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A B S T R A C T   

We investigate the unexplored relationship between robot technology adoption and product innovation. We 
exploit Spanish firm-level data on robot adoption and use a staggered timing difference-in-differences, supported 
by an instrumental variable approach. Instead of an enabling effect, we find a negative association between robot 
adoption and the probability to introduce product innovations, as well as their number. The result is particularly 
significant for larger, established, and non-high-tech firms. In line with industry evolution models, we rationalise 
and interpret the findings suggesting that a key mechanism at work in the robotisation-innovation nexus are 
diseconomies of scope fuelled by capacity-increasing investments. We also discuss whether industrial robots in 
our data feature enabling capabilities at all. Our results have important implications for understanding the role of 
robots in firms’ operations and strategies, as well as for policy design.   

1. Introduction 

Historically, mechanisation of production has always been accom-
panied by questions about its impact on the incentive to reallocate re-
sources, with a natural focus on the substitutability of labour (Mokyr 
et al., 2015). However, labour substitution is only one of the effects of 
automation. In this paper, we study whether the adoption of robot 
technology influences product innovation. 

In essence, robots are capital goods, part of what has been called 
‘modern manufacturing capital’ (Aghion et al., 2023). However, 
contemporary robots are depicted as increasingly ‘malleable’, or flex-
ible, capital goods – multi-purpose equipment capable of executing 
different tasks with little re-programming. Growing robot flexibility is a 
clear trend, as robot technology is augmented by other technologies 
characterising the fourth industrial revolution (Benassi et al., 2022; 
Martinelli et al., 2021), both hardware (e.g., sensors, or additive 
manufacturing technologies) and software (e.g., artificial intelligence 
algorithms). Robots become a component in larger systems, such as 
cyber-physical systems and advanced digital production technologies 
(UNIDO, 2019). As such, it is possible to hypothesise that robot adoption 
will induce changes in firms’ behaviours that go beyond the well-known 
replacement and productivity effects on employment (Autor, 2019) and 

that are more ‘enabling’ in nature. The enabling nature of emerging 
technologies such as contemporary malleable robotic systems can be 
function of their capability to ease (or lower the costs of) experimen-
tation of product designs, or to reduce uncertainties in the production 
process and to create efficiencies – thus, freeing time and capacity to 
feed economies of variety. This hypothesis begins to accumulate 
empirical support (Hirvonen et al., 2021). At the same time, most of the 
robots currently in use in firms are yet “the most recent iteration of in-
dustrial automation technologies that have existed for a very long time” 
(Fernández-Macías et al., 2021, p.76) that continue to operate in well- 
bounded shop floor environments. Notwithstanding robots’ growing 
capabilities, the physically-constrained nature of their deployment 
suggests that their enabling influences on a firm’s broader decision- 
making structure might be limited. 

Excluding robot vendors, for any other firm, robots are process 
technology. Hence, robot adoption might be considered a form of pro-
cess innovation. From this perspective, our study is a special case of a 
more general theme: whether the relationship between process and 
product innovation is one of substitutability or synergy. At the root of 
process and product innovation there are different strategic consider-
ations: process innovation is mainly driven by efficiency and cost cutting 
reasons; product innovation is mainly driven by the capture of value and 
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market shares or creation(penetration) of(in) new markets (Utterback 
and Abernathy, 1975; Klepper, 1996; Damanpour and Gopalakrishnan, 
2001). While theoretical literature has modelled firms’ portfolio choice 
between product and process innovation (Lambertini, 2003), the 
empirical evidence is still scant – even more so for the case of 
robotisation. 

From a decision-making perspective, the impact of robot adoption on 
innovation can be affected by whether and how a companies’ routines 
change in response of the implementation of the new process technology 
(Gilbert, 2005; Nelson and Winter, 1982). On the one hand, rigid rou-
tines might limit the scope for exploration and innovation enabled by 
the investment in robots; on the other hand, if robot adoption imposes 
structural reorganisations that reverberate more generally on the firm 
operational structure, that might increase the chance of introducing 
novel products. From an economic perspective, the relationship between 
robot adoption and innovation depends on opportunity costs and scar-
cities: implementing robots is potentially a relevant financial investment 
(at least when accounting for investments in complementary capital and 
peripherals – see Benmelech and Zator, 2022 and Aghion et al., 2023). 
This creates an allocation problem, with firms having to distribute 
scarce resources among different ends. The choice on how to address 
such allocation problem can affect firms’ performance at the core and 
persistently, as management often takes decisions on process and 
product innovation in the context of the development of long-term 
strategies. Furthermore, and possibly more important, a firm’s top 
management might take process (including robot adoption) and product 
innovation decisions simultaneously, as part of an overarching and in-
tegrated market strategy (Miravete and Pernias, 2006). Simultaneous 
decision-making on robotisation and innovation can be shaped by many 
of the trade-offs we just mentioned. In an attempt to explore some of 
forces at play behind these strategic decisions, we look at the effect of 
robotisation on innovation in different firm profiles. Doing so, we try to 
understand potential mechanisms underlying our results. 

We exploit a unique dataset of Spanish firms, coming from the Sur-
vey on Firm Strategies (Encuesta Sobre Estrategias Empresariales, or ESEE) 
and implement an event-study approach (a staggered timing difference- 
in-differences model) and an instrumental variable analysis to relate 
different indicators of product innovation to robotisation. We show that 
robot adoption is negatively associated to product innovation. We 
cannot test directly the relevance of managerial decisions on our results; 
therefore, we limit ourselves to offer some descriptive support. We show 
that there is a positive correlation between management quality and 
robot adoption, suggesting that our findings may, at best, underestimate 
the actual effect of robot adoption on product innovation. Instead, we 
focus on coarser economic determinants of the relationship. These are 
more speculative in nature, but allow us to identify some robust patterns 
and to relate them to general stylised facts in the evolution of industries. 
In particular, we explore different channels pertaining to firms’ char-
acteristics that could explain how firms’ decision on product innovation 
and robot adoption relate. When we look at different firm profiles, we 
find that the negative association we detect is experienced by larger, 
established firms, active in sectors that are not high-tech. We interpret 
the findings in line with mechanisms outlined by established models of 
industry evolution. As industries mature (and firms grow), the incentive 
to allocate resources on process improvement to exploit economies of 
scale prevails on that of expanding variety through product innovation. 
By adopting robots, larger, established (features that proxy the state of a 
given industries life cycles) firms bet on capacity expansion – especially 
if responding to demand growth. Hence, robot adoption can divert re-
sources away from product innovation, as it fuels diseconomies of scope 
across firm investment types. Descriptive evidence on the timing of 
machinery investments and product innovation seconds our insights: 
both tend to peak right before robot adoption, suggesting that robot 
technology accelerates the process of firms’ focusing on capacity 
expansion fuelled by diseconomies of scope after the joint strategic de-
cisions on scale of production and product innovation. Finally, we reflect 

on the nature of robots included in our data: these are mostly system 
designed to produce large quantities of few product variants (Perzylo 
et al., 2019); hence, rather than enabling far-reaching changes in firms’ 
processes and routines, they are specialised tools, mostly tailored to the 
needs of large companies. 

In summary, the paper contributes to the growing, strand of studies 
analysing the relationship between firm-level robot adoption and eco-
nomic performance, extending the reach of automation studies from the 
labour market perspective to a microeconomics of innovation one. In 
this sense, our work builds primarily on economic reasoning and 
frameworks, in line with works such as Koch et al. (2021). Our unique 
contribution is the focus on the nexus between the adoption of industrial 
robots and product innovation performance. The paper is organised as 
follows: Section 2 provides a literature review that explores the main 
stylised facts of robotisation and juxtaposes three broad strands of 
research to construct a framework to guide the discussion of our results. 
Section 3 describes the data and the methodology we employ. Section 4 
presents the results and Section 5 offers a discussion of the mechanisms 
that might be producing them. Section 6 concludes the paper. 

2. Relevant literature 

The focus of our analysis is on robot technology, which is increas-
ingly under the spotlight for its applications, and lately even for being a 
strategic asset (Nolan, 2021). More precisely, we focus on industrial ro-
bots. We align with the ISO 8373 definition of industrial robot: an 
“automatically controlled, reprogrammable multipurpose manipulator 
programmable in three or more axes, which can be either fixed in place 
or mobile for use in industrial automation applications”.1 Wirkierman 
(2022) outlines the distinction between mechanisation (in the 19th 
century), computer-based automation (in the 1980s) and contemporary 
robotisation. The importance of robots, or telerobots (Sheridan, 2016), 
depends on their capacity of automating routine tasks and to act as 
multi-purpose tools – ultimately, to generate productivity gains. Robots 
become an interface between humans, control software, and production 
activities. The decision to invest in robots answers different goals, from 
the reduction of operating costs to the improved resilience in facing 
positive or negative peaks in production, passing through an increased 
flexibility and a more efficient use of resources (e.g. energy). In 
addressing these multifaceted firms’ needs, they reconfigure the very set 
of actions firms can engage into. As a consequence, robots might also be 
characterised by enabling capabilities. 

Despite the interest around robot technology, economists’ under-
standing of their technical features and patterns of adoption is yet 
limited. One reason for that has to do with the angle of analysis, as most 
of the literature on recent automation is grounded on theories of routine- 
biased technical change (Acemoglu and Restrepo, 2019), which take 
occupations and job tasks as key units of analysis but lack in-depth, 
‘engineering’ knowledge on robots as complex technology systems. A 
second, related reason has to do with data availability at a level granular 
enough to appreciate the heterogeneity of robot technology. However, 
recent studies are starting to draw a finer-grained picture of the imple-
mentation of robot technology into production activities. Focusing on 

1 This definition bounds the robots considered to those used for industrial 
purposes, which is our domain of interest. Furthermore, it is the definition 
adopted by the International Federation of Robotics (IFR). Since we use IFR 
data in our analysis as well, this ensures a consistent definition of the object of 
analysis. In the survey we use for this study (see Section 3), firms are only asked 
if they use “Robotics”, without providing a detailed definition. However, the 
question on robotics excludes other technologies such as “computer-assisted 
design”, or “numerical control machine tools” (which are alternatives firms can 
choose), hence the boundaries of robotics in the survey approximate the ISO 
definition. Furthermore, our definition is in line with the well-established work 
of Koch et al. (2021), who use the same data source. 
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German plant-level information, Deng et al. (2021) outline stylised facts 
of robot adoption, among which, the fact that robot use is relatively rare, 
the distribution of robots is highly skewed, and that robot adopters are 
‘exceptional’ actors – that is, larger, with higher labour productivity, 
investing and exporting more and using more novel technology 
compared to non-robot-using plants. Benmelech and Zator (2022) 
confirm that robot adoption is yet limited, especially when compared to 
digital technologies. 

We build a framework for our analysis by bridging three different 
strands of literature that provide relevant insights: (i) studies on firm- 
level automation; (ii) studies on the relationship between product and 
process innovation strategies; and (iii) research on the enabling effect of 
the adoption of emerging technologies on innovative activities. 

2.1. Firm level analysis of automation and robotisation 

As it is the case for more aggregate-level research, firm-level studies 
of automation and robotisation have focused almost exclusively on la-
bour market impacts. Humlum (2019) uses an event-study approach (on 
Danish administrative data) to measure worker heterogeneity in expo-
sure to robot adoption. Similarly, Bessen et al. (2020) and Domini et al. 
(2021) study automation spikes and job separation rates for Dutch and 
French firms, respectively. Dauth et al. (2021) measure exposure to in-
dustrial robots for Germany apportioning data from the IFR using a 
regional labour market approach combined with worker-level admin-
istrative data; Dottori (2021) conducts a similar exercise for Italy. As 
pointed out by Acemoglu et al. (2020), new firm-level analysis in-
troduces new issues as well. In particular, the detection of a productivity 
effect of robots can be, in reality, the result of a selection effect: as firms 
adopting robots reduce production costs, they tend to gain market 
shares. Overall, employment gains or losses will then be a result of 
reallocation. In fact, when aggregating firm-level effects, the impact on 
total employment seems limited to composition effects, with the nega-
tive or positive impact of automation on the labour share depending on 
the magnitude of labour share reduction in the few, usually large, robot- 
adopting firms (Autor et al., 2020). Another angle of the robotisation- 
employment nexus is that explored by Voshaar et al. (2024). They find 
that (Spanish) robot-adopting firms exhibit greater labour cost stickiness 
compared to non-adopters. The result is rooted in the upskilling dy-
namics generated by robot adoption, and in management’s reluctance to 
lay off robot-complementary skilled workers. These results provide 
further speculative support to the idea that rigidities at the decision- 
making level (in this case, shaped by the economic forces leading 
robot firms to hire skilled workers) could mediate the relationship be-
tween robotisation and innovation as well. 

