantum
control.

In Chapter 4, we characterized quantum thermometers in terms of their topological
features. We identified two topological quantities that fully characterize their sensitivity,
quantified by the QFI and a position-measurement FI. These are the algebraic connectiv-
ity g1 for low temperatures, and the number of edges M for the high ones. We have also
recognized coherences as a key element for achieving higher precision. Similar conclu-
sions have been drawn in Chapter 5, but for an out-of-equilibrium probe. Again, coher-
ences, rather than non-local correlations, proved to be the crucial resource for enhancing
the probability of success in temperature discrimination. In the pure dephasing model
studied, maximally coherent probes always outperformed entangled preparations. Fur-
thermore, the possibility of measuring the probes during the transient opens up the pos-
sibility of outperforming the equilibrium discrimination.

Then, our interest turned to the theory of multi-parameter estimation. In Chapter 6,
we addressed the joint estimation of parameters in a non-linear medium using Gaussian
probes. In particular, we aimed to estimate the strength � and the order ⇣ of the non-
linearity. Remarkably, we proved that the statistical model is asymptotically classical,
and as a result, no quantum noise coming from measurement incompatibility is present.
The main consequence is that we can implement the optimal measurement at the single-
copy level, and there is no need for collective measurements. In this way, we were able
to focus our attention on another level of optimization: state preparation. This yielded
the ultimate bound on the estimation precision, in which we have carried out the opti-
mization at every possible level under experimental control, i.e. measurement and the
initial state of the system. We showed that optimal probes for simultaneous estimation
are not the same, providing an example of probe incompatibility. On the other side, the
analysis showed that the optimal state for the joint estimation is not too much different
from the two obtained for individual estimation. In particular, the squeezing ⇠ proved to
be a resource, both in the individual and joint estimation. However, the optimal amount
of squeezing must be tuned, given a fixed amount of energy.

In Chapter 7, we moved to the general framework of multi-parameter estimation and
we showed why the simultaneous estimation of multiple parameters is much more intri-
cate. Actually, the reasons behind these difficulties are already rooted in the postulates of
quantum mechanics, and more precisely they are due to the presence of non-commuting
observable. Indeed, in the setting of multiparameter estimation, this incompatibility
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appears in the impossibility of performing the optimal measurement for each parame-
ter. We have studied a way to quantify such incompatibility in metrology for a given
statistical model, and we have provided further properties of such quantity. We have
proved that it is also related to the number of compatible parameters in the statistical
model, and we have also quantified such incompatibility for the full estimation of finite
quantum systems, conjecturing that its value is a function of the purity of the system.

Finally, in Chapter 8, we proposed a novel protocol to perform quantum search on
graphs. This is mainly based on the engineering of the interaction between a CTWQ
and a collection of bosonic modes that are continuously-measured. From the observed
photocurrent, a control through a feedback mechanism drive the walker to the target
node. In this scenario, the oracle is not encoded in the physical Hamiltonian of the
walker, rather it is the feedback mechanism that plays the role of a dynamical oracle. This
paradigm works by synergising tools from quantum measurement, quantum control
and quantum walks and provides an alternative approach to the problem of quantum
search. The efficacy is supported by numerical results, and we can identify two relavant
features that make this approach advantageous: first, a higher fidelity with respect to the
target state if compared to the standard protocol; second, a larger optimal time interval
in which we can measure the walker.

We can draw some general conclusions from the results presented here. Oour find-
ings confirm that identifying the resources at play is fundamental for enhancing the pro-
tocol efficacy in quantum information theory. Different tasks may require completely
different resources, and besides our results, theoretical studies should characterize these
precisely. Furthermore, we have highlighted that the inherent weaknesses of quan-
tum systems may instead be exploited. This idea is at the basis of quantum probing
paradigms, where the harnessing of quantum systems’ inherent fragilities due to their
interaction with the environment can be turned into a resource. We have seen this for
quantum thermometry, but these principles can be applied to other tasks as well. On the
same ground, the presence of incompatible observables has always been considered one
of the peculiar features of quantum mechanics. We showed that this fact is relevant not
only at the fundamental level but also in the applications, given that the incompatibility
of optimal observables inevitably affects the estimation precision of multiple parame-
ters. In this sense, the careful quantification of peculiar quantum effects proved to be
relevant also in the more application-oriented aspects. Following these paths may fur-
ther shed light on the ultimate limits that quantum mechanics poses. As a final remark, it
is important to highlight that the combination of different fields, such as quantum mea-
surement, quantum control and quantum walks, proved fruitful and opened up new
possibilities that had not yet been explored in quantum search protocols. In fact, quan-
tum information itself was born from the union of two initially independent research
fields, such as information theory and quantum theory. Therefore, continuing along this
interdisciplinary path can only be beneficial to the field of quantum technologies as well.

