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Enzymeadaptation tohabitat thermal legacy
shapes the thermal plasticity of marine
microbiomes

Ramona Marasco 1,11, Marco Fusi 1,2,11, Cristina Coscolín 3,11, Alan Barozzi 1,
David Almendral3, Rafael Bargiela4, Christina Gohlke neé Nutschel5,
Christopher Pfleger6, Jonas Dittrich 6, Holger Gohlke5,6,7, Ruth Matesanz8,
Sergio Sanchez-Carrillo 3,9, Francesca Mapelli 10, Tatyana N. Chernikova4,
Peter N. Golyshin 4, Manuel Ferrer 3 & Daniele Daffonchio 1

Microbial communities respond to temperature with physiological adapta-
tion and compositional turnover. Whether thermal selection of enzymes
explains marine microbiome plasticity in response to temperature remains
unresolved. By quantifying the thermal behaviour of seven functionally-
independent enzyme classes (esterase, extradiol dioxygenase, phosphatase,
beta-galactosidase, nuclease, transaminase, and aldo-keto reductase) in
native proteomes of marine sediment microbiomes from the Irish Sea to the
southern Red Sea, we record a significant effect of the mean annual tem-
perature (MAT) on enzyme response in all cases. Activity and stability pro-
files of 228 esterases and 5 extradiol dioxygenases from sediment and
seawater across 70 locations worldwide validate this thermal pattern. Mod-
elling the esterase phase transition temperature as a measure of structural
flexibility confirms the observed relationship with MAT. Furthermore, when
considering temperature variability in sites with non-significantly different
MATs, the broadest range of enzyme thermal behaviour and the highest
growth plasticity of the enriched heterotrophic bacteria occur in samples
with the widest annual thermal variability. These results indicate that
temperature-driven enzyme selection shapes microbiome thermal plasticity
and that thermal variability finely tunes such processes and should be con-
sidered alongside MAT in forecasting microbial community thermal
response.

As the Earth’s climate changes at a rapid pace, forecasting ecological
patterns has become increasingly important1. Temperature is an
environmental and climatic variable2,3 that can severely impact sensi-
tive ecosystems because it is a strong selective force that acts on the
biology of a cell4–6. Temperature selects and shapes the cellular
building blocks, including enzymes, that maintain vital physiological
and cellular processes7,8.

At the cellular level, the plasticity of thermal response origi-
nates from different strategies of adaptation9–12: (i) physiological
plasticity (acclimation), defined as the extent to which an organism
can change its physiology in response to environmental cues (e.g.,
increase in enzyme concentration in response to thermal change);
(ii) regulation of genes (e.g., temperature-dependent expression of
isoenzymes and/or epigenetic regulation); and (iii) genetic
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adaptation that drives the selection of new enzyme variants for
which reaction rate is adapted to changing environmental condi-
tions (e.g., advantageous mutations or acquisition of new genes).
The latter mechanism is particularly important in organisms with a
short generation time (and high turnover), such as microorganisms,
that are capable of timely adaptation to new conditions13. The
combination of these strategies defines the final organismal meta-
bolic and physiological performance7,8,14,15.

At the community level, the above strategies are implemented by
ecological sorting of species, species turnover and environmental
filtering13,16,17, implying the rearrangement of community composition
through, for example, the replacement of dominant species with
adapted types with improved fitness. The coalescence of such strate-
gies at cellular and community levels determines the plasticity of the
environmental communities, their diversity, stability, and
functionality18–20. For instance, the diversity and distribution of up to
60% of the global ocean microbiome are associated with
temperature21.

The mean annual temperature (MAT) of a given location is the
parameter most commonly used to test the response of communities,
specifically their components and molecular building blocks, to
temperature22,23. However, organisms and their components experi-
ence temperature fluctuation over time24–27 rather than MAT, which is
defined as the temperature variability that best describes the thermal
legacy to which they are exposed. In complex microbial communities,
the selection of proteins and enzymes in response to the thermal
legacy should occur across the whole taxonomic range to support
growth and functional plasticity28. However, whether enzyme thermal
properties vary systematically in response to changes in temperature
and how the thermal legacy (temperature variability or temperature
fluctuation) affects the plasticity of microbial communities remains
unresolved.

Here, we hypothesize that environmental MAT contributes
to drive the adaptability of marine microbial communities by
tuning the thermal plasticity of their enzymes, and that such
plasticity is fine-tuned further by environmental temperature
variability.

To test this hypothesis, we studied the enzymatic thermal
response of marine microbial communities at a global geographical
scale across different locations with different thermal conditions
(Supplementary Fig. S1). We first determined the optimal tempera-
ture for maximum activity (Topt) of seven functionally-independent
enzyme classes (esterase, phosphatase, beta-galactosidase, nucle-
ase, transaminase, extradiol dioxygenase (EXDO) and aldo-keto
reductase) in the total active proteomes recovered from marine
sediments across a broad latitudinal gradient, ranging from the Irish
Sea (MAT, 12 °C) to the southern Red Sea (MAT, 30 °C). We further
analysed the response of diverse purified enzymes retrieved from
sediment and seawater metagenomes to MAT, ranging from –1.4 °C
to 29.5 °C, from about 70 worldwide locations. A total of 228
esterases and 5 EXDOs were targeted to measure Topt and to
determine the thermostability and structural rigidity properties. To
assess the effect of temperature variability on the thermal plasticity
of marine microbial communities, we determined the response of
the esterases in the total active proteomes to temperature and the
growth of three bacterial communities in sediments with the same
MAT but with a variable thermal legacy, in terms of temperature
variability, throughout the year.

Our results show that marine microbiome thermal plasticity is
reflected in cellular enzyme selection driven by the environmental
thermal legacy: the selection of thermally adapted enzymes in
microbial communities is explained by MAT, but the breadth of
thermal plasticity of the microbiome and their enzymes (tested as
esterases) is shaped and fine-tuned by the temperature variability of
the habitat.

Results and discussion
MAT is a major driver of marine microbiome enzymatic activity
To test whether enzyme adaptation to habitat temperature (i.e., phy-
siological plasticity and/or genetic variation) explains the assembly of
marine microbiomes, we quantitatively evaluated: (i) the temperature
range at which microbial enzymes are active (thermal profile) and (ii)
their Topt in sediments with different MAT. We extracted the total
active proteins from the microbial communities inhabiting sediments
collected from 14 locations across a latitudinal transect (Supplemen-
tary Table S1), ranging from the Irish Sea (MAT, 12 °C; latitude 53°N) to
the southern Red Sea (MAT, 30 °C; latitude, 16°N), and evaluated the
enzymatic activity of seven enzyme classes, namely esterases, phos-
phatases, transaminases, EXDOs, beta-galactosidases, nucleases and
aldo-keto reductases (Fig. 1, Supplementary Data S1 and Source Data).
A significant variation in the thermal profiles across the transect was
found for all the enzymatic activities tested (range R2, 0.51–0.80, all
p <0.01). Proteins from the warmer sites (Red Sea, MAT: 30 °C)
showed the highest activity at higher temperatures, being most active
(100% activity) at temperatures between 40 °C and 60 °C. Conversely,
proteins from colder sediments (Irish Sea, MAT: 12 °C) were most
active at lower temperatures, between 8 °C and 30 °C (average activity
at 8 °C = 32.2% [min = 1.8% for beta-galactosidases, Fig. 1e; max = 100%
for aldo-keto reductases, Fig. 1g]). Considering esterase activity
(Fig. 1a), for example, the difference in Topt between the coldest and
warmest sites was 35 °C (max 55 °C and min 20 °C in the Red Sea and
Irish Sea sediments, respectively), while sediments collected from the
Mediterranean Sea showed intermediate profiles (Fig. 1). Notably, the
variation in the thermal profile for these enzymatic activities (i.e., Topt)
was mainly explained by MAT rather than other environmental vari-
ables, such as salinity and pH (esterases in Table 1; other enzymes in
Supplementary Table S2).