Exploiting more granular information, firm-level automation 
research began to go beyond effects on employment and to focus on the 
impact of robots on various indicators of performance. Kromann and 
Sørensen (2019) use survey data from Danish firms to relate automation 
measures and performance, measured as labour productivity and profit 
to sales ratio, finding a positive relationship. Acemoglu et al. (2020) find 
that French robot adopters experience an increase in value added and 
productivity beyond a decline in the labour share. Aghion et al. (2023) 
measure the impact of automation technology (captured by expendi-
tures on industrial equipment and machines or plant-level energy con-
sumption to proxy ‘motive power’) on French manufacturing firm’s 
employment, wages, prices and profits with an event study and a shift- 
share setup. They find that next to a positive effect on employment, 
profits and sales increase while consumer prices decrease. Exploiting the 
same dataset we also use, Koch et al. (2021) confirm that robot adopters 
are exceptional in the sense that those firms that are ex ante larger, more 
productive and exporting have higher likelihood of adopting robots 
(with a higher likelihood for less skill-intensive firms). Robot adoption 
boosts output, TFP growth, and exporting. Alguacil et al. (2022) 
corroborate the findings on exporting – Spanish robot adopters increase 
probability, amount, and shares of export, and the technology helps in 

particular companies facing high export entry costs.2 Using import data 
on industrial robots for French firms, Bonfiglioli et al. (2020) produce 
additional evidence that robot adopters differ from non-adopters ex 
ante, being these larger, more productive firms and employing a higher 
share of managers and engineers. Interestingly, they find that demand 
shocks lead firms both to expand (increasing employment) and auto-
mate; hence, they stress the possibility that a spurious correlation exists 
between automation and impact on employment. Südekum et al. (2020) 
combine industry-level (IFR) data on robot adoption with firm-level 
information for European manufacturing to study changes in the dis-
tribution of sales, productivity, mark-ups, and profits within industries. 
They find that robotisation disproportionately benefits top firms, rein-
forcing the trend of emergence of superstar firms (Autor et al., 2020). 
The authors outline the possibility that robot adoption might slow down 
knowledge diffusion from frontier firms to laggards, or that superstar 
firms could be more successful in attracting high-quality labour capable 
of speeding-up the implementation of the new technology. 

2.2. Relationship between product and process innovation 

A second strand of research that is relevant for our analysis is the 
economics and strategy literature on the relationship between product 
and process innovation (R&D). Traditionally, the two types of in-
novations have been analysed individually because of the different 
strategies underpinning them, which in turn answer to different internal 
and external stimuli: when competition is driven by high product dif-
ferentiation, it is optimal to choose a product innovation strategy; when 
competition is mainly price driven, it is optimal to go for process 
innovation (Weiss, 2003). Only recently, product and process innova-
tion have been studied as strategic complements at the company level. 
For example, complementarities between process and product innova-
tion are likely to emerge in the so-called process industries, where it is 
also more appropriate to hypothesise a relation going from process to 
product (Hullova et al., 2016). Theoretically and more in general, 
Lambertini (2003) finds that, for a monopolist, cost-reducing process 
R&D and product innovation are substitutes, as surplus is extracted 
either by reducing marginal cost for a given number of product varieties, 
or expanding variety for a given level of production costs. Lin (2004) 
contrasts this, showing that process and product R&D are negatively 
related only if the degree of economies of scope in process R&D is low; 
otherwise, cost-reducing R&D is a positive function of product variety. 
Mantovani (2006) finds that monopoly profits are higher when product 
and process strategies are jointly pursued, with initial conditions 
determining the share of product vs process R&D. In a dynamic setting, 
Lambertini and Mantovani (2009, 2010) find that process and product 
innovation are substitutes for a monopolist at any stage of the path to-
wards the steady state equilibrium, and complementary in the steady 
state. Li and Ni (2016) identify in the learning-by-doing rate (hence, 
knowledge accumulation regime) for product and process innovation a 
key parameter deciding whether the two activities are substitutes or 
complements. 

Studies of industry dynamics and evolution, and in particular those 

2 In a set of ancillary regressions aimed at looking at the mechanisms behind 
the effect of robotisation on exports, Alguacil et al. (2022) analyse the relation 
between the adoption of robots and the probability to introduce a product 
innovation. They find a positive and weakly significant effect. A number of 
factors may explain the different effect compared to our evidence. In particular, 
here we refer to two main issues. First, their research design, which does not 
account for dynamic effects, implies a rather rigid selection of ‘treated firms’. In 
their analysis, robot adopters are firms which have adopted in time t, but not in 
previous period, making them rather intermittent robot adopters. A careful 
treatment of reversals is also absent. Second, the specification does not appear 
to be tailored to a regression with product innovation as dependent variable, 
lacking a proper control for the level of R&D investment. 
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mapping industry life-cycles, illustrate the endogenous process leading 
firms to transition from a focus on product innovation to one on process 
innovation (Klepper, 1996). The model of Klepper (1996) outlines the 
key mechanism behind the fact that shares of product and process R&D 
expenditures in an industry change over time: as production expands 
and profit margins decrease, firms have a growing incentive to focus on 
cost-reduction, rather than on the introduction of new product variants. 
Product innovation is mostly done by entrants, as succeeding in this 
activity is their only chance to compensate the scale advantage of 
incumbent firms. As the industry matures, the importance of scale (ca-
pacity expansion) increases, as so does, endogenously, process innova-
tion expenditures. Bennett (2020) builds on that, and suggests that 
automation is pursued with higher intensity by either leading firms or 
laggards depending on the state of the market. In growing markets, cost- 
spreading incentives favours incumbents’ automation; in non-growing 
markets, automation can be driven by market stealing incentives on 
the side of the laggards, which hope to gain market shares at the cost of 
the leading firms. Cohen and Klepper (1996a) show that the allocation of 
resources to process or product R&D vary with firm size: process inno-
vation induces less direct sales growth as new processes cannot be easily 
sold in disembodied form compared to products. Hence, smaller growth- 
oriented firms will see higher return in conducting product R&D. As 
returns to process R&D depend on current output, firms growing larger 
will tend to shift to process R&D. This mechanism matches nicely our 
findings. 

Empirically, Hirvonen et al. (2022) use text data to explore the 
product vs process tension by analysing the impact of advanced tech-
nology adoption in Finnish manufacturing firms. In their paper, 
advanced manufacturing technologies include computerised numerical 
control (CNC) machines, (welding) robots, laser cutters, surface- 
treatment technologies, measurement devices, enterprise resource 
planning (ERP), and computer-aided design (CAD) software. Rather 
than replacing workers, these technologies are adopted to boost 
competitive advantage; adoption of new tools lead to an expansion in 
product variety. These findings go in line with the expectation of an 
enabling capability of advanced manufacturing technologies, among 
which potentially robots. However, firms involved in the analysis are 
mostly smaller and medium enterprises that – as pointed out by Cohen 
and Klepper (1996a) – have ‘by design’ a higher incentive to engage in 
product innovation compared to process innovation. 

2.3. Emerging technologies and innovative activities 

A third piece of the framework we are building consists of literature 
relating the use of novel technologies and innovation behaviour. The 
idea that certain technologies shape the incentive to innovate in related 
technologies or industries is at the core of the literature on general- 
purpose technologies (Bresnahan and Trajtenberg, 1995), in which 
core upstream technologies and downstream technologies that make use 
of the core ones have linked payoffs in R&D investments. Some tech-
nologies are what Koutroumpis et al. (2020) call ‘invention machines’ - 
what Griliches (1957) identified as ‘invention of a method of inventing’ 
(IMI) - as “they alter the playbook of innovation where they are applied” 
(Cockburn et al., 2019). Innovations (inventions) that spur further 
innovation (inventions) usually feature some elements of multi- or 
general-purpose, or a ‘meta-technology’ nature (Agrawal et al., 2019). 
Being multi-purpose malleable tools, robots are a good candidate for the 
role. 

Applied literature on the impact of ICT also detected how enabling 
technologies open new room for actions at the firm level, resulting in 
higher productivity (Brynjolfsson and Hitt, 2000). More recently, 
Brynjolfsson et al. (2021) find that a similar effect can be registered in 
firms adopting predictive analytics techniques. Focusing on Canadian 
firms, Dixon et al. (2021) find that robot adoption leads to a different 
type of ‘innovation’, namely changes in organisational structure: using 
robots produces a reduction in the number of managers, but an increase 

in the span of control for those managers that survive the change. At an 
even more detailed level of analysis, Furman and Teodoridis (2020) 
show how the automation of a research task in computer vision and 
motion sensing research – achieved with the introduction of the Kinect 
technology – impacts subsequent research productivity and type of 
research output, increasing the production of new ideas as well as their 
diversity. 

Closer to the focus of our analysis, Liu et al. (2020) relate the number 
of industrial robots (which they use to proxy artificial intelligence) and 
technological innovation at the industry level, using Chinese panel data 
for the manufacturing sector. The authors find a positive relationship 
between robots and innovation (measured as patents count). However, 
the aggregate level of analysis as well as the size of the sample used do 
not permit to identify clearly and in a fine-grained manner the channels 
and mechanisms relating technology and performance. Niebel et al. 
(2019) observe the relationship between use of big data analytics and 
product innovation at the firm level, for a sample of manufacturing and 
service companies from the German ZEW ICT survey and Community 
Innovation Survey. By reducing uncertainty and supporting decision- 
making with high-quality information, the expectation is that big data 
analytics would help innovative activities. The authors find that the use 
of these techniques raises both the propensity to innovate as well as 
innovation intensity (measured as the share of sales from new products 
and services). 

The enabling capability of an emerging technology more narrowly 
defined is studied in Rammer et al. (2022) and Babina et al. (2023), who 
focus on artificial intelligence (AI). Rammer et al. (2022) use the 2018 
module of the German section of the Community Innovation Survey to 
study the relationship between the use of AI in firms and product and 
process innovation. While AI is used by a very small share of firms, those 
adopting AI (and, in particular, the firms that contribute with in-house 
efforts to the development of AI solutions) use it to innovate, espe-
cially product innovations that are new to the market. The analysis is 
limited by the cross-section nature of the data, but it is useful to shed 
light on the fact that only certain specific technologies have enabling 
capabilities. Babina et al. (2023) exploit resume and job posting data to 
test the hypothesis that AI adoption (via hiring of AI skills) lowers the 
cost of new product development. Orthogonal to robot technology, in 
their study AI adoption does not impact process innovation (and, thus, 
labour replacement and productivity); rather, it shows an enabling effect 
as discussed in this paper: AI shortens experimentation time and enables 
product variety thanks to better predictions of demand. 

2.4. Taking stock of the literature 

In summary, linking three strands of literature we have at hand a rich 
picture of the profile of robot adopters, as well as of the impacts 
following the adoption of robot technology. First, firm-level studies of 
automation and robotisation find evidence of self-sorting: adopters are 
already better performing firms before automation, and automation 
provides a further boost to performance. Second, whether robots are 
used only as a process technology or also with the goal of upgrading 
product offering depends on the forces set in motion by robotisation 
inside the firm (e.g. learning) and the concurrent strategic decisions 
taken by management, e.g. adjustment of production or changes in 
market positioning. Third, the enabling capability of a technology might 
depend on its very technical features: software technologies such as AI 
or advanced ICTs such as predictive analytics can be used as a sup-
porting tool to reduce uncertainty and to guide innovation resource 
allocation decisions. It remains to be seen whether industrial robots are 
characterised by the same features that make emerging software tech-
nologies enabling. Taken all together, and given its malleability, it 
cannot be excluded that robot technology might help to experiment with 
new product designs and prototypes; however, this capability might be a 
feature of a subset of robots only, or one that companies are not able or 
willing to exploit fully. 
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3. Data and empirical strategy 

Our analysis covers the period 1991–2016, a period during which 
there have been significant transformations in the production processes 
of firms worldwide. Industrial robots played an important part in these 
changes. Acemoglu et al. (2020) provide evidence of a fourfold rise in 
the stock of (industrial) robots in the United States and western Europe 
between 1993 and 2007, while Graetz and Michaels (2018) show the 
dramatic fall in robot prices, which halved (and decreased even more 
when quality-adjusted) roughly in the same period for a sample of six 
advanced economies. 

