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Abstract

Stone duality generalizes to an equivalence between the categories StoneR of Stone spaces and closed relations

and BAS of boolean algebras and subordination relations. Splitting equivalences in StoneR yields a category

that is equivalent to the category KHausR of compact Hausdorff spaces and closed relations. Similarly,

splitting equivalences in BAS yields a category that is equivalent to the category DeVS of de Vries algebras

and compatible subordination relations. Applying the machinery of allegories then yields that KHausR is

equivalent to DeVS, thus resolving a problem recently raised in the literature.

The equivalence between KHausR and DeVS further restricts to an equivalence between the category

KHaus of compact Hausdorff spaces and continuous functions and the wide subcategory DeVF of DeVS whose

morphisms satisfy additional conditions. This yields an alternative to de Vries duality. One advantage of

this approach is that composition of morphisms is usual relation composition.
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1. Introduction

In [12] de Vries generalized Stone duality to a duality for the category KHaus of compact Hausdorff spaces

and continuous maps. The objects of the dual category DeV are complete boolean algebras equipped with

a proximity relation, known as de Vries algebras. The morphisms of DeV are functions satisfying certain

conditions. One drawback of DeV is that composition of morphisms is not usual function composition. In this

paper we propose an alternative approach to de Vries duality, where morphisms between de Vries algebras

become certain relations and composition is usual relation composition.

For our purpose, it is more natural to start with the category KHausR whose objects are compact Hausdorff

spaces and morphisms are closed relations (i.e., relations R : X → Y such that R is a closed subset of X×Y ).

This category was studied in [5], and earlier in [23] in the more general setting of stably compact spaces.

The latter paper establishes a duality for KHausR that generalizes Isbell duality [19] between KHaus and the

category of compact regular frames and frame homomorphisms. This is obtained by generalizing the notion

of a frame homomorphism to that of a preframe homomorphism. However, a similar duality in the language

of de Vries algebras remained problematic (see [5, Rem. 3.14]). We resolve this problem as follows.

By Stone duality, the category Stone of Stone spaces (zero-dimensional compact Hausdorff spaces) and

continuous maps is dually equivalent to the category BA of boolean algebras and boolean homomorphisms.

Halmos [15] generalized Stone duality by showing that continuous relations between Stone spaces dually

correspond to functions f : A → B between boolean algebras that preserve finite meets. This was further
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generalized by Celani [11] to closed relations between Stone spaces and certain functions from a boolean

algebra A to the ideal frame J (B) of a boolean algebra B. We show that such functions correspond to

subordination relations between A and B studied in [4]. Consequently, we obtain that the category StoneR

of Stone spaces and closed relations is equivalent to the category BAS of boolean algebras and subordination

relations (identity is ≤ and composition is usual composition of relations). This equivalence is in fact an

equivalence of allegories, hence self-dual categories. Thus, the choice of direction of morphisms is ultimately

a matter of taste and the equivalence can alternatively be stated as a dual equivalence.

We point out that the equivalence between StoneR and BAS is also a consequence of a more general

result of Jung, Kurz, and Moshier [24, Thm. 5.9] who worked with order-enriched categories to show that

Priestley duality extends to a dual equivalence between the category of bounded distributive lattices and

subordination relations and the category of Priestley spaces and Priestley relations.

As we pointed out above, both StoneR and BAS are allegories, and the equivalence between StoneR

and BAS is an equivalence of allegories. Therefore, we may utilize the machinery of allegories [14] to split

equivalences in both StoneR and BAS. Splitting equivalences in StoneR yields the category StoneER which is

equivalent to KHausR. On the other hand, splitting equivalences in BAS yields the category SubS5S which we

show is equivalent to DeVS. By piggybacking the equivalence of StoneR and BAS, we obtain an equivalence

between StoneER and SubS5S, which then yields our desired equivalence between KHausR and DeVS. This

resolves an open problem raised in [5, Rem. 3.14] (see Remark 4.8).

One drawback of StoneER is that isomorphisms are not structure-preserving bijections. However, StoneER

has a full subcategory GleR of Gleason spaces [4, 5] which is more directly related to DeVS. We prove that

in both DeVS and GleR isomorphisms are structure-preserving bijections.

The equivalence between KHausR and DeVS can also be obtained by directly generalizing the regular open

functor of de Vries duality. Indeed, associate with each compact Hausdorff space X the de Vries algebra

(RO(X),≺), where RO(X) is the complete boolean algebra of regular open subsets of X and ≺ is the de

Vries proximity on RO(X) defined by U ≺ V iff cl(U) ⊆ V . The key is to associate with each closed relation

R : X → Y the relation SR : RO(X)→ RO(Y ) given by

U SR V ⇐⇒ R[cl(U)] ⊆ V

(here R[−] denotes the direct image under R). This gives a more explicit description of the equivalence

between KHausR to DeVS, which further restricts to an equivalence between KHaus and a wide subcategory

DeVF of DeVS, thus providing an alternative to de Vries duality.

This paper is related to the line of research initiated by D. Scott [33], and further developed in [28, 18,

36, 2, 25, 22, 23, 26, 31, 24], that uses certain relations as morphisms. We apply the insights of these works

specifically to the category of compact Hausdorff spaces and closed relations. We do so in a way that is

optimal to explain the connection with de Vries duality. The setting of compact Hausdorff spaces allows

the use of simple entities such as closed equivalence relations on Stone spaces and their quotients, which are

familiar to a wide range of mathematicians approaching topology from an algebraic or logical perspective.

2. Lifting Stone duality to closed relations

For two sets X and Y , we write R : X → Y to indicate that R is a relation from X to Y . As usual, for

F ⊆ X, we write R[F ] for the R-image of F in Y ; and for G ⊆ Y , we write R−1[G] for the R-inverse image

of G in X.

If X,Y are Stone spaces, then we call R : X → Y closed if R is a closed subset of X × Y (equivalently,

R[F ] is closed for each closed F ⊆ X and R−1[G] is closed for each closed G ⊆ Y ).

Definition 2.1. Let StoneR be the category of Stone spaces and closed relations between them. Identity

morphisms in StoneR are identity relations and composition in StoneR is relation composition.
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As we pointed out in the introduction, Celani [11] extended Stone duality to StoneR by generalizing

boolean homomorphisms to what he termed “quasi-semi-homomorphisms.” For a boolean algebra B, let

J (B) be the complete lattice of ideals of B.

Definition 2.2. [11, Def. 1] Let A,B be boolean algebras. A quasi-semi-homomorphism is a function

∆: A→ J (B) such that ∆(1) = B and ∆(a ∧ b) = ∆(a) ∩∆(b) for all a, b ∈ A.

By [11, Lem. 2], boolean algebras and quasi-semi-homomorphisms between them form a category, which

we denote by BAQ. The identity quasi-semi-homomorphism on A is given by IA(a) = ↓a and the composition

of two quasi-semi-homomorphisms ∆1 : A→ B and ∆2 : B → C by

(∆2 ◦∆1)(a) =
⋃
{∆2(b) | b ∈ ∆1(a)}

(note that this union is an ideal because {∆2(b) | b ∈ ∆1(a)} is directed).

Theorem 2.3 ([11, Thm. 4]). StoneR is dually equivalent to BAQ.

Quasi-semi-homomorphisms from A to J (A) were studied in [9] under the name of quasi-modal operators.

It was pointed out in [4, Rem. 2.6] that quasi-modal operators on A are in one-to-one correspondence with

subordinations on A. We show that this generalizes to a dual isomorphism between BAQ and the category

of boolean algebras and subordination relations between them.

Definition 2.4.

1. A subordination relation from a boolean algebra A to a boolean algebra B is a relation S : A → B

satisfying, for a, b ∈ A and c, d ∈ B:

(S1) 0 S 0 and 1 S 1;

(S2) a, b S c implies (a ∨ b) S c;

(S3) a S c, d implies a S (c ∧ d);

(S4) a ≤ b S c ≤ d implies a S d.

2. Let BAS be the category of boolean algebras and subordination relations. The identity morphism on

A is the order relation ≤ on A, and composition in BAS is relation composition.

Theorem 2.5. BAS is dually isomorphic to BAQ.

Proof. For a subordination S : A → B, define ∆S : B → J (A) by ∆S(b) = S−1[b]. It is straightforward

to check that ∆S is a well-defined quasi-semi-homomorphism. Moreover, ∆≤A
(a) = ↓a, so ∆≤A

= IA.