To evaluate whether the efficiency of protein extraction could
influence the correlation betweenMAT and Topt, and thus the diversity
of active enzymes, we performed a comprehensive analysis of the
proteomes extracted from 7 out of 14 sediments by two-dimensional
sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-
PAGE) and Liquid Chromatography-Electrospray Ionization Tandem
Mass Spectrometric (LC-ESI-MS/MS) analysis combined with meta-
genome analysis. The results revealed that the recovered proteomes
were not dominated by a specific group/type of proteins (Supple-
mentary Fig. S2). For awide range of proteins, the relative abundance—
referred to as the total number of open reading frames (ORF) mapped
in the relative metagenomes—was 1.5% (interquartile range (IQR):
1.09%) (Supplementary Table S3 and Supplementary Data S2), with no
significant differences among samples and no correlation with MAT
(p = 0.24). Having confirmed that there were no differences in the
relative abundance of proteins identified in the proteomes, we then
proceeded to estimate the diversity and relative abundance of genes
responsible for the activity measured in the corresponding metagen-
omes. We focused this quality check control on esterases because of
the availability of a curated database, the Lipase Engineering
Database29, which facilitates their identification through DIAMOND-
BLASTP search tool30. We identified a total of 947 sequences poten-
tially encoding esterases, of which none were present in all samples
and only 73 shared among a few samples (Supplementary Fig. S3).
These sequences had a relative abundance of 0.10% to 0.29% com-
pared to the total ORFs (average: 0.22%, IQR: 0.08%; Supplementary
Table S3 and Supplementary Data S2), with no correlation with site
MAT (p =0.098).

The OMICS analyses showed that the MAT-dependent activity
response of the seven enzyme classes was not biased by the protein
extraction efficiency and did not depend on the relative abundance of
the enzymes responsible for the activity, but rather that each geo-
graphical location selects specific sets of enzymes with distinct ther-
mal characteristics. This finding provides a physiological explanation
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for the evidence that temperature drives the diversity and distribution
of microbiomes in the ocean21. Similar to findings at the organismal
level7,8, enzymes act as key cellular building blocks selected by the
thermal regime at the metaorganismal level of the marine microbial
communities. Since the same responses to MAT were observed for
seven different functionally-independent classes of enzymes, we
speculate that this may be a general feature of the proteomes of
marine microbial communities. The broad enzymatic diversity identi-
fied by the proteomic and metagenomic surveys and the variability of
the enzyme thermal responses across locations suggests that genetic
adaptation (e.g., the occurrence of mutations and the formation of
new proteins) coupled with thermal selection and species turnover
(e.g., enrichment of variants/taxa that arise as soon as the temperature
conditions allow)model the thermal plasticity anddiversity21 ofmarine
microbiomes. These data indicate that the selection of adapted

enzyme variants contributes to drive the functional plasticity of the
microbial communities; however, based on our data, we cannot define
which of the adaptive mechanisms prevail.

MAT explains the thermal response of cloned marine enzymes
To ascertainwhether the temperature-dependent profiles of the seven
enzyme classes analysed from total active proteomes were also valid
for individual enzymes, we examined the Topt and denaturing tem-
perature (Td) of 78 esterases and 5 EXDOs retrieved by metagenomics
screening (an average of eight enzymes per site; max: 17; min: 3;
Supplementary Data S3). We chose esterases as they are widely dis-
tributed in nature within microbial communities (at least one is found
in every bacterial genome), and multiple optimized assays are
available31,32. The proteins (average pairwise sequence identity: 16.68%,
IQR: 6.70%) were recovered from a subset of ten sediments along the

Fig. 1 | Thermal adaptation of microbial community isozymes from sea sedi-
ments. a–g Thermal profiles for a esterase, b phosphatase, c transaminase,
d extradiol dioxygenase, e beta-galactosidase, f nuclease, and g aldo-keto reduc-
tase activities of total microbial proteins, in their active form, extracted from
microbial communities inhabiting marine sediments from different locations
encompassing the Irish Sea, Mediterranean Sea and Red Sea (Supplementary
Table S1). Heatmaps represent the relative percentages (%) of specific activity at
each temperature calculated from the initial enzymatic rate (units/mg; raw data in

Supplementary Data S1) compared with the maximum activity (mean of three tri-
plicates). The colour code ranges from intense blue (no activity, 0%) to red (100%
activity). Under each heatmap, the relationship between site temperature (°C) and
temperatureofmaximumenzymatic activities (Topt) expressed asmean± SD (n = 3)
is reported for each enzymatic activity (plotted data are reported in Source Data).
Simple linear regressions are plotted as black lines with grey zone representing the
95% confidence intervals.
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latitudinal gradient from the Irish Sea (53°N) to the northern Red Sea
(30°N). However, we could not obtain enzymes from the original Irish
Sea samples (MAT, 12 °C); these were obtained from a 12-month
enrichment culture incubated at 20 °C. Overall, the MATs examined in
this experiment ranged from 18.3 °C to 24.8 °C. We found a significant
positive relationship between the Topt of the cloned enzymes and the
MAT of the locations from which the enzymes were derived (R2 = 0.57,
p = 3.4E-12; Fig. 2a), as well as between Td andMAT (R2 = 0.81, p = 6.9E-
14; Fig. 2b); no significant relationship was found between esterase
thermal response (Topt and Td) and salinity or pH (Table 1; Supple-
mentary Fig. S4). This analysis was extended to five EXDOs, which are
structurally and catalytically different from esterases. The positive
relationships of Topt and Td with MAT were also confirmed for the
EXDOs (Supplementary Fig. S5).

To enlarge the range of MATs explored in the analysis, we also
included a set of 150 esterases retrieved from seawater metagenomes
from 56 locations available in the Tara Ocean dataset, which have
MATs ranging from –1.4 °C to 29.5 °C (latitudes 62.2°S to 43.7°N;
Supplementary Data S4). The average pairwise sequence identity of
esterases was 38.1% (IQR: 18.6%), and none of the sequences showed
100% identity. MAT was also the best predictor of the observed ther-
mal response of Tara Ocean enzymes for both Topt and Td (Fig. 2c, d;

Supplementary Figs. S6 and S7), and neither the addition of salinity or
pH did improve the power of the model (Table 1). However, the rela-
tionship of Topt and Td with MAT was not linear. This was highlighted
by the significant piecewise regression, which indicates an increased
response of the enzymes at the highest MATs. MAT breakpoints were
recorded at 27.7 °C and 25.1 °C for Topt and Td, respectively (Fig. 2c, d).
Before the breakpoints, both Topt and Td slightly increased with
increasing MAT (indicated by a flatter slope, Topt: 0.45 and Td: 0.54),
while beyond the breakpoint, both Topt and Td sharply increased with
MAT (indicated by a steeper slope of the line, Topt: 6.48 and Td: 4.45).
This offers the advantage of an increased potential for species adap-
tation at higher temperatures.

The analysis of the phylogenetic clustering of the 228 esterases
herein characterized did not show specific grouping based on MAT,
but rather by enzyme families (Supplementary Fig. S8; Supplementary
Note S1). The low pairwise sequence similarity observed among
sequences (16.7% and 38.1% among sequences from the Irish Sea–Red
Sea transect and theTaraOceanmetagenomes, respectively) indicated
that the diversity of the investigated esterases was not dominated by a
particular type or highly similar protein clusters, but instead com-
prised of different non-redundant sequences assigned to multiple
folds, families, and subfamilies that, inmany cases, aredistantly related
to known homologues.

Since changes in protein flexibility may play a role in the thermal
adaptation to different temperatures without altering the global
structure and the active site33, we analysed this parameter in our
esterases. Biomolecular thermostability can have a thermodynamic or
kinetic origin34. Thus far, rigidity analysis has been used to investigate
structural effects on the folded state only, and it has been estimated
that increased structural rigidity is responsible for increased thermo-
stability in 60% of cases35. Furthermore, rigidity analysis cannot
account for the time-dependency of processes36. Constraint Network
Analysis (CNA)-based analyses of the relationship between structural
rigidity and flexibility versus thermostability have been applied on
pairs33,37 and series of homologous proteins38,39 from psychrophilic to
hyperthermophilic organisms, as well as on a series of variants from
one protein retro-40 and prospectively35,41. Here, we observed sig-
nificant correlations between the computed phase transition tem-
perature (Tp), a measure for global structural rigidity, and MAT (Irish
Sea–Red Sea transect: R2 = 0.12, p =0.0034, Fig. 2e; Tara Ocean: sig-
nificant regression only after MAT breakpoint of 21.6 °C, R2 = 0.08,
p =0.0096, Fig. 2f). The absence of a significant regression in Tp for
esterases with environmental MAT around and below ~20 ± 1 °C could
be linked to the fact that the structural ensembles for the rigidity
analyses by molecular dynamics (MD) simulations were generated at
room temperature, leading to an evening out of Tp values for esterases
with aMAT that transition aroundor below this temperature. However,
we cannot exclude that the ~20 ± 1 °C trade-off represents the onset of
evolutionary trade-offs that may occur during biochemical adaptation
to lower temperatures, where enzymes have to keep a minimum
rigidity for correct functioning7. Overall, these findings indicate that
esterases from microorganisms found in environments with higher
MAT have evolved so that these esterases aremore rigid (less flexible).
This might mirror the principle of corresponding states, according to
which homologs from mesophilic and thermophilic organisms have
similar flexibility and rigidity characteristics at their respective growth
temperatures33,37.