The adoption of robots has been quite heterogeneous among coun-
tries in the last decades (OECD, 2019). Spain, which, according to the 
World Robotics 2022 Report,3 is still among the first twenty countries 
worldwide in terms of robot density (number of robots per 10,000 em-
ployees), has a specific trend in robotisation. Notably, it has experienced 
a surge of operational robots’ adoption by a factor of five in the period 
1993–2000, mostly due to the large diffusion of automation in the 
automotive industry. 

For our analysis, we mainly draw on longitudinal firm-level data 
from a survey of Spanish manufacturing companies: the Encuesta Sobre 
Estrategias Empresariales (ESEE, Survey on Firm Strategies). ESEE is a 
survey carried out annually by the SEPI Foundation4. Previous studies 
have highlighted how ESEE data cover approximately 22 % of total 
Spanish employment in manufacturing and that it includes the full 
population of manufacturing firms with >200 employees and a repre-
sentative sample of SMEs between 10 and 200 employees (Barrios et al., 
2003; D’Agostino and Moreno, 2019). ESEE has been extensively 
employed as a data source for applied studies in economics and man-
agement at the firm level.5 

The ESEE questionnaire includes information on a wide range of 
topics, such as market and product characteristics, financial data and 
production activities. For the purpose of our research, ESEE data is ideal 
because it contains: (i) information on the adoption of industrial robots 
for firm production activities; and (ii) information on firm’s product 
innovation activities. Several variables within ESEE data, like the one 
capturing robotisation on which we shall return, are collected every four 
years and refer to the previous three/four-year period. Our final sample 
entails 3201 firms over a rather long time-span, made of seven relevant 
periods between 1991 and 2016 (1991–1993, 1994–1997, 1998–2001, 
2002–2005, 2006–2009, 2010–2013, and 2014–2016). 

Our empirical approach draws on Koch et al. (2021), which directly 
accounts for the systematic differences between robot adopters and non- 
adopters. Indeed, relevant differences exist between the two groups of 
firms. Table 1 reports some descriptive statistics on this aspect. As ex-
pected, differences are relevant and always statistically significant. 
Similar to what has been identified in the literature (Deng et al., 2021), 
the crude difference between adopters and non-adopters reveals that the 
former tend to innovate more in products, are larger, invest more in 
machinery and R&D and are more internationalised. 

Given these systematic differences,6 we adopt a staggered timing 
difference-in-differences (DiD) approach, which allows to capture the 
effect of a treatment (i.e. robotisation) that may happen in different 

points in time. 

ProductInnovationit = αi + τt +
∑− 2

p=− 5
βpRobotp

it +
∑2

p=0
βpRobotp

it + Xitφ

+
∑

j

∑

t
σjtIndj*τt + εit  

where Robotp
it = 1[t − Ci = p] is an indicator for robot adopting firm i in 

cohort Ci (the period of treatment) being p periods from the first adop-
tion. βp are the main parameters of interest and measure the robotisation 
effect on product innovation relative to one period before first adop-
tion.7 The variable capturing robotisation is available from 1991 and 
covers a 4-year period. As our focus is on companies switching to robot 
adoption, we follow Koch et al. (2021) and retain only companies which 
report not having adopted robots in the first period of observation 
(1991–1993).8 Initially, we assume the absence of reversals, i.e. once 
robot technologies are adopted firms keep their treated status. It is worth 
noting that the inclusion of pre-treatment variables allows us to uncover 
potential anticipation effects of robotisation, and is the starting point to 
assess the fulfilment of the parallel trend assumption. 

Product innovation is captured in two ways throughout our empir-
ical analysis. These are in line with the measures employed by a large 
part of the literature and available from the Community Innovation 
Survey (CIS) (e.g. Ballot et al., 2015; Frenz and Prevezer, 2012). 
Respondent firms were asked whether they introduced new (or signifi-
cantly improved) product innovations and the number of these product 
innovations. We make use of two variables. The first focuses on the 
probability of introducing a product innovation. This is captured by a 
dummy variable taking value one if this happened at least once during 
the relevant period, and zero otherwise. In this case, our estimation 
amounts to a linear probability model. The second variable captures the 
number of product innovations. This is measured as the average number 

Table 1 
Summary statistics by robot adopters/non-adopters (n = 8757).   

Non-adopters 
[n = 5827] 

Adopters 
[n = 2930] 

Difference test 

Number of product innovations 1.56 3.48 **  
[11.79] [26.86]  

New product introduction 0.15 0.28 **  
[0.35] [0.45]  

FTE employees 93.6 315.89 **  
[202.15] [649.76]  

R&D investment (thous.) 191.22 818.02 **  
[1253] [4047]  

Investment in machinery (thous.) 537.5 2443.6 **  
[2917] [8190]  

Foreign ownership (%) 9.6 22.33 **  
[27.49] [38.99]  

Export intensity 0.14 0.24 **  
[0.23] [0.26]  

Notes: The entries are means and standard deviations of firm-year data for the 
estimating sample, comprising adopters (firms adopting robots in the period 
1991–2016) and non-adopters (firms that never adopted robots during the 
period under consideration). Test scores report significance levels of i) t-tests on 
the equality of means for FTE employees, R&D investment, investment in in-
dustrial equipment, foreign ownership and export intensity; ii) Wilcoxon-Mann 
Whitney test for the number of product innovations given the non-normally 
distributed nature of the variable and iii) chi-squared test for new product 
introduction due to the categorical nature of the variable;+ p < 0.1, * p < 0.05 
and ** p< 0.01 

3 https://ifr. 
org/ifr-press-releases/news/china-overtakes-usa-in-robot-density (last accessed 
7 December 2023)  

4 https://www.fundacionsepi.es/investigacion/esee/en/spresentacion.asp 
(last accessed 7 December 2023)  

5 For a list of publications see https://www.fundacionsepi. 
es/investigacion/esee/en/sesee_articulos.asp (last accessed 7 December 2023) 

6 Given these differences between adopters and non-adopters in a set of un-
reported regressions, whose results remain available upon request, we drop 
firms that never adopted robots, to focus on a more homogeneous group of 
companies. Results confirm our baseline evidence presented in Section 4.1. 

7 More precisely, βp measure the difference in product innovation between 
robot adopting and non-adopting firms p periods from first adoption (before 
and after), relative to the outcome differences between adopting and non 
–adopting firms in the excluded periods (one period before adoption).  

8 We drop a total of 745 unique companies from our sample. 
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of product innovations over each period. Given the highly skewed na-
ture of the variable, we employ its naturally log-transformed value. 

In Eq. 1, we include a vector of Xit time-varying characteristics of the 
firm that can affect product innovation performance and may be asso-
ciated with the decision to adopt robot technologies. The inclusion of 
this vector allows controlling for omitted variable bias driven by ob-
servables. More in details, we control for a set of firm-level character-
istics including firm size, measured as the average number of full-time 
equivalent employees in the relevant four-year period. We also include 
two measures of investment. First, we measure the total expenditure in 
R&D as the sum of intra- and extra-mural expenditures in the period. 
Second, we include the investment in industrial machinery. Both mea-
sures have been deflated by using the industry-level consumer price 
index provided by the Spanish statistical office (Instituto Nacional de 
Estadística) (with 2015 as base year). In addition, we control for the 
share of foreign ownership (both as direct and indirect foreign capital 
participation) over the relevant time period. We also account for the 
exposure of the firm to international markets by including the share of 
the total value of exports over sales in the relevant period. All the con-
trols have been lagged by one year to mitigate reverse causality prob-
lems and have been transformed in natural logarithms. We also 
introduced a set of period fixed effects τt controlling for time varying 
shocks which can jointly affect the firms in our sample (e.g. business 
cycle effects). The coefficient αi captures the time invariant firm het-
erogeneity that may be associated to both automation and innovation 
performance and is generated also by unobservable factors, like mana-
gerial orientation and baseline productivity.9 Finally, to control for 
sector specific time varying shocks we include the interaction between 
industry and time dummies (Indj*τt).10 We also test for the parallel trend 
assumption by checking whether the lead variables are not different 
from zero (our H0). If we fail to reject the null hypothesis, this would 
suggest that before the treatment the adopter and the non-adopters were 
subject to common trends conditional on observable and unobservable 
characteristics. 

Static and dynamic treatment effect estimates adopting staggered 
timing DiD approaches such as that employed in our work may be 
affected by significant biases (Goodman-Bacon, 2021). Notably, Sun and 
Abraham (2021) show that dynamic treatment estimates are biased 
when there is variation in treatment timing and treatment effect het-
erogeneity, which in our case could be due to the likely differences in the 
capabilities of robot technologies, which have certainly been improving 
along a learning curve throughout the period we consider. Additional 
complications can be posed by the presence of reversals: firms that 
during the full period of observation switch in and out of treatment. 
While this circumstance should not be too common when robotisation 
implies large organisational changes and initial fixed costs, we cannot 
exclude that firms opt out from robotisation – e.g. due to inferior per-
formances, compared to expectations. 

We implement a series of checks to make sure that our results are 
robust to these issues. Regarding the first point, we follow Callaway and 
Sant’Anna (2021) who propose an approach which first estimates the 
individual cohort-time-specific treatment effects, thus allowing for 
treatment effect heterogeneity, and then aggregates all the possible 2 ×

2 comparisons to produce measures of the overall (properly weighted) 
treatment effects. As far as the second issue is concerned, we rely on the 
estimator proposed by de Chaisemartin and D’Haultfoeuille (2022). The 
authors develop an approach for estimating treatment effects under 
treatment timing variation and treatment effect heterogeneity under 
more general settings, where treatments may be reversible. 

4. Results 

4.1. The relation between robotisation and product innovation 

Our baseline evidence rests on the results emerging from the stag-
gered timing DiD model, discussed in Section 3. We rely on these esti-
mates to provide an account of whether there is an association between 
robot adoption and the propensity to introduce a new product or the 
number of new products introduced by the firm. These results are re-
ported, respectively, in Column 1 and 2 of Table 2. 

Before proceeding, it is important to consider how we verify the 
plausibility of the parallel trend assumption. In general, we follow 
recent studies (Roth, 2022; Deryugina, 2017) to examine the (joint) 
significance of the βp coefficients, which capture the differences between 
adopters and non-adopters before the actual adoption takes place. 
Surely, individual pre-treatment coefficients can reveal milder viola-

Table 2 
Effect of robot adoption on product innovation.   

New product introduction Number of product innovations  

(1) (2) 

5 periods before − 0.029 − 0.087  
[0.071] [0.086] 

4 periods before − 0.003 − 0.137+

[0.051] [0.078] 
3 periods before 0.012 − 0.019  

[0.036] [0.057] 
2 periods before − 0.061* − 0.091*  

[0.027] [0.045] 
period of adoption − 0.052** − 0.099**  

[0.020] [0.032] 
1 period later − 0.084** − 0.104*  

[0.026] [0.049] 
2 periods later − 0.144** − 0.149*  

[0.034] [0.063] 
R&D Exp 0.027** 0.032**  

[0.002] [0.003] 
Size 0.026 0.015  

[0.018] [0.029] 
Export Int 0.113 0.109  

[0.069] [0.116] 
Foreign Own 0.009 0.011  

[0.009] [0.016] 
Invest Mach 0.006** 0.003  

[0.001] [0.003] 
Firm FE Yes Yes 
Year FE Yes Yes 
Industry-by-year FE Yes Yes 
Joint p-value 0.171 0.146 
N (firms X year) 8757 8757 
N (firms) 2456 2456 

Notes. The dummy indicating one-period prior treatment status is omitted from 
the regression as it acts as reference period. The dependent variables are: the 
probability to introduce (Column 1) and the log-transformed number of new (or 
significantly improved) products (Column 2). Standard errors clustered at the 
firm level are in parentheses. + p < 0.1, * p < 0.05 and ** p< 0.01. 

