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Abstract:

The present research aims to evaluate the performance of an optical pre-
prototype (TRL3) based on LED technology (light emitting diode, 450 - 
860 nm) to quantify table tomatoes’ quality features in a rapid and non-
destructive way (Solanum lycopersicum L., Marinda F1). A total of 200 
samples were analysed. Performances related to the pure near-infrared 
(NIR, 960 - 1650 nm) and visible/near-infrared (VIS/NIR, 400 - 1000 
nm) commercial spectrophotometers to estimate the main tomato 
quality parameters, i.e. moisture content (MC) and total soluble solids 
(TSS), were calculated by using PLS regression method. Since no 
substantial differences were highlighted between the two commercial 
devices, to reduce the complexity keeping the performance of the model 
built using the whole spectra (1647 variables for VIS/NIR), a cost-
effective pre-prototype was designed and built by using 12 bands in the 
VIS/NIR optical range. 
The pre-prototype shows slightly lower performance, displaying in 
prediction a RMSEP equal to 2% and 1.45 °Brix for MC and TSS 
respectively, respect to an RMSEP equal to 1% and 1.19 °Brix for 
VIS/SW-NIR device (using the entire spectrum). Moreover, no significant 
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differences at 95% were highlighted by using Passing-Bablok regression. 
In conclusion, the pre-prototype performance can be considered enough 
accurate to allow an initial field screening of the trend of the analysed 
parameters (MC and TSS) using a new generation of simplified optical 
sensors.

 

Page 1 of 20

https://mc.manuscriptcentral.com/jnirs

Journal of Near Infrared Spectroscopy

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

1 Title:

2 Test of a LED fully integrated pre-prototype for rapid evaluation of table tomato 

3 (Solanum lycopersicum L., Marinda F1) quality 

4 Short title:

5 Test of a simply optical pre-prototype to evaluate tomato quality

6

7 Authors:

8 A. Tugnolo, A. Pampuri, V. Giovenzana*, A. Casson, R. Guidetti & R. Beghi

9

10 Department of Agricultural and Environmental Sciences (DiSAA), Università degli Studi di Milano, 

11 via Celoria 2, 20133 Milano, Italy

12

13 * valentina.giovenzana@unimi.it

14

15

16 Abstract 

17 The present research aims to evaluate the performance of an optical pre-prototype (TRL3) based 

18 on LED technology (light emitting diode, 450 - 860 nm) to quantify table tomatoes’ quality features 

19 in a rapid and non-destructive way (Solanum lycopersicum L., Marinda F1). A total of 200 samples 

20 were analysed. Performances related to the pure near-infrared (NIR, 960 - 1650 nm) and 

21 visible/near-infrared (VIS/NIR, 400 - 1000 nm) commercial spectrophotometers to estimate the 

22 main tomato quality parameters, i.e. moisture content (MC) and total soluble solids (TSS), were 

23 calculated by using PLS regression method. Since no substantial differences were highlighted 

24 between the two commercial devices, to reduce the complexity keeping the performance of the 

25 model built using the whole spectra (1647 variables for VIS/NIR), a cost-effective pre-prototype 

26 was designed and built by using 12 bands in the VIS/NIR optical range.

27 The pre-prototype shows slightly lower performance, displaying in prediction a RMSEP equal to 

28 2% and 1.45 °Brix for MC and TSS respectively, respect to an RMSEP equal to 1% and 1.19 °Brix for 

29 VIS/SW-NIR device (using the entire spectrum). Moreover, no significant differences at 95% were 

30 highlighted by using Passing-Bablok regression. In conclusion, the pre-prototype performance can 

31 be considered enough accurate to allow an initial field screening of the trend of the analysed 

32 parameters (MC and TSS) using a new generation of simplified optical sensors.
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33

34 Keywords: simplified optical device, ripening, VIS/NIR and NIR spectroscopy, instrumental 

35 comparison, chemometrics

36

37 INTRODUCTION

38 Tomato (Solanum lycopersicum) is the second most-produced and consumed vegetable in the 

39 world and its global production in 2019 reached almost 197 million tons (1).

40 Concerning tomato production, in 2016 Italy has been the third larger producer (5.2 million tons 

41 of processed tomato) in the world behind California and China. Half of the Italian tomatoes are 

42 grown and processed in Northern Italy, in particular in Lombardy, Veneto, Piedmont and Emilia-

43 Romagna (2).

44 Due to the great importance of this cultivation, it is essential to identify innovative solutions that 

45 maximize crop production and at the same time reduce waste. Technology-based solutions may 

46 be confounded by the large number of species and the complexity of plant-environment 

47 interactions within crop production systems. Therefore, the development of new approaches for 

48 improving understanding of crop biology to maximize production, minimize losses and to improve 

49 pre and post-harvest production and utilization is a crucial aspect (3).

50 Among the new approaches, it is well known that in recent years research has been focusing on 

51 non-destructive spectroscopic methods capable of exploring many samples and providing a 

52 complete and rapid overview of the maturation of fruit and vegetable products. Furthermore, 

53 spectroscopy, combined with multivariate management of the data, is a powerful analytical 

54 method that doesn't require any treatment to the sample and can be integrated on existing 

55 machinery for an increasingly automated quality control. (4).