Although we did not examine enzyme activities at locations
representing all marine thermal regimes, ranging from polar sites to
hydrothermal vents, our results show that the response of marine
microbial community enzymes to temperature is dictated by the
environmental temperature (i.e., MAT). This finding supports the
assumption that the adaptation of microbial communities is primarily
driven by the thermal plasticity of microbial enzymatic machinery.
This also explains why temperature is consistently found to be one of

Table 1 | Best linear models describing the effects of tem-
perature (MAT), pH and salinity on the temperature for max-
imum activity (Topt) of esterases in: (i) the total active proteins
extracted from sediment along the transect from the Irish Sea
to the southern Red Sea (see Fig. 1a); (ii) 78 individual
esterases of sediment/seawater microbial communities from
a subset of ten marine locations selected from the latitudinal
transect in (i) (see Fig. 2a); and (iii) 150 individual enzymes
from the seawater Tara Ocean dataset (56 locations;
see Fig. 2c)

Samples Model Residual d.f. R2 AIC

(i) Total
active pro-
teins from
sediment
transect
n = 14
(see
Fig. 1a)

Intercept 1,13 — 110.8619

Temperature 1,12 0.8128 89.0087

pH 1,12 0.29 89.92584

Salinity 1,12 0.043 91.00381

Temperature + Salinity 2,11 0.8009 89.24695

Temperature + pH 2,11 0.795 111.87853

Salinity + pH 2,11 0.8104 111.81935

Temperature + Salinity + pH 3,10 0.045 110.6288

(ii) Indivi-
dual
esterases
from sedi-
ment
transect
n = 78
(see
Fig. 2a)

Intercept 1,77 — 679.2983

Temperature 1,76 0.5735 609.5436

pH 1,76 0.2803 611.2151

Salinity 1,76 0.3449 613.1814

Temperature + Salinity 2,75 0.5699 611.4951

Temperature + pH 2,75 0.5647 646.1708

Salinity + pH 2,75 0.5685 652.9775

Temperature + Salinity + pH 3,74 0.3447 645.1768

(iii) Indivi-
dual
enzymes
from sea-
water,
TARA
Ocean
dataset
n = 150
(see
Fig. 2d)

Intercept 1,149 — 679.2983

Temperature 1,148 0.5735 609.5436

pH 1,148 0.5647 611.2151

Salinity 1,148 0.3449 613.1814

Temperature + Salinity 2,147 0.5699 611.4951

Temperature + pH 2,147 0.5685 646.1708

Salinity + pH 2,147 0.3447 652.9775

Temperature + Salinity + pH 3,146 0.4447 645.1768

The residual degrees of freedom (d.f.) are given. The treatment degrees of freedom and sum of
squares only apply to the term that was added to the model. The Akaike information criterion
(AIC) was calculated for each model and the lowest AIC (in bold) indicates the best model
obtained.

Article https://doi.org/10.1038/s41467-023-36610-0

Nature Communications |         (2023) 14:1045 4



the main drivers shaping enzymatic activity and stability, microbial
community diversity andmetabolism5,21–23,42 across broadgeographical
ranges. The relationships with MAT were confirmed by both total
active proteins extracted from environmental samples (where
expression could play a role43) and in individual enzymes from differ-
ent sources. Therefore, we consider that the level of expression
(physiological plasticity and/or gene regulation) may not be a key
factor in the adaptation of microbial communities to different tem-
peratures. Considering that physiological plasticity may slow down
intergeneration adaptation to environmental changes because it
retards the spread of adaptive genetic traits by shielding the effect of
selection11,44, our data on the response of the individual enzymes to
temperature reinforce the consideration that genetic adaptation, by
the selection of enzyme variants10, may have an important role in
shaping thermal plasticity of marine microbial communities.

Response of bacterial community esterase activity to thermal
variability
Over a large geographical scale, we showed that the thermal plasticity
of enzymes is driven by MAT (Figs. 1 and 2). However, what happens
when the thermal variability differs under similar MATs? Assessing the
full environmental variability in aquatic habitats using high-resolution
temporal and spatial scales—relevant to the individual organisms—can
reveal more complex patterns of environmental selection and their

ecological relevance24,25,45–47. In tropical clear shallow waters, for
example, temperature has a stable mean value over a long period, but
it may vary broadly throughout the day/season46. Therefore, commu-
nities living in these ecosystems can experience environmental con-
ditions far from the value indicated by the averages25,26. In this context,
the Red Sea represents a model ecosystem with high coastal ecosys-
tem heterogeneity that results in wide thermal variability48. Further-
more, it is one of the warmest seas on Earth, with amarked sea surface
temperature seasonality ranging from 22 to 24 °C in February to highs
of 30–34 °C in August48–51. To evaluate the effect of thermal variability
on microbial enzymatic response, we selected three adjacent sites in
the Red Sea at ~3, ~25, and ~50m deep characterized by a similar MAT
(ΔMAT, ~2.5 °C;Dunnett’smultiple comparison tests, adjusted-p >0.05
in all cases), but experiencing significantly different frequency-
distribution of temperature, that is different levels of temperature
variability, throughout the year (Levene’s test F2,52700 = 7328.2,
p < 2.2E-16; Fig. 3a, b; SupplementaryTables S4, S5 and SourceData). In
the selected sites, sediments experienced high temperature variability
(HTV), with temperatures ranging from 21.6 to 34.4 °C (ΔT, 12.8 °C),
intermediate temperature variability (ITV), 24.0 °C–32.8 °C (ΔT,
8.8 °C), and low temperature variability (LTV), 24.0–30.7 °C
(ΔT, 6.7 °C; Fig. 3a, b). Notably, HTV sediments were exposed to the
broadest range of temperatures, including temperatures higher than
31 °C for 45%of themonitoring period; ITV sediments were exposed to
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sition temperature (Tp) patterns as a function of theMAT at the site fromwhich the
78 esterases originated along the North–South latitudinal transect. c Topt, d Td, and
f Tp patterns of 150 esterases from 56 TARA ocean locations (Supplementary
Data S4) as a function of the MAT at the site. Topt, Td, and Tp of esterases are
determined by measuring the initial hydrolysis rate of 4-nitrophenyl-propionate,
the CD ellipticity changes (in millidegrees, mdeg; θ) at 220 nm at different tem-
peratures at a rate of 0.5 °C per min, and performing Constraint Network Analy-
sis (CNA), respectively. Topt and Td values are plotted asmean (n = 3) and related SD

are reported in Supplementary Data S3 and S4. Tp values are presented as themean
offive independentMDsimulations analysedwithCNAand related SEMare given in
Supplementary Data S3 and S4. The linear regressions are performed using a two-
sided test in R; R2, degrees of freedom, F and p-values are reported in each graph.
Significant regressions are reported as blue lines, while non-significant in grey. The
blue/grey zone represents the confidence value of 95%. In the case of esterases
from the TARA ocean dataset, piecewise regressions were run, and the breakpoints
(flexus) where the slope of the regressions significantly changed are indicated with
dashed lines on theMAT axis. Red boxes in panels c,d and f indicate theMAT range
covered by the Irish Sea–Red Sea transect in panels a, b and e.
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temperatures below 28 °C and between 28 °C and 31 °C for 45 and 43%
of the period, respectively, with only 12% of the period at temperatures
above 31 °C; LTV sedimentswere exposed to temperatures below28 °C
for 87% of the period, between 28 °C and 31 °C for 13% of the period,
and were never exposed to temperatures above 31 °C (Fig. 3c; Sup-
plementary Table S4). On the contrary, no significant changes in sali-
nity or pH (ANOVA: F2,15 = 1.74, p = 0.21 and F2,15 = 0.32, p =0.73,
respectively; Supplementary Table S5) were observed among the
sediments sampled. Furthermore, limited variability in hydrostatic
pressure (1–6 atm) and light received at the different sampling depths
was observed (data from Bio-ORACLE52; Supplementary Table S5).
Overall, this suggests that these environmental factors have limited
effects on the selection of enzyme properties by the sediment micro-
bial cells53.