9 Given the relatively long time period we consider in our analysis, the 
assumption of time invariance of the unobserved heterogeneity component may 
be far-fetched. In a set of unreported regression – which remain available upon 
request – we have run our analysis on four shorter time periods covering three 
(4-year long) waves of the ESEE panel each (1991–2002; 1994–2006; 
1998–2010; 2002–2014). Results yield the same conclusions of the baseline 
evidence presented in Section 4.1.  
10 Industries are defined at the NACE (rev. 2) 2-digit code level. Notably, we 

use the aggregated version of industrial classification provided in ESEE data (20 
manufacturing industries overall). Please see https://www.fundacionsepi.es/ 
investigacion/esee/en/svariables/Cambio_clasificacion_sectorial_ESEE.asp. 
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tions of the assumption. Nevertheless, we conduct an additional 
robustness exercise, using the approach proposed by Roth (2022),11 

which checks the stability of the evidence in the presence of a violation 
of the pre-trend assumption.12 For the sake of completeness and trans-
parency, in Table A1 we report, for each regression in our study, the 

number of pre-treatment coefficients significant at the 95 % level, the 
joint significance of pre-treatment coefficients and the value of the 
likelihood ratio proposed by Roth (2022). A ratio below 1 signals a lower 
probability of obtaining the coefficients under the chosen pre-trend 
compared to a parallel trend, so it signals the plausibility of the paral-
lel trend assumption. To anticipate an important element related to the 
robustness of our results, one can notice how, even when there are signs 
of violation of the parallel trend assumption based on the significance of 
the pre-treatment coefficients, the likelihood ratio based on Roth (2022) 
always supports the credibility of our evidence. 

Fig. 1 provides a graphical representation of the treatment co-
efficients from Table 2: pre-treatment coefficients are neither on an 
upward or downward trend prior to first adoption, supporting the 
assumption that treated and control groups are on parallel trends prior 
to treatment. The p-values associated to the joint significance of the pre- 
treatment coefficients (0.171 and 0.146, respectively) provide support 
to the implementation of our approach. In relation to the actual effect of 
robotisation on product innovation, our results point to a negative effect 
which persists after two periods (8 years) from the actual adoption; this 
is noticeable for both the propensity and the number of product in-
novations.13 The magnitude of the effect ranges from − 5.2 to − 14.4 
percentage points in the case of the effect on the propensity and from 
− 9.4 % to − 13.8 % in the case of the effect on the number of new 

Fig. 1. Estimated effect of robot adoption on product innovation. 
Notes. The figure shows the estimated effects of robot adoption on the two dependent variables: the probability to introduce new (or significantly improved) products 
(upper figure) and the log-transformed number of new (or significantly improved) products (lower figure). The figure reports the coefficients and standard errors 
from Table 2 for the dummies of robot adoption. The dummy indicating one-period prior treatment status is omitted as it acts as reference period. Controls include for 
the relevant period: firm size (the average number of full-time equivalent employees), the deflated total expenditure in R&D, the deflated investment in industrial 
machinery, the share of foreign ownership (both as direct and indirect foreign capital participation), the share of the total value of exports over sales, firm, year and 
industry-by-year fixed effects. Confidence intervals at the 95 % level. 

11 Roth (2022) provides evidence that pre-trend testing is statistically under- 
powered and that conditioning the estimation of a treatment effect on pass-
ing a pre-trends test can actually lead to estimation bias. His approach allows 
researchers to check the sensitivity of results to plausible violations based on a 
hypothesised trend. We implement this method to examine the sensitivity of our 
estimates to potential violations of the parallel trend assumption.  
12 This is the ratio of the likelihood of observing the coefficients from the 

estimates conditional on having a hypothesised pre-trend over the likelihood of 
observing them under parallel trends. This indicates how much less likely are 
the observed coefficients under the hypothesised pre-trend compared to under 
parallel trend. A ratio below 1 signals a lower probability of obtaining the 
coefficients under the chosen pre-trend compared to a parallel trend, so it 
signals the plausibility of the parallel trend assumption. In the absence of 
theoretical expectations on the shape of the trend, we employed the trend that 
best mimics the coefficients plot, which is a nonlinear quadratic trend (inverted 
U-shape). We further corroborate the robustness of the results from the Roth 
test, by checking the sensitivity of the test results to different functional forms 
and different power levels of the test. For the two specifications for the baseline 
regression model (Table 2), we computed the value of the Roth likelihood test 
for power levels from 30 % to 90 % in increments of 10 percentage points. The 
power level of the Roth test is the probability one would find a significant pre- 
trend under the hypothesised pre-trend. For example, in the linear trend case 
the lower the power level the flatter is the trend line, so there is a low proba-
bility of pre-trend but also higher probability of no significant effect in case the 
hypothesised trend is true. For each of the two models Figure A1 reports the 
value of the likelihood test against the respective power level for each 
hypothesised trend. The trends are: 1) linear; 2) quadratic; 3) cubic; 4) 
quadratic polynomial I (y = − bx2 + bx) quadratic polynomial II (y = − bx2 −

bx). Figure A1 plots the results: no matter what shape or power level we as-
sume, the Roth test is always below the cut-off point of 1, thus supporting our 
results. 

13 We cannot exclude the presence of an anticipation effect given the signifi-
cance of the coefficient at p = − 2. However, the global test of joint significance 
of pre-treatment coefficients as well as the likelihood ratio test based on Roth 
(2022) and the sensitivity analysis we perform (see Table A1 and Figure A1) 
support the credibility of our evidence vis a vis the parallel trend assumption. 
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products introduced by the firm on the market.14 

We check the robustness of this evidence. We envisage two problems 
associated to our baseline results. First, our estimates would be biased in 
presence of variation in treatment timing and treatment effect hetero-
geneity (e.g. Sun and Abraham, 2021). In our case, firms can adopt ro-
bots at different points in time and this can possibly involve different 
cohorts of robots, with different capabilities. Second, a bias may emerge 
due to the presence of reversals (e.g. De Chaisemartin and d’Hault-
foeuille, 2022): that is, at some point firms may decide to opt-out from 
robotisation. For the first point we resort to the estimator proposed by 
Callaway and Sant’Anna (2021), while for the problem related to the 
presence of reversals, we rely on the estimator proposed by de Chaise-
martin and D’Haultfoeuille (2022). Results for Callaway and Sant’Anna 
(2021) and de Chaisemartin and D’Haultfoeuille (2022) estimators are 
shown in Fig. 2 and Fig. 3 respectively. 

As far as the former is concerned, we can graphically notice the 
absence of clearly ascending or descending trends before the adoption. 
In addition, the use of this technique is corroborated by the fact that the 
average pre-treatment coefficients are non-significant (with p-values of 
0.229 and 0.442 respectively) for both the estimations, which are 
focusing on the probability and the number of new products. The 
emerging evidence supports the presence of a negative effect of robot-
isation on product innovations that persists up to 8 years after the 
adoption. In the case of the results concerning the probability of product 
innovation, we notice that the coefficient of the effect at the year of 
adoption, while being negative, is marginally not significant (p-value 
0.111). 

When we implement the estimation proposed by de Chaisemartin 
and D’Haultfoeuille (2022), we still confirm the negative effect of 
robotisation and the fact that this tends to persist even after the adop-
tion. Although we notice a mild violation of the parallel trend assump-
tion, we still notice an effect that is negative and persistent up to 2 
periods (8 years) after the adoption.15 

The validity of our staggered DiD estimation hinges on the parallel 
trend assumption. To further support the credibility of our main result, 
we employ a different econometric approach based on the use of an 
instrumental variable, which is not subject to this assumption.16 Our 
instrumenting approach relies on the adoption of robots in the same 
sector of the focal firm, but in export destination countries. The instru-
ment is built as follows. We take the number of operating robots in EU 
and OECD countries in the same industry of the focal firm and we weight 
it by the firm’s export intensity to EU and OECD markets (i.e. the share 
of export to these destination countries over the total revenues). Our 
identification strategy rests on the following intuition. The adoption of 
robots by competitors in the export destination countries signals the 
availability of robot technologies that are suitable for the industrial 
applications in a given sector. Moreover, it should trigger the adoption 
of robots by the focal firm, which attempts to stay competitive on its 
destination markets. Foreign adoption is expected to affect product 
innovativeness, only through the consequent decision of the focal firm to 
robotise (or not). Table 3 shows the results of our estimation, we allow 
one lag (i.e. 4 years) to occur between robot adoption and product 

Fig. 2. Estimated effect of robot adoption on product innovation - Callaway and Sant’Anna (2021) estimator. 
Notes. The figure shows the estimated effects of robot adoption on the two dependent variables: the probability to introduce new (or significantly improved) products 
(upper figure) and the log-transformed number of new (or significantly improved) products (lower figure). The figure reports the coefficients and standard errors 
from the estimator of Callaway and Sant’Anna (2021) for the dynamic treatment effects: 5 periods before, 4 periods before, 3 periods before, 2 periods before, 1 
period before, period of adoption, 1 period later and 2 periods later. Controls include for the relevant period: firm size (the average number of full-time equivalent 
employees), the deflated total expenditure in R&D, the deflated investment in industrial machinery, the share of foreign ownership (both as direct and indirect 
foreign capital participation), the share of the total value of exports over sales, firm, year and industry-by-year fixed effects. Confidence intervals at the 95 % level. 

14 In a set of unreported regressions – which remain available upon request – 
we have considered whether this effect depends on the type of product inno-
vation introduced. That is, we looked at the probability to introduce new 
products associated to new materials, new components and new functions. 
Results show that it is the probability to introduce new components which is 
mainly driving the result on the overall probability to introduce innovation; the 
negative the effect of robotisation on the probability to introduce new materials 
and new functions materialises two periods after adoption. 

15 In the case of the effect on the number of innovations, the effect of the 1- 
period lagged treatment, albeit negative, is not significant, unlike the effect 
after 2 periods (i.e. up to 8 years).  
16 Such an approach turns out to provide robustness to our evidence also in 

light of the possible simultaneity in the focal firm’s decisions regarding inno-
vation and robotisation. We would like to thank one of the referees for pointing 
this out. 
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Fig. 3. Estimated effect of robot adoption on product innovation robust to switchers - De Chaisemartin and d’Haultfoeuille (2022) estimator. 
Notes. The figure shows the estimated effects of robot adoption on the two dependent variables: the probability to introduce new (or significantly improved) products 
(upper figure) and the log-transformed number of new (or significantly improved) products (lower figure). The figure reports the coefficients and standard errors 
from the estimator of De Chaisemartin and d’Haultfoeuille (2022) for the dynamic treatment effects: 5 periods before, 4 periods before, 3 periods before, 2 periods 
before, 1 period before, period of adoption, 1 period later and 2 periods later. Controls include for the relevant period: firm size (the average number of full-time 
equivalent employees), the deflated total expenditure in R&D, the deflated investment in industrial machinery, the share of foreign ownership (both as direct and 
indirect foreign capital participation), the share of the total value of exports over sales, firm, year and industry-by-year fixed effects. Confidence intervals at the 95 
% level. 

Table 3 
IV estimates with firm and year fixed effects.   