Furthermore, if S1 : A→ B and S2 : B → C are subordinations, then

∆S2◦S1(c) = (S2 ◦ S1)
−1(c) = S−1

1 [S−1
2 (c)] = (∆S1 ◦∆S2)(c).

For a quasi-semi-homomorphism ∆: A → B, define S∆ : B → A by b S∆ a iff b ∈ ∆(a). Again, it is

straightforward to check that S∆ is a well-defined subordination. Moreover, b SIA a iff b ∈ ↓a iff b ≤ a, so

SIA = ≤A. Furthermore, if ∆1 : A→ B and ∆2 : B → C are quasi-semi-homomorphisms, then

c S∆2◦∆1
a ⇐⇒ c ∈ (∆2 ◦∆1)(a)⇐⇒ c ∈

⋃
{∆2(b) | b ∈ ∆1(a)}

⇐⇒ ∃b ∈ ∆1(a) : c ∈ ∆2(b)⇐⇒ c (S∆1
◦ S∆2

) a.

In addition, for each subordination S, we have b S∆S
a⇐⇒ b ∈ ∆S(a)⇐⇒ b S a, so S∆S

= S. Also, for

each quasi-semi-homomorphism ∆, we have ∆S∆
(a) = S−1

∆ [a] = ∆(a), and hence ∆S∆
= ∆. Thus, BAS is

dually isomorphic to BAQ.

Putting Theorems 2.3 and 2.5 together yields:
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Corollary 2.6. StoneR is equivalent to BAS.

Remark 2.7. The functors establishing the equivalence of Corollary 2.6 generalize the well-known clopen

and ultrafilter functors Clop and Ult of Stone duality. Indeed, if R : X → Y is a closed relation between

Stone spaces, then composing the functors StoneR → BAQ → BAS, we obtain that the corresponding sub-

ordination relation SR : Clop(X) → Clop(Y ) is given by U SR V iff R[U ] ⊆ V . Conversely, if S : A → B is

a subordination relation, then composing the functors BAS → BAQ → StoneR in the other direction yields

that the corresponding closed relation RS : Ult(A)→ Ult(B) is given by x RS y iff S[x] ⊆ y. We will slightly

abuse the notation and use Clop and Ult also for the functors establishing the equivalence between StoneR

and BAS.

Remark 2.8. That in Corollary 2.6 we have an equivalence instead of a dual equivalence is explained by

the fact that the categories StoneR and BAS are self-dual (see Theorem 2.14), and hence equivalence implies

dual equivalence.

Remark 2.9. Corollary 2.6 is also a consequence of [24, Thm. 5.9], where a more general order-enriched

duality result is established between distributive lattices and Priestley spaces, with appropriate relations as

morphisms.

From now on we will work with the additional structure of allegory on StoneR and BAS [14, 21]. In fact,

it is enough to have the structure of order-enriched category with involution [34, 27]. However, we prefer

to work with allegories because their well-developed machinery is readily available to us. One could instead

work with bicategories (see [8, 7]).

Definition 2.10.

1. [17, p. 105] A category C is order enriched if each hom-set of C is equipped with a partial order ≤ such

that f ≤ f ′ and g ≤ g′ imply gf ≤ g′f ′ for all f, f ′ : C → D and g, g′ : D → E.

2. [16, p. 74] A dagger on a category C is a contravariant endofunctor (−)† : C → C that is the identity

on objects and the composition of (−)† with itself is the identity on C. A dagger category is a category

equipped with a dagger.

3. [21, p. 136] An allegory A is an order-enriched dagger category such that:

(i) each partially ordered hom-set of A has binary meets;

(ii) (−)† preserves the order on the hom-sets (f ≤ g =⇒ f† ≤ g†);

(iii) the modular law holds: gf ∧ h ≤ (g ∧ hf†)f for all f : C → D, g : D → E, and h : C → E.

We next extend the notion of equivalence of categories to allegories.

Definition 2.11.

1. [21, p. 142] If F : A→ A′ is a functor between two allegories, we say that F is a morphism of allegories

if it preserves the binary meets of morphisms and commutes with (−)†.

2. A morphism of allegories is an equivalence of allegories if it is an equivalence of categories.

Remark 2.12. If F : A → A′ is an equivalence of allegories with quasi-inverse G : A′ → A, then G is also

an equivalence of allegories. To see this, if f is an isomorphism in A′, then f−1 = f† (see [14, p. 199]).

Therefore, since F is an essentially surjective, full, and faithful functor that preserves the dagger, the proof

of [35, Lem. V.1] shows that G also preserves the dagger. Because F is a bijection on the hom-sets that

preserves meets, it is an order-isomorphism on the hom-sets. Thus, G is also an order-isomorphism on the

hom-sets, and hence an equivalence of allegories.
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Lemma 2.13. StoneR is an allegory.

Proof. StoneR is an order-enriched category if we order its hom-sets by inclusion. For a relation R : X → Y ,

let R˘: Y → X be its converse defined by y R˘ x iff x R y. If R is a closed relation, then R˘ is also closed.

The assignment R 7→ R˘ defines a dagger on StoneR. It is straightforward to check that all the conditions of

Definition 2.10(3) hold in StoneR.

Theorem 2.14. BAS is an allegory and Clop and Ult yield an equivalence of StoneR and BAS as allegories.

Proof. If we order the hom-sets of BAS by reverse inclusion, then BAS becomes an order-enriched category.

For a subordination S : A → B, define Ŝ : B → A by b Ŝ a iff ¬a S ¬b. It is straightforward to check that

Ŝ is a subordination and that the assignment S 7→ Ŝ defines a dagger on BAS. We show that the bijections

between the hom-sets induced by the functors Clop and Ult preserve and reflect the orders, and commute

with the daggers.

Suppose R1 ⊆ R2. Let U ∈ Clop(X) and V ∈ Clop(Y ) such that U SR2 V . Then R1[U ] ⊆ R2[U ] ⊆ V ,

and so U SR1
V . Thus, SR2

⊆ SR1
. Conversely, assume that R1 ⊈ R2. Let x ∈ X and y ∈ Y be such that

x R1 y but x ̸R2 y. Since R2 is a closed relation, R2[x] is a closed subset of Y and y /∈ R2[x]. Because Y is a

Stone space, there is clopen V ⊆ Y such that R2[x] ⊆ V and y /∈ V . Since R2 is closed, X \R−1
2 [Y \V ] is an

open subset of X containing x. Therefore, there is U ⊆ X clopen such that x ∈ U and X \U ⊆ R−1
2 [Y \ V ],

so R2[U ] ⊆ V . Thus, x ∈ U , y /∈ V , and x R1 y, yielding R1[U ] ⊈ V . Consequently, U SR2
V but U ̸SR1

V ,

which implies that SR2
⊈ SR1

.

Suppose S1 ⊆ S2. Let x ∈ Ult(A) and y ∈ Ult(B) such that x RS2
y. Then S1[x] ⊆ S2[x] ⊆ y, and so

x RS1 y. Thus, RS2 ⊆ RS1 . Conversely, assume that S1 ⊈ S2. Let a ∈ A and b ∈ B be such that a S1 b but

a ̸S2 b. Since S2 is a subordination, S−1
2 [b] is an ideal of A that a /∈ S−1

2 [b]. By the ultrafilter lemma, there

is x ∈ Ult(A) such that a ∈ x and x ∩ S−1
2 [b] = ∅. Therefore, b /∈ S2[x] and S2[x] is a filter of B because S2

is a subordination. Thus, there is y ∈ Ult(B) such that b /∈ y and S2[x] ⊆ y. Since a ∈ x, b ∈ y, and a S1 b,

we have S1[x] ⊈ y. Consequently, x RS2 y but x ̸RS1 y, which implies that RS2 ⊈ RS1 .

The functors Clop and Ult commute with the daggers on StoneR and BAS. Indeed, let R : X → Y be a

morphism in StoneR, U ∈ Clop(X), and V ∈ Clop(Y ). Then R [̆V ] ⊆ U iff R[X \ U ] ⊆ Y \ V . Therefore,

SR˘ = ŜR. Also, let S : A → B be a morphism in BAS, x ∈ Ult(A), and y ∈ Ult(B). Then Ŝ[y] ⊆ x iff

S[x] ⊆ y. Thus, RŜ = (RS )̆ .

Since StoneR is an allegory and the functors Clop and Ult are quasi-inverses of each other that preserve

and reflect the orders on the hom-sets and commute with the daggers, it follows that BAS is also an allegory

and Clop and Ult are morphisms of allegories. Thus, StoneR and BAS are equivalent as allegories.