56 However, most of the studies reported on tomatoes involve the use of expensive benchtop 

57 instruments that cover the entire spectral range of visible and near infrared (between 400 nm and 

58 2500 nm approximately). Some recent studies have reported the possibility of using NIR 

59 spectroscopy for the determination of total soluble solids (TSS), titratable acidity and carotenoid 

60 compounds in salad tomatoes (5–7), while hyperspectral imaging has been applied for the 

61 estimation of moisture content, pH and TSS (8). A portable spectrometer was used by Sheng et al. 

62 (2019) (9) to predict soluble solids and lycopene in cherry tomatoes at different temperatures and 

63 by Arruda de Brito et al. (2021) (10) to develop models for intact tomatoes’ TSS.

64 Over the last three decades, researchers have looked into the possibility of developing simplified 

65 optical devices for specific applications (11, 12), and focusing on the latest years the research has 
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66 been moving towards portable, inexpensive, easy and quick to use instruments that do not need 

67 the entire spectral range to provide useful information (13). 

68 Internet of things, big data and artificial intelligence and their disruptive role in shaping the future 

69 of agri-food systems (e.g. greenhouse monitoring, intelligent farm machines, drone-based crop 

70 imaging, food quality assessment using spectral methods), are making an impact only in very 

71 recent times, thanks to the advent of industry 4.0. In the IoT framework, proximal-remote sensors 

72 gather information generated by machines to increase efficiency, promote better decision-making 

73 and build competitive advantages, regardless of industry or company size (14).

74 Miniaturized sensors enabled a new and previously unattainable spectrum of applications of NIR 

75 spectroscopy, agriculture and the food sector, materials science, industry and environmental 

76 studies, having an impact on operational characteristics, marking a significant turning point in the 

77 evolution of the practical applications of NIR spectroscopy (15). In contrast to a mature benchtop 

78 spectrometer sector, the handheld devices are much less uniform and incorporate various novel 

79 technologies resulting in different performance, with narrower spectral regions, lower resolution, 

80 leading applicability limits and lower analytical performance (16).

81 In the agri-food sector there is still a need to develop customized cost-effective solutions for 

82 specific applications and the set of characteristics required must be merged together in devices 

83 and applications that are not actually already available. Also considering complementary but 

84 fundamental aspects as (i) the development of specific multivariate calibrations already on board 

85 the devices, and (ii) the optimization of the interconnection of the devices, e.g. cloud data storage 

86 and cloud computing.

87 The maturity of the tomato, in particular for small companies, is normally evaluated basing on the 

88 experience and on the color of the surface perceived by the human eye, in this way the fruits could 

89 undergo overripe. On the contrary, if the tomatoes are picked too early, they will not reach the 

90 desired ripeness, also causing an economic and technological (in the case of tomatoes intended 

91 for processing) damage.

92 The case of tomatoes is even more particular than other fruits because there are varieties that 

93 reach maturity in the absence of the color change towards red: detection of mature-green and 

94 immature-green tomatoes has been a challenge for researchers since there is no difference in 

95 terms of external appearance of the fruit (17).

96 The accurate and objective judgment of the maturity and harvest time is a critical prerequisite to 

97 maintain the quality of tomatoes. Additionally, supply chain operators may also need tomatoes 
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98 with different maturities to meet various commercial purposes, so the harvest standard of 

99 tomatoes is various.

100 However, in terms of the producers, it may not be able to accurately determine the optimum 

101 harvest time due to the large subjective error. The quality grading for the picked tomatoes through 

102 the use of innovative optical sensors could be an effective method to improve the agricultural 

103 output value and reduce the economic loss (18).

104 Therefore, the aim of this work was to test a miniaturized LED fully integrated pre-prototype for 

105 rapid evaluation of MC and TSS of table tomatoes (Solanum lycopersicum L., Marinda F1) in a rapid 

106 and non-destructive way. Moreover, a statistical comparison with a commercial portable VIS/NIR 

107 device was carried out to verify the effectiveness and reliability of this new generation of 

108 simplified optical sensors.

109

110
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111 MATERIALS AND METHODS

112

113 2. Materials and methods

114 2.1 Sampling

115 The experimentation was performed on table tomatoes Solanum lycopersicum L., Marinda F1, a 

116 variety easily available on the market at different stages of maturation. In order to represent the 

117 ripening process, in May 2019, a total of 200 tomato samples were bought and analyzed over 3 

118 weeks. Three arbitrary ripening classes (figure 1) were created according with the skin color: 

119 totally green (extremely unripe, class t1, 50 samples), green/yellow/orange/red surface (medium 

120 ripe, class t2, 100 samples due to the tomatoes variability), totally red surface (ripe, class t3, 50 

121 samples).

122

123

124 Figure 1: Ripening tomatoes classes (from left, class t1, class t2, and class t3)

125 Samples were processed in a laboratory within a few hours of purchase to acquire optical spectra 

126 and to perform moisture content MC (%) and TSS (°Brix) used as wet-chem reference parameters.