OLS IV  

New product introduction Number of product innovations First stage New product introduction Number of product innovations  

(1) (2) (3) (4) (5) 

Instrument   0.001**      
[0.000]   

Robot − 1 − 0.060* − 0.049+ − 0.604** − 1.114**  
[0.016] [0.022]  [0.097] [0.194] 

R&D Exp 0.026** 0.026** 0.003* 0.027** 0.024**  
[0.001] [0.004] [0.001] [0.002] [0.001] 

Size 0.003 0.013 0.009 0.001 0.004  
[0.011] [0.014] [0.012] [0.020] [0.023] 

Export Int 0.065 − 0.029 − 0.047+ − 0.027 − 0.021  
[0.091] [0.040] [0.029] [0.071] [0.055] 

Foreign Own 0.005* 0.016* − 0.011* − 0.001 0.009  
[0.001] [0.004] [0.005] [0.003] [0.006] 

Invest Mach 0.005** 0.005* 0.002 0.005** 0.005*  
[0.001] [0.002] [0.001] [0.002] [0.002] 

Firm FE Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes 
K-P Wald F-stat    74.892 74.892 
N (firms) 2449 2449 1351 1351 1351 
N (firms X year) 6262 6262 4260 4260 4260 

Notes. This table displays OLS and IV coefficient estimates using 1998–2016 data. Regressions are based on 6262 (4260) firm-year observations when estimating OLS 
(2SLS). Columns 1–2 report results of the OLS, Column 3 first stage regression and Columns 4–5 results for 2SLS. The 2SLS uses one lag of the IV to instrument the one 
lagged value of robot adoption. The dependent variables are: the probability to introduce new (or significantly improved) products in Columns 1 and 4 and the log- 
transformed number of new (or significantly improved) products in Columns 2 and 5. Driscoll-Kraay standard errors are in parentheses. + p < 0.1, * p < 0.05 and ** p<
0.01. 
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innovation.17 Columns 1 and 2 reports the results of a benchmark OLS 
fixed effect (FE) regressions, while Columns 3, 4 and 5 refer to IV esti-
mates. At the outset we should notice that the first stage estimates 
provide reassuring confirmation that the instrument is not weak, given 
the values of the Kleibergen-Paap F. When comparing FE and IV co-
efficients the latter seem to be greater in absolute value, meaning that IV 
corrects for an upward bias, which is expected, due to the already dis-
cussed selection of firms into robotisation as well as potential un-
observables that may jointly shape robotisation and innovation 
strategies. Hence, we confirm the negative effect that robotisation seem 
to have on both the indicators we use to capture product innovation. Our 
identification strategy may suffer from endogeneity in case foreign 
adoption of robots is driven by the focal firm’s one. This could happen 
when the focal firm can exert a market power in the foreign markets that 
is large enough to shape the foreign competitors’ behaviour. To account 
for this, we exclude from our analysis top exporters (1 % and 10 % 
respectively). Results are shown in Table 4 and confirm our evidence on 
the negative effect of robotisation on product innovation.18 

Our IV could potentially account for simultaneity in the decision to 
robotise and innovate; however, due to lack of data we are unable to 
directly control for the omission of managerial choices which could 
affect both the outcome and treatment variables. While the literature 
shows that managers’ styles tend to be quite sticky (Bertrand and 
Schoar, 2003), possible variations in the firm strategies brought about 
by a company change in management is something we cannot control 
for. Instead, we can provide some discussion looking at how manage-
ment quality relates to innovation, on the one hand, and robotisation, on 
the other. Extant evidence suggests the presence of a positive relation 
between management quality and firm performance, both in terms of 
productivity and innovation (see among others Arvanitis et al., 2016; 
Bloom et al., 2013; Beugelsdijk, 2008; Schneebacher et al., 2021). As far 
as the relation with robots, the literature is scant. By adopting an 
exploratory approach, we conducted a descriptive analysis on the basis 
of the data coming from the World Management Survey (WMS; Bloom 
et al., 2021)19 to verify the existence of such positive link between ‘good 
management’ and robot adoption for Spain. We employed IFR sectoral 
data combined with WMS data. A correlational analysis shows that a 
positive association between management quality and robotisation does 
exist (ρ = 0.448, t-stat = 7.299). Based on the above, we deem that, if 
anything, our estimates would be upward biased (less negative), leaving 
unaltered our evidence on the negative influence of robotisation on 
innovation. This evidence constitutes only a primer: more robust con-
trols should come from more suitable firm-level data on strategic de-
cisions, which we are unable to deploy in this study. 

4.2. Heterogeneity and channels 

Given the baseline evidence, we now provide a tentative exploration 
of the economic channels that could help explain the relation between 
robotisation and innovation. 

4.2.1. Firm size 
We first consider whether size plays a role. We start with the link 

between robot adoption and innovation, once again captured by the 
propensity (Table 5) and the number of product innovations (Table 6). 
While the p-value of the joint significance of the treatment parameters 
casts doubts on the capacity to meet the parallel trend assumption for 
medium-sized firms (Column 2 of Table 5), these doubts are relaxed by 
the likelihood ratio derived from Roth (2022) (see Table A1). We also 
observe that it is specifically large companies that are characterised by a 
negative association between robotisation and the probability of intro-
ducing a new product (Column 3 of Table 5). As in the baseline 
regression, this effect persists after the treatment (up to 8 years after). 
For small firms such an effect is not found (Column 1 of Table 5). A 
similar evidence, without any concern regarding the parallel trend 
assumption for medium-sized firms, can be found when considering the 
effect on the number of new products introduced by the company 
(Table 6). All in all, the negative and persistent effect is found for large 
companies. 

4.2.2. Firm age 
We also consider what is the role played by firm age,20 in order to 

ascertain whether the tension between robotisation and innovativeness 
unfolds in young or established firms. Once again, we distinguish be-
tween the two main innovative outcomes: the propensity (Table 7) and 
the number of product innovations (Table 8). Quite consistently, the 
persistent negative effect is mainly traceable among established com-
panies. Mid-age and old firms experience a negative and persistent as-
sociation between robot adoption and the probability to introduce 
product innovations, while mid-age firms display also a persistent 
reduction in the magnitude of product innovation. 

4.2.3. Sector 
Finally, in Table 9, we look at whether it is the sector in which the 

firm operates that determines the relationship between robot adoption 
and innovation We find that firms operating in high-tech sectors (Col-
umn 3) face a more tenuous tension between robotisation and pro-
pensity to introduce a new product than firms operating in mid- 
(Column 2) and low-tech sectors (Column 1).21 In fact, the negative and 
lagged effect seems to characterise in particular low-tech industries, 
albeit a violation of the parallel trend assumption would call for caution. 
A similar effect emerges for the number of product innovation; no 
persistent negative effect is found for high-tech companies (Column 6), 
and a mild negative effect characterise mid-tech sectors (Column 5). 
Once again, despite the possible violation of the parallel trend 
assumption, low tech sectors (Column 4) seem to be characterised by a 
clearly negative and persistent effect of robot adoption. However, it is 
important to stress that notwithstanding the traces of violations in the 
parallel trend assumption, the value of the likelihood ratios following 
Roth (2022) (see Table A1) supports the robustness of the results just 
presented. To capture additional nuances of this channel, we separate 
firms operating in robot intensive and non-robot intensive industries. 
We rely on IFR data and define non-robot intensive (robot intensive) 
industries as those where the operational stock of industrial robots is 
below (above) the world median. Table 10 shows the results for our 
outcome variables (the probability and the number of product in-
novations) for the two sub-samples: firms operating in robot intensive 
industries (Columns 1 and 3) and firms operating in non-robot intensive 
industries (Columns 2 and 4). We find that the tension between 

17 In a set of unreported (but available upon request) regressions we re-run the 
same IV estimates with a different lag structure. While using no lags, the in-
strument turns weak (F is lower than 10) hampering any credible evidence. 
When using 2 lags, the emerging evidence is in line with the IV estimates we 
report here: negative effects are found, albeit non-significant for the probability 
of product innovation.  
18 Our identification strategy may be challenged also by possible productivity 

shocks that affect export (which is one of the element of our instrument) and 
the decision to innovate. In a set of unreported (but available upon request) 
estimations we made sure that the stability of the results does not suffer from 
the inclusion of productivity as a control.  
19 https://worldmanagementsurvey.org/ (last accessed 7 December 2023). 

20 In a set of unreported regressions, which remain available upon request, we 
consider whether the inclusion of age as an additional control affect our esti-
mates. Results are very much aligned with the baseline evidence reported in 
Section 4.1.  
21 Industry classification follows OECD (2016) and aggregates medium-high 

tech and medium-low tech due to the low number of cases. 
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Table 4 
IV estimates with firm and year fixed effects, excluding top 1 % and top 10 % of exporters.   

Excluding top 1 % Excluding top 10 %  

First stage New product introduction Number of product innovations First stage New product introduction Number of product innovations  

(1) (2) (3) (4) (5) (6) 

Instrument 0.001**   0.001**    
[0.000]   [0.000]   

Robot − 1  − 0.548** − 0.931**  − 0.712** − 0.465*   
[0.138] [0.184]  [0.266] [0.234] 

R&D Exp 0.003** 0.027** 0.024** 0.002 0.028** 0.023**  
[0.001] [0.002] [0.001] [0.001] [0.002] [0.001] 

Size 0.012 0.005 0.009 − 0.010 − 0.019 − 0.016  
[0.014] [0.019] [0.022] [0.013] [0.017] [0.019] 

Export Int − 0.025 − 0.024 0.030 − 0.047 − 0.141 0.010  
[0.034] [0.081] [0.062] [0.083] [0.095] [0.090] 

Foreign Own − 0.009+ 0.000 0.017** 0.003 0.002 0.032**  
[0.005] [0.003] [0.006] [0.008] [0.007] [0.008] 

Invest Mach 0.002 0.005** 0.004* 0.002 0.006** 0.004**  
[0.001] [0.002] [0.002] [0.001] [0.002] [0.001] 

Firm FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
K-P Wald F-stat  122.869 122.869  23.593 23.593 
N (firms) 1334 1334 1334 1186 1186 1186 
N (firms X year) 4190 4190 4190 3619 3619 3619 

Notes. This table displays IV coefficient estimates using 1998–2016 data. Regressions are based on 4190 (3619) firm-year observations when estimating 2SLS excluding 
the top 1 % (10 %) of exporters. Columns 1–3 report results excluding the top 1 % and Columns 3–6 excluding the top 10 %. Columns 1 and 4 show results of first stage 
regressions. The 2SLS uses one lag of the IV to instrument the one lagged value of robot adoption. The dependent variables are: the probability to introduce new (or 
significantly improved) products in Columns 2 and 5 and the log-transformed number of new (or significantly improved) products in Columns 3 and 6. Driscoll-Kraay 
standard errors are in parentheses. + p < 0.1, * p < 0.05 and ** p< 0.01. 

Table 5 
Effect of robot adoption on probability of product innovation – firm size 
breakdown.   

New product introduction  

(1) (2) (3) 

5 periods before − 0.024 − 0.144 0.213  
[0.120] [0.097] [0.145] 

4 periods before − 0.015 0.125 0.038  
[0.065] [0.103] [0.111] 

3 periods before 0.070 0.078 − 0.030  
[0.057] [0.068] [0.071] 

2 periods before − 0.046 − 0.074 − 0.010  
[0.042] [0.056] [0.051] 

period of adoption − 0.014 − 0.057 − 0.080*  
[0.034] [0.036] [0.040] 

1 period later − 0.031 − 0.054 − 0.159**  
[0.044] [0.053] [0.056] 

2 periods later − 0.067 − 0.144* − 0.260**  
[0.056] [0.063] [0.082] 

R&D Exp 0.026** 0.029** 0.025**  
[0.003] [0.003] [0.003] 

Export Int 0.038 0.227+ 0.119  
[0.103] [0.135] [0.134] 

Foreign Own 0.058+ 0.011 0.004  
[0.034] [0.014] [0.012] 

Invest Mach 0.004** 0.008 0.018**  
[0.002] [0.005] [0.006] 

Firm FE Yes Yes Yes 
Year FE Yes Yes Yes 
Industry-by-year FE Yes Yes Yes 
Joint p-value 0.307 0.046 0.519 
N (firms X year) 4892 2145 1713 
N (firms) 1417 600 438 

Notes. Size classes refer to the average firm size over the period and are based on 
Eurostat (2021) definition: micro and small enterprises (< 50 employees), 
medium-sized enterprises (50–249 employees) and large enterprises (>250). 
Regressions are based on the small firm sample in Column 1, medium-sized firms 
in Column 2 and large firm category in Column 3. The dummy indicating one- 
period prior treatment status is omitted from the regression as it acts as refer-
ence period. The dependent variables is in all columns the probability to 
introduce new (or significantly improved) products. Standard errors clustered at 
the firm level are in parentheses. + p < 0.1, * p < 0.05 and ** p< 0.01. 