Remark 2.15. Each hom-set homStoneR(X,Y ) is a complete lattice because it is the set of closed subsets of

X × Y . Thus, Theorem 2.14 implies that each hom-set homBAS(A,B) is also a complete lattice. In [1] we

give an explicit description of meets and joins of subordinations.

Remark 2.16. A closed relation R : X → Y is an isomorphism in StoneR iff it is a homeomorphism. To see

this, the inverse of R in StoneR is a closed relation Q : Y → X such that Q◦R = idX and R◦Q = idY . Since

idX and idY are identities, R is a bijective function and Q is its inverse. Since a function that is closed as a

relation is a continuous function, we conclude that R is a homeomorphism. Therefore, by Corollary 2.6, two

boolean algebras are isomorphic in BAS iff they are isomorphic as boolean algebras.

3. Further lifting to closed relations between compact Hausdorff spaces

The goal of this section is to lift the equivalence between StoneR and BAS to the category KHausR of

compact Hausdorff spaces and closed relations. Guided by the fact that KHaus is the exact completion of

Stone (see, e.g., [30, Thm. 8.1]), we think of compact Hausdorff spaces as the quotients of Stone spaces by

closed equivalence relations. We will obtain a category equivalent to KHausR by splitting closed equivalence

relations in StoneR, a construction that we describe in the language of allegories.
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Closed equivalence relations on Stone spaces and their corresponding subordinations on boolean algebras

are instances of the notion of an equivalence in an allegory.

Definition 3.1. [14, p. 198] Let C be an object of an allegory. A morphism f : C → C is called an equivalence

if idC ≤ f (reflexivity), f = f† (symmetry), and ff ≤ f (transitivity).

It is immediate to see that a closed relation R on a Stone space is reflexive, symmetric, and transitive as

a morphism in StoneR iff it is reflexive, symmetric, and transitive as a relation. Thus, R is an equivalence in

StoneR iff it is a closed equivalence relation. We have a similar result for subordinations.

Lemma 3.2. A subordination S : B → B is an equivalence in BAS iff it satisfies the following conditions:

(S5) a S b implies a ≤ b.

(S6) a S b implies ¬b S ¬a.

(S7) a S b implies there is c ∈ B such that a S c and c S b.

Proof. Since the hom-sets of BAS are ordered by reverse inclusion, a subordination S on B is a reflexive

morphism in BAS iff S is contained in the partial order ≤ on B, which holds iff S satisfies (S5). Since S = Ŝ

iff S ⊆ Ŝ, it follows that S is a symmetric morphism in BAS iff S satisfies (S6). Finally, S is a transitive

morphism in BAS iff S ⊆ S ◦S, which means that (S7) holds. Thus, S is an equivalence in BAS iff it satisfies

conditions (S5)–(S7).

Definition 3.3. An S5-subordination is a subordination S : B → B satisfying conditions (S5)–(S7).

Remark 3.4. The terminology in the above definition is motivated by the connection to the modal logic

S5, which is the logic of relational structures (X,R) such that R is an equivalence relation (see, e.g., [6,

Table 4.1]).

Definition 3.5. Let KHausR be the category of compact Hausdorff spaces and closed relations between them.

Identity morphisms in KHausR are identity relations and composition in KHausR is relation composition.

Clearly StoneR is a full subcategory of KHausR. By arguing as we did in Theorem 2.14 for StoneR, we

obtain:

Lemma 3.6. KHausR is an allegory.

We will show that KHausR is equivalent to the allegory obtained by splitting the equivalences in StoneR.

Definition 3.7. ([14, p. 15]) Let E be a class of idempotent morphisms of a category C, where e : C → C

is idempotent if ee = e. The category Split(E) obtained by splitting E is defined as follows. The objects of

Split(E) are pairs (C, e) where C ∈ C and e ∈ E . A morphism f : (C, e)→ (C ′, e′) in Split(E) is a morphism

f : C → C ′ in C such that fe = f = e′f .

C C ′

C C ′

f

f
e e′

f

When E is the class of all idempotents of C, then Split(E) is called the Karoubi envelope or Cauchy completion

of C.

Proposition 3.8 ([14, p. 211]). Let A be an allegory and E a class of symmetric idempotent morphisms

of A. Then Split(E) inherits the structure of an allegory from A. In particular, if EqA is the class of all

equivalences in A, then Split(EqA) is an allegory.
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Notation 3.9.

1. To simplify notation, we denote Split(EqStoneR) by StoneER. Thus, an object of StoneER is a pair

(X,E) where X is a Stone space and E is a closed equivalence relation on X. We call such pairs

S5-subordination spaces. A morphism in StoneER between (X,E) and (X ′, E′) is a closed relation

R : X → X ′ satisfying R ◦ E = R = E′ ◦ R. We call such relations compatible closed relations. The

composition of compatible closed relations in StoneER is the standard relation composition and the

identity on (X,E) is the relation E.

2. Similarly, we denote Split(EqBAS) by SubS5S, so an object of SubS5S is a pair (B,S) where B is a

boolean algebra and S is an S5-subordination on B. We call such pairs S5-subordination algebras.1

A morphism in SubS5S between (B,S) and (B′, S′) is a subordination relation T : B → B′ satisfying

T ◦ S = T = S′ ◦ T . We call such subordinations compatible subordinations. The composition of

compatible subordinations in SubS5S is the standard relation composition and the identity on (B,S)

is the subordination S.

By Proposition 3.8, StoneER is an allegory with the hom-sets ordered by inclusion and the dagger defined

as in StoneR. In addition, SubS5S is an allegory with the hom-sets ordered by reverse inclusion and the dagger

defined as in BAS. The following is now immediate because StoneR and BAS are equivalent as allegories (see

Theorem 2.14):

Theorem 3.10. StoneER and SubS5S are equivalent allegories.

Remark 3.11. The functors establishing the equivalence of allegories are obtained by lifting the functors

Clop and Ult yielding the equivalence between StoneR and BAS. An S5-subordination space (X,E) is mapped

to (Clop(X), SE) and a compatible closed relation R to SR. An S5-subordination algebra (B,S) is mapped

to (Ult(B), RS) and a compatible subordination T to RT .

We next show that KHausR and StoneER are equivalent as allegories. We first observe that each compact

Hausdorff space is homeomorphic to a quotient of a Stone space. Indeed, any compact Hausdorff space is

a quotient of its Gleason cover (see, e.g., [20, pp. 107–108]). The Gleason cover is not the only possible

option. In fact, it follows from the universal mapping property of Stone-Čech compactifications (see, e.g.,

[13, Thm. 3.6.1]) that any compact Hausdorff space X is homeomorphic to a quotient of the Stone-Čech

compactification of the discrete space with the same underlying set as X. There are many other options as

well. Clearly, if a compact Hausdorff space X is homeomorphic to a quotient Y/E of a Stone space Y , then

E is necessarily closed (see, e.g., [13, Thm. 3.2.11]). We will use this in the proof of the next theorem.

Theorem 3.12. KHausR and StoneER are equivalent allegories.

Proof. Define Q : StoneER → KHausR as follows: each (X,E) ∈ StoneER is sent to the quotient space

X/E, which is well known to be compact Hausdorff (see, e.g., [13, Thm. 3.2.11]); and each morphism

R : (X,E)→ (X ′, E′) in StoneER is mapped to the morphism Q(R) : Q(X,E)→ Q(X ′, E′) in KHausR given

by Q(R) = π′ ◦R ◦ π ,̆ where π : X → X/E and π′ : X ′ → X ′/E′ are the projections onto the quotients.

We show that Q preserves identities and compositions. Note that if π : X → X/E is the projection onto

the quotient, then E = π˘◦ π and π ◦ π˘= idX/E . Therefore,

Q(id(X,E)) = Q(E) = π ◦ E ◦ π˘= π ◦ π˘◦ π ◦ π˘= idX/E .

Let R1 : (X1, E1)→ (X2, E2) and R2 : (X2, E2)→ (X3, E3) be compatible closed relations. Then

Q(R2) ◦ Q(R1) = (π3 ◦R2 ◦ π2 )̆ ◦ (π2 ◦R1 ◦ π1 )̆ = π3 ◦R2 ◦ E2 ◦R1 ◦ π1˘
= π3 ◦R2 ◦R1 ◦ π1˘= Q(R2 ◦R1).

1Celani [10] calls these algebras quasi-monadic algebras because they generalize Halmos’ monadic algebras [15].
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We prove that Q is full, faithful, and essentially surjective. Let R′ : X/E → X ′/E′ be a closed relation, then

R = (π′)̆ ◦R′ ◦ π is a compatible closed relation such that Q(R) = R′ because

Q(R) = Q((π′)̆ ◦R′ ◦ π) = π′ ◦ (π′)̆ ◦R′ ◦ π ◦ π˘= idX/E ◦R′ ◦ idX′/E′ = R′.