When environmental conditions are variable, such as tem-
perature variability in the considered sediments, the properties of
the microbial community are constrained, leading to physiological
adaptation and species plasticity9,54. We analysed the thermal
properties of the whole sediment microbial community proteome
(Supplementary Fig. S9) by testing the performance of the esterases
present in the active proteomes extracted from HTV, ITV, and LTV
samples in August and December under different thermal condi-
tions. We focused on this enzyme class because it has been found to
show thermal responses analogous to other enzyme classes (Fig. 1).
At the highest temperature tested, the HTV sediment proteomes
measured the highest esterase activities both in summer and winter
(August and December, Fig. 3d, e), supporting a thermal acclima-
tion of the hydrolytic enzymes to higher and more variable tem-
peratures. Considering the three levels of temperature variability, a
statistically significant difference in the Td of total active/native
proteomes (all proteins extracted, including esterases) measured
by circular dichroism (CD) was observed in the two seasons (GAM;
F2,1096 = 456.2, p < 0.0001 in August, and F2,1096 = 23.89, p < 0.0001
in December), indicating consistently higher stability of proteins

(including the enzymes herein examined) extracted from HTV
sediments compared to those extracted from ITV and LTV sedi-
ments (Fig. 3f, g). Notably, we observed a reduction in the tem-
peratures at which active proteins extracted from HTV and ITV
sediments started to denature between the two seasons (ΔTd of
2.35 °C ± 0.26 °C and 1.12 °C ± 0.23 °C, respectively), while no dif-
ferences among seasons were detected for proteins from LTV
sediments (Fig. 3f, g). The higher stability of the enzymes from the
HTV sediments, regardless of the season, supports their higher Topt
(measured as esterase activity) of up to 50–60 °C (max. at
51.2 ± 0.3 °C in August and 44.41 ± 0.3 °C in December), compared
to enzymes in LTV and ITV sediments that reached their maximum
at 40–45 °C (LTV; max. at 45.5 ± 0.4 °C and 43.1 ± 0.5 °C) and
45–50 °C (ITV; max. at 41.1 °C ± 0.4 °C and 40.9 °C ± 0.5 °C; Fig. 3d,
e; August, GAM: F2,95 = 8.23, p < 0.001; December, GAM: F2,95 = 4.03,
p < 0.01). The enzymatic response was higher in microbial com-
munities that had previously experienced a wider temperature
variability and prolonged heat exposure.

These data show that the enzymatic machinery plasticity of
microbial communities from marine sediments is linked to the tem-
perature variability of the environment, indicating that the thermal
legacy influences microbial community assembly45,55,56 by selecting
microorganisms with more adapted enzymes. For instance, the
microbial community enzymes of HTV sediments had a more plastic
thermal response than those exposed to less variable environments,
namely the ITV and LTV sediments. HTV enzymes showed a higher
enzymatic response to high temperatures in both August and
December, even though the HTV sediments experienced colder tem-
peratures in winter than the other sediments (Fig. 3a–c). Our data
suggest that the thermal legacy of HTV sediments selects more plastic
enzymes than those in ITV and LTV sediments experiencing a more
stable thermal legacy, which can easily face temperature changes,
consistently showing higher activity and stability at high temperatures
(e.g., above 45 °C; future temperatures that may be expected in the

Fig. 3 | Thermal variability in Red Sea coastal sediments and metabolic
response of associated bacterial communities. a Temperature monitoring over
18 months in high temperature variability (HTV, red), intermediate temperature
variability (ITV, blue), and low temperature variability (LTV, black) sediments.
Temperatures are expressed as average values from the three stations belonging to
each level of thermal variability (see Source Data). Black arrows indicate the sam-
pling sessions. b Width of the temperature variability in the sediments from the
three stations. The three sites do not show significantly different MAT (Dunnett’s
multiple comparisons test, all p-values <0.05) but significantly different tempera-
ture distribution (i.e., temperature variability; Levene’s test F2,52700 = 7328.2,
p < 2.2E-16). c Frequency distribution (percentages) of temperatures across

different levels of temperaturevariability.d, eActivities of esterases extracted from
HTV, ITV and LTV sediments. The relative specific activity of the protein extracted
from the sediments (units/g of sediment) is expressed as the mean ± SD (n = 3
replicates per station per temperature variability, see Source Data) for each tem-
perature tested for the August and December samples, respectively. f, g Thermal
unfolding patterns of proteins (stability) are measured by CD and expressed as
degrees of ellipticity (θ). The normalized CD melting curves of proteins extracted
during August and December, respectively, report the θ220(T) recorded at 220 nm
from 4 °C to 95 °C; data are plotted as the mean of three replicates (see
Source Data).
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shallow coastal lagoons of the Red Sea, given the current trends of
temperature increase46,57,58).

Different temperature variability levels in coastal marine sedi-
ments are not primarily reflected in the taxonomic composi-
tional turnover of the bacterial communities
The thermal legacy sums up the evolutionary history and, importantly,
the thermal events experiencedbymicroorganismsand their enzymes,
which contribute to shape their acclimation to temperature variability.
We specifically asked if the thermal plasticity of the enzymes of
microbial communities experiencing different levels of temperature
variability is associated with the compositional turnover of the
community.

Species compositional diversity analysis revealed that the differ-
ent esterase thermal profiles of the microbial communities inhabiting
the three sediment groups (LTV, ITV, and HTV) were accompanied by
different distributions of bacterial operational taxonomic units
(OTUs) in both sampling seasons (Supplementary Table S6). The
similarity among the sediment bacterial communities significantly
decreased as the temperature difference (ΔT°C) among sediments
increased (p <0.001, R2 = 0.25, n = 1,431; Supplementary Fig. S10a),
with a negative correlation of bacterial richness and evenness with the
increment of temperature (Supplementary Fig. S10b). The spatial iso-
lation of sediments and the limited dispersal of their microorganisms
reduce the possibility of the introduction of new members into the
community27,59, thus maintaining their differences60. Even though
certain bacterial species presented significant (p < 0.05) enrichment/
depletion as a function of sediment temperature (positive correlation,
n = 50 OTUs and negative correlation, n = 1041 OTUs; Supplementary
Note S2 and Supplementary Data S5), the majority of the OTUs (82%)
were thermal-generalists, and up to 83% were found under all three
levels of temperature variability (i.e., shared OTUs in Supplementary
Data S5).