Table 6 
Effect of robot adoption on the number of product innovation – firm size 
breakdown.   

Number of product innovations  

(1) (2) (3) 

5 periods before − 0.010 − 0.156 0.085  
[0.200] [0.133] [0.220] 

4 periods before − 0.073 − 0.075 − 0.078  
[0.096] [0.157] [0.153] 

3 periods before 0.119 0.003 − 0.075  
[0.095] [0.094] [0.123] 

2 periods before − 0.022 − 0.096 − 0.101  
[0.060] [0.084] [0.096] 

period of adoption − 0.075 − 0.036 − 0.180**  
[0.056] [0.050] [0.068] 

1 period later − 0.073 − 0.039 − 0.205+

[0.070] [0.088] [0.106] 
2 periods later − 0.054 − 0.095 − 0.277+

[0.075] [0.115] [0.161] 
R&D Exp 0.032** 0.033** 0.032**  

[0.005] [0.005] [0.006] 
Export Int 0.100 0.143 0.056  

[0.169] [0.200] [0.251] 
Foreign Own 0.004 0.047* − 0.007  

[0.073] [0.022] [0.024] 
Invest Mach 0.002 0.008 0.009  

[0.003] [0.008] [0.009] 
Firm FE Yes Yes Yes 
Year FE Yes Yes Yes 
Industry-by-year FE Yes Yes Yes 
Joint p-value 0.462 0.535 0.689 
N (firms X year) 4892 2145 1713 
N (firms) 1417 600 438 

Notes. Size classes refer to the average firm size over the period and are based on 
Eurostat (2021) definition: micro and small enterprises (<50 employees), 
medium-sized enterprises (50–249 employees) and large enterprises (>250). 
Regressions are based on the small firm sample in Column 1, medium-sized firms 
in Column 2 and large firm category in Column 3. The dummy indicating one- 
period prior treatment status is omitted from the regression as it acts as refer-
ence period. The dependent variables is in all columns the log-transformed 
number of new (or significantly improved) products. Standard errors clustered 
at the firm level are in parentheses. + p < 0.1, * p < 0.05 and ** p< 0.01. 
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innovation and robotisation is much less severe in the case of robot- 
intensive sectors. While we observe a possible violation of the parallel 
trend assumption for non-robot intensive industries when employing the 
probability of innovation as dependent variable, again the ratio pro-
posed by Roth (2022) supports our evidence. 

5. Discussion 

We explore some arguments that can help us rationalise our findings. 
These insights are of speculative nature, but aim at connecting our 
findings with more general mechanisms at work in the interplay be-
tween process and product innovation, as well as to guide further 
analysis. 

5.1. Robot adoption influences the process-product innovation trade-off 

Robotisation and product innovation might be processes that 
respond to different strategic logics and incentives within a firm. A 
product innovation strategy responds to economies of variety and to the 
logic of value creation and capture, while robotisation, as process 
innovation, aims at cost reduction and can be justified by cost-spreading 
incentives (Cohen and Klepper, 1996b). Robot adoption can be seen as 
an instantiation of localised technical change (Atkinson and Stiglitz, 
1969): hence, its role might be confined to the organisation of opera-
tions along the production process (Hopp and Spearman, 2011) without 
spilling over to or influencing other firm activities. In this case, even in 

absence of a trade-off, robots might not induce any enabling effect 
beyond their limited domain of use. 

While being related to different strategic levers, the two activities 
might compete for the same pool of resources inside a firm. Given this 
allocation problem, a company will likely take decisions on robotisation 
and product innovation simultaneously, as part of a broader strategy for 
the medium- and long-term. This can turn product and process inno-
vation decisions into complement or substitutes, depending on the na-
ture of their interdependence (Miravete and Pernias, 2006). If there exist 
supermodularity in firms’ strategies, more process innovation could, 
theoretically, lead to more product innovation – precisely the enabling 
effect expected by a part of the literature on robot technology. However, 
in our baseline analysis, only a negative (and persistent) relationship 
between robotisation and product innovation emerges. This indicates 
that robotisation and product innovation are substitutes. Substitutability 
might depend on the fact that, given limited (financial, managerial, 
time) resources, firms face an allocation problem choosing between two 
alternative strategies, namely whether to purchase and implement ro-
bots, or to develop new or improved products. Alternatively, substitut-
ability can emerge if a firm’s long-term strategic decision such as that on 
the intensity of product innovation is rebalanced given the impact of 
process technology (here, robots) on production. In this context, two 
mechanisms can be relevant to shape a firm’s decision-making. The first 
is knowledge-based: as robot technology is not ‘plug-and-play’, adoption 
might require organisational adjustments, routines’ updating, and the 
formation of specific – technical, planning, and managerial – 

Table 7 
Effect of robot adoption on probability of product innovation – firm age 
breakdown.   

New product introduction  

(1) (2) (3) 

5 periods before − 0.148 0.101 − 0.012  
[0.112] [0.128] [0.118] 

4 periods before 0.069 − 0.019 − 0.044  
[0.096] [0.085] [0.077] 

3 periods before 0.022 0.078 − 0.030  
[0.072] [0.060] [0.058] 

2 periods before − 0.087+ − 0.041 − 0.053  
[0.051] [0.047] [0.045] 

period of adoption − 0.040 − 0.047 − 0.058+

[0.038] [0.034] [0.034] 
1 period later − 0.034 − 0.095* − 0.108*  

[0.047] [0.047] [0.043] 
2 periods later − 0.127* − 0.168** − 0.131*  

[0.063] [0.053] [0.061] 
R&D Exp 0.030** 0.026** 0.025**  

[0.004] [0.003] [0.003] 
Size 0.014 0.037 0.034  

[0.034] [0.029] [0.037] 
Export Int 0.126 0.098 0.125  

[0.136] [0.103] [0.127] 
Foreign Own − 0.014 0.011 0.014  

[0.022] [0.012] [0.013] 
Invest Mach 0.007** 0.005* 0.004  

[0.003] [0.002] [0.003] 
Firm FE Yes Yes Yes 
Year FE Yes Yes Yes 
Industry-by-year FE Yes Yes Yes 
Joint p-value 0.166 0.212 0.824 
N (firms X year) 2333 3644 2776 
N (firms) 645 1047 763 

Notes. Regressions are based on firms in three different age classes which 
approximate the three terciles of the (weighted) age distribution: <7 years old 
(Column 1), 8–26 years old (Column 2) and >26 years old (Column 3). The 
dummy indicating one-period prior treatment status is omitted from the 
regression as it acts as reference period. The dependent variables is in all col-
umns the probability to introduce new (or significantly improved) products. 
Standard errors clustered at the firm level are in parentheses. + p < 0.1, * p <
0.05 and ** p< 0.01. 

Table 8 
Effect of robot adoption on the number of product innovation – firm age 
breakdown.   

Number of product innovations  

(1) (2) (3) 

5 periods before − 0.119 − 0.141 − 0.012  
[0.169] [0.119] [0.171] 

4 periods before 0.156 − 0.225* − 0.202+

[0.188] [0.105] [0.103] 
3 periods before 0.063 − 0.017 − 0.047  

[0.117] [0.093] [0.091] 
2 periods before − 0.081 − 0.052 − 0.115  

[0.088] [0.080] [0.074] 
period of adoption − 0.028 − 0.132* − 0.098+

[0.058] [0.054] [0.051] 
1 period later − 0.029 − 0.201* − 0.064  

[0.091] [0.079] [0.082] 
2 periods later − 0.108 − 0.259* − 0.076  

[0.116] [0.102] [0.108] 
R&D Exp 0.034** 0.029** 0.033**  

[0.008] [0.004] [0.005] 
Size − 0.075 0.056 0.023  

[0.061] [0.040] [0.059] 
Export Int 0.350+ − 0.264 0.404+

[0.204] [0.179] [0.216] 
Foreign Own − 0.005 0.022 0.009  

[0.027] [0.023] [0.028] 
Invest Mach 0.005 − 0.002 0.009+

[0.004] [0.004] [0.005] 
Firm FE Yes Yes Yes 
Year FE Yes Yes Yes 
Industry-by-year FE Yes Yes Yes 
Joint p-value 0.334 0.210 0.144 
N (firms X year) 2333 3644 2776 
N (firms) 645 1047 763 

Notes. Regressions are based on firms in three different age classes which 
approximate the three terciles of the (weighted) age distribution: <7 years old 
(Column 1), 8–26 years old (Column 2) and >26 years old (Column 3). The 
dummy indicating one-period prior treatment status is omitted from the 
regression as it acts as reference period. The dependent variables is in all col-
umns the log-transformed number of new (or significantly improved) products. 
Standard errors clustered at the firm level are in parentheses. + p < 0.1, * p <
0.05 and ** p< 0.01. 
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capabilities, which might increase returns to accumulation of 
equipment-specific knowledge and imply dis-investments from product- 
innovation-related activities. The re-direction of a firm’s focus (invest-
ment) might potentially occur via flows of labour. On the one hand, the 
decrease of labour costs for the factory floor due to robotisation could 
make room for expanding employment in high-skills functions, 
including the design and prototyping of new products. On the other 
hand, the outflow of labour might include workers employed in 
different, non-overlapping activities, including some involved in prod-
uct innovation. This will happen when the task vector composing some 
occupations features indivisibilities – that is, activities related to both 
process and product innovation. In this case, the outflow of talent 
induced by the adoption of process technology might spill over to loss of 
talent in product-related tasks: robotisation might improve firms’ 
exploitation capabilities (better processes) while de-skilling them with 
respect to exploration (new ideas and designs) capabilities. Unfortu-
nately, our data does not allow us to check for this particular channel. 
All in all, this first dynamics fits with what is suggested in the model by 
Li and Ni (2016), where the two activities become substitutes if the rate 
of knowledge accumulation is higher for process innovation – in our 
case, after robot adoption. In a nutshell, the take home message is that 
higher marginal returns in fine-tuning robots steer away efforts from 
product innovation. 

A second mechanism is that illustrated by the received literature on 
industry evolution (Klepper, 1996, 2015). While transitioning from birth 
to maturity, an industry will increase the resources allocated to process 
innovation and decrease those spent to introduce new products. The 
reason for that stands in the endogenous interplay between the in-
centives faced by entrants and incumbents. New firms need to produce 
(relatively) more product innovation to extract a margin from the 

market price; (surviving) established producers expand capacity in their 
competition for the market and, therefore, compress profit margins as 
quantity produced increases and price decreases. Over time, incumbents 
will grow larger and extract value mostly from the production of ‘stan-
dard’ products at scale. While entry will stop due to increasing barriers 
(it becomes harder and harder to make a profit out of the introduction of 
new products), larger, established firms will use technology for their 
primary goal – expand capacity. In this view, the product-process 
innovation trade-off is not linked to robots exclusively, but it is rather 
a feature of industry dynamics. The role played by robot technology is 
that of an ‘accelerant’, or a catalyst: robotisation can be seen as a type of 
process technology investment that reinforces firms’ incentive to focus 
on capacity expansion. Especially in case of growing demand, the 
strategy of established companies will be that of making production 
scale-up cheaper (through the adoption of robots) as rapidly as possible, 
rather than seek for new product variants. Hence, a diseconomy of scope 
emerges: in mature industries (as a large share of Spanish manufacturing 
industries are), it becomes less and less worth to pursue both product 
and process innovation. Robotisation accelerates the process, as it fa-
vours scale economies. This mechanism rationalises also our baseline 
findings on a persistent negative effect. Robot adoption shapes incentives 
by favouring a focusing on capacity over variety expansion (hence, the 
negative relationship with product innovation). In turn, this action 
places adopters on the rails of growth and the industry on that of life- 
cycle pattern; as the industry evolution unfolds, the forces against 
product innovation gain momentum, thus persisting in the long-run. The 
fact that, in a few cases, the negative effects appear a few years after 
robot adoption takes place could be the result of inertia in absorbing 
sunk investments (Peters and Trunschke, 2021): older product innova-
tion investments, or current investments already planned in the past 

Table 9 
Effect of robot adoption on product innovation – sectoral breakdown.   