127

128 2.2 Optical analysis

129 Optical analyses were performed (before the wet-chem analyses) on tomato without any sample 

130 preparation. Each tomato sample was analyzed using two commercial portable 

131 spectrophotometers: NIR (Aurora NIR, Grainit, Italy) and a portable VIS/NIR (Jaz Modular Optical 

132 Sensing Suite, OceanOptics, Inc., Dunedin, FL, USA). The NIR spectrophotometer is equipped with 

133 a halogen light source, an InGaAs sensor in the NIR module (960 - 1650 nm, spectral resolution 10 

134 nm) and it is designed for diffuse reflectance acquisition with automatic internal calibration. The 
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135 VIS/NIR spectrophotometer (400 - 1000 nm) works using a bifurcated fiber that conveys the light 

136 from the halogen lamp to the sample and back to the detector. The tip of the fiber was equipped 

137 with a cap that standardized the analysis distance (about 2 mm) and reduced the environmental 

138 light interference. The background consists of white (100% of light reflected) and black (0% of light 

139 reflected) standards. An integration time of 50 ms was set in order to collect the best spectral 

140 dynamics using a light intensity of 3000 lumens. Spectral measurements were taken from three 

141 points on each sample, apical, central, and basal area, and the values were averaged to obtain a 

142 mean optical spectrum for each sample.

143 Then, based on the results, a LED fully integrated stand-alone pre-prototype (technology readiness 

144 level estimated equal to 3, figure 2), designed by the Department of Agriculture and 

145 Environmental Sciences of the Università degli Studi di Milano, were tested on tomatoes. 

146

147  

148

149 Figure 2. LED fully integrated stand-alone pre-prototype (TRL 3) managed by using a portable computer

150 The proposed prototype is composed by tuned photodiode arrays, interference filters, LEDs and 

151 optics. In detail, the device incorporates two sensitive spectrometers (6 optical channels each one, 

152 dimensions indicated in Figure 2) available in the form of breakout boards (AMS, models AS7262 

153 visible and AS7263 NIR, Premstaetten, Austria-Europe), which include sensors and auxiliary 
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154 electronic components for spectral measurement in the visible (VIS) and Short Wave Near-infrared 

155 (SW-NIR) region, have been used (Fletcher & Fisher, 2018). The sensors are 4.5 × 4.4 mm in size 

156 and are classified as ultra-low power consumption sensors. They have a 16-bit radiometric 

157 resolution and 12 independent on-device optical filters from 450 nm to 860 nm as summarized in 

158 table 1. The prototype enables chip-scale spectral analysis by integrating Gaussian filters into 

159 standard complementary metal-oxide-semiconductor (CMOS) silicon via nano-optic deposited 

160 interference filter technology. The six-channel VIS sensor (VIS module) is sensitive to the 400 - 700 

161 nm spectral range with center wavelengths of 450, 500, 550, 570, 600 and 650 nm (interesting to 

162 get also color information, a crucial feature to get indications regarding the ripening progress). 

163 While, the six-channel SW-NIR sensor (NIR module) is sensitive to the 600 - 900 nm spectral range 

164 with center wavelengths at 610, 680, 730, 760, 810 and 860 nm. Each module is composed of 6 

165 independent optical filters whose spectral bandpass is defined with full-width half-max (FWHM) 

166 of 40 nm for the VIS module and 20 nm for NIR module.

167 The sensors can read the intensity of light at the 12 wavelengths (6 for each module) and give 

168 digital output (readout) corresponding to the intensity of light falling on it. The light source is a 

169 white super bright LED illumination (5700K) with an irradiance of ~600μW/cm2. The light detection 

170 position is in contact with the fruits, while the LED emission position is on the side at about 2 mm 

171 from the surface of the tomato.

172 The pre-prototype has been configurated using Arduino to perform an average of 10 scans for 

173 each acquisition point in order to reduce the experimental noise.

174

175 Table 1. Sensor's wavelengths.

  Wavelengths (nm) 
Sensor 1 450 500 550 570 600 650 
Sensor 2 610 680 730 760 810 860 

176  

177

178 2.3 Chemical analyses

179 After optical measures, the wet-chemical analyses (reference parameters) were also performed 

180 on the same samples. Each tomato was centrifugated and the juice analyzed for a representative 

181 measure of whole tomato. 

182 The analytical methods to determine the moisture content (MC) recommend a temperature of 

183 103°C for 24 h, until constant weight of product (19). The samples were weighed with a balance 

184 (LAZ 30P, Sartorius Lab Holding GmbH, Goettingen, Germany) and dried with a laboratory oven 
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185 (UNB400, Memmert GmbH & Co, Schwabach, Germany) in order to determine the dry weight of 

186 samples collected. Once reached room temperature, samples are re-weighed (dry weight) for the 

187 MC determination (Eq. 1):

188 Eq. 1𝑀𝐶 (%) =
(𝑚𝑔𝑤 ― 𝑚𝑑𝑤) ∗ 100

𝑚𝑔𝑤

189 where: 

190 MC (%) = percentage of moisture content.

191 mgw = gross weight.

192 mdw = dry weight.

193 Instead, TSS content was evaluated by using a digital refractometer (PAL-1 ATAGO, Tokyo, Japan, 

194 accuracy refractive index ±0.2 °Brix) measuring the refractive index of the juice (°Brix). 