To further explore the relationship between microbial diversity
and temperature variability, we focused on a subgroup of the micro-
bial communities, the enriched heterotrophic bacteria. We used these
microbial subgroups from sediments exposed to LTV, ITV, andHTV, to
examine the relationship between growth at different temperatures
and microbial diversity with temperature variability. Analogous to
observations for the thermal properties of the esterases extracted
from the sediments, we detected a significant effect of temperature
variability on bacterial growth (measured as optical density, OD600) in
both seasons (August, GAM: F2,20 = 3.59, p <0.05; December, GAM:
F2,20 = 3.12, p <0.05; Fig. 4a, b; Supplementary Fig. S11). The bacterial
cells extracted from HTV sediments consistently exhibited higher
growth rates and ODs at higher temperatures (e.g., 40 °C) than those

from ITV and LTV sediments. Despite the limitation of the cultivation
approach, which examines a limited portion of the sedimentmicrobial
diversity, it contributes to evaluate if growth performances are driven
by a small or large group of taxa. The identification of enriched het-
erotrophic bacterial taxa from the sediments with different levels of
temperature variability and grown at different temperatures revealed
the presence of a total of 257 OTUs, mainly affiliated to four genera
(Fig. 4c).MembersofVibriowere themost abundant (55OTUs and69%
of relative abundance), followed by Bacillus (43 OTUs, 13%), Photo-
bacterium (20OTUs, 7%) and Enterovibrio (4OTUs, 2%). The incubation
temperature affected the taxonomic composition of enriched het-
erotrophic bacteria, but with no major changes across the different
temperature variability levels (Fig. 4c; Supplementary Table S7a).
Considering the three incubation temperatures separately (20 °C,
30 °C, and 40 °C) in the two sampling seasons, we saw that the enri-
ched heterotrophic bacterial taxa from HTV, ITV and LTV were similar
(PERMANOVA, Supplementary Table S7b) with ranges of shared OTUs
of 93–98% and96–99% inAugust andDecember, respectively (Fig. 4d).
Members of the Bacillus genus, for example, were consistently enri-
ched in all three sediments (HTV, ITV and LTV) at high temperature
(40 °C). However, only the enriched heterotrophic bacterial taxa from
HTV sediments grew at high OD levels (up to 8.3; Supplementary
Fig. S11). This indicates that, despite the presence of the same taxa in
the sediments, only the bacterial cells with enzymes selected by HTV
(Fig. 3d, e) can cope with high temperatures42,61. We interpret the
finding that the enriched heterotrophic bacterial portion of the bac-
terial communities exposed to different levels of temperature varia-
bility present different growth rates but the same diversity as
acclimation of the microbial community to temperature variability
rather than a community compositional change.

A broader thermal variability in the thermal legacy of marine
sediments selects more plastic microbial communities with a more
flexible esterolytic metabolism in response to temperature
variability62,63. The effect of temperature variability on the thermal
plasticity of microorganisms and their enzymes appears as a nested
effect over the general thermal effect dictated by MAT. Temperature
variability extends and refines the response of the enzymes and the
microbial cells to MAT by expanding their thermal plasticity as the
temperature variability expands. The discovery of effects of tem-
perature variability on the thermal response of esterases and bacterial
growth, even among sediments where temperature variability differ-
ences are relatively small such as in the three locations we have
examined in the Red Sea, suggests that temperature variability fine-
tunes the thermal acclimation of the sediment microbiomes and their
enzymes. We speculate that the differences in thermal response
observed under the relatively narrow temperature variability

Fig. 4 | Response of the enriched heterotrophic bacterial fraction from differ-
ent levels of temperature variability. a, b Growth rates (measured as change in
turbidity [OD600] per hour) of bacteria from HTV, ITV and LTV sediments sampled
in August and December, respectively, measured at 10 °C, 20 °C, 30 °C, 40 °C, and
50 °C. Star (*) indicates statistical differences in the growth of the enriched het-
erotrophic bacterial fraction obtained from different temperature variabilities
across the tested temperatures; ANOVA, a August 40 °C: F2,6 = 169.3, p <0.0001
and 50 °C: F2,6 = 11.04, p =0.0098, b December 40 °C: F2,6 = 23.06, p =0.0015.

c Taxonomic diversity, at the genus level, of the enriched heterotrophic bacteria
present at the end of incubation at different temperatures (20 °C, 30 °C, and 40 °C)
in August and December; values are expressed as the relative abundance of each
genus measured at the end of the incubation (when samples were collected).
d Relative abundance of OTUs shared across the enriched heterotrophic bacterial
community fraction from HTV, ITV and LTV, grown at 20 °C, 30 °C, and 40 °C;
values are expressed as percentages.
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differences measured in the Red Sea could be amplified in other
locations with more pronounced seasonality, such as those at inter-
mediate latitudes64. Having observed a limited species turnover in
response to temperature variability changes, we reason that the effect
of temperature variability on the thermal plasticity of microorganisms
and their enzymes is, similarly to the effect of MAT, mainly dictated by
genetic adaptation and the selection of enzyme variants10.

In conclusion, our results first showed thatmicroorganisms better
adapt to different thermal conditions by selecting thermally-adapted
enzymes (through genetic adaptation, e.g., new genes) rather than
selecting enzymes with broad thermal tolerances. However, the
temperature-dependent expression of isozymes, such as increasing
the concentration of enzymes for which reaction rates tend to become
temperature-independent and thus work sub-optimally under a new
condition (physiological plasticity and/or regulation of genes), could
not be ruled out. At the same time, microbial communities living in
environments with a wide temperature variability have higher thermal
plasticity, in consonance with the thermal legacy of their enzymes. It
indicates that the fine-tuned response of microbial communities to
temperature change is controlled, at least in part, by the selection of
enzyme variants that are capable of being active under more variable
temperatures.

The present study illustrates the necessity of investigating the
realistic thermal legacy of organisms to accurately interpret their
responses to changes in climatic patterns and to evaluate whether this
is a planetary-scale mechanism. While the adaptation of microbial
communities to temperature change appears to be mediated by the
selection of thermally adapted enzymes, the extent of this adaptation
also depends on temperature variability, and this should be con-
sidered when modelling the response of marine/coastal microbiota to
climate change. The incorporation of the recent thermal legacy of
microbial communities could, therefore, improve the accuracy of
estimates of individual thermal response and hence increase the
reliability of predictions on how climate change will affect the
assembly, metabolism, and nutrient cycling of the ocean microbiome
in the future. Projections between 1950 and 2090 suggest that more
than 85% of ecosystems and their microbes will be influenced either
directly or indirectly by climate change65, with the gain or loss of cer-
tain groups of bacteria depending on the scenario of fossil-fueled
development and its climate effects. In connection to this, our study
may suggest that the actual thermal legacyof communities should also
be considered to evaluatewhichmicroorganismswould be affected by
climate change, as well as could influence climate change in a scenario
of temperature increase. This will be of considerable interest as the
metabolic health and rate of microbiomes is crucial for regulating
climate change66.

Methods
Extraction of total active proteomes from sediment samples
We sampled 14 sediments along the coastlines of the Irish Sea, the
Mediterranean Sea, and the Red Sea (from 16°N to 53°N), applying
uniform sampling and storage procedures. Location details and sedi-
ment temperature fluctuations are summarized in Supplementary
Table S1. We collected sediments (5 Kg) in triplicate and extracted the
total proteins using a well-established microbial detachment
procedure67, with some modifications. We mixed 100 g of sediment
with 300ml of sterilized saline solution (5mM sodium pyrophosphate
and 35 g L−1 of NaCl) containing 150mgL−1 of Tween 80 (from Merck
Life Science S.L.U., Madrid, Spain) in an ice water bath. After re-sus-
pension, samples were kept in a water bath ultra-sonicator (Bandelin
SONOREX, Berlin, Germany) on ice and sonicated (60W output) for
120min. We repeated this procedure twice, with an ice water bath
incubation of 60min between each cycle. We then centrifuged the
samples at 500 g for 15min at 4 °C to remove the sediments in a cen-
trifuge 5810R (Eppendorf AG,Hamburg, Germany). Supernatantswere