New product introduction Number of product innovations  

(1) (2) (3) (4) (5) (6) 

5 periods before − 0.077 0.090 − 0.040 − 0.128 − 0.009 − 0.112  
[0.105] [0.172] [0.102] [0.153] [0.120] [0.136] 

4 periods before − 0.100 − 0.053 0.213* − 0.219* 0.003 − 0.149  
[0.070] [0.114] [0.086] [0.111] [0.148] [0.153] 

3 periods before 0.026 − 0.018 0.016 − 0.032 0.025 − 0.069  
[0.051] [0.072] [0.071] [0.092] [0.112] [0.096] 

2 periods before − 0.087* − 0.089 0.003 − 0.172** − 0.111 0.037  
[0.040] [0.055] [0.050] [0.066] [0.094] [0.081] 

period of adoption − 0.092** − 0.010 − 0.037 − 0.143* − 0.019 − 0.109*  
[0.030] [0.040] [0.034] [0.056] [0.048] [0.054] 

1 period later − 0.119** − 0.105* − 0.022 − 0.141+ − 0.090 − 0.065  
[0.039] [0.052] [0.051] [0.081] [0.089] [0.084] 

2 periods later − 0.119* − 0.187** − 0.146* − 0.221* − 0.169+ − 0.010  
[0.052] [0.058] [0.070] [0.101] [0.101] [0.127] 

R&D Exp 0.026** 0.026** 0.028** 0.037** 0.024** 0.030**  
[0.003] [0.003] [0.003] [0.005] [0.005] [0.006] 

Size − 0.002 0.042 0.056 − 0.049 0.091+ 0.052  
[0.026] [0.033] [0.039] [0.045] [0.047] [0.058] 

Export Int 0.142 0.215+ − 0.010 0.320 0.159 − 0.226  
[0.104] [0.128] [0.127] [0.219] [0.162] [0.177] 

Foreign Own 0.011 0.024 − 0.005 0.022 0.014 − 0.014  
[0.013] [0.018] [0.015] [0.029] [0.026] [0.029] 

Invest Mach 0.005** 0.006* 0.008* 0.004 0.003 − 0.002  
[0.002] [0.003] [0.004] [0.003] [0.003] [0.007] 

Firm FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
Industry-by-year FE Yes Yes Yes Yes Yes Yes 
Joint p-value 0.080 0.537 0.091 0.033 0.578 0.654 
N (firms X year) 4500 2111 2146 4500 2111 2146 
N (firms) 1282 584 590 1282 584 590 

Notes. Results are reported for firms in low-tech industries (Columns 1 and 4), for firms in medium-tech industries (Columns 2 and 5) and for firms in high-tech in-
dustries (Columns 3 and 6). Industry classification follows OECD (2016) and aggregates medium-high tech and medium-low tech due to the low number of cases. The 
dummy indicating one-period prior treatment status is omitted from the regression as it acts as reference period. The dependent variables are: the probability to 
introduce new (or significantly improved) products in Columns 1–3 and the log-transformed number of new (or significantly improved) products in Columns 4–6. 
Standard errors clustered at the firm level are in parentheses. + p < 0.1, * p < 0.05 and ** p< 0.01. 
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generate novelties with a delay that overlaps with new process in-
vestments. When that is the case, the trade-off between product and 
process strategy is hidden for some years, until it starts to ‘bite’. Finally, 
we found evidence that the negative association between robot adoption 
and production innovation becomes less intense for firms that are active 
in robot-intensive industries. This result points at the possibility that a 
firm investing in robot technology within an environment that has 
already developed capabilities and complementary technologies to fine- 
tune robots could enjoy knowledge spillovers and stronger economies of 
learning. In this case, marginal returns in focusing exclusively on robots’ 
fine tuning will be lower, and the firm could continue allocating a share 
of resources to explore product variants. 

To provide descriptive support to the idea that a firm’s decision on 
robot adoption and product innovation are shaped by diseconomies of 
scope as the two strategies are substitutive, we compare the dynamics of 
machinery investments (as a proxy for capital-driven production scale- 
up) against the probability and number of product innovation. Fig. 4 
presents the two product innovation variables (count in logs and prob-
ability, on the right y-axis) against the (log) average investment in 
machinery (on the left y-axis), capturing the change in investments. The 
time dimension is relative time to the robot adoption period (time zero). 
Fig. 5 reports the share of firms with peak investment in machinery 
against the same product innovation variables and time scale. The evi-
dence suggests that larger changes and highest peaks in machinery in-
vestments occur, together with product innovations, in the period 

preceding robot adoption. The findings point at some form of anticipa-
tion effect before automation technology is deployed. A plausible 
interpretation is that firms develop a joint strategy on product portfolio 
and capacity expansion (i.e. equipment investments); robot technology 
is deployed to automate processes further, allowing to reap the returns 
from previous product decisions rather than exploring new offerings 
(the diseconomy of scope effect we mentioned). Our descriptives and 
reasoning around diseconomies of scope align with the story of Miravete 
and Pernias (2006), according to which process and product innovation 
are complementary for smaller firms (that engage in demand-enhancing 
innovation and are more likely to adopt flexible manufacturing 
methods). 

In summary, the possibility to adopt robots refocuses firms’ attention 
and rebalances strategic decisions away from product innovation also in 
the long term, as it accelerates the movement along the industry life 
cycle, where firms growing larger and established companies have dis-
economies of scope and economies of scale in expanding capacity. This 
interpretation squares well also with the findings on the specific chan-
nels driving our results. The effect we find is important in industries that 
are not high tech, as the forces in favour of scale are even stronger given 
that technology is not a key source of value as in high tech sectors. 
Contrariwise, firms in industries that are already robot-intensive face a 
less-binding trade-off, as they can internalise complementary invest-
ment and capacity-building from the external environment. 

5.2. Robots adopted are not flexible enough to enable product innovation 

A more in-depth take at our results should factor-in the level of so-
phistication of robots. The hypothesis that robotisation as process 
innovation could induce product innovation is grounded on an enabling 
view of advanced robots, in virtue of their malleability. The underlying 
mechanism would be that flexible production technology counteracts 
the pressure exerted by diseconomies of scope, making product variety 
economically and technologically viable. 

This will happen only if robots induce a pressure on firms’ routines 
and decision making strong enough to make variety expansion and 
product diversification more attractive than they accelerate mass pro-
duction; otherwise, the prevailing pressure would be to focus capacity 
on existing product designs, resulting in a stagnation or decrease in 
product innovation. An interpretation of this mechanism could be in 
terms of selection in the product portfolio: if robots are flexible enough, 
they will favour product repositioning; at the same time, they create an 
incentive for the exit of mature product lines that cannot be refreshed. In 
practice, studies found that robot technology is yet too inflexible. Per-
zylo et al. (2019) suggest that “[t]oday’s industrial robots have been 
designed for a different scenario: large-scale, high-throughput 
manufacturing systems that produce one specific product (or a small set 
of quite similar variants) at very high quantities and with constant 
quality.” This reinforces our claim that the robotisation-innovation 
nexus is shaped by industry-wide forces: small and medium-sized 
firms, usually very dynamic in introducing new product variants, do 
not have the resources and organisational capacity to adopt robots; large 
firms, instead, do adopt them, but they use robots as an output scale-up 
tool – hence, focusing production decisions towards quantity rather than 
variety. Instead of exerting pressure for change on a firm’s decision 
making and organisational routines, current robots introduce rigidities 
(e.g. dedicated structured IT departments working on robot mainte-
nance and upgrading). 

Robots integrating more ‘cognitive’ capabilities, for example those 
powered by vision-language-action (VLA) artificial intelligence models 
(Brohan et al., 2023) are not yet out ‘in the wild’, while collaborative 
robots (or co-bots), one the best candidates to the role of malleable 
equipment, still represent a minority share of robots adopted in firms 
(IFR, 2020). Flexibility in robots’ capabilities is often related just to 
‘technical’ flexibility. In other words, robots are increasingly malleable, 
but malleability is possibly being used to make a single piece of 

Table 10 
Effect of robot adoption on product innovation – robot intensive vs non-robot 
intensive industries.   

New product introduction Number of product innovations  

(1) (2) (3) (4) 

3 periods before 0.036 0.126+ − 0.151 0.103  
[0.083] [0.076] [0.106] [0.090] 

2 periods before − 0.057 − 0.072 − 0.097 0.004  
[0.064] [0.053] [0.094] [0.090] 

period of adoption − 0.050 − 0.085* − 0.059 − 0.123*  
[0.038] [0.033] [0.049] [0.052] 

1 period later − 0.063 − 0.142** − 0.033 − 0.206**  
[0.049] [0.048] [0.072] [0.074] 

2 periods later − 0.158* − 0.161* − 0.084 − 0.222*  
[0.061] [0.063] [0.098] [0.109] 

R&D Exp 0.022** 0.027** 0.016** 0.030**  
[0.004] [0.003] [0.004] [0.004] 

Size 0.065+ 0.014 0.007 − 0.021  
[0.035] [0.035] [0.051] [0.046] 

Export Int 0.049 − 0.060 0.088 0.068  
[0.123] [0.129] [0.162] [0.171] 

Foreign Own 0.013 − 0.002 0.021 0.018  
[0.019] [0.017] [0.029] [0.021] 

Invest Mach 0.005+ 0.006* 0.004 0.005  
[0.003] [0.002] [0.004] [0.004] 

Firm FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
Industry-by-year FE Yes Yes Yes Yes 
Joint p-value 0.443 0.017 0.326 0.445 
N (firms X year) 2299 3213 2299 3213 
N (firms) 779 1061 779 1061 

Notes. Regressions are based on 2299 or 3213 firm-year observations depending 
on the sample employed. Pre-treatments are consolidated to t-3 for older periods 
due to the low number of firms. The dummy indicating one-period prior treat-
ment status is omitted from the regression as it acts as reference period. The 
dependent variable in Columns 1 and 2 is the probability to introduce new (or 
significantly improved) products. The dependent variable in Columns 3 and 4 is 
the log-transformed number of new (or significantly improved) products. Col-
umns 1 and 3 report results for firms in robot intensive industries (industries 
with an operational stock of industrial robots below the world median), while 
Columns 2 and 4 report results for firms in non-robot intensive industries (in-
dustries with an operational stock of industrial robots greater or equal the world 
median). Standard errors clustered at the firm level are in parentheses. + p < 0.1, 
* p < 0.05 and ** p< 0.01. 
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equipment executing multiple functions in already existing production 
processes, rather than to experiment with new ones. For instance, 
autonomous mobile robots (AMR) used in manufacturing and services 
can move along paths that are non-constrained and adjust their course 
by employing machine vision software and being integrated in factory 
Internet of Things (IoT) networks (IFR, 2021). While their adoption may 
have effects on business models, as they change the loci of value creation 
and capture, their malleability is related only to physical navigation – a 

property that does not intersect necessarily with dimensions involved in 
product innovation decision. 

Automation technology covered in our dataset very likely captures 
more traditional process improvements, in line with the quote of Perzylo 
et al. (2019) above. Following this argument, the negative effect we 
detect on product innovation might be due to the fact that we relate 
rather inflexible capital goods and product innovation, where the former 
create production economies only on those product lines that robots are 

Fig. 4. Average investment in machinery (logarithm) and product innovation indicators. 
Notes. This figure plots the log of the average investment in machinery (left y axis) and the log of the number and the probability of product innovation (right y axis) 
relative to the firms’ period of adoption (from 5 years before to 2 years after adoption). 

Fig. 5. Peak investments in machinery (share of firms) and product innovation indicators. 
Notes. This figure plots the share of firms with peak investments in machinery (left y axis) and the log of the number and the probability of product innovation (right y 
axis) relative to the firms’ period of adoption (from 5 years before to 2 years after adoption). Peak investments are defined as the maximum value of investment in 
machinery by the firm over the overall observation period. 
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designed to produce. 