To conclude, we would also like to provide a few outlooks coming from the out-
comes of this thesis. First, future perspectives in quantum thermometry may be re-
lated to further studies in out-of-equilibrium thermometry. Actually, the understand-
ing of out-of-equilibrium thermodynamics is relevant for many applications, in partic-
ular in the development of quantum technologies, where cooling protocols are crucial
to faithfully manipulate quantum states. From another perspective, how to exploit out-
of-equilibrium probes is still an emerging field, to which this thesis contributes with
Chapter 5. A possible future work could study the role of topology in such a setting.
Indeed, the optimization of the quantum probes may yield even more sensitive systems
during the thermalization process, which can further enhance the accuracy of tempera-



ture sensing.
Several open questions regarding multi-parameter estimation are still on the table.

In this thesis, we have studied the connection of the AI measure in a full tomography of
finite dimensional systems. As a follow-up of this aspect, we are currently investigating
more in detail the role of dimensionality of quantum systems when the parameters are
unitarily encoded. The size of the Hilbert space may play a fundamental role in mea-
surement incompatibility, and studying its relationship with the number of parameters
may help reduce the quantum noise and the design of more precise probes. Further-
more, many of the results in multi-parameter estimation have been derived for asymp-
totic models, and several bounds have been proved to be tight only in this asymptotic
limit. Furthermore, attaining these bounds often requires the implementation of collec-
tive measurements, which are usually considered to be experimentally challenging. For
these reasons, it would be of crucial importance to establish bounds on a finite num-
ber of copies, which are closer to scenarios available within the current technological
platforms. In this sense, it could be interesting to extend the notion of incompatibility
in the finite limit. Even more important would be to address multi-parameter bounds
on single-copy preparation, fully avoiding collective measurement to be performed. As
a further step, a less investigated field is global multi-parameter estimation, when we
have poor initial knowledge of the values of the parameters, for instance in Bayesian
estimation theory. In this case, the role of measurement incompatibility is much less
studied.

Finally, the possibility of continuously measuring a quantum walker unlocks the pos-
sibility of developing new methods for the manipulation and control of such systems.
Furthermore, other tasks may be implemented using the information obtained by contin-
uously monitoring the Bosonic environments. Also, other protocols relying on different
engineered interactions can be proposed. For instance, we could implement the moni-
toring on each node rather than on the x and y axis, or we can just monitor a single node.
It could be interesting to see if this can enhance quantum search, as well as other tasks
implementable using quantum walks, or even simplify the processing of the data during
the numerical optimization. Even more interesting would be to investigate these kinds
of feedback protocols with chiral quantum walks, which are an extension of quantum
walks where the Laplacian matrix allows also for complex entries.
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CHAPTER 10

Exact solution for the pure dephasing model

In this appendix we deal with the analytical evaluation of the reduced dynamics of the
open quantum system interacting with a bosonic bath with total hamiltonian given by

HT =
!0

2
H(⌘)

P
+
X

k

!kb†

kbk + H(⌘)
P

⌦
X

k

⇣
gkb†

k + g⇤

kbk

⌘
(10.1)

A solution for the qubit case be found in [59]. Here we deal with the more general
scenario of a generic bounded energy spectrum. We split up the proof in 3 steps. First,
we derive the time propagator in the interaction picture for a nilpotent interaction Hint

I
.

Secondly, we derive the exact reduced dynamics of the open quantum system. Finally
we analytically evaluate the functions which describe the dynamics.