carefully transferred to a new tube, minimizing disruption of the
sediments, and the resulting supernatants were centrifuged at
13,000 g for 15min at 4 °C to produce microbial cell pellets. We used
the resulting cell mix to extract the total protein by mixing the cells
with 1.2ml BugBuster® Protein Extraction Reagent (Novagen, Darm-
stadt, Germany) for 30min with shaking (250 rpm). Subsequently,
samples were disrupted by sonication using a pin Sonicator® 3000
(Misonix, NewHighway Farmingdale, NY, USA) for a total time of 2min
(10 watts) on ice (4 cycles × 0.5min with 1min ice-cooling between
each cycle). Extracts were centrifuged for 10min at 12,000 g at 4 °C to
separate cellular debris and intact cells. Supernatants were carefully
aspirated (to avoiddisturbing thepellet), transferred tonew tubes, and
stored at –80 °C until use. The protein solutionwas filtered at 15 °C for
7 h using Vivaspin filters (Sartorius, Goettingen, Germany) with a
molecular weight (MW) cut-off of 3,000Da to concentrate the pro-
teins up to a final concentration of 10mgml−1, according to the Brad-
ford Protein Assay (Bio-Rad Laboratories, S.A., Madrid, Spain)68. The
average total amount of proteins extracted per each 100 g of sediment
was 612 µg (interquartile range, 31 µg, see details in Supplementary
Fig. S2). In all cases, extensive dialysis of protein solutions against
40mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)
buffer was performed using a Pur-A-LyzerTM Maxi 1200 dialysis kit
(Merck Life Science S.L.U., Madrid, Spain)69, and active proteins stored
at a concentration of 10mgml−1at –86 °C until use. As reported
previously70, 2DE was performed using GE Healthcare reagents and
equipment, 11 cm IPG strips in the pH range of 3–10 and molecular
weight ranging from 10 to 250 kDa (Precision Plus Protein Dual Color
Standards #1610374, Bio-Rad Laboratories, S.A., Madrid, Spain). The
2-DE was performed using a validated pooling strategy71, in which
proteins extracted from three independent biological replicates (i.e.,
sediments) were mixed in equal amounts and a total of 150 µg of
protein were further loaded per gel. Staining was performed with
SYPRO Ruby Protein Gel Stain (Invitrogen, Waltham, MA, USA). The
two-dimensional SDS-PAGE (12% acrylamide) gels of extractedproteins
are reported in Supplementary Fig. S2 (original gels in Source Data).
The sameprotocol was applied to extract and analyseby SDS-PAGE the
total active proteins extracted from sediment samples with different
temperature variability levels (HTV, ITV, and LTV) collected in the Red
Sea (Supplementary Table S4). The total amount of protein extracted
per each 100 g of sediment is given in Supplementary Table S8.
Coomassie-stained one-dimension SDS-PAGE (1-DE) gels of extracted
proteins are shown in Supplementary Fig. S9 (original gel in
Source Data).

Source, expression and purification of esterases and EXDOs
from a wide geographical range
We recovered 83 enzymes (78 esterases and 5 EXDO) from microbial
communities inhabitingmarine sediments across ten distinct locations
from the latitudinal transect described above: Ancona harbour (Anc),
Priolo Gargallo (Pri), Gulf of Genoa, Messina harbour (Mes), Milazo
harbour (Mil), Mar Chica lagoon (MCh), Bizerte lagoon (Biz), El-Max
site (ElMax), Gulf of Aqaba (Aq), and Menai Strait (MS); further details
are provided in Supplementary Data S3. Sources of the enzymes were
the corresponding shotgun metagenomes (see Supplementary
Table S3) and the metagenome clone libraries generated from the
extracted DNA71. The sediment sample from the Gulf of Genoa was not
used for activity tests and metaproteome analysis because no raw
sample material was available; however, because of the possibility to
access its shotgun metagenome (see Supplementary Table S3) and a
metagenome clone library72, we used the sample for screening
esterases to incorporate an additional latitude in our transect. In the
case of Menai Strait (Irish Sea), five additional esterases were retrieved
from a metagenome obtained from enriched cultures prepared with
samples collected on 22nd June 2019 from Menai Strait (School of
Ocean Sciences, Bangor University, St. George’s Pier, Menai Bridge,
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N53°13′31.3″; W4°09′33.3”). The water temperature was 14 °C and the
salinity was 32 p.s.u. Two enrichment cultures were set up at 20 °C: (i)
SW: seawater enrichment with 0.1% lignin; the enrichment was set up
using 50ml of the sample as inoculum with the addition of 0.1% lignin
(Sigma-Aldrich, Gillingham, United Kingdom) (w/v); (ii) AW: algal sur-
face wash-off in seawater, enriched with 0.1% lignin; the enrichment
was set up using 50ml of surface wash-off after mixing of ca. 10 g of
Fucus (brown algae) in the seawater and removal of plant tissue, 0.1%
lignin (w/v) was added. After 92 days of incubation, 5ml of each
enrichment cultures were transferred into the new flask containing
45ml autoclaved and filtered seawaterwith 0.1% lignin. This procedure
was repeated on days 185 and 260, and the incubation was stopped on
day 365. The DNA was extracted using 12 months using MetaGnome
extraction kit (EpiCentre, Biotechnologies, Madison, WI, USA),
sequenced on Illumina MiSeq™ platform (Illumina Inc., San Diego, CA,
USA) using paired-end 250bp reads at the Centre for Environmental
Biotechnology (Bangor, UK), and sequencing reads were processed
and analysed as described previously73.

The screening, cloning and activity of a subset of 35 identified
esterases have been reported previously72. The remaining 48 enzymes
are reported for the first time in this study and were identified using
naive and in silico metagenomic approaches, as detailed below. The
environmental site from which each enzyme originated and the
method employed for its identification are detailed in Supplementary
Data S3. For naive screens addressing the recovery of new sequences
encoding esterases and EXDO, the large-insert pCCFOS1 fosmid
libraries made using the corresponding DNA samples, the Copy-
Control Fosmid Library Kit (Epicentre Biotechnologies, Madison,
WI, USA) and the Escherichia coli EPI300-T1R strain were used. The
nucleic acid extraction, construction and the functional screens of
such libraries have been previously described72. In brief, fosmid clones
were plated onto large (22.5 × 22.5 cm) Petri plates with Luria Bertani
(LB) agar containing chloramphenicol (12.5 µgml−1) and induction
solution (Epicentre Biotechnologies; WI, USA), at a quantity recom-
mended by the supplier to induce a high fosmid copy number. Clones
were scored by the ability to hydrolyze α-naphthyl acetate and tribu-
tyrin (for esterase activity), and catechol (for EXDO activity)72,74. Posi-
tive clones presumed to contain esterases and EXDOs were selected,
and their DNA inserts were sequenced using a MiSeq Sequencing
System (Illumina, San Diego, USA) with a 2 × 150-bp sequencing v2 kit
at Lifesequencing S.L. (Valencia, Spain). After sequencing, the reads
were quality-filtered and assembled to generate nonredundant meta-
sequences, and genes were predicted and annotated via BLASTP and
the PSI-BLAST tool72. For in silico screens, addressing the recovery of
new sequences encoding esterases, the predicted protein-coding
genes, obtained after the sequencing of DNA material from resident
microbial communities in each of the samples, were used. The meta-
sequences are available from the National Center for Biotechnology
Information (NCBI) nonredundant public database (accession num-
bers reported in Supplementary Data S3). Protein-coding genes iden-
tified from theDNA inserts of positive clones (naive screen) or fromthe
meta-sequences were screened for enzymes of interest using the
Blastp algorithm via the DIAMOND v2.0.9 program with default para-
meters (percentage of identity ≥60%; alignment length ≥70; e-value
≤1e−5)29, against the Lipase Engineering sequence databases (to screen
for esterases) and AromaDeg database (for EXDO)74. Since the collec-
tion of sediments across locations experiencing different MATs was
limited by our sampling capacity, to expand our range of exploration
at a global scale and to validate our dataset, we added our single
enzymeanalysis to the seawatermetagenomes retrieved from the Tara
Ocean Expedition database (accession number in Supplementary
Data S4). Due to the volume of sequences generated, this database
provides access to a large number of enzymes, including those studied
here through homology search. Esterases were selected as target
sequences, and the following pipeline was used. First, we selected a

sequence encoding an esterase reported as one of the most substrate-
ambiguous esterases out of 145 tested (EH1, Protein Data Bank acc. nr.
5JD4) and well-distributed in the marine environment72. Second, we
performed a homology search of this sequence against the TaraOcean
metagenome21 to retrieve similar sequences, using the Blastp algo-
rithm via the DIAMOND v2.0.9 program30 (e-value <e−10). A total of
150 sequences encoding presumptive such enzymes from 56 different
locations of the Tara Ocean Expedition were selected (Supplementary
Data S4).