Therefore, Q is full. If R : (X,E) → (X ′, E′) is a compatible closed relation, then R = (π′)̆ ◦ Q(R) ◦ π
because

(π′)̆ ◦ Q(R) ◦ π = (π′)̆ ◦ π′ ◦R ◦ π˘◦ π = E′ ◦R ◦ E = R.

Thus, if R,R′ : (X,E) → (X ′, E′) are two compatible closed relations such that Q(R) = Q(R′), then

R = (π′)̆ ◦ Q(R) ◦ π = (π′)̆ ◦ Q(R′) ◦ π = R′. This shows that Q is faithful. As we pointed out before the

theorem, if Y is a compact Hausdorff space, then there exists (X,E) ∈ StoneER such that Y is homeomorphic

to X/E. It follows that Q is essentially surjective, hence an equivalence [29, p. 93]. It remains to show that

Q is a morphism of allegories.

Let R1, R2 : (X,E)→ (X ′, E′) be compatible closed relations. If R1 ⊆ R2, then

Q(R1) = π′ ◦R1 ◦ π˘⊆ π′ ◦R2 ◦ π˘= Q(R2).

Conversely, if Q(R1) ⊆ Q(R2), then

R = (π′)̆ ◦ Q(R1) ◦ π ⊆ (π′)̆ ◦ Q(R2) ◦ π = R2.

Therefore, Q preserves and reflects the inclusion of relations, and so it yields an order-isomorphism on hom-

sets. Finally, since (−)̆ is a contravariant endofunctor, Q(R )̆ = π ◦ R˘ ◦ (π′)̆ is the converse relation of

π′ ◦R ◦ π˘= Q(R). Thus, Q commutes with the dagger, and hence is a morphism of allegories.

Remark 3.13. The following is a more categorical approach to Theorem 3.12. If A is an allegory, then a

morphism f : C → D in A is a map if f†f ≤ idC and idD ≤ ff† (see [14, p. 199]). The wide subcategory of

A consisting of maps is denoted by Map(A).

If C is a regular category, then we can define the allegory Rel(C) whose objects are the same as C and

whose morphisms are internal relations, where an internal relation R : C → D is a subobject of C × D

(see [21, Sec. A3.1]). Both KHaus and Stone are regular categories and their internal relations correspond

to closed relations. Therefore, KHausR and Rel(KHaus) are isomorphic allegories, and so are StoneR and

Rel(Stone). Thus, the allegories Split(EqRel(Stone)) and Split(EqStoneR) are isomorphic.

If C is a regular category, then Map(Split(EqRel(C))) is the effective reflection of C in the category of

regular categories [14, p. 213]. This is also known as the exact completion or ex/reg completion.2 Roughly

speaking, the exact completion is obtained by closing under quotients. Since KHaus is the exact completion

of Stone (see, e.g., [30, Thm. 8.1]), it follows that KHaus is equivalent to Map(Split(EqRel(Stone))). Therefore,

Rel(KHaus) and Rel(Map(Split(EqRel(Stone)))) are equivalent allegories (see, e.g., [14, p. 204]). By [21, A3.2.10,

A3.3.4(i), A3.3.9(ii)], the allegories Rel(Map(Split(EqRel(Stone)))) and Split(EqRel(Stone)) are isomorphic. Thus,

we have the following chain of equivalences of allegories:

KHausR ∼= Rel(KHaus) ≃ Rel(Map(Split(EqRel(Stone))))
∼= Split(EqRel(Stone))

∼= Split(EqStoneR) = StoneER,

where ∼= stands for isomorphism and ≃ for equivalence of allegories.

As an immediate consequence of Theorems 3.10 and 3.12 we obtain:

Corollary 3.14. KHausR, StoneER, and SubS5S are equivalent as allegories.

We conclude this section by characterizing isomorphisms in StoneER and SubS5S.

2This should not be confused with the effective reflection of C in the category of lex categories, also known as ex/lex

completion (see https://ncatlab.org/nlab/show/regular+and+exact+completions).
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Remark 3.15.

(1) By Theorem 3.12, Q is full and faithful. Therefore, a morphism R : (X1, E1) → (X2, E2) in StoneER

is an isomorphism iff Q(R) : X1/E1 → X2/E2 is a homeomorphism. Thus, (X1, E1) and (X2, E2) are

isomorphic in StoneER iff X1/E1 and X2/E2 are homeomorphic.

(2) Let R : (X1, E1) → (X2, E2) be an isomorphism in StoneER. Since inverses in an allegory are daggers

(see [14, p. 199]) and R† = R˘ in StoneER (see Lemma 2.13 and the paragraph before Theorem 3.10),

it follows that the inverse of R in StoneER is R .̆

(3) Not every isomorphism in StoneER is a structure-preserving bijection; two objects (X1, E1) and (X2, E2)

may be isomorphic even if X1 and X2 do not share the same cardinality. However, the converse is

true. If f : X1 → X2 is a structure-preserving bijection, then f is a homeomorphism such that x E1 y

iff f(x) E2 f(y). Therefore, f and f−1 = f˘ are compatible closed relations, and hence f is an

isomorphism in StoneER.

(4) A similar result is true for SubS5S: two objects (B1, S1) and (B2, S2) may be isomorphic even if B1

and B2 do not share the same cardinality. However, every structure-preserving bijection gives rise to

an isomorphism in SubS5S. Indeed, let (B1, S1), (B2, S2) ∈ SubS5S and suppose there is a boolean

isomorphism f : B1 → B2 such that for all a, b ∈ B1 we have a S1 b iff f(a) S2 f(b). Similarly to

Remark 2.16, an isomorphism between (B1, S1) and (B2, S2) is given by the relation T : B1 → B2

defined by

a T b ⇐⇒ f(a) S2 b ⇐⇒ a S1 f−1(b),

and its inverse in SubS5S is the relation Q : B2 → B1 defined by

b Q a ⇐⇒ b S2 f(a) ⇐⇒ f−1(b) S1 a.

By (S6),

b T̂ a ⇐⇒ ¬a T ¬b ⇐⇒ f(¬a) S2 ¬b ⇐⇒ b S2 f(a) ⇐⇒ b Q a.

Thus, every structure-preserving bijection f : B1 → B2 gives rise to an isomorphism T : B1 → B2 in

SubS5S whose inverse is T̂ : B2 → B1.

4. De Vries algebras and Gleason spaces

As we saw in Section 3, KHausR is equivalent to both StoneER and SubS5S. In this section we introduce

two important full subcategories GleR of StoneER and DeVS of SubS5S. The objects of GleR are Gleason

spaces and those of DeVS are de Vries algebras. We prove that GleR and DeVS are also equivalent to KHausR.

In Section 5 we will see that, unlike StoneER and SubS5S, isomorphisms in GleR and DeVS are structure-

preserving bijections.

For a compact Hausdorff space X, let gX : X̂ → X be the Gleason cover of X (see, e.g., [20, pp. 107–108]).

Let E be the equivalence relation on X̂ given by

x E y ⇐⇒ gX(x) = gX(y). (∗)

Since X is homeomorphic to the quotient space X̂/E, in a certain sense, we can identify X with the pair

(X̂, E). This was made precise in [5], where an equivalence is exhibited between KHausR and the full

subcategory of StoneER that we next define.

Definition 4.1.

1. [13, p. 368] A topological space is extremally disconnected if the closure of each open set is open.
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2. [4, Def. 6.6] A Gleason space is an object (X,E) of StoneER such that X is extremally disconnected

and E is irreducible (i.e., if F is a proper closed subset of X, then so is E[F ]).

3. [5, Def. 3.6] Let GleR be the full subcategory of StoneER whose objects are Gleason spaces.

We next define the category DeVS.

Definition 4.2.

1. [3, Def. 3.2] A de Vries algebra is an S5-subordination algebra (B,S) such that B is a complete boolean

algebra and S satisfies the following axiom:

(S8) If a ̸= 0, then there is b ̸= 0 such that b S a.

2. Let DeVS be the full subcategory of SubS5S consisting of de Vries algebras.

Remark 4.3. A relation S on a boolean algebra B satisfying (S1)–(S8) is called a de Vries proximity on B

and is usually denoted by ≺.

Lemma 4.4. GleR and DeVS are allegories.