10.1 Unitary evolution in the interaction picture for a nilpotent alge-

bra

As it is widely known, the Schroedinger equation in the interaction picture is

i
d

dt
⇢int(t) =

⇥
Hint

I
(t), ⇢(t)

⇤
, (10.2)

and it can be rewritten in terms of the unitary operator as

i
@

@t
U(t, t0) = Hint

I
(t)U(t, t0) (10.3)

A formal solution is given by the time ordered exponential
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>>>=
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, (10.4)

where the interaction Hamiltonian in the interaction picture is Hint

I
(t) = U0(t)†HIU0(t).

The latter is easily evaluated as follows. Since the free unitary evolution is diagonal, it
can be written as

U0(t) = e�iH0t = e�i
!0
2 H

(n)
t ⌦
Y

k

e�i!kNkt, (10.5)
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where Nk is the number operator of the k-th mode of the bath. It follows that the Hint

I
is
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The algebra generated by this operator evaluated at different time is nilpotent, since it
holds that

⇥
Hint

I
(t1), Hint

I
(t2)

⇤
= (H(n)2 ⌦ I)(�2i�(t1, t2)) (10.7)

where �(t1, t2) =
P

k
|gk|2 sin(!k(t1 � t2)). It can be easily seen thus that
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(t3)] = 0. Then, it is straightforward that
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with
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0
dt1dt2�(t1, t2). (10.9)

Since the algebra generated by the argument of the exponential is nilpotent, then the
(10.4) greatly simplifies. In order to see how, we use a more heuristic way. We start
considering the unitary operator

U?(t, t0) = exp {X(t, t0)} (10.10)

with

X(t, t0) = �i

Z
t

t0
dt1Hint

I
(t1). (10.11)

This operator is not a solution. Indeed, we recall that the derivative of the exponential
map is given by

d

dt
eX(t,t0) = eX(t,t0) 1 � e�adX

adX

d

dt
X(t, t0) (10.12)
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where adX [Y ] = [X, Y ] is the adjoint operator. Then, in the case of a nilpotent algebra,
the derivative of exponential map considerably simplifies, since in the latter series only
the first two elements survive. Indeed,

adX(�iHint

I
(t)) = 2i
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⌘Z t

t0
ds�(s, t), (10.14)

and eventually

i@tU?(t, t0) =U?(t, t0)Hint

I
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H(n)2 ⌦ I

⌘Z t

t0
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Thus, we see that the unitary operator (10.10) does not satisfy the Schroedinger
equation due to the appearance of an extra terms. Moreover, using the



Exact solution for the pure dephasing model 153

Baker–Campbell–Hausdorff formula we can see that the unitary operator does not even
satisfy the semigroup property, i.e. by direct computation we obtain

U?(t, t0)U?(t0, 0) = U?(t, 0) exp
n

�i'(t, t0)H(n)2 ⌦ I

o
. (10.16)

Therefore, in order to have a faithful time propagator, we have to redefine U?(t, t0) such
that satisfy both the Schroedinger and the semigroup property. The solution is given by
the following operator

U(t, t0) = U?(t, t0) exp
n

�i'̃(t, t0)H(n)2 ⌦ I

o
(10.17)

where '̃(t, t0) is a slightly different version of (10.9), namely

'̃(t, t0) =

Z
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Z
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dt1dt2�(t1, t2)✓(t1 � t2). (10.18)

First, we prove that it satisfy the Schroedinger equation. Indeed, now the time deriva-
tive is
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The derivative of the latter term is
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which exactly cancel out with the second term since �(s, t) is antisymmetric. Thus U(t, t0)
satisfy the Schroedinger equation (10.3).

Second, we prove that it satisfy the semigroup property. From direct calculations, we
have that
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Consequently, we have to prove that
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Indeed since t > t0 > 0
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We have that (10.25) and (10.28) cancel out respectively with '̃(t, t0) and '̃(t0, 0). (10.27)
is identically null since the domain of integration of t1 is the interval [0, t0], while the
domain of t2 is the interval [t0, t]. Therefore in the domain t1 < t2 and thus ✓(t1 � t2) = 0.
So we are left to prove that
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But this is true since ✓(t1 � t2) = 1 � ✓(t2 � t1) and
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dt1dt2�(t1, t2)✓(t2 � t1) = 0 (10.30)

for the same reason on the domain stated above (namely, the domain of t2 is [t0, 0] and
the domain of t1 is [t0, t], so is always true that t1 > t2, and in this interval ✓(t2 � t1) = 0).