Once identified, the sequences encoding the wild-type enzymes—
here identified and reported for the first time from all the geo-
graphically distinct locations (including the ones from the Tara Ocean
Expedition)—were used as templates for gene synthesis. Genes were
codon-optimized tomaximize expression in E. coli. Geneswere flanked
by BamHI and HindIII (stop codon) restriction sites and inserted in a
pET-45b(+) expression vector with an ampicillin selection marker
(GenScript Biotech, EG Rijswijk, Netherlands). This plasmid, which was
introduced into E. coli BL21(DE3), supports the expression of
N-terminal histidine (His) fusion proteins with the final amino acid
sequences of all synthetic proteins being MAHHHHHHVGTGSNDD
DDKSPDP-X, where X corresponds to the original sequence of the
target enzyme (SupplementaryData S3 and S4). In all cases, the soluble
His-tagged proteins were produced and purified at 4 °C after binding
to aNi-NTAHis-Bind resin (MerckLife Science S.L.U.,Madrid, Spain), as
described previously72,74. Purity was assessed as > 98% using SDS-PAGE
analysis in a Mini PROTEAN electrophoresis system (Bio-Rad Labora-
tories, S.A., Madrid, Spain). Purified protein was stored at –86 °C until
use at a concentration of 10mgml−1 in 40mMHEPES buffer (pH 7.0). A
total of approximately 5–40mg of total purified recombinant protein
was obtained from 1 L of culture. Supplementary Fig. S1 illustrates a
schematic representation of the pipeline implemented in this work to
investigate enzyme activities in a large set of marine samples, starting
from samples collected (sediments) and available metagenomes.

Enzyme activity assessments
All substrates used for activity tests were of the highest purity and, if
not indicated otherwise, were obtained fromMerck Life Science S.L.U.
(Madrid, Spain): 4-nitrophenyl-propionate (ref. MFCD00024664),
4-nitrophenyl phosphate (ref. 487663), 4-nitrophenyl β-D-galactose
(ref. N1252), bis(p-nitrophenyl) phosphate (ref. 123943), benzaldehyde
(ref. B1334), 2-(4-nitrophenyl)ethan-1-amine (ref. 184802-5G), pyridoxal
phosphate (ref. P9255), acetophenone (ref. A10701), NADPH (ref.
N5130) and catechol (ref. PHL82372). We directly tested total protein
extracts for esterase, phosphatase, beta-galactosidase, and nuclease
activity using 4-nitrophenyl-propionate, 4-nitrophenyl phosphate,
4-nitrophenyl β-D-galactose, and bis(p-nitrophenyl) phosphate,
respectively, by following the production of 4-nitrophenol at 348 nm
(extinction coefficient [ε], 4147M−1 cm−1), as previously described69. For
determination: [total protein]: 5μgml−1; [substrate]: 0.8mM; reaction
volume: 200μl; T: 4–85 °C; and pH: 8.0 (50mM Tris-HCl buffer). The
hydrolysis of 4-nitrophenyl-propionate was used to determine, under
these standard conditions, the effects of temperature on the purified
esterase. Transaminase activity was determined using benzaldehyde as
amine acceptor, 2-(4-nitrophenyl)ethan-1-amine as amine donor, and
pyridoxal phosphate as a cofactor, by following the production of a
colour amine at 600nm (extinction coefficient, 537M−1 cm−1), as pre-
viously described75. For determination, [total protein]: 5μgml−1; [sub-
strates]: 25mM; [pyridoxal phosphate]: 1mM; reaction volume:
200μL; T: 4-85 °C; and pH: 8.0 (50mM Tris-HCl buffer). Aldo-keto
reductase activity was determined using acetophenone as a substrate
and NADPH as a cofactor, by following the consumption of NADPH at
340nm (extinction coefficient, 6220M−1 cm−1), as described76. For
determination, [total protein]: 5μgml−1; [substrate]: 1mM; [cofactor]:
1mM; reaction volume: 200μL; T: 4–85 °C; and pH: 8.0 (50mM Tris-
HCl buffer). We determined EXDO activity using catechol as substrate,
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by following the increase of absorbance at 375 nm of the ring fission
products (extinction coefficient, 36000M−1 cm−1), as previously
described74. For determination, [protein]: 5μgml−1; [catechol]: 0.5mM;
reaction volume: 200μL; T: 4–85 °C; and pH: 8.0 (50mM Tris-HCl
buffer). The hydrolysis of catechol was used to determine, under these
standard conditions, the effects of temperature on the purified EXDOs.
All measurements were performed in 96-well plates (ref. 655801,
Greiner Bio-One GmbH, Kremsmünster, Austria), in biological tripli-
cates over 180min in a Synergy HT Multi-Mode Microplate Reader
(Biotek Instruments, Winooski, VT, USA) in continuous mode (mea-
surements every 30 s) and determining the absorbance per minute
from the slopes generated and applying the formula (1). All values were
corrected for nonenzymatic transformation.

Rate
μmol

minmg protein

� �
=

4Abs
min

ε,M� 1cm� 1
*

1
0:4 cm

*
106 μM
1M

*0:0002 L*
1

mg protein

ð1Þ

Shotgun proteomics
Proteomics was performed by using total active proteins (extracted as
above), which were then subjected to protein precipitation, protein
digestion and Liquid Chromatography-Electrospray Ionization Tan-
dem Mass Spectrometric (LC-ESI-MS/MS) analysis, as previously
described77. High-quality reference metagenomes corresponding to
each sample (BioProject number in Supplementary Table S3) were
used for protein calling, with a thresholdof only one identified peptide
per protein identification because False Discovery Rates (FDR) con-
trolled experiments counter-intuitively suffer from the two-peptide
rule. The confidence interval for protein identification was set to ≥95%
(p < 0.05), and only peptides with an individual ion score above 20
were considered correctly identified. All protocols and experimental
details, including those formass spectrometry andmeasures of quality
andfidelity of the datasets, have beenpreviously described77. Themass
spectrometry proteomics data have been deposited to the Proteo-
meXchange Consortium via the PRIDE78 partner repository with the
dataset identifier PXD039714 and 10.6019/PXD039714.

Thermal denaturation assessments of proteins through circular
dichroism
Spectra were acquired between 190 and 270 nm with a Jasco J-720
spectropolarimeter equipped with a Peltier temperature controller,
employing a 0.1mm cell at 25 °C. Spectra were analysed, and Td values
were determined at 220 nm between 10 °C and 85 °C at a rate of 30 °C
per hour in 50mM Britton and Robinson buffer at pH 8.5. A protein
concentration of 1.0mgml−1 was used. Td (and standard deviation of
the linear fit) was calculated by fitting the ellipticity (millidegrees; θ) at
220 nm at each of the different temperatures using a 5-parameter
sigmoid fit with SigmaPlot 13.079,80. We used a generalized additive
model (GAM)81 to analyse Td (our response variable) at each tem-
perature (continuous explanatory variable) in the hot and cold seasons
(in August and December, respectively) and the three levels of tem-
perature variability (HTV, LTV, ITV) as our two categorical explanatory
variables.

Enzyme structure prediction, ensemble generation and rigidity
analysis
We applied the AlphaFold2-based workflow of ColabFold82,83, which is
available at https://github.com/sokrypton/ColabFold (accessed
22.02.2022), to generate 3D structural models of esterases. A single
model was generated for each esterase with ten prediction cycles
(--num_recycles) and structurally refined by running a relaxation with
AMBER (--amber). For subsequent analyses, only esterases with a suf-
ficient 3D structural model quality, with a sequence length <1000

residues, and without cofactors were considered. To test whether the
catalytically active residues (CARs) of the 3D structures are accessible
for substrates, we used the CAVER 3.0.3 PyMOL Plugin84,85. Therefore,
CARs were identified based on the minimal summed distances
between all triplets of serine oxygen atoms, histidine nitrogen atoms in
epsilon position, and carbon atoms of the carboxylic acid group from
either glutamate or aspartate residues. Starting points for the com-
putations were defined based on the Cartesian coordinates of the
centre of mass (COM) of each CAR. Default values were used for the
probe radius (0.9 Å), shell radius (3.0 Å) and shell depth (4.0 Å). We
verified that CARs in all models are accessible for substrates, i.e., that
allmodels are in an open conformation: CARs are either located on the
protein surface or are buried and connected with the surface by
tunnels.