195

196 2.4 Data processing

197 The entire data analysis was performed in the Matlab® environment, version 2019b (The 

198 MathWorks, Inc., Natick, MA, USA) using PLS-Toolbox package (Eigenvector Research, Inc. 

199 Manson, Washington) and Passing and Bablok regression by Andrea Padoan (Jan 16, 2010).

200 The reference parameters (MC and TSS), representative of tomato ripening process, and the 

201 optical diffuse reflectance data obtained from NIR and VIS/NIR commercial spectrophotometers 

202 were analyzed in a multivariate way to (i) qualitatively understand the relationships among all 

203 variables and among variables and samples, i.e. principal component analysis (PCA), and to 

204 highlight outliers based on a detection procedure applied on PCA scores using the ‘Hotelling T2 

205 computation’ function (𝛼 value was set to 0.05), (ii) quantitative predict the reference parameters, 

206 i.e. partial least square regression (PLS). The logic scheme of data processing is presented in figure 

207 3. 

208 Moreover, in order to reduce the instrumentation complexity keeping the performance of the 

209 model built using the whole spectra (1647 variables for VIS/NIR), a cost-effective pre-prototype, 

210 characterize from 12 bands (table 1) was tested and the same data processing approach (figure 3) 

211 carried out. Afterwards, for a better understanding of the practical applicability of the proposed 

212 LED technology for the quality parameters prediction (MC and TSS), the Passing-Bablok regression 

213 method was applied on the PLS prediction outcome deriving from VIS/NIR instrumentation and 

214 pre-prototype device.

215
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216
217 Figure 3. The logic scheme of data processing (green), methods applying (blue) to obtain results (red)

218

219 Before applying multivariate analysis, the optical data were pre-treated to reduce instrumental 

220 noise and the scattering effects (due to the inhomogeneous physical structure of the tomato’s 

221 samples, size and shape, and the various positions and distances where the sample can interact 

222 with the sensor).

223 On NIR spectra, second derivative (Der 2) and mean centering were applied. Der 2 performed by 

224 using Savitzky-Golay algorithm (filter width = 15, polynomial order = 2) which enhances the 

225 separation of overlapping peaks allowing more specific identification of small and nearby lying 

226 absorption peaks which are not resolved in the original spectrum, thereby offering means to 

227 increase the selectivity of absorption peaks for certain molecules of matrix. Der 2 was applied 

228 paying attention to avoid suppression of broad bands and enhancement of noise. Mean centering 

229 ensures that all results will be interpretable in terms of variation around the mean. For VIS/NIR 

230 optical data a correction of the baseline vertical shifts (offsets) and of the global intensity effects 

231 (typically arising from unwanted light scattering) was performed applying the Standard Normal 

232 Variate (SNV) transform and mean centering. 

233 The data obtained from the two sensors of pre-prototype were processed and analyzed as data 

234 obtained from one single pre-prototype in order to take advantage of all wavelengths considered. 

235 A data scaling phase was applied to the readouts of pre-prototype, in order to make the different 

236 variables comparable in importance before applying scale-dependent multivariate analysis 

237 methods (such as PCA or PLS). For this purpose, the unit variance scaling (or autoscaling), variables 

238 are divided by their respective standard deviations, was applied. The method is commonly used 
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239 to data sets containing variables with different units and scales in order to impose equal weights 

240 in the analysis (20,21).

241 Then, the reference parameters were used for the calculation of PLS predictive models. Kennard–

242 Stone algorithm (22) was applied to select a representative subset to ensure training samples 

243 spread evenly throughout the sample space. In this paper a 200 samples set was partitioned into 

244 training (60% for calibration set, 120 samples) and test (40% for prediction set, 80 samples) sets.

245 To identify the most suitable pre-treatments and the number of latent variables (LV), the models 

246 were evaluated using an internal validation (Cross-validation) through the Venetian Blinds splitting 

247 method with five cancellation groups.

248 To measure the PLS models accuracy, the statistical parameters used were the RMSE (root mean 

249 square error, RMSEC, in calibration and RMSEP in prediction), as well as latent variables, bias, and 

250 R2 (determination coefficient).

251

252 2.5 Methods comparison 

253 In order to compare the practical applicability of the pre-prototype device to predict quality 

254 parameters correlated to the tomato ripening, the Passing-Bablok regression (23) method was 

255 applied on the MC and TSS values obtained by pre-prototype and the commercial VIS/NIR 

256 spectrometer on the same dataset, i.e. the prediction set. Since the Passing-Bablok regression 

257 method is a symmetrical non-parametric technique, which can build regression models also when 

258 both variables (independent and dependent) have a non-negligible experimental error, the 

259 regression method results particularly suitable for method comparison. For statistically evaluating 

260 the similarity/diversity between these two independent estimations, slope and intercept of the 

261 fitted line were calculated, and a significance test was conducted. The null hypothesis (H0) was 

262 verified when the slope was not significantly different from 1 and, simultaneously, the intercept 

263 was not significantly different from 0, meaning that there are no significant differences between 

264 the two methods, at a 95% confidence level (24). Hence, the Passing-Bablok regression allows to 

265 evaluate if the performance deriving from pre-prototype are equally comparable to performance 

266 from commercial VIS/NIR instrumentation for the quantification of tomato quality parameters.
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267 RESULTS AND DISCUSSIONS

268 Reference data analysis

269 The boxplots in figure 4 provide a visualization of summary statistics for MC (figure 4a) and TSS 

270 (figure 4b) obtained using the destructive reference analysis on the tomato’s samples at each 

271 sampling time. The mean, median, the interquartile range, and the data range were represented 

272 into the graphs. Moreover, the potential outliers (observations beyond the data range whisker 

273 length) were also reported. By default, a potential outlier is a value that is more than 1.5 times 

274 the interquartile range away from the bottom or top of the box. 