So we eventually recover the group property

U(t, t0)U(t0, 0) = U(t, 0). (10.31)

and for this reason we identify (10.17) with the solution of the Schroedinger equation
(10.3).

10.2 The reduced dynamics of the pure dephasing model

In this section we explicitly evaluate the reduced dynamics for the open quantum sys-
tem. To do so, we first need to compute the time propagator (10.17). The unitary evolu-
tion naturally decomposes in two parts, i.e.

U int

I
(t) = U'(t)V int

I
(t) (10.32)

The first part is an unitary and temperature-independent part which, thanks to the result
in 10.3, can be reduced to
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The function ⇠(t) is defined as ⇠(t) = �4'̃(t, 0) and is the temperature-independent
phase function, with '̃(t, 0) defined in (10.18). We evaluate it in 10.2.1. The second part,
instead, is temperature dependent and it is given by
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where we have defined the coefficients ↵k = gk(1 � eit!k)/!k. Again, thanks to the the
result in appendix 10.3, the V int
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(t) operator can be rewritten in terms of the eigenstates

of H(n) as
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where we identify the operators Vj(t) with
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and the D(↵) is the displacement operator. Eventually, the unitary evolution can be
written in terms of the action on each energy level of the system as

U int

I
(t) =

N�1X

j=0

ei⇠(t)
�
2
j

4 |ejihej | ⌦ Vj(t). (10.37)

Finally, we can evaluate the reduced dynamic of the open quantum system. We assume
that the state of the total system is factorized at t = 0, which means that in the interaction
picture ⇢�(0) = ⇢�
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. The most general state of system is given by
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while we assume that the bath is in the thermal equilibrium state, i.e.
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This state commute with the free Hamiltonian HB

0 . The evolution of the total state is
given by the partial trace of the unitary evolved state, i.e
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Furthermore, using the properties of the displacement operator, we have that
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we find out that
�jk(t|�) =

(�j � �k)2

4
�(t|�), (10.43)

where �(t|�) is the decoherence function, whose derivation can be found in appendix
10.2.1.

10.2.1 Decoherence and Temperature-Independent Phase Function

The explicit form of the function (10.18) is
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Exchanging the sum with the integrals and make the variable change t1 ! t̃ = t1 � t2,
we obtain

'̃(t, t0) =
X

k

|gk|2
Z

t

t0
dt2

Z
t�t2

t0�t2

dt̃ sin(!k t̃)✓(t̃) = (10.45)

=
X

k

|gk|2
Z

t

t0
dt2

Z
t�t2

0
dt̃ sin(!k t̃) = (10.46)

=
X

k

|gk|2
!k

Z
t

t0
dt2 (1 � cos(!k(t � t2))) = (10.47)

=
X

k

|gk|2
✓
!k(t � t0) � sin(!k(t � t0))

!2
k

◆
(10.48)

As a result we obtain that the temperature-independent phase function is

⇠(t) = �
X

k

4|gk|2
✓
!kt � sin(!kt)

!2
k

◆
(10.49)

Regarding the decoherence function, if we define �m = ↵l(�j � �k) (we forget for a
moment of the indices j and k, which we recover at the end), then eq. (10.42) is

�jk(t|T ) = ln

(
Tr

(
Y

l

D (�m) ⇢B

))
=
X

m

ln {�(�m)} , (10.50)

where �(�m) = Tr
n

exp
�
�mb†

m
� �⇤

m
bm

 
⇢�

B

o
is the Wigner characteristic function of the

bath mode l. To evaluate this function, and consequently �jk(t) we need to explicitly
evaluate ⇢�

B
. Using the resolution of the identity

P+1

{n(s)=0} |~n(i)ih~n(i)| = I, with |~n(i)i =

|n(1), . . . , n(k), . . . i, we obtain

e��HB = I · e��HB · I =
X

{n(s)=0}

Y

l

⇣
e��!ln

(l)
⌘

|~n(i)ih~n(i)| (10.51)