Proof. By [21, Examples A.3.2.2(c)], every full subcategory of an allegory inherits the allegory structure.

Theorem 4.5. The equivalence between StoneER and SubS5S restricts to an equivalence of allegories between

GleR and DeVS.

Proof. Let B ∈ BA. By Stone duality, B is complete iff Ult(B) is extremally disconnected. Let S be an S5-

subordination on B and RS the corresponding closed equivalence relation on Ult(B). By [4, Lem. 6.3], RS is

irreducible iff S satisfies (S8). Thus, the restriction of Clop : StoneER → SubS5S and Ult : SubS5S → StoneER

gives the desired equivalence.

For a compact Hausdorff space X, let G(X) = (X̂, E), where X̂ is the Gleason cover of X and E the

corresponding equivalence relation defined in (∗). For a closed relation R : X → X ′, let G(R) : G(X)→ G(X ′)

be given by G(R) = (gX′ )̆ ◦ R ◦ gX . This defines a functor G : KHausR → StoneER, which is a quasi-inverse

of Q:

Theorem 4.6. Each object (X,E) of StoneER is isomorphic in StoneER to the Gleason space G(X/E). Thus,

G is a quasi-inverse of Q and the inclusion of GleR into StoneER is an equivalence of allegories.

Proof. Let (X,E) ∈ StoneER and let (X ′, E′) = G(X/E). Then (X ′, E′) ∈ GleR and (X,E) is isomor-

phic to (X ′, E′) by Remark 3.15(1). Thus, the inclusion of GleR into StoneER is full, faithful, and essen-

tially surjective, hence an equivalence of allegories (because it is a morphism of allegories by [21, Exam-

ples A.3.2.2(c)]). Since any Gleason space is an object of StoneER, what we observed above implies that

any (X,E) ∈ GleR is isomorphic to G(X/E) = G(Q(X,E)). Straightforward computations show that the

isomorphisms (X,E) ∼= G(Q(X,E)) for (X,E) ∈ GleR and Q(G(X)) ∼= X for X ∈ KHausR yield natural

isomorphisms idGleR
∼= G ◦ Q and idKHausR

∼= Q ◦ G. Thus, G is a quasi-inverse of Q.

Corollary 4.7. KHausR, GleR, and DeVS are equivalent allegories.

As a consequence, we arrive at the following diagram of equivalences of allegories that commutes up to

natural isomorphisms.

StoneER SubS5S

KHausR

GleR DeVS

Clop

Q

UltG

G

Q
Clop

Ult

10



Remark 4.8. That KHausR and GleR are equivalent categories was first established in [5, Thm. 3.13]. By

Corollary 4.7, KHausR is equivalent to DeVS. This resolves the problem raised in [5, Rem. 3.14] to find a

generalization of the category of de Vries algebras that is (dually) equivalent to KHausR. The key is to work

with the category DeVS in which functions between de Vries algebras are replaced by relations.

We conclude this section by providing an explicit description of the functor from KHausR to DeVS yielding

the equivalence, which is a direct generalization of the regular open functor of de Vries duality.

For a compact Hausdorff space X, let RO(X) be the complete boolean algebra of regular open subsets of

X. We recall that joins in RO(X) are computed as
∨

i Ui = int(cl(
⋃

i Ui)) and the negation is computed as

¬U = int(X \ U). Similarly, if RC(X) is the complete boolean algebra of regular closed subsets of X, then

meets in RC(X) are computed as
∧

i Fi = cl(int(
⋂

i Fi)) and the negation is computed as ¬F = cl(X \ F ).

Parts of the next lemma are known, but it is convenient to collect all the relevant isomorphisms together.

Lemma 4.9. Let X be a compact Hausdorff space and gX : X̂ → X its Gleason cover. The boolean algebras

RO(X), RC(X), and Clop(X̂) are isomorphic, with the isomorphisms given by

RO(X)←→ RC(X)

U 7−→ cl(U)

int(F )←− [ F,

Clop(X̂)←→ RC(X)

V 7−→ gX [V ]

cl(g−1
X [int(F )])←− [ F,

Clop(X̂)←→ RO(X)

V 7−→ int(gX [V ])

cl(g−1
X [U ])←− [ U.

Proof. (Sketch) That cl : RO(X) → RC(X) and int : RC(X) → RO(X) are inverses of each other is an

immediate consequence of the definition of regular open and regular closed sets.

Since gX : X̂ → X is an onto irreducible map, the direct image function gX [−] : RC(X̂) → RC(X) that

maps F ∈ RC(X̂) to gX [F ] is a boolean isomorphism (see [32, p. 454]). We note that RC(X̂) = Clop(X̂)

because X̂ is extremally disconnected. It follows from the proof in [32, p. 454] that the inverse of gX [−] is
given by mapping each F ∈ RC(X) to cl(g−1

X [int(F )]).

By composing the isomorphism between RO(X) and RC(X) with the isomorphism between RC(X) and

Clop(X̂), we obtain the isomorphism between RO(X) and Clop(X̂) described in the statement.

Definition 4.10. Let D : KHausR → DeVS be defined by associating with each compact Hausdorff space X

the de Vries algebra (RO(X),≺) of regular open subsets of X (with the de Vries proximity defined by U ≺ V

iff cl(U) ⊆ V ) and with each closed relation R : X → X ′ the subordination D(R) : RO(X) → RO(X ′) given

by

U D(R) V ⇐⇒ R[cl(U)] ⊆ V .

It is straightforward to see that D is a well-defined functor. Recalling the functors G : KHausR → GleR

and Clop : GleR → DeVS, we obtain:

Theorem 4.11. The functor D is naturally isomorphic to Clop ◦ G.

Proof. By Lemma 4.9, for every compact Hausdorff space X, the function ηX : RO(X) → Clop(GX) that

maps U to cl(g−1
X [U ]) is a boolean isomorphism.

If R : X → X ′ is a closed relation, then GR : GX → GX ′ is given by GR = (gX′ )̆ ◦ R ◦ gX , so x GR x′

iff gX(x) R gX′(x′). Moreover, Clop(GR) is the DeVS-morphism SGR : Clop(GX) → Clop(GX ′) given by

U SGR V iff (GR)[U ] ⊆ V . Consequently, for all U ∈ RO(X) and V ∈ RO(X ′) we have

ηX(U) (ClopGR) ηX′(V ) ⇐⇒ GR[ηX(U)] ⊆ ηX′(V )

⇐⇒ GR[ηX(U)] ∩ (GX ′ \ ηX′(V )) = ∅
⇐⇒ g−1

X′ [R[gX [ηX(U)]]] ∩ (GX ′ \ ηX′(V )) = ∅
⇐⇒ R[gX [ηX(U)]] ∩ gX′ [GX ′ \ ηX′(V )] = ∅.
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Since U ∈ RO(X) and cl(U) ∈ RC(X), it follows from Lemma 4.9 that

R[gX [ηX(U)]] = R[gX [cl(g−1
X [int(cl(U))])]] = R[cl(U)].

Because ηX′ is an isomorphism,

gX′ [GX ′ \ ηX′(V ))] = gX′ [ηX′(int(X ′ \ V ))] = gX′ [cl(g−1
X′ [int(X

′ \ V )])] = X ′ \ V,

where the second equality follows from Lemma 4.9 since X ′ \ V ∈ RC(X ′). Therefore,

ηX(U) (ClopGR) ηX′(V ) ⇐⇒ R[cl(U)] ∩ (X ′ \ V ) = ∅ ⇐⇒ R[cl(U)] ⊆ V.

When X = X ′, taking R to be the identity 1X on X, we have

ηX(U) (ClopG1X) ηX(V ) ⇐⇒ U ≺ V

for all U, V ∈ RO(X). Thus, the isomorphism ηX : RO(X) → Clop(GX) is a structure-preserving bijection.

By Remark 3.15(4), RO(X) and Clop(GX) are isomorphic in DeVS, and the isomorphism is given by the

relation SX : RO(X)→ Clop(GX) defined by

U SX V ⇐⇒ ηX(U) (ClopG1X) V ⇐⇒ U ≺ η−1
X (V )

(see Remark 3.15(4) and Lemma 4.9).

To prove naturality, we show that the following diagram commutes for every morphism R : X → X ′ in

KHaus.