275 Firstly, no apparent differences were highlighted for MC which ranged about 83% to 93% during 

276 the three sampling times (median of 90% at t1, 87% at t2 and 88% at t3).

277 Instead, concerning TSS, an increasing trend from a median of 6.7 to 10 °Brix was observed along 

278 sampling, representing the ripening process. Moreover, a very high variance, strictly related to the 

279 higher number of samples (100 samples) and to the different features of the medium ripe samples, 

280 was captured for the samples analysed at t2 (from 4.8 to 14.8 °Brix).

281 Finally, three and two potential outliers were identified in the reference data for MC and TSS, 

282 respectively.

283
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284 Figure 4. Descriptive statistics of the reference analysis for MC (a) and TSS (b) obtained from the 

285 tomato’s samples. 

286

287 Spectra exploration and regression

288 Figure 5 shows raw and pre-treated spectra obtained from the two commercial VIS/NIR (450-950 

289 nm, Figure 5a) and NIR (950-1650 nm, Figure 5c) spectrophotometers. A visual analysis of the 

290 spectra highlights the main absorption bands related to the main constituents in tomato’s 

291 samples. The visible range exhibits clear differences between the different tomato maturity 

292 groups around 550 nm and 675 nm, which are mainly related to the variation of anthocyanin and 
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293 chlorophylls. As the maturity of tomato advances from green to red, its chlorophyll content 

294 decreases, while anthocyanin increase (13). Moreover, in the short-wave near-infrared (SWNIR), 

295 an absorption band at 760 nm (caused by the third overtone of OH stretching) is noticeable (23). 

296 While, in the pure NIR region (from the NIR spectrophotometer, figure 5c), the main absorption 

297 bands are related to the stretching of the CO bonds of aliphatic esters, to the second overtone of 

298 CH stretching vibrations of alkyl groups and alkenes (1212 and 1245 nm) and the water absorption 

299 related to the OH stretch first overtone around 1440 nm (25–27).

300 However, due to the nature of the samples and to the use of portable devices, a scattering effect 

301 was highlighted in the raw spectra. Therefore, two different pre-treatments (SNV for VIS/NIR 

302 spectra and second derivative for the NIR spectra) were applied in order to ensure a correction of 

303 the global intensity effect – scattering at the sample surface (Figure 5b) and the baseline drift, 

304 typically, ascribable to the use of portable devices (Figure 5d). 

305
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306 Figure 5. Raw (5a, 5c) and pre-treated spectra (SNV for VIS/NIR spectra and second derivative for 

307 NIR spectra) obtained from intact tomato’s samples.

308 PCA was performed on both types of optical data (data not shown) allowing to detect one and two 

309 possible outliers in the VIS/NIR and NIR spectra, respectively. Afterwards, regression models (by 
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310 means of the PLS method) were developed for the prediction of MC and TSS starting from the data 

311 coming from the two different type of portable spectrophotometers. The parameters used for 

312 evaluating the model goodness are presented in Table 2. Overall, regarding R2 and RMSEC and 

313 RMSEP, relative slightly low differences between the performance of the NIR models in calibration 

314 (R2
Cal = 0.82 and RMSEC = 0.01 for MC and R2

Cal = 0.84 and RMSEC = 0.83 °Brix for TSS) and in 

315 prediction (R2
Pred = 0.75 and RMSEP = 0.01 for MC and R2

Pred =0.75 and RMSEP = 1.05 °Brix for TSS 

316 ) were obtained showing the good capability of the NIR models to accurately predict the MC and 

317 TSS in tomatoes samples. Concerning the VIS/NIR models a lower performance was obtained for 

318 the optical estimation of MC and TSS in calibration (R2
Cal = 0.67 and RMSEC = 0.01 for MC and R2

Cal 

319 = 0.72 and RMSEC = 1.10 °Brix for TSS) and in prediction (R2
Pred = 0.53 and RMSEP = 0.01 for MC 

320 and R2
Pred = 0.65 and RMSEP = 1.19 °Brix for TSS). 

321 However, considering the very low error difference obtained from the models built using NIR and 

322 VIS/NIR (from the two different devices) optical data, the use of fewer LVs and less invasive pre-

323 treatments, the prototype has been developed using wavelengths coming from the VIS/NIR optical 

324 range (from 450 to 1000 nm). Moreover, this decision was also taken considering the capability of 

325 the VIS/NIR optical detectors to be less expensive in order to develop cost-effective optical sensors 

326 able to get qualitative information from tomato’s samples.

327

328 Table 2. Figures of merit of the NIR and VIS/NIR PLS models obtained from the two commercial 

329 spectrophotometers for the estimation of MC and TSS.