Then, the partition function is

ZB(�) =
X

{n(s)=0}

Y

l

e��!ln
(l)

= (10.52)

=
Y

l

X

n(l)=0

e��!ln
(l)

=
Y

l

1

1 � e��!l

. (10.53)

For this reason we can write the thermal state for a multimode bosonic bath as

⇢�
B

(�) =
+1X

{n(s)=0}

Y

l

(1 � e��!l)e��!ln
(l)

|~n(i)ih~n(i)| (10.54)

Now the action of the displacement operator on the m-th mode of the thermal state is

D(�m)⇢�
B

=
+1X

{n(s)=0}

⇣Y

l

(1 � e��!l)e��!ln
(l)

D(�m)|~n(i)ih~n(i)|
⌘

(10.55)
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Computing the trace we obtain

Tr
n

(D(�m)⇢�
B

)
o

=
+1X

{n0(s)=0}

h~n0
(s)

|D(�m)⇢�
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i = (10.56)

=
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2
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n(m)=0
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(m)
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(10.59)

Considering that for the Laguerre polynomials Ln(x) it holds

X

n

tnLn(x) =
1

1 � t
e�t

x

1�t (10.60)

we obtain

�(�m) = (1 � e��!m)
e�

1
2 |�m|

2

1 � e��!m

e
�e

��!m |�m|2
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= e
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2 �
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1
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2 ). (10.61)

This result lead us to

�jk(t|T ) =
X

m

ln�(�m) = �1

2

X

m

|�m|2 coth

✓
�!m

2

◆
=

(�j � �k)2

4
�(t|T ) (10.62)

where

�(t|T ) = �
X

l

4
|gl|2
!2

l

(1 � cos(!lt)) coth
⇣ !l

2T

⌘
(10.63)

is the decoherence function. For an explicit form in terms of analytical functions, see
[308].

10.3 Exponential of tensor products

Let’s consider the tensor product Hn ⌦ H̃ of an n-dimensional Hilbert space Hn and
a generic Hilbert space H̃. Consider now a diagonal matrix in Hn, namely D =P

N�1
i=0 di|iihi|, and a liner operator A 2 H̃. We want to evaluate the operator exp {D ⌦ A}.



Considering the Taylor expansion we have

exp{D ⌦ A} =
+1X

m=0

1

m!
(D ⌦ A)m =

=
+1X

m=0

1

m!
Dm ⌦ Am =

=
+1X

m=0

1

m!

 
N�1X

i=0

dm

i
|iihi| ⌦ Am

!
=

=
N�1X

i=0

 
|iihi| ⌦

+1X

m=0

dm

i
Am

m!

!
=

=
N�1X

i=0

|iihi| ⌦ ediA. (10.64)

No assumption is made on the Hilbert space and on the liner operator A.
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SANTANA, S., MEHBOUDI, M., AND SANPERA, A. Enhancement of low-
temperature thermometry by strong coupling. Phys. Rev. A 96 (Dec 2017), 062103.
(Cited on page 48)
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metrology with uncorrelated noise. New Journal of Physics 15, 7 (2013), 073043.
(Cited on page 17)

[206] KOSOROK, M. R. Introduction to empirical processes and semiparametric inference.
Springer, 2008. (Cited on page 21)
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parameters beyond the cramèr–rao bound. International Journal of Quantum Infor-
mation 18, 03 (2020), 2030001. (Cited on page 20)

[319] SEVESO, L., ROSSI, M. A., AND PARIS, M. G. Quantum metrology beyond the
quantum cramér-rao theorem. Physical Review A 95, 1 (2017), 012111. (Cited on
page 25)

[320] SHAJI, A., AND SUDARSHAN, E. C. G. Who’s afraid of not completely positive
maps? Physics Letters A 341, 1-4 (2005), 48–54. (Cited on page 7)

[321] SHELBY, R. M., LEVENSON, M. D., PERLMUTTER, S. H., DEVOE, R. G., AND
WALLS, D. F. Broad-band parametric deamplification of quantum noise in an
optical fiber. Physical review letters 57, 6 (1986), 691. (Cited on page 89)