6. Conclusion 

In this paper, we exploited firm-level data on robot adoption to study 
the unexplored relationship between robotisation and product innova-
tion. As robotisation activities are a case of process innovation in which 
companies adopt flexible capital goods, our study is essentially assessing 
the nature of the interplay between recent vintages of process innova-
tion and the introduction of new products. Given the debate around 
contemporary ‘smart’ technologies, one could hypothesise an enabling 
effect on product innovation, with entry of new varieties, designs, and in 
general differentiation aided by the availability of flexible production 
tools. However, process and product innovation investments descend 
from management (likely) joint strategies. We explored the possible 
mechanisms underpinning these simultaneous decisions to obtain a finer 
grained picture of the interplay between robotisation and product 
innovation, and the dynamic forces shaping it. 

Adopting a staggered timing DiD approach supported by instru-
mental variable regressions, instead of an enabling effect, we find that 
robot adoption associates with a negative effect on product innovation, 
even in the long run. The main channels for this effect relate to size, age, 
and sector of the firm. Larger, established and less technology-intensive 
companies are the main drivers of the results. We rationalise and 
interpret the findings by building on extant theories. We suggest that the 
substitutive relationship between process and product innovation could 
be rooted either in knowledge and capabilities’ accumulation incentives, 
with the higher marginal returns in fine-tuning robots following adop-
tion steering away efforts from product innovation, or in the endogenous 
dynamics at the core of industry life cycles. In fact, as industries (and 
established firms) mature, capacity expansion becomes the preferable 
strategy compared to variety expansion – product innovation. Robot-
isation can be seen as an investment shock that accelerates the dynamics 
and strengthen diseconomies of scope in firms’ actions. From this angle, 
robotisation does nothing but reinforcing industries’ incentive to engage 
in their ‘classic’ strategy: exploiting dynamic economies of scale by 
focusing on cost reduction, which, in turn, allows for capacity expansion 
over a small set of (standardised) products. This interpretation is 
accompanied by descriptive evidence on the timing of average and peak 
machinery investments and product innovation. Respectively, the 
largest change in average investment in machinery (and peak shares) 
and in production innovation count and probability occur in the period 
before robot adoption: robot technology as an automation tool is likely 
used to scale up and support joint strategic choices on process and 
products, in turn moulded by sectoral pressures. Finally, robots – even 
when flexible – might display enabling capabilities only when exerting 
broader pressures on firms’ decision-making structures. Standardised 
(and less high-tech) mass production processes, as well as relatively rigid 
organisational routines might not be able to absorb robots’ full trans-
formative potential. We take a step further by discussing whether the 
types of robots under analysis are the ‘right’ robots to induce innovation. 
In fact, not all instances of process mechanisation and robotic equipment 
might be malleable enough to shape technological opportunities and to 
affect the incentive to engage in new product discovery, design, and 
development. 

To our knowledge, this paper is the first expanding the literature on 
automation to the microeconomics of innovation. While exploratory in 
kind, our results suggest that some dynamic mechanisms are at work 
within companies when robots are used to re-organise production ac-
tivities. It is important to remark that we cannot easily generalise the 
mechanisms we hypothesised. Spain (the focus of our investigation) is a 
peculiar context, which experienced a surge of robotisation in the 1990s 
in large part due investments by the automotive industry following a 
reorganisation of its supply chain. Hence, a particular attention should 
be devoted to the country-specific patterns of industrial transformation. 
Still, we maintain that the non-positive relationship between 

robotisation and product innovation can shed some light on how the 
most recent phase of mechanisation of production influences other key 
strategies at the firm level. 

It is important to stress again that most of the robotisation analysed 
in our empirical setting belongs to an early wave of robots used in the 
industrial plants. We made clear through the paper that our focus – 
constrained by data availability – has been on industrial robots. How-
ever, and generally speaking, the specific type of robots adopted do 
matter. Innovation-inducing, enabling robots are those characterised by 
the feature of being research tools, that is, proper ‘invention machines’, 
or inventions of methods of inventing (IMIs). These types of robots are 
used to aid the search process over, for example, the space of materials 
to be employed or the space of designs to be trialled and prototyped. 
Industrial robots such as the majority of those captured by our data 
might not completely lack the capability to enable new activities; 
however, they certainly are not IMIs, and have less scope for what 
concerns facilitating innovation-related search. New IMIs, such as some 
types of AI algorithms, are mainly software technologies, which are used 
in knowledge-intensive domains (and especially in services) and are not 
yet seamlessly integrated in the architecture and functionalities of in-
dustrial robots. By contrast, robots are employed in the manufacturing 
sector to increase the rate of execution and the precision of factory floor 
tasks under specific conditions (Combemale et al., 2021). Relatedly, 
another aspect of robot adoption we could not explore in this study is 
machine-machine substitution, with new robot vintages (likely more 
malleable) replacing and upgrading older (and likely less flexible) ones. 
This mechanism might influence the relationship between robotic 
automation and product innovation within the firm, turning substitut-
ability into complementarity. While this possibility might not affect our 
results, that detect an average effect across the economy, it opens new 
interesting research questions. 

Finally, our analysis has implications for policy. This focus is 
important and timely, given the many policy packages around the tenets 
of Industry 4.0 discussed and implemented in different European 
countries.22 In general, our results suggest that if the policy goal is to 
increase rate and direction of (product) innovation, then facilitating 
equipment acquisition through, for instance, loans or subsidies might 
not serve the purpose, or even generate negative effects, if these are used 
to push along the trajectory of process improvement, capacity expan-
sion, and variety ‘pruning’. Interventions of this kind might succeed only 
when (i) they are easing the transition to the use of those specific robots 
that have true enabling capabilities and (ii) they are substantial enough 
to revert diseconomies of scope. Diffusion policies directed at smart 
robots, collaborative robots and similar flexible technologies should first 
assess whether firms really demand or seek to deploy this kind of capital 
goods, in order to avoid resource misallocation. Policy makers should be 
wary of the degree of sophistication of the production technologies, in 
order to get a sense of the broad direction of the relationship between 
process and product strategies and, hence, to time actions appropriately. 
Policies of horizon scanning for new enabling technologies combined 
with surveys of firms’ needs, as well as policies helping the formation or 
hiring of skills matching product innovation tasks might be more 
effective in a context such as the one we studied. 

With this study, we highlighted a series of interesting facts and in-
terpretations on the economic forces set in motion by the adoption of 
modern manufacturing capital. Hopefully, our exercise can inspire a 
broader research agenda for follow-up studies. For example, future 
research might focus more explicitly on whether current adoption in-
volves recent waves of smart robots in order to capture additional 

22 For example, the financial support for R&D&I in the field of Industry 4.0 in 
Spain (https://www.mincotur.gob.es/portalayudas/industriaconectada/Pagina 
s/Index.aspx); the Industry 4.0, now Transition 4.0 programme, in Italy (http 
s://www.mise.gov.it/index.php/it/transizione40) (last accessed 7 December 
2023). 

D. Antonioli et al.                                                                                                                                                                                                                               

https://www.mincotur.gob.es/portalayudas/industriaconectada/Paginas/Index.aspx
https://www.mincotur.gob.es/portalayudas/industriaconectada/Paginas/Index.aspx
https://www.mise.gov.it/index.php/it/transizione40
https://www.mise.gov.it/index.php/it/transizione40


Research Policy 53 (2024) 105002

17

nuances of the robotisation-innovation nexus. Another direction to 
follow is that of going more in-depth into the ‘nano’ dimension of what 
happens at the factory floor level where robots are implemented, using 
an ‘insider econometrics’ approach (Ichniowski and Shaw, 2003). In-
sights from strategy research can shed light the effect of management 
changes that are likely to affect robot adoption and innovation. Along 
these lines, case studies focusing on how malleable capital is embedded 
into production as well as research and decision processes, such as the 
decision to abandon innovation projects, will help to shed further light 
on the relationship between robotisation and innovative activities. More 
in general, we hope that our work stimulates new studies focused on 
alternative contexts (and data), which could extend the external validity 
of our evidence or instead, point to alternative, more enabling, effects of 
robotisation on product innovation. 
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Appendix A. Additional robustness checks  

Table A1 
Summary of pre-period coefficients significance.  

Table number Table description Column 
number 

Column description Dependent variable Number of significant pre- 
periods at the 5 % level 

Joint p- 
value 

Likelihood ratio 
from Roth (2022)  

2 Baseline  1 Prob of product 
innovation 

Prob of product 
innovation  

1  0.171  0.009  

2 Baseline  2 Number of product 
innovations 

Number of product 
innovations  

1  0.146  0.001  

5 Firm size breakdown  1 small firms Prob of product 
innovation  

0  0.307  0.02  

5 Firm size breakdown  2 medium-sized firms Prob of product 
innovation  

0  0.046  0.04  

5 Firm size breakdown  3 large firms Prob of product 
innovation  

0  0.519  0.0004  

6 Firm size breakdown  1 small firms Number of product 
innovations  

0  0.462  0.04  

6 Firm size breakdown  2 medium-sized firms Number of product 
innovations  

0  0.535  0.08  

6 Firm size breakdown  3 large firms Number of product 
innovations  

0  0.689  0.003  

7 Firm age breakdown  1 young firms Prob of product 
innovation  

1  0.166  0.02  

7 Firm age breakdown  2 medium-aged firms Prob of product 
innovation  

0  0.212  0.0005  

7 Firm age breakdown  3 old firms Prob of product 
innovation  

0  0.824  0.03  

8 Firm age breakdown  1 young firms Number of product 
innovations  

0  0.334  0.001  

8 Firm age breakdown  2 medium-aged firms Number of product 
innovations  

1  0.21  0.45  

8 Firm age breakdown  3 old firms Number of product 
innovations  

0  0.144  0.17  

9 Sectoral breakdown  1 low-tech firms Prob of product 
innovation  

1  0.08  0.16  

9 Sectoral breakdown  2 medium-tech firms Prob of product 
innovation  

0  0.537  0.008  

9 Sectoral breakdown  3 high-tech firms Prob of product 
innovation  

1  0.091  0.0003  

9 Sectoral breakdown  4 low-tech firms Number of product 
innovations  

2  0.033  0.25 

(continued on next page) 
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Table A1 (continued ) 

Table number Table description Column 
number 

Column description Dependent variable Number of significant pre- 
periods at the 5 % level 

Joint p- 
value 

Likelihood ratio 
from Roth (2022)  

9 Sectoral breakdown  5 medium-tech firms Number of product 
innovations  

0  0.578  0.0003  

9 Sectoral breakdown  6 high-tech firms Number of product 
innovations  

0  0.654  0.1  

10 Breakdown by industrial 
robot intensiveness  

1 robot intensive 
industries 

Prob of product 
innovation  

0  0.443  0.02  

10 Breakdown by industrial 
robot intensiveness  

2 non robot intensive 
industries 

Prob of product 
innovation  

1  0.017  0.005  

10 Breakdown by industrial 
robot intensiveness  

3 robot intensive 
industries 

Number of product 
innovations  

0  0.326  1.87  

10 Breakdown by industrial 
robot intensiveness  

4 non robot intensive 
industries 

Number of product 
innovations  

1  0.445  0.001 

Notes: The table shows the number of pre-period coefficients that are significant at the 95 % level, the p-value for a chi-squared test of joint significance, and the value 
of the likelihood ratio as proposed by Roth (2022) at the 90 % power level (the probability one would find a significant pre-trend under the hypothesised pre-trend). 
The likelihood ratio test in Roth shows the likelihood of observing the coefficients from our estimates conditional on having an inverted U-shaped hypothesised pre- 
trend over the likelihood of observing them under parallel trends. This indicate how much less likely are the observed coefficients under the hypothesised pre-trend 
compared to under parallel trend. A ratio below 1 signals a lower probability of obtaining the coefficients under the chosen pre-trend compared to a parallel trend. 

Fig. A1. Sensitivity analysis of Roth test for baseline models. 
Notes. The figure shows sensitivity analysis for different functional forms and different power levels of the Roth test for the baseline regression model (Table 2). Fig. a 
(b) plots, for the model estimating the probability (number) of product innovations, the value of the Roth likelihood test (i.e. likelihood of observed coefficients under 
the hypothesised trend over the likelihood of observed coefficients under parallel trend) against different power levels (i.e. the probability one would find a sig-
nificant pre-trend under the hypothesised pre-trend) for different hypothesised trends (linear, quadratic, cubic, quadratic polynomial I and quadratic polynomial II). 
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