The esterase structures were pre-processed with pdb4amber,
which is part of AmberTools21, and hydrogen atomswere added using
the Reduce program86. The prepared esterases were solvated in a
truncated octahedron of TIP3P water87, leaving at least 20 Å between
the esterase structure and the edges of the solvent box, using the LeaP
programof AmberTools21. All systems were neutralized by adding Na+

or Cl− ions as needed. We used the Amber ff14SB force field88 to
parametrize the protein. Ion parameters were taken from Joung and
Cheatham89. Structural ensembles of esterases were generated by all-
atom molecular dynamics (MD) simulations, with five replicas at
500 ns, yielding 2.5 μs of cumulative simulation time per esterase.
Minimization steps, thermalization, and production simulations were
carried out using the GPU-accelerated CUDA version of PMEMD90,91

from the Amber21 suite of programs92. The systems were heated to
298K and the pressure was adapted in NPT simulations to obtain a
density of 1 g cm−3. During thermalization and density adaptation, we
kept the solute fixed by positional restraints of 1 kcalmol−1 Å−2, which
were gradually removed over five steps in short subsequent NVT
simulations. Afterwards, five NVT production simulations of 500ns
length were performed using unbiased MD simulations. During these
simulations, we set the time step to integrate Newton’s equation of
motion to 4 fs, following the hydrogen mass repartitioning strategy93.
Coordinates were saved every 200 ps yielding 2500 conformations for
each production run that were considered for subsequent analyses.
The Amber21 software for MD simulations is available at http://
ambermd.org/.

Rigidity analyses were performed following Nutschel et al.41 using
the Constraint Network Analysis (CNA) software package (version
3.0)33,34,94,95, available at https://cpclab.uni-duesseldorf.de/index.php/
Software. In detail, we applied CNA on ensembles of network topolo-
gies generated from conformational ensembles obtained from MD
simulations generated at room temperature, for which force field
parameters had been optimized. Average stability characteristics were
calculated by constraint counting on each topology in the ensemble.
CNA functions as a front- and back-end to the graph theory-based
software Floppy Inclusions and Rigid Substructure Topography
(FIRST)96. The application of CNA to biomolecules aims to identify
their rigid cluster and flexible region composition, which can aid in
understanding the biomolecular structure, stability and function. As
the mechanical heterogeneity of biomolecular structures is intimately
linked to their diverse biological functions, biomolecules generally
show a hierarchy of rigid and flexible regions37. To monitor this hier-
archy, CNA performs thermal unfolding simulations by consecutively
removing noncovalent constraints (hydrogen bonds and salt bridges)
from a network in the order of their increasing strength. Therefore, a
hydrogen bond energy EHB is computed from an empirical energy
function97. For a given network state σ = f(T), hydrogen bonds
(including salt bridges) with an energy EHB > Ecut(σ) are removed from
the network at temperature T. In the present study, thermal unfolding
simulations were carried out by reducing Ecut from −0.1 kcalmol−1 to
–6.0 kcalmol−1 with a step size of 0.1 kcalmol−1. Ecut can be converted
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to a temperature T using the linear equation introduced by Radestock
et al.33 as reported in equation (2), where the range of Ecut is equivalent
to increasing temperature from 302K to 420K with a step size of 2 K.

T = � 20K

kcal mol�1
� � *Ecut +300K ð2Þ

The number of hydrophobic tethers was kept constant during the
thermal unfolding simulations98. From these simulations, CNA com-
putes a set of indices to quantify biologically relevant characteristics of
protein stability at a global and local scale34,99. Here, we used the
cluster configuration entropyHtype2, ameasure of the global structural
stability, to predict the phase transition temperature Tp (for details on
Htype2

34,37,99). At Tp, the protein switches from a rigid (structurally
stable) to a floppy (unfolded) state and the largest rigid cluster no
longer dominates thewhole proteinnetwork. If the largest rigid cluster
dominates the whole protein network, Htype2 is low because of the
limitednumber of possibleways to configure a systemwith a very large
cluster. When the largest rigid cluster starts to decay or stops to
dominate the network, Htype2 jumps. At this stage, the network is in a
partially flexible state withmany ways to configure a system consisting
of many small clusters. The percolation behaviour of protein networks
is usually complex, and multiple phase transitions can be
observed33,35,37–41,100. To identify Tp, a double sigmoid fit was applied to
an Htype2 versus T(Ecut) curve as performed previously33,35,37–41,100. In
general,Tpwas taken as the T value associatedwith the largest slope of
the fit, except for esterases with Td > 50 °C for which the second phase
transition was chosen to focus on the decomposition of the core. It is
important to note that applying CNA to MD simulations at room
temperature may lead to an evening out of Tp values for esterases that
transition around this temperature, i.e., systems with a Tp at or below
room temperature might all be influenced similarly by loosening their
bonding network. By contrast, systems with a transition temperature
at or above room temperature would still be discriminated against.
The data generated in this study for analyzing Tp values have been
deposited at researchdata.hhu.de under accession code DOI:
10.25838/d5p-42101 [https://doi.org/10.25838/d5p-42].

Relationship of temperature-induced changes in enzyme
Relationship between MAT and enzyme response to temperature (i.e.,
Topt, Td and Tp) were evaluated by performing linear regression in R. In
the case of enzymes retrieved from the Tara ocean dataset we calcu-
lated first the break point (flexus) using the package segmented in R102

and then we computed separately the linear model describing the two
linear regressions before and after the breakpoint. To evaluate the
possible relation between enzyme thermal response and other envir-
onmental parameters, salinity and pH data were retrieved from Bio-
ORACLE52 using GPS coordinates of each location.

Environmental characterization and sediment collection from
different temperature variability levels in the Red Sea
We recorded the temperatures of surface sediments fromMarch 2015
to September 2016 along the coast of the Red Sea using HOBO data
loggers (Onset, USA) in nine stations located at 3, 25, and 50m depth.
Details on the location, depth and temperature fluctuations of the
studied sediments are reported in Supplementary Table S4 and Source
Data. We first assess the differences in the homogeneity of the tem-
perature variance in the three types of sediments to evaluate the
magnitude of thermal variation and then we test the difference among
their MATs using a non-parametric ANOVA (Dunnett’s multiple com-
parisons tests). We identified three different levels of temperature
variability (Fig. 3a–c; Supplementary Table S5): high, intermediate, and
low thermal variability (HTV, ITV, and LTV, respectively), where sedi-
ments experienced temperature variations of 12.8 °C, 8.8 °C, and
6.7 °C, respectively. From each station, we sampled 200 g of surface

sediment (0–5 cm depth) in triplicate in August and December 2015
with aVander Venngrab (1 dm3) equippedwith aMicroCat 250Seabird
CTD (Conductivity, Temperature, Depth), which was assembled on
board the research vessel R/V Explorer (KAUST). During sampling, we
measured the temperature of the sediments and the water layer cov-
ering the sediments using a digital thermometer and the CTD,
respectively. We conducted all sampling in compliance with the
guidelines specified by KAUST and Saudi Arabian authorities.

Sediment processing for analysis of bacterial communities
Fromeach sample (in triplicate), we immediately removed subsamples
of sediment (n = 54, ~10 g) and stored them at –20 °C for molecular
analysis. Separately, sediment 25 ± 1 g was transferred to 50ml tubes
and added 30ml of filtered (0.2 µm)water from the Red Sea. The tubes
were shaken at 500 rpm for one hour and then centrifuged them at
300 g for 15min to detach themicrobial cells in the sediments without
affecting their vitality103,104. The supernatant containing the extracted
cells was collected in sterile tubes and was immediately used to mea-
sure microbial growth rates.

Evaluation of bacterial growth in sediments at different
temperatures
We evaluated the microbial growth rate of the heterotrophic com-
munity extracted from the sediments under HTV, ITV, and LTV at
10 °C, 20 °C, 30 °C, 40 °C and 50 °C, using Marine Broth as the culti-
vation medium (Zobell Marine Broth 2216) supplemented with 0.1 g/L
cycloheximide; a rich-medium was selected to avoid the nutrient
limitation effect that can affect bacterial physiology63,105. We inocu-
lated 96-well plates with 200 µl of cultivation medium and 25 µl of the
cell suspension extracted from the sediments.We inoculated the three
biological replicates from each station and each level of temperature
variability in eightwells, giving a total of 72wells for eachplate, with 24
wells used as a negative control inoculatedwithwater.We assembled a
total of three plates for each incubation temperature fromAugust and
December. Plates were spectrophotometrically measured at 3 h
intervals using an optical density of 600nm (Spectramax® M5) for
72 h. Wells with optical density <0