[322] SHENVI, N., KEMPE, J., AND WHALEY, K. B. Quantum random-walk search al-
gorithm. Physical Review A 67, 5 (2003), 052307. (Cited on page 39)

[323] SHERRY, D. Thermoscopes, thermometers, and the foundations of measurement.
Studies in History and Philosophy of Science Part A 42, 4 (2011), 509–524. (Cited on
page 45)

[324] SIDHU, J. S., AND KOK, P. Geometric perspective on quantum parameter estima-
tion. AVS Quantum Science 2, 1 (2020), 014701. (Cited on pages 17 and 25)

[325] SIDHU, J. S., OUYANG, Y., CAMPBELL, E. T., AND KOK, P. Tight bounds on the si-
multaneous estimation of incompatible parameters. Physical Review X 11, 1 (2021),
011028. (Cited on page 103)
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[338] TÓTH, G., AND APELLANIZ, I. Quantum metrology from a quantum information
science perspective. Journal of Physics A: Mathematical and Theoretical 47, 42 (2014),
424006. (Cited on page 16)

[339] TURNER, J., AND BIAMONTE, J. Topological classification of time-asymmetry in
unitary quantum processes. Journal of Physics A: Mathematical and Theoretical 54, 23
(2021), 235301. (Cited on page 42)

[340] VENEGAS-ANDRACA, S. E. Quantum walks: a comprehensive review. Quantum
Information Processing 11, 5 (2012), 1015–1106. (Cited on pages 39 and 121)

[341] WANG, J., AND MANOUCHEHRI, K. Physical implementation of quantum walks.
Springer, 2013. (Cited on page 40)

[342] WANG, Y. AND WU, S. AND WANG, W. Optimal quantum search on truncated
simplex lattices. Phys. Rev. A 101 (Jun 2020), 062333. (Cited on page 123)

[343] WEINSTEIN, E., AND WEISS, A. J. A general class of lower bounds in parameter
estimation. IEEE Transactions on Information Theory 34, 2 (1988), 338–342. (Cited on
page 16)



182 Bibliography

[344] WIECZOREK, W., HOFER, S. G., HOELSCHER-OBERMAIER, J., RIEDINGER, R.,
HAMMERER, K., AND ASPELMEYER, M. Optimal state estimation for cavity op-
tomechanical systems. Phys. Rev. Lett. 114 (Jun 2015), 223601. (Cited on page 124)

[345] WIENER, N. Cybernetics or Control and Communication in the Animal and the Machine.
MIT press, 2019. (Cited on page xiii)

[346] WILCOX, R. M. Exponential operators and parameter differentiation in quantum
physics. Journal of Mathematical Physics 8, 4 (1967), 962–982. (Cited on page 94)

[347] WINELAND, D. J., BOLLINGER, J. J., ITANO, W. M., MOORE, F. L., AND HEINZEN,
D. J. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46
(Dec 1992), R6797–R6800. (Cited on page 17)

[348] WISEMAN, H. M. Quantum theory of continuous feedback. Phys. Rev. A 49 (Mar
1994), 2133–2150. (Cited on pages 121 and 126)

[349] WISEMAN, H. M., AND MILBURN, G. J. Quantum theory of optical feedback via
homodyne detection. Phys. Rev. Lett. 70 (Feb 1993), 548–551. (Cited on page 121)

[350] WISEMAN, H. M., AND MILBURN, G. J. Quantum Measurement and Control. Cam-
bridge University Press, New York, 2010. (Cited on pages 121, 123, 126, and 137)

[351] WONG, T. G., AND AMBAINIS, A. Quantum search with multiple walk steps per
oracle query. Physical Review A 92, 2 (2015), 022338. (Cited on page 39)

[352] WONG, T. G., AND MEYER, D. A. Irreconcilable difference between quantum
walks and adiabatic quantum computing. Physical Review A 93, 6 (2016), 062313.
(Cited on pages 39 and 123)

[353] WONG, T. G., TARRATACA, L., AND NAHIMOV, N. Laplacian versus adjacency
matrix in quantum walk search. Quantum Information Processing 15, 10 (2016),
4029–4048. (Cited on page 42)
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