    Calibration Prediction

Optical range
Qualitative 

parameter

N° of Cal 

samples

N° of Pred 

samples
LVs Pre-pro RCal

2 RMSEC BiasCal RPred
2 RMSEP BiasPred

MC (%) 116 6 0.82 1 -2.2 e-16 0.75 1 6.2 e-4
NIR

 (950-1650 nm) TSS 

(°Brix)
117

80

10

 Der 2 + 

Mean 

centering 0.84 0.83 1.1 e-14 0.75 1.05 -0.2

MC (%) 114 3 0.67 1 1.1 e-16 0.53 1 2.2 e-3
VIS/NIR

 (450-950 nm) TSS 

(°Brix)
115

80

3

 

SNV + 

Mean 

centering
0.72 1.10 -1.7 e-15 0.65 1.19 -0.24

330 Pre-pro=pre-processing, LVs = latent variables, Cal = calibration, Pred = prediction

331

332 Sensor readouts exploration and regression
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333 Figure 6 shows the pre-prototype readouts (12 wavelengths, table 1). The data have been handled 

334 by merging both sensors in one integrated pre-prototype. However, even though the data do not 

335 come from a single sensor, the final reflectance output provide a complete profile which is highly 

336 comparable in terms of trend and reflectance of the tomato’s samples acquired with the VIS/NIR 

337 commercial spectrophotometer.

338
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340 Figure 6. Sensors’ readouts obtained from intact tomato’s samples.

341

342 Table 3 shows the figure of merit of the PLS models obtained by the integrated prototype system 

343 for the evaluation of MC and TSS. Overall, a pour coefficient of determination was obtained for 

344 the prediction of both qualitative parameters (RPred
2 = 0.52) using 4 latent variables. However, a 

345 slightly higher RMSEP was obtained respect to the model developed using the VIS/NIR 

346 spectrophotometer (RMSEP = 0.02 for MC and RMSEP = 1.45 for TSS). These results suggest the 

347 capability of the new integrated prototype to be able to obtain better results using more tomato’s 

348 samples in order to boost the predictive performance of the PLS model.
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349 Table 3. Figures of merit of the VIS/NIR PLS-models obtained from the sensors’ readouts for the 

350 estimation of MC (%) and TSS (°Brix).

    Calibration Prediction

Optical range
Qualitative 

parameter

N° of Cal 

samples

N° of Pred 

samples
LVs Pre-pro R2 RMSEC Bias R2 RMSEP Bias

MC (%) 0.60 2 -2.2 e-16 0.52 2 -4.5 e-05
VIS/NIR 

(12 wavelengths)
TSS (°Brix)

113 74 4  Autoscaling

0.63 1.27 1.7 e-15 0.52 1.45 0.02

351 Pre-pro=pre-processing, LVs = latent variables, Cal = calibration, Pred = prediction

352

353 Methods comparison

354 To evaluate whether significant differences of the performance between the VIS/NIR commercial 

355 spectrophotometer and the VIS/NIR prototype in determining the MC and TSS exist, the Passing–

356 Bablok regression was performed on the same data used as external validation of the PLS models 

357 built using the commercial spectrophotometer and the prototype. Applying a joint test on slopes 

358 and intercepts, the devices were compared in pairs analysing the differences between the 

359 prediction values for MC and TSS obtained by the models developed using the two instruments. 

360 No statistical differences between the instruments were highlighted from the Passing–Bablok 

361 tests, at a confidence level of 95%. Therefore, the null hypothesis (slope not significantly different 

362 from 1 and intercept not significantly different from 0) was accepted for all the paired 

363 comparisons: MC-sensor prediction vs. MC-commercial VIS/NIR spectrophotometer prediction 

364 and TSS- sensor prediction vs. TSS-commercial VIS/NIR spectrophotometer prediction. In figure 7, 

365 the Passing–Bablok regression lines (solid blue lines) and the bisector of the quadrants (ideal lines) 

366 represented as dotted red lines were reported for comparison. 

367

Page 16 of 20

https://mc.manuscriptcentral.com/jnirs

Journal of Near Infrared Spectroscopy

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

368   

369
84 85 86 87 88 89 90 91 92 93

MC-sensor (%)

84

85

86

87

88

89

90

91

92

93

M
C

-c
om

m
er

ci
al

 v
is

/N
IR

 sp
et

ro
ph

ot
om

et
er

 (%
)

Passing-Bablock Regression Fit (95%)

a
5 6 7 8 9 10 11

TSS-sensor (°Brix)

5

6

7

8

9

10

11

TS
S-

co
m

m
er

ci
al

 v
is

/N
IR

 sp
et

ro
ph

ot
om

et
er

 (°
B

rix
)

Passing-Bablock Regression Fit (95%)

b

370 Figure 7. Passing–Bablok regression outcomes: a) comparison between sensor and commercial 

371 VIS/NIR spectrophotometer for MC prediction; b) comparison between sensor and commercial 

372 VIS/NIR spectrophotometer for TSS prediction

373

374 CONCLUSIONS 

375 The interest in small-sized, cost-effective and simplified portable devices to quantify quality 

376 parameters in a rapid and non-destructive way in pre and post-harvest steps of agri-food chain is 

377 desirable. Moreover, the commercial availability of optical components, highly miniaturized, 

378 extremely low-cost and robust, given the opportunity to develop an optical device based on LED 

379 technology (light emitting diode), which will be tested in this work to monitor the ripening of table 

380 tomatoes (Solanum lycopersicum L., Marinda F1).

381 In this work, a pre-prototype equipped by two visible and SW-NIR sensors for spectral 

382 acquisition based on LED technology was tested for rapid estimation of tomato’s quality 

383 parameters. The overall results of the PLS models from the pre-prototype were encouraging 

384 considering the initial development stage of the device. In these terms, a larger dataset in order 

385 to improve the robustness of the prediction models is needed. The instrument should be able to 

386 acquire and predict moisture content and total soluble solids related to tomato. The integration 

387 of simple processing algorithms derived from the PLS models in the microcontroller software 

388 would easy calculate and visualize the real-time values of the predicted parameters on the device 

389 dashboard. In the envisaged future updated version of the prototype, it is planned that the shape 

390 of the device will be able to fully embrace the sample (in this case a tomato, but it can also be 

391 used on other vegetable matrices) to minimize and keep under control the incidence of sunlight 

392 for in field use. Moreover, the optical core of the device is a commercial one, as stated, and it is 

393 equipped with a standard white LED that showed little power at longer wavelengths. The next 
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394 evolutional step is to reinforce the lighting system by using one or two additional LEDs with 

395 emission peaks around 750 nm and 840 nm. 

396 The potential device deriving from the pre-prototype analysed in this work could result as 

397 user-friendly devices to support small-scale growers in determining the optimal harvest date 

398 according to tomato ripening degree or applied in post-harvest to classify the fruits based on 

399 quality parameters objectively measured. Moreover, the development of interconnected optical 

400 systems (creation of remote storage of optical databases) would also allow the updating of the 

401 prediction performance of the mathematical models integrated in the prototype for the 

402 parameters control. Finally, thanks to the low cost of the components, comparable to consumer 

403 electronics, the pre-prototype could be also hypothesized for applications requiring a high number 

404 of distributed sensors (sensors network approach), for example, to control agri-food products 

405 directly in the field in defined sentinel parcels, or along the supply chains where extreme 

406 miniaturization, simplification and low cost can be crucial aspects. 

407

408 Acknowledgements

409 The authors wish to thank “Officina delle Soluzioni” (Magliano Alfieri, Cuneo, Italy) for the 

410 technical support for the prototype design.

411

412 Literature cited

413 1. FAO Statistical Programme of Work 2020–2021. FAO Statistical Programme of Work 

414 2020–2021. FAO; 2020.

415 2. Donati M, Guareschi M, Veneziani M. Organic tomatoes in Italy. In: Sustainability of 

416 European Food Quality Schemes: Multi-Performance, Structure, and Governance of PDO, 

417 PGI, and Organic Agri-Food Systems. Springer International Publishing; 2019 [cited 2021 

418 May 31]. p. 171–89. Available from: https://link.springer.com/chapter/10.1007/978-3-

419 030-27508-2_9

420 3. Skolik, P., Morais, C. L., Martin, F. L., & McAinsh, M. R. (2019). Determination of 

421 developmental and ripening stages of whole tomato fruit using portable infrared 

422 spectroscopy and Chemometrics. BMC plant biology, 19(1), 1-15.

423 4. Casson, A., Beghi, R., Giovenzana, V., Fiorindo, I., Tugnolo, A., & Guidetti, R. (2020). 

424 Environmental advantages of visible and near infrared spectroscopy for the prediction of 

425 intact olive ripeness. Biosystems Engineering, 189, 1-10.

Page 18 of 20

https://mc.manuscriptcentral.com/jnirs

Journal of Near Infrared Spectroscopy

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://link.springer.com/chapter/10.1007/978-3-030-27508-2_9
https://link.springer.com/chapter/10.1007/978-3-030-27508-2_9


For Peer Review

426 5. Acharya, U. K., Subedi, P. P., & Walsh, K. B. (2017). Robustness of tomato quality 

427 evaluation using a portable Vis-SWNIRS for dry matter and colour. International journal of 

428 analytical chemistry, 2017.

429 6. Feng, L., Zhang, M., Adhikari, B., & Guo, Z. (2019). Nondestructive detection of postharvest 

430 quality of cherry tomatoes using a portable NIR spectrometer and chemometric 

431 algorithms. Food Analytical Methods, 12(4), 914-925.

432 7. Ibáñez, G., Cebolla-Cornejo, J., Martí, R., Roselló, S., & Valcárcel, M. (2019). Non-

433 destructive determination of taste-related compounds in tomato using NIR spectra. 

434 Journal of Food Engineering, 263, 237-242.

435 8. Rahman, A., Kandpal, L. M., Lohumi, S., Kim, M. S., Lee, H., Mo, C., & Cho, B. K. (2017). 

436 Nondestructive estimation of moisture content, pH and soluble solid contents in intact 

437 tomatoes using hyperspectral imaging. Applied Sciences, 7(1), 109.

438 9. Sheng, R., Cheng, W., Li, H., Ali, S., Agyekum, A. A., & Chen, Q. (2019). Model development 

439 for soluble solids and lycopene contents of cherry tomato at different temperatures using 

440 near-infrared spectroscopy. Postharvest Biology and Technology, 156, 110952.

441 10. de Brito, A. A., Campos, F., dos Reis Nascimento, A., de Carvalho Corrêa, G., da Silva, F. A., 

442 de Almeida Teixeira, G. H., & Júnior, L. C. C. (2021). Determination of soluble solid content 

443 in market tomatoes using near-infrared spectroscopy. Food Control, 126, 108068.

444 11. Kawano, S., Watanabe, H., & Iwamoto, M. (1992). Determination of sugar content in intact 

445 peaches by near infrared spectroscopy with fiber optics in interactance mode. Journal of 

446 the Japanese Society for Horticultural Science, 61(2), 445-451.

447 12. Civelli, R., Giovenzana, V., Beghi, R., Naldi, E., Guidetti, R., & Oberti, R. (2015). A simplified, 

448 light emitting diode (LED) based, modular system to be used for the rapid evaluation of 

449 fruit and vegetable quality: Development and validation on dye solutions. Sensors, 15(9), 

450 22705-22723.

451 13. Huang, Y., Lu, R., & Chen, K. (2018). Prediction of firmness parameters of tomatoes by 

452 portable visible and near-infrared spectroscopy. Journal of Food Engineering, 222, 185-

453 198.

454 14. Misra, N. N., Dixit, Y., Al-Mallahi, A., Bhullar, M. S., Upadhyay, R., & Martynenko, A. (2020). 

455 IoT, big data and artificial intelligence in agriculture and food industry. IEEE Internet of 

456 Things Journal

Page 19 of 20

https://mc.manuscriptcentral.com/jnirs

Journal of Near Infrared Spectroscopy

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

457 15. Beć, K. B., Grabska, J., & Huck, C. W. (2021). Principles and applications of miniaturized 

458 near-infrared (NIR) spectrometers. Chemistry (Weinheim an der Bergstrasse, Germany), 

459 27(5), 1514

460 16. Huck, C. W. (2021). New Trend in Instrumentation of NIR Spectroscopy—Miniaturization. 

461 In Near-Infrared Spectroscopy (pp. 193-210). Springer, Singapore

462 17. Fatchurrahman, D., Amodio, M. L., de Chiara, M. L. V., Chaudhry, M. M. A., & Colelli, G. 

463 (2020). Early discrimination of mature-and immature-green tomatoes (Solanum 

464 lycopersicum L.) using fluorescence imaging method. Postharvest Biology and Technology, 

465 169, 111287.

466 18. Huang, Y., Dong, W., Chen, Y., Wang, X., Luo, W., Zhan, B., ... & Zhang, H. (2021). Online 

467 detection of soluble solids content and maturity of tomatoes using Vis/NIR full 

468 transmittance spectra. Chemometrics and Intelligent Laboratory Systems, 210, 104243.

469 19. ASAE Standards for Moisture Determination. Available from: 

470 https://engineering.purdue.edu/~abe305/moisture/html/page13.htm

471 20. Tugnolo, A., Beghi, R., Giovenzana, V., & Guidetti, R. (2019). Characterization of green, 

472 roasted beans, and ground coffee using near infrared spectroscopy: A comparison of two 

473 devices. Journal of Near Infrared Spectroscopy, 27(1), 93-104.

474 21. Marini, F., de Beer, D., Walters, N. A., de Villiers, A., Joubert, E., & Walczak, B. (2017). 

475 Multivariate analysis of variance of designed chromatographic data. A case study involving 

476 fermentation of rooibos tea. Journal of Chromatography A, 1489, 115-125.

477 22. Morais, C. L., Santos, M. C., Lima, K. M., & Martin, F. L. (2019). Improving data splitting for 

478 classification applications in spectrochemical analyses employing a random-mutation 

479 Kennard-Stone algorithm approach. Bioinformatics, 35(24), 5257-5263.

480 23. Passing, H., & Bablok, W. (1983). A new biometrical procedure for testing the equality of 

481 measurements from two different analytical methods. Application of linear regression 

482 procedures for method comparison studies in clinical chemistry, Part I.

483 24. Mustorgi, E., Malegori, C., Oliveri, P., Hooshyary, M., Bounneche, H., Mondello, L., ... & 

484 Casale, M. (2020). A chemometric strategy to evaluate the comparability of PLS models 

485 obtained from quartz cuvettes and disposable glass vials in the determination of extra 

486 virgin olive oil quality parameters by NIR spectroscopy. Chemometrics and Intelligent 

487 Laboratory Systems, 199, 103974.

Page 20 of 20

https://mc.manuscriptcentral.com/jnirs

Journal of Near Infrared Spectroscopy

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

488 25. Clément, A., Dorais, M., & Vernon, M. (2008). Nondestructive measurement of fresh 

489 tomato lycopene content and other physicochemical characteristics using visible− NIR 

490 spectroscopy. Journal of Agricultural and Food Chemistry, 56(21), 9813-9818.

491 26. Fernández-Espinosa, A. J. (2016). Combining PLS regression with portable NIR 

492 spectroscopy to on-line monitor quality parameters in intact olives for determining 

493 optimal harvesting time. Talanta, 148, 216-228.

494 27. Trapani, S., Migliorini, M., Cecchi, L., Giovenzana, V., Beghi, R., Canuti, V., Fia, G.,& Zanoni, 

495 B. (2017). Feasibility of filter-based NIR spectroscopy for the routine measurement of olive 

496 oil fruit ripening indices. European Journal of Lipid Science and Technology, 119(6), 

497 1600239.

498

Page 21 of 20

https://mc.manuscriptcentral.com/jnirs

Journal of Near Infrared Spectroscopy

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