RO(X) Clop(GX)

RO(X ′) Clop(GX ′)

SX

D(R) ClopGR
SX′

Let U ∈ RO(X) and V ∈ Clop(GX ′). Since ClopGR and D(R) are compatible subordinations, we have

U (SX′ ◦ D(R)) V ⇐⇒ ∃C ∈ RO(X ′) : U D(R) C SX′ V

⇐⇒ ∃C ∈ RO(X ′) : U D(R) C ≺ η−1
X′ (V )

⇐⇒ U D(R) η−1
X′ (V )

⇐⇒ ηX(U) (ClopGR) V

⇐⇒ ∃D ∈ Clop(GX) : ηX(U) (ClopG1X) D (ClopGR) V

⇐⇒ ∃D ∈ Clop(GX) : U SX D (ClopGR) V

⇐⇒ U ((ClopGR) ◦ SX) V.

We thus obtain:

Corollary 4.12. The functor D : KHausR → DeVS is an equivalence of allegories.

Proof. By Theorem 4.11, D is naturally isomorphic to the composition Clop◦G, each of which is an equivalence

of allegories (see Remark 3.11 and Theorem 4.6).

5. Isomorphisms in DeVS and GleR

It follows from Remark 3.15 that isomorphisms in SubS5S and StoneER are not structure-preserving bijec-

tions. In this section we show that in DeVS and GleR isomorphisms become structure-preserving bijections,

thus making the latter categories more convenient to work with.

For a subset E of a boolean algebra B, we write U(E) and L(E) for the sets of upper and lower bounds of

E, respectively. We will freely use the fact that in a de Vries algebra (A,S) we have a =
∧

S[a] =
∨

S−1[a]

for every a ∈ A.
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Lemma 5.1. Let (A,SA) and (B,SB) be isomorphic objects in SubS5S with T : A → B and Q : B → A

inverses of each other. Suppose that (A,SA) is a compingent algebra.

(1) For all a1, a2 ∈ A, we have

a1 ≤ a2 ⇐⇒ T [a1] ⊇ T [a2] ⇐⇒ Q−1[a1] ⊆ Q−1[a2].

(2) For all a ∈ A, we have

Q−1[a] = S−1
B [L(T [a])] and T [a] = SB [U(Q−1[a])].

Proof. (1). We only prove a1 ≤ a2 ⇐⇒ T [a1] ⊇ T [a2]; the equivalence a1 ≤ a2 ⇐⇒ Q−1[a1] ⊆ Q−1[a2] is

proved similarly. The left-to-right implication is immediate. For the right-to-left implication, suppose that

T [a1] ⊇ T [a2]. Then QT [a1] ⊇ QT [a2]. Since T and Q are inverses of each other, Q ◦ T = SA, and hence

SA[a1] = QT [a1] ⊇ QT [a2] = SA[a2]. Thus, a1 =
∧

SA[a1] ≤
∧

SA[a2] = a2 because A is a compingent

algebra.

(2). We only prove Q−1[a] = S−1
B [L(T [a])]; the second equality is proved similarly. For the left-to-right

inclusion, let b ∈ Q−1[a], so b Q a. Since Q is a compatible subordination, there is b′ ∈ B such that

b SB b′ Q a. For every b′′ ∈ T [a] we have b′ Q a T b′′, so b′ SB b′′, and hence b′ ≤ b′′ by (S5). Therefore,

b′ ∈ L(T [a]), and so b ∈ S−1
B [L(T [a])].

For the right-to-left inclusion, let b ∈ S−1
B [L(T [a])]. Then there is b′ ∈ L(T [a]) such that b SB b′. Since

Q and T are inverses of each other, there is a′ ∈ A such that b Q a′ T b′. But then T [a] ⊆ T [a′] because for

every c ∈ T [a], we have a′ T b′ ≤ c, and so a′ T c. Thus, a′ ≤ a by (1). Consequently, b Q a′ ≤ a, so b Q a,

and hence b ∈ Q−1[a].

Lemma 5.2. Let (A,SA) and (B,SB) be isomorphic objects in DeVS with T : A → B and Q : B → A

inverses of each other. For all a ∈ A and b ∈ B,

(1) T [a] = SB

[∨
Q−1[a]

]
= SB [

∧
T [a]];

(2) Q[b] = SA

[∨
T−1[b]

]
= SA[

∧
Q[b]];

(3) T−1[b] = S−1
A [

∧
Q[b]] = S−1

A

[∨
T−1[b]

]
;

(4) Q−1[a] = S−1
B [

∧
T [a]] = S−1

B

[∨
Q−1[a]

]
.

Proof. We only prove the first equality of (4) and the second equality of (1). The rest are proved similarly.

To see that Q−1[a] = S−1
B [

∧
T [a]], by Lemma 5.1(2) it is sufficient to prove that S−1

B [L(T [a])] = S−1
B [

∧
T [a]].

But this is obvious because
∧
T [a] is the greatest lower bound of T [a].

To see that SB

[∨
Q−1[a]

]
= SB [

∧
T [a]], since (B,SB) is a de Vries algebra, for each c ∈ B, we have

c =
∨
S−1
B [c]. Thus, by the first equality of (4),

SB

[∨
Q−1[a]

]
= SB

[∨
S−1
B

[∧
T [a]

]]
= SB

[∧
T [a]

]
.

Lemma 5.3. Let (A,SA) and (B,SB) be isomorphic objects in DeVS with T : A → B and Q : B → A

inverses of each other. Define f : A→ B and g : B → A by

f(a) =
∧

T [a] and g(b) =
∧

Q[b].

Then f and g are structure-preserving bijections that are inverses of each other. Moreover, for each a ∈ A

and b ∈ B we have

a T b iff f(a) SB b and b Q a iff g(b) SA a.
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Proof. Let a ∈ A. Since Q is a compatible subordination and T is its inverse, by Lemma 5.2(1) we have

Q[f(a)] = Q
[∧

T [a]
]
= QSB

[∧
T [a]

]
= QT [a] = SA[a].

Thus, since SA is a de Vries proximity,

gf(a) =
∧

Q[f(a)] =
∧

SA[a] = a.

A similar proof yields that fg(b) = b for each b ∈ B. It is an immediate consequence of Lemma 5.1 that f

and g are order-preserving. Therefore, f, g are boolean isomorphisms that are inverses of each other.

We next show that f preserves and reflects SA. That g preserves and reflects SB is proved similarly. Let

a, a′ ∈ A. As we saw above, Q[f(a)] = SA[a]. Also, by Lemma 5.2(4), S−1
B [f(a′)] = S−1

B [
∧
T [a′]] = Q−1[a′].

Therefore,

f(a) SB f(a′) ⇐⇒ f(a) ∈ S−1
B [f(a′)] ⇐⇒ f(a) ∈ Q−1[a′] ⇐⇒ a′ ∈ Q[f(a)]

⇐⇒ a′ ∈ SA[a] ⇐⇒ a SA a′.

Finally, let a ∈ A and b ∈ B. To see that a T b iff f(a) SB b, it is sufficient to observe that Lemma 5.2(1)

implies SB [f(a)] = SB [
∧
T [a]] = T [a]. A similar reasoning gives that b Q a iff g(b) SA a.

As an immediate consequence of Remark 3.15 and Lemma 5.3 we obtain:

Theorem 5.4. Isomorphisms in DeVS are given by structure-preserving bijections.

Remark 5.5. The above theorem generalizes a similar result for the category DeV of de Vries algebras (see

[12, Prop. 1.5.5]).

Remark 5.6. An analogue of Theorem 5.4 is that isomorphisms in GleR are homeomorphisms that preserve

and reflect the equivalence relation.

6. An alternative approach to de Vries duality

In this final section we show that the equivalence between KHausR and DeVS restricts to an equivalence

between KHaus and the wide subcategory DeVF of DeVS whose morphisms satisfy two additional conditions

(the superscript F signifies that morphisms in KHaus are functions). This provides an alternative of de Vries

duality. We finish the paper by giving a direct proof that DeV is dually isomorphic to DeVF. An advantage

of DeVF over DeV is that composition in DeVF is usual relation composition.

Definition 6.1. We define the category StoneEF as Map(StoneER). Explicitly, this is the category whose

objects are pairs (X,E) where E is a closed equivalence relation on a Stone space X, and whose morphisms

from (X1, E1) to (X2, E2) are the compatible closed relations R : X1 → X2 such that E1 ⊆ R˘ ◦ R and

R ◦R˘⊆ E2.

Proposition 6.2. The categories KHaus and StoneEF are equivalent.

Proof. By Theorem 3.12, KHausR and StoneER are equivalent allegories. Therefore, Map(KHausR) and

Map(StoneER) are equivalent categories (see [14, p. 204]). The result follows since KHaus = Map(KHausR)

and StoneEF = Map(StoneER).

Remark 6.3. Since StoneEF = Map(StoneER) = Map(Split(EqStoneR)) and Map(Split(EqStoneR)) is isomorphic

to Map(Split(EqRel(Stone))) (see Remark 3.13), we have that StoneEF is the exact completion of Stone. Thus,

as a consequence we obtain an alternative proof of the fact that KHaus is the exact completion of Stone.
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Definition 6.4. We define the category SubS5F as Map(SubS5S). Explicitly, this is the category whose

objects are pairs (B,S) where S is a S5-subordination on a Boolean algebra B, and whose morphisms from

(A,SA) to (B,SB) are the morphisms T : (A,SA)→ (B,SB) in SubS5S satisfying T̂ ◦T ⊆ SA and SB ⊆ T ◦T̂ .

We next give a slightly more explicit description of morphisms in SubS5F.

Lemma 6.5. A morphism T : (B1, S1)→ (B2, S2) in SubS5S is a morphisms in SubS5F iff the following two

conditions hold.

(1) ∀a ∈ B1 (a T 0⇒ a = 0).

(2) ∀b1, b2 ∈ B2 (b1 S2 b2 ⇒ ∃a ∈ B1 : ¬a T ¬b1 and a T b2).

Proof. It is immediate that (2) is equivalent to S2 ⊆ T ◦ T̂ . Moreover, T̂ ◦ T ⊆ S1 is equivalent to the

following condition:

∀a1, a2 ∈ B1 ∀b ∈ B2 ((a1 T b and ¬a2 T ¬b)⇒ a1 S1 a2). (∗∗)

We show that (∗∗) is equivalent to (1). Suppose that (∗∗) holds, a ∈ B1, and a T 0. Letting a1 = a, a2 = 0,

and b = 0 in (∗∗) yields a S1 0. Therefore, a = 0 by (S5). Conversely, suppose that (1) holds. Let a1, a2 ∈ B1

and b ∈ B2 such that a1 T b and ¬a2 T ¬b. Since T is a compatible subordination, from a1 T b it follows

that there is a ∈ B1 such that a1 S1 a T b. From ¬a2 T ¬b and a T b it follows that (¬a2∧a) T (¬b∧ b) = 0.

Therefore, (1) implies ¬a2 ∧ a = 0, so a ≤ a2. Thus, a1 S1 a ≤ a2, and hence a1 S1 a2.

Proposition 6.6. The categories StoneEF and SubS5F are equivalent.

Proof. This follows from the fact that StoneER and SubS5S are equivalent allegories (see Theorem 3.10),

together with the facts that StoneEF = Map(StoneER) and SubS5F = Map(SubS5S).

Putting Propositions 6.2 and 6.6 together yields:

Corollary 6.7. The categories KHaus and SubS5F are equivalent.

Definition 6.8. Following [5, Def. 6.5], we let Gle denote the full subcategory of StoneEF whose objects are

Gleason spaces. We also let DeVF denote the full subcategory of SubS5F consisting of de Vries algebras.

We have Gle = Map(GleR) and DeVF = Map(DeVS).

Theorem 6.9. The categories KHaus, StoneEF, Gle, SubS5F, and DeVF are equivalent.

StoneEF SubS5S

KHaus

Gle DeVF

Proof. By Corollary 4.7, the allegories KHausR, StoneER, GleR, SubS5S and DeVS are equivalent. Therefore,

the categoriesMap(KHausR), Map(StoneER), Map(GleR), Map(SubS5S), andMap(DeVS) are equivalent. Thus,

KHaus, StoneEF, Gle, SubS5F, and DeVF are equivalent.

In particular, the equivalence between KHaus and DeVF provides an alternative of de Vries duality. In

the rest of the paper we show how to derive de Vries duality from this result. We start by recalling the

definition of a de Vries morphism. From now on, following Remark 4.3, we denote a de Vries proximity on

a boolean algebra by ≺.

Definition 6.10. A function f : A→ B between de Vries algebras (A,≺) and (B,≺) is a de Vries morphism

if it satisfies the following conditions:
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(M1) f(0) = 0;

(M2) f(a ∧ b) = f(a) ∧ f(b);

(M3) a ≺ b implies ¬f(¬a) ≺ f(b);

(M4) f(a) =
∨
{f(b) | b ≺ a}.

The composition of two de Vries morphisms f : A→ B and g : B → C is the de Vries morphism g∗f : A→ C

given by

(g ∗ f)(a) =
∨
{gf(b) | b ≺ a}

for each a ∈ A. Let DeV be the category of de Vries algebras and de Vries morphisms, where identity

morphisms are identity functions and composition is defined as above.

Remark 6.11. Each de Vries morphism f : A→ B satisfies that a ≺ b implies f(a) ≺ f(b) for each a, b ∈ A.

This will be used in what follows.

We recall from the introduction that de Vries duality is induced by the contravariant functor RO : KHaus→
DeV that associates to each X ∈ KHaus the de Vries algebra (RO(X),≺) of regular opens of X where U ≺ V

iff cl(U) ⊆ V . The functor RO sends each continuous function f : X → Y between compact Hausdorff spaces

to the de Vries morphism f∗ : RO(Y )→ RO(X) given by f∗(V ) = int(cl(f−1[V ])) for each V ∈ RO(Y ).

We show that DeV is dually isomorphic to DeVF. The definition of contravariant functors between DeV

and DeVF is motivated by the following result.

Proposition 6.12. Let f : X → Y be a continuous function between compact Hausdorff spaces.

(1) For every V ∈ RO(Y ),

int(cl(f−1[V ])) =
∨
{U ∈ RO(X) | f [cl(U)] ⊆ V },

where the join is computed in RO(X).

(2) For every U ∈ RO(X) and V ∈ RO(Y ),

f [cl(U)] ⊆ V ⇐⇒ ∃V ′ ∈ RO(Y ) : cl(V ′) ⊆ V and U ⊆ int(cl(f−1[V ′])).

Proof. (1). Since f−1[V ] is open, we have

f−1[V ] =
⋃
{U ∈ RO(X) | cl(U) ⊆ f−1[V ]}.

Therefore,

int(cl(f−1[V ])) =
∨
{U ∈ RO(X) | cl(U) ⊆ f−1[V ]} =

∨
{U ∈ RO(X) | f [cl(U)] ⊆ V }.

(2). To prove the left-to-right implication, suppose f [cl(U)] ⊆ V . Since f [cl(U)] is closed and V =
⋃
{V ′ ∈

RO(Y ) | cl(V ′) ⊆ V }, where the union is directed, there is V ′ ∈ RO(Y ) such that f [cl(U)] ⊆ V ′ ⊆ cl(V ′) ⊆ V .

Therefore, U ⊆ cl(U) ⊆ f−1[V ′] ⊆ int(cl(f−1[V ′])).

To prove the right-to-left implication, suppose there is V ′ ∈ RO(Y ) such that cl(V ′) ⊆ V and U ⊆
int(cl(f−1[V ′])). Then

cl(U) ⊆ cl(int(cl(f−1[V ′]))) = cl(f−1[V ′]) ⊆ cl(f−1[cl(V ′)]) = f−1[cl(V ′)] ⊆ f−1[V ],

which implies f [cl(U)] ⊆ V .

Proposition 6.12 suggests the following definition of two contravariant functors providing a dual isomor-

phism between DeV and DeVF.
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Definition 6.13.

1. The contravariant functor from DeVF to DeV is the identity on objects and maps a morphism S : A→ B

in DeVF to the function fS : B → A given by

fS(b) =
∨
{a ∈ A | a S b} =

∨
S−1[b].

2. The contravariant functor from DeV to DeVF is the identity on objects and maps a de Vries morphism

f : A→ B to the relation Sf : B → A given by

b Sf a ⇐⇒ ∃a′ ∈ A : a′ ≺ a and b ≤ f(a′).

To show that the above functors are well defined, we need the following lemma.

Lemma 6.14. Let S : A → B be a morphism in DeVF and let b1, b2 ∈ B be such that b1 ≺ b2. Then

fS(b1) S b2.

Proof. By Lemma 6.5, from b1 ≺ b2 it follows that there is a0 ∈ A such that ¬a0 S ¬b1 and a0 S b2. We

show that a S b1 implies a ≤ a0. From a S b1 and ¬a0 S ¬b1 it follows that (a ∧ ¬a0) S (b1 ∧ ¬b1) = 0. By

Lemma 6.5(1), a∧¬a0 = 0, so a ≤ a0. Thus,
∨
{a ∈ A | a S b1} ≤ a0, and hence

∨
{a ∈ A | a S b1} ≤ a0 S b2,

which gives fS(b1) S b2.

Lemma 6.15. The assignment in Definition 6.13(1) is a well-defined contravariant functor from DeVF to

DeV.

Proof. Let S : A → B be a morphism in DeVF. We show that fS is a de Vries morphism. That fS satisfies

(M1) follows from Lemma 6.5(1). The proof of (M2) is straightforward and (M4) follows from the fact that S

is a compatible subordination. We prove (M3). Suppose b1 ≺ b2. We must show that ¬fS(¬b1) ≺ fS(b2), i.e.

¬
∨
S−1[¬b1] ≺

∨
S−1[b2], which is equivalent to

∧
{¬c | c ∈ S−1[¬b1]} ≺

∨
S−1[b2]. By Lemma 6.5(2), there

is a ∈ A such that ¬a S ¬b1 and a S b2. Since S is compatible, a S b2 implies that there is a′ ∈ A such that

a ≺ a′ S b2. Because ¬a ∈ S−1[¬b1] and a′ ∈ S−1[b2], we have
∧
{¬c | c ∈ S−1[¬b1]} ≤ a ≺ a′ ≤

∨
S−1[b2].

This proves that fS is a de Vries morphism.

Let S1 : A→ B and S2 : B → C be morphisms in DeVF. We prove that fS2◦S1
= fS1

∗ fS2
.

Claim 6.16. For every a ∈ A and c ∈ C,

a (S2 ◦ S1) c ⇐⇒ ∃c′ ∈ C : c′ ≺ c and a ≤ fS1fS2(c
′).

Proof of claim. For the left-to-right implication, suppose a (S2 ◦ S1) c. Then there is b ∈ B such that

a S1 b S2 c. From a S1 b and the definition of fS1
it follows that a ≤ fS1

(b). Since S is compatible, from b S2 c

it follows that there is c′ ∈ C such that b S2 c′ ≺ c. Therefore, b ≤ fS2
(c′), and so a ≤ fS1

(b) ≤ fS1
fS2

(c′).

For the right-to-left implication, suppose that there is c′ ∈ C such that c′ ≺ c and a ≤ fS1
fS2

(c′). By

Lemma 6.14, fS2(c
′) S2 c. Since S is compatible, there is b ∈ B such that fS2(c

′) ≺ b S2 c. Applying

Lemma 6.14 again, a ≤ fS1
fS2

(c′) =
∨
{a ∈ A | a S1 fS2

(c′)} S1 b S2 c, which implies a S1 b S2 c. Thus,

a (S2 ◦ S1) c.

For every c ∈ C, we have

(fS1 ∗ fS2)(c) =
∨
{fS1fS2(c

′) | c′ ≺ c}

=
∨
{a ∈ A | ∃c′ ∈ C : c′ ≺ c and a ≤ fS1

fS2
(c′)}

=
∨
{a ∈ A | a (S2 ◦ S1) c} (by Claim 6.16)

= fS2◦S1(c).

17



This proves fS2◦S1
= fS1

∗ fS2
.

Let (A,≺) be a de Vries algebra. Since for every a ∈ A, we have a =
∨
{b ∈ A | b ≺ a}, the identity on

(A,≺) in DeVF is mapped to the identity on (A,≺) in DeV.

Lemma 6.17. The assignment in Definition 6.13(2) is a well-defined contravariant functor from DeV to

DeVF.

Proof. Let f : A → B be a de Vries morphism. We show that Sf : B → A is a morphism in DeVF. It is

straightforward to see that Sf is a subordination. We only verify (S2). Suppose that b1, b2 Sf a. Then there

exist a1, a2 ≺ a such that b1 ≤ f(a1) and b2 ≤ f(a2). Therefore, (a1 ∨ a2) ≺ a and b1 ∨ b2 ≤ f(a1)∨ f(a2) ≤
f(a1 ∨ a2) because f is order-preserving. Thus, (b1 ∨ b2) Sf a. We next show that Sf is compatible. For

this we need to show that Sf ◦ ≺ = Sf = ≺ ◦ Sf . To see that Sf ⊆ Sf ◦ ≺, let b Sf a. Then there is

a′ ∈ A such that a′ ≺ a and b ≤ f(a′). By (S7), there is a′′ ∈ A such that a′ ≺ a′′ ≺ a. Therefore,

b ≤ f(a′) ≺ f(a′′), so f(a′′) Sf a, and hence Sf ⊆ Sf ◦≺. The other inclusions are proved similarly. Finally,

we show that Sf satisfies the two conditions of Lemma 6.5. Condition (1) is immediate from the definition

of Sf and the fact that f(0) = 0. For (2), let a1 ≺ a2. By (S7), there is a ∈ A such that a1 ≺ a ≺ a2. By

(M3), ¬f(¬a1) ≺ f(a). Set b = f(a). It is left to show that ¬b Sf ¬a1 and b Sf a2. The latter is obvious

because a ≺ a2 and b = f(a). We prove the former. By (S7), there is c ∈ A such that a1 ≺ c ≺ a. Then

¬b = ¬f(a) ≺ f(¬c) by (M3) and (S6), and hence ¬b ≤ f(¬c) by (S5). Moreover, ¬c ≺ ¬a1 by (S6). Thus,

¬b Sf ¬a1. This proves that Sf is a morphism in DeVF.

Let f : A → B and g : B → C be de Vries morphisms. We prove that Sg∗f = Sf ◦ Sg. To see that

Sf ◦ Sg ⊆ Sg∗f , let a ∈ A and c ∈ C be such that c (Sf ◦ Sg) a. Then there is b ∈ B such that c Sg b Sf a.

Since c Sg b, it follows from the definition of Sg that there is b′ ∈ B such that b′ ≺ b and c ≤ g(b′). Also,

since b Sf a, there is a′ ∈ A such that a′ ≺ a and b ≤ f(a′). By (S7), there is a′′ ∈ A such that a′ ≺ a′′ ≺ a.

Therefore, c ≤ g(b′) ≤ g(b) ≤ gf(a′) ≤ (g ∗ f)(a′′). This proves c Sg∗f a. To see that Sg∗f ⊆ Sf ◦ Sg, let

a ∈ A and c ∈ C be such that c Sg∗f a. Then there is a′ ∈ A such that a′ ≺ a and c ≤ (g ∗ f)(a′) ≤ gf(a′).

By (S7), there is a′′ ∈ A such that a′ ≺ a′′ ≺ a. Therefore, f(a′) ≺ f(a′′), and so c Sg f(a′′) Sf a. Thus,

c (Sf ◦ Sg) a.

Let (A,≺) be a de Vries algebra. If f is the identity on (A,≺) in DeV, then Sf = ≺, and hence it is the

identity on (A,≺) in DeVF.

Theorem 6.18. The contravariant functors described in Definition 6.13 establish a dual isomorphism be-

tween DeVF and DeV.

Proof. It is sufficient to show that for each morphism S : A → B in DeVF we have SfS = S, and that for

each morphism f : A→ B in DeV we have fSf
= f .

Let S : A → B be a morphism in DeVF. Suppose a ∈ A, b ∈ B, and a SfS b. Then there is b′ ∈ B such

that b′ ≺ b and a ≤ fS(b
′). By Lemma 6.14, a ≤ fS(b

′) S b, so a S b. This proves SfS ⊆ S. For the other

inclusion, suppose a ∈ A, b ∈ B, and a S b. Since S is compatible, there is b′ ∈ B such that a S b′ ≺ b.

We have a ≤
∨
{c ∈ A | c S b′} = fS(b

′). Therefore, the element b′ witnesses that we have a SfS b. Thus,

S ⊆ SfS , and hence SfS = S.

Let f : A → B be a de Vries morphism. For a ∈ A we have fSf
(a) =

∨
{b ∈ B | b Sf a}. Also,

f(a) =
∨
{f(a′) | a′ ≺ a} by (M4). If a′ ≺ a, then f(a′) ≺ f(a), so f(a′) Sf a. Therefore, f(a′) is one of the

b ∈ B such that b Sf a, and hence f(a) ≤ fSf
(a). On the other hand, if b Sf a, then there is a′ ∈ A such

that a′ ≺ a and b ≤ f(a′). Therefore, b ≤ f(a′) ≺ f(a), and so fSf
(a) ≤ f(a). Thus, fSf

(a) = f(a), and

hence fSf
= f .

Remark 6.19. Combining Theorems 6.9 and 6.18 yields de Vries duality. Consequently, all the categories

that appear in Theorem 6.9 are dually equivalent to DeV.
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