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Abstract 

This paper explores the Fourier decomposition method to approximate the decom-
position of electrocardiogram (ECG) signals into their component waveforms, such 
as the QRS-complex and T-wave. We compute expansion coefficients using the ℓ1 
Fourier transform and the traditional ℓ2 Fourier transform. Numerical examples are pre-
sented, and the analysis focuses on ECG signals as a real-world application, comparing 
the performance of the ℓ1 and ℓ2 Fourier transforms. Our results demonstrate that the ℓ1 
Fourier transform significantly enhances the separation of ECG signal components, 
such as the QRS-complex and T-wave. This improvement is attributed to a notable 
reduction in the Gibbs phenomenon introduced by the Fourier-series expansion 
when using the ℓ1 Fourier transform, as opposed to the traditional ℓ2 Fourier transform.

Keywords:  ℓ1 Fourier analysis, ℓ1 Fourier analysis, Signal decomposition, ECG 
components

1  Introduction
The Fourier-series expansion represents a signal as a linear combination of sinusoidal 
basis functions  [1–3]. In order to know what frequencies are present in the signal, we 
need to compute the expansion coefficients. The process of computing the expansion 
coefficients is known as Fourier analysis (transform). The celebrated Fourier transform 
computes the expansion coefficients by correlating the signal with the corresponding 
Fourier basis functions. As shown in [4], it is defined based on the ℓ2-norm minimiza-
tion of the model error, i.e., the error between the time-series data and the Fourier-series 
expansion, and the so-called ℓ2 Fourier transform. The traditional ℓ2 Fourier transform 
has been widely used in many signal and image processing applications [5, 6]. However, 
its performance is significantly decreased for the application of decomposing a signal 
into slow and fast components, especially when the fast components contain outliers. 
In this context, the idea is to filter the signal with a low-pass filter to obtain an estimate 
of the slow components. The problem is that in the ℓ2 Fourier transform, each com-
ponent of the error (i.e., fast components) is squared. When a set of error values are 
squared and then summed together, the sum is most sensitive to the largest error values. 
It means that the fast components or outliers have more weighting so it can skew results. 
As a result, some parts of the outliers are mixed with the slow components, which is 
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due to the fact that the ℓ2-norm minimization corresponds to Gaussian distribution 
while the outliers have non-Gaussian distribution. Therefore, the ℓ2 Fourier transform 
performance decreases in applications where the Gaussian distribution assumptions of 
the model errors do not hold in practice. In particular, when dealing with perceptually 
important signals, such as electrocardiogram (ECG), audio, image, speech, medical, and 
ocean engineering, we observe non-Gaussian (impulsive and Laplace) noises [7].

The ℓ2 Fourier transform is not the only way to calculate the Fourier coefficients. An 
alternative approach to compute the Fourier transform has been recently reported in [4] 
which is based on the calculation of the Fourier coefficients using other norm spaces 
(i.e., ℓp-norm minimization of the model error, p = 1, 2, 3, · · · , ∞ ). It is worth not-
ing that the celebrated ℓ2-norm minimization which is used in the past for computing 
the Fourier transform is simple, parameter free, and inexpensive to compute. It satis-
fies many important properties, such as convexity, symmetry, and differentiability  [8]. 
This might be the reason why other ℓp-norm optimization methods were overlooked 
for such a long time. Among other ℓp Fourier transforms, the ℓ1 Fourier transform is an 
efficient tool for computing the Fourier coefficients which improves the Fourier-series 
expansion of time-series data such as reducing the effect of Gibbs phenomena in the 
truncated Fourier expansion of a signal with a jump discontinuity  [4]. This method is 
based on the ℓ1-norm minimization of the error between the signal and its Fourier-series 
expansion and so called ℓ1 Fourier transform. Compared to the traditional ℓ2 Fourier 
transform, the benefits of the ℓ1 Fourier transform include that it reduces the Gibbs 
effect in truncated Fourier-series expansion and filters the impulsive noises (outliers) 
in signals and images  [4]. In ℓ1-norm minimization, the absolute value of the error is 
considered which corresponds to impulsive/Laplace distribution. Therefore, ℓ1 Fourier 
transform decreases the weights of the outliers in reconstructed signal. That is why the 
ℓ1 Fourier transform improves the Fourier-series expansion in filtering the impulsive 
noise from the data. Although other norm spaces can also be considered for computing 
the Fourier transform, they mostly produce performances in between ℓ1 - and ℓ∞-norm 
minimization [4].

According to the above discussion, the question naturally arises as to whether the ben-
eficial filtering properties of the ℓ1 Fourier-series expansion would improve decomposi-
tion of ECG signals into their depolarization and repolarization component waveforms. 
Roughly speaking, it is well known that the Fourier-series expansion (or frequency 
domain filtering) is unable to decompose signals with overlapping spectra. Therefore, 
it fails to separate the signal components that overlap in frequency domain. The ECG 
is an example of such signals. ECG is a rich source of information for cardiac diagnoses 
which makes it an important tool for assessing the cardiac health status. Every ECG beat 
is composed of different waves, classically labeled as P, Q, R, S and T, which reflect, at 
the body surface, the electrophysiological activity of the heart. Each ECG component 
reflects depolarization or repolarization of the heart: P-wave corresponds to depolariza-
tion of the atria, while QRS-complex and T-wave correspond to ventricular depolariza-
tion and repolarization. Separating ventricular depolarization and repolarization using 
Fourier-series expansion is a challenging task. It is well known that these ECG compo-
nents (QRS-complex and T-wave) overlap in frequency domain. It is usually stated in 
the literature [9] that the content of T-wave lays mostly within a range of [0, 10] Hz. The 
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content of QRS-complex lays within a range of [8, 50] Hz frequencies. Note that estima-
tion of the frequency content of these ECG components typically employs the ℓ2 Fourier 
transform. That is why the spectra of the ECG components (QRS-complex and T-wave) 
overlap with each other and as such cannot be recovered by Fourier decomposition or 
frequency domain filtering.

In this paper, we show that this frequency overlap is due to the traditional method (i.e., 
ℓ2 Fourier transform) typically used for computing Fourier-series coefficients. Consider-
ing the fact that the changes in T-wave are slower than the changes in QRS-complex, the 
overlap between the spectra of these two components decreases if we use the ℓ1 Fou-
rier transform to compute the Fourier coefficients. Especially, the QRS-complex is an 
impulsive component (but not a Gaussian component) when a truncated Fourier-series 
expansion is used to low-pass filtering the signal to obtain an estimate of the slow com-
ponent (i.e., T-wave). That is why the traditional ℓ2 Fourier transform is not able to sepa-
rate T-wave and QRS-complex. We show that the truncated Fourier-series expansion of 
an ECG signal, when the ℓ1 Fourier transform is used to compute the expansion coef-
ficients, produces a more accurate estimate of the T-wave and rejects the QRS-complex.

2 � Fourier‑series expansion‑based signal representation
Fourier-series expansion decomposes a signal into oscillatory components. In this 
method, a given signal x[n], n = {0, 1, · · · , N − 1} is represented as a linear combina-
tion of exponential basis functions:

where M ≤ N  , φk [n] = exp(i 2πkN n) and i =
√
−1 . In vector notation, (1) can be 

expressed as

where � is an N ×M matrix, xM = (xM[0], · · · , xM[N ])T is a length-N vector, and 
c = (c0, · · · , cM−1)

T is a length-M vector. The Fourier transform is the process of com-
puting the expansion coefficients c . It can be calculated by different ℓp-norm minimiza-
tion of the model error, i.e., e = x − xM [4]:

Among other norm spaces, we consider the Fourier transforms that compute the expan-
sion coefficients by solving one of the following optimization problems: 

 In ℓ2 Fourier transform, the expansion coefficients are analytically computed as

(1)xM[n] =
M−1

k=0

ckφk [n],

(2)xM = �c,

(3)ℓp Fourier transform: argmin
c

�x − xM�p

(4a)ℓ2 Fourier transform: argmin
c

�x −�c�2

(4b)ℓ1 Fourier transform: argmin
c

�x −�c�1
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where �H is the complex conjugate transpose (Hermitian transpose) of � . Since the Fou-
rier basis functions are orthogonal, the matrix �H

� becomes an identity matrix and (5) 
is simplified to c = �

H
x . Unlike ℓ2 Fourier transform, the solution to ℓ1 Fourier trans-

form cannot be written in explicit form. The solution can be found only by running an 
iterative numerical algorithm. In  [4], a solution was obtained using majorization min-
imization (MM) approach which is summarized as follows. Using a majorizer for the 
absolute value and considering an initial value for c(0) , (4b) is converted to

where γr = �x − x
(r)
M �1 , x(r)M = �c

(r) , er = x − x
(r)
M  and

Taking the derivative of (6) with respect to the coefficients c(r) , we obtain:

When M < N  , the Fourier-series (1) is known as a truncated Fourier-series expansion. 
The truncated Fourier-series expansion acts as a low-pass filter as it neglects high-fre-
quency components by setting their coefficients to zero. In the following section, the 
Fourier-series decomposition methods are used for approximate decomposition of a sig-
nal to slow and fast components using numerical examples. We employ ℓ1 and ℓ2 Fou-
rier transform to compute the expansion coefficients. The corresponding Fourier-series 
expansion is called ℓ1 and ℓ2 Fourier-series expansion. We compare these two methods 
for signal components separation. As a real application, we compare them for ECG sig-
nal analysis and waveform decomposition.

3 � Numerical examples
In the following section, we present some important functions that are widely used in 
signal processing literature to illustrate the properties of the Fourier transform.

3.1 � Example 1

Let us consider a sinc function x1[n] = sinc[n], n = 0, · · · , 1000 plotted via blue color 
in Fig.  1a. The reconstructed signals provided by a truncated ℓ2 and ℓ1 Fourier-series 
of x1[n] using the first 9 harmonics (i.e., M = 9 ) are plotted via dashed red and dashed 
green, respectively. The ℓ2 and ℓ1 Fourier transform of the signal is also shown at the 
bottom of each figure using red and green color, respectively. x1[n] is represented per-
fectly using a truncated ℓ2 or ℓ1 Fourier-series. It means that x1[n] is a low-frequency 
component signal. Let us consider the same sinc function after it has undergone the 
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transformation: x2[n] = x1[15(n+ 2.5)] shown via blue color in Fig.  1b. The recon-
structed signals provided by a truncated ℓ2 and ℓ1 Fourier-series of x2[n] using the first 
80 harmonics (i.e., M = 80 ) are plotted via dashed red and dashed green, respectively. 
x2[n] is also represented perfectly using a truncated ℓ2 and ℓ1 Fourier-series which means 
that it is also a low-frequency component signal. Note that x1[n] is slower than x2[n].

Now, consider another signal which is a summation of x1[n] and x2[n] . The sum is 
plotted via gray color in Fig. 2a. Suppose that our objective is to estimate x1[n] from 
the sum signal. In this case, the objective is to reconstruct x1[n] and reject x2[n] . 
However, the frequency spectrum of x2[n] overlaps with x1[n] computed by either ℓ2 
or ℓ1 Fourier transform (see their Fourier transforms in Fig. 1a, b). In Fig. 2a, we plot 
the reconstructed signal provided by ℓ2 and ℓ1 Fourier-series of x1[n] + x2[n] using 
the first 9 harmonics (i.e., M = 9 ) via dashed red and dashed green, respectively. The 
reconstructed signal using the truncated ℓ1 Fourier-series is more close to x1[n] . The 
ℓ1 Fourier transform of x1[n] + x2[n] is shown via red color at left bottom of Fig. 2a. 
The ℓ1 Fourier transform of the sum is also shown via green color which is compa-
rable to the ℓ1 Fourier transform of x1[n] . It is seen that they are close to each other. 
However, the ℓ2 Fourier transforms of x1[n] + x2[n] and x1[n] are different. After sub-
tracting the truncated Fourier-series of x1 (which was computed in the previous step) 
from the sum, the truncated ℓ2 and ℓ1 were again used to estimate x2 using the first 
80 harmonics, M = 80 . The reconstructed signals provided by the truncated ℓ2 and ℓ1 

Fig. 1  Truncated ℓ2 and ℓ1 Fourier-series expansion of sinc signals x1[n] = sinc[n] and 
x2[n] = x1[15(n+ 2.5)] for M = 9 . The ℓ2 and ℓ1 Fourier transform of the signal is also shown at the bottom of 
each figure 
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Fourier-series of the residual using the first 80 harmonics are plotted via dashed red 
and dashed green in Fig. 2b. The reconstructed signal using the truncated ℓ1 Fourier-
series is more close to the reconstructed signal using the truncated ℓ2 Fourier-series. 
Comparing to the ℓ2 Fourier transform, the ℓ1 Fourier transform of the residual is 
closer to the Fourier transform of x2[n] as shown at the bottom of Fig. 2b. It means 
that ℓ1 Fourier-series expansion separates these two sinc signals much better than the 
ℓ2 Fourier-series expansion.

3.2 � Example 2

Sum of Gaussian kernels are common in signal modeling, especially they become 
popular in ECG signal modeling, due to their morphological similarity with the ECG 
components waveform [10–12]. A sum of Gaussian model is defined as follows:

where αi , bi , and µi are the amplitude, angular spread, and location of the Gaussian func-
tions. Let us consider a sum of two Gaussian functions:

(9)x[n] =
N
∑

i=1

αi exp

[

− (nTs − µi)
2

2b2i

]

,

Fig. 2  ℓ2 and ℓ1 Fourier-series expansion-based separation of the mixture of two sinc signals: x1[n] = sinc[n] 
and x2[n] = x1[15(n+ 2.5)] . a Truncated ℓ2 and ℓ1 Fourier-series expansion of a x1[n] + x2[n] for M = 8 b 
x1[n] + x2[n] − x̂1[n] for M = 80 where x̂1[n] is an estimate of x1[n] using the truncated Fourier-series either 
by ℓ2 or ℓ1 Fourier transform. The ℓ2 and ℓ1 Fourier transform of each signal is also shown via red color at the 
bottom of each figure. The ℓ2 and ℓ1 Fourier transform of x1[n] and x2[n] is also plotted via blue color for 
comparison
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where n = 0, · · · , 1000 , α1 = 7, 5 , b1 = 0.4 , µ1 = 750 , α2 = 30 , b2 = 0.05 and µ2 = 500 . 
x1[n] and its truncated ℓ2 and ℓ1 Fourier-series using the first 7 harmonics (i.e., M = 7 ) 
are plotted via blue color, dashed red and dashed green, respectively in Fig.  3a. x1[n] 
is reconstructed perfectly using a truncated ℓ2 or ℓ1 Fourier-series which means it is a 
low-frequency component signal. In Fig. 3b, we plotted x2[n] and its truncated ℓ2 and ℓ1 
Fourier-series using the first 51 harmonics (i.e., M = 51 ) via blue color, dashed red and 
dashed green, respectively. x2[n] is also reconstructed perfectly using a truncated ℓ2 or 
ℓ1 Fourier-series which means it is also a low-frequency component signal. The ℓ2 and ℓ1 
Fourier transform is also shown at the bottom of each figure. Figure 4a shows the trun-
cated ℓ2 and ℓ1 Fourier-series of x1[n] + x2[n] using the first 7 harmonics. The Fourier 
transforms are also shown at the bottom of the figure. The results show that the ℓ1 Fou-
rier transform of x1[n] + x2[n] is close to the ℓ1 Fourier transform of x1[n] . However, the 
ℓ2 Fourier transform of x1[n] is far from the ℓ2 Fourier transform of x1[n] + x2[n] . The 
estimated x2 using truncated ℓ2 and ℓ1 Fourier-series is also plotted in Fig. 4b. The results 
of Figs. 3 and 4 show that the Fourier-series expansion of a mixture of Gaussian signals, 
when the ℓ1 Fourier transform is used to identify the expansion coefficients, produces a 
more accurate estimate of its components.

(10)x[n] = x1[n] + x2[n] =
2

∑

i=1

αi exp

[

− (nTs − µi)
2

2b2i

]

,

Fig. 3  ℓ2 and ℓ1 Fourier-series expansion of two mixed Gaussian signals. a x1[n] b x2[n]
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4 � ECG signal representation using Fourier‑series expansion
As mentioned before, the ℓ2-norm corresponds to the Gaussian distribution and its per-
formance decreases in non-Gaussian model errors. It is notable that the ECG is a sparse 
band-limited signal and the changes in T-waves are much slower than the changes in 
QRS-complex. In other words, for low-frequency (slow) components like T-wave, the 
distribution of the fast component (QRS-complex) is non-Gaussian. Therefore, the ℓ1 
Fourier transform (which is based on the ℓ1-norm minimization) would provide bet-
ter ECG components separation (i.e., ventricular depolarization and repolarization) 
than the ℓ2 Fourier transform. In this section, we analyze the ECG signal using ℓ2 and 
ℓ1 Fourier transform. We show that the Fourier-series expansion when the coefficients 
are computed using ℓ1 Fourier transform, produces a more accurate estimate of its slow 
components (T-waves) and rejects the fast component (QRS-complex). Especially, the 
Gibbs phenomenon introduced by the truncated Fourier-series expansion is significantly 
decreased when the expansion coefficients are computed using ℓ1 Fourier transform 
compared to the traditional ℓ2 Fourier transform.

As a first example of the application of Fourier-series expansion, we consider the trun-
cated Fourier-series expansion of a specific case (record s0017lrem from the PhysioNet 
PTB Diagnostic ECG Database (ptbdb) [13]) shown in Fig. 5. Each record of the database 
sampled at 1 kHz ( fs = 1000 ). In this example, we consider a portion of the ECG record 
with 4000 samples, i.e., N = 4000 . We represent the ECG signal using a truncated 

Fig. 4  ℓ2 and ℓ1 Fourier-series expansion-based separation of two mixed Gaussian signals. a x1[n] + x2[n] b 
x1[n] + x2[n] − x̂1[n] where x̂1[n] is the estimated x1[n] using the truncated Fourier-series either by ℓ2 or ℓ1 
Fourier transform. The Fourier transform obtained by ℓ2 and ℓ1 minimization is also shown at the bottom of 
each figure
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Fourier-series expansion with M < N  . In this case, the truncated Fourier-series expan-
sion acts as a low-pass filter that passes the low-frequency components with frequen-
cies less than M/N × fs Hz and rejects the high-frequency components with frequencies 
greater than it. We compare the Fourier-series expansion of the ECG signal when the 
coefficients are computed using ℓ2 and ℓ1 Fourier transform. The question is which Fou-
rier transform type better separates ventricular repolarization (T-wave) and ventricular 
depolarization (QRS-complex). The result of ECG representation using the truncated ℓ2 
Fourier-series expansion, i.e., x32[n] , is shown in Fig. 6a via red curve. Selecting M = 32 

Fig. 5  Real ECG record s0017lrem from the PhysioNet PTB Diagnostic ECG Database (ptbdb)

Fig. 6  T-wave and QRS-complex detection using truncated Fourier-series expansion (using rectangular, 
Blackman and Hanning window) and zero-phase Butterworth filter
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means that the cutoff frequency is 8 Hz. The residual is QRS-complex component which 
can be computed using Fourier-series expansion when the frequencies are greater than 
8 Hz. The extracted QRS-complex is shown via yellow curve. The truncated ℓ2 Fourier-
series expansion is unable to accurately extract the T-wave and reject the QRS-complex. 
The Gibbs phenomenon is evident in the truncated ℓ2 Fourier-series expansion as shown 
by arrows in Fig. 6a. A method to reduce the Gibbs phenomena is multiplication by a 
tapered window (e.g., Blackman, Hanning, Kaiser), versus a rectangular window. We also 
employed the Blackman and Hanning window for computing the truncated ℓ2 Fourier-
series expansion. The results of ℓ2 Fourier analysis using Blackman and Hanning window 
are shown in Fig. 6b, c, respectively. Although the Gibbs phenomena is reduced using 
these tapered windows, it causes that some parts of T-waves are wrongly extracted and 
mixed with QRS-complexes.

It is mentionable that the zero-phase LTI filters are the standard and simple choice 
for ECG signal preprocessing, as they impose little assumptions on the signals and pre-
serve their phase contents. Therefore, a naive third order zero-phase low-pass Butter-
worth filter with cutoff frequency 8 Hz was also used to extract the T-waves in the ECG 
signal. The T-waves and QRS-complexes provided by zero-phase low-pass Butterworth 
filter are, respectively, shown via red and yellow curve in Fig. 6d. As shown by arrows, 
we observe that the zero-phase Butterworth filter which is commonly used in the lit-
erature does not perfectly reject the QRS-complex. Finally, we model the same ECG 
record using a truncated ℓ1 Fourier-series expansion. In order to compute the expansion 
coefficients, we set M = 32 (cutoff frequency is 8 Hz), and the number of iterations to 
100, i.e., x(100)32 [n] . Figure 7 shows the results of T-waves detection using ℓ1 Fourier-series 
expansion. The truncated ℓ1 Fourier-series expansion extracts the T-waves and rejects 
the QRS-complexes much better than the truncated ℓ2 Fourier-series expansion and 
zero-phase Butterworth filter.

In the second example, we consider the truncated Fourier-series expansion of an 
abnormal case (record 08378m from MIT-BIH Atrial Fibrillation Database  [13]). This 
record is shown in Fig. 8. We consider a portion of the ECG record with 2500 samples, 

Fig. 7  T-wave and QRS-complex detection using truncated ℓ1 Fourier-series expansion

Fig. 8  Abnormal ECG record 8378m from MIT-BIH Atrial Fibrillation Database
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i.e., N = 2500 . We model the ECG signal using a truncated Fourier-series with M = 60 . 
Figure  9a–d shows the results of ECG representation using the truncated ℓ2 Fourier-
series expansion and ℓ1 Fourier-series expansion, respectively. ℓ2 Fourier-series expan-
sion leads to the distortion of T-waves before premature ventricular contractions (PVC), 
while ℓ1 Fourier-series expansion does not, as highlighted using arrows. The Gibbs phe-
nomenon is also evident in the truncated ℓ2 Fourier-series expansion. A PVC is a heart-
beat which is autonomously triggered in the ventricles, and not in the sinus node. PVCs 
are common events which do not necessarily imply a negative heart condition [14].

5 � Simulation results
For evaluating the performance of the ℓ1 Fourier analysis, we applied it on simulated 
data, which permit to quantify the decomposition error directly. The single-chan-
nel synthetic data were obtained using the ECG dynamical model (EDM) proposed 
in  [10]. The original ECG components are also needed for quantifying the decom-
position error. To this purpose, we used the extended version of EDM proposed by 

Fig. 9  ECG components separation using truncated Fourier-series expansion a T-wave detection using 
truncated ℓ2 Fourier-series expansion b P and QRS-complex detection using truncated ℓ2 Fourier-series 
expansion c T-wave detection using truncated ℓ12 Fourier-series expansion d P and QRS-complex detection 
using truncated ℓ1 Fourier-series expansion
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Sayadi et al. for generating ECG characteristic waveforms (CWs) [15]. Seven Gauss-
ian kernels were employed to model ECG beats, corresponding to each of the ECG 
components (P-wave, QRS-complex, and T-wave), and for modeling asymmetries 
two Gaussian kernels were used for P- or T-waves (indicated by + and − superscripts), 
leading to:

We set the sampling rate to 250 Hz and generated 1000 synthetic series with 10s long. 
We allowed the RR interval durations to have a random fluctuation of up to 5% in each 
beat to make the synthetic ECGs more realistic. We added the random noise to synthetic 
ECGs. The signal-to-noise ratio (SNR) was modulated from 10 to 50 dB.

The ℓ2 and ℓ1 Fourier transforms were used to analyze the ECG signals. We com-
pared the efficiency of the ℓ2 and ℓ1 Fourier transform in extracting the ECG com-
ponents. To quantify the performances of the methods, we used the measures of 
improvement given by the normalized mean absolute error (MAE):

where xk and x̂k denote the original and the estimated components (either using ℓ2 or ℓ1 
Fourier transforms). The mean of MAE at different input SNRs is plotted in Fig. 10. ℓ1 
Fourier analysis outperforms zero-phase Butterworth filter and ℓ2 Fourier analysis.
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Fig. 10  Mean values of MAE as a function of SNR
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6 � Conclusion
The ℓ1 Fourier transform improves the Fourier-series expansion of time-series in reduc-
ing the effect of Gibbs phenomena and filtering the impulsive noise from the data. In this 
method, the Fourier coefficients are computed by minimizing the ℓ1-norm of the error 
between the time-series and its Fourier-series expansion. This paper presented the appli-
cation of Fourier transform to decompose an ECG signal to its components waveform as a 
real application. We showed that the Fourier-series expansion of an ECG signal, when the 

Fig. 11  Abnormal ECG record 8455m from MIT-BIH Atrial Fibrillation Database

Fig. 12  ECG components separation using truncated Fourier-series expansion a T-wave detection using 
truncated ℓ2 Fourier-series expansion b P and QRS-complex detection using truncated ℓ2 Fourier-series 
expansion c T-wave detection using truncated ℓ12 Fourier-series expansion d P and QRS-complex detection 
using truncated ℓ1 Fourier-series expansion
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ℓ1 Fourier transform is used to identify the expansion coefficients, produced a much accu-
rate estimate of its components waveform (e.g., QRS-complex and T-wave). Especially, the 
Gibbs phenomenon introduced by the Fourier-series expansion is significantly decreased 
when the expansion coefficients are computed using ℓ1 Fourier transform compared to the 
traditional ℓ2 Fourier transform. The efficiency of ℓ1 Fourier analysis was compared with 
the traditional ℓ2 Fourier transform and zero-phase Butterworth filter. The ℓ1 Fourier trans-
form significantly improves the Fourier-series expansion to decompose a signal to slow and 
fast components. Based on our assessments, the P-wave is indistinguishable with either the 
T-wave or QRS-complex in the frequency spectrum, as demonstrated in Figs. 9, 11 and 12, 
even when employing the ℓ1 Fourier transform. Our future research will examine the utiliza-
tion of the ℓp Fourier transform for values of p between 0 and 1, aiming at further reducing 
the Gibbs effect and thus being able to better separate signals which do not strongly overlap 
in frequency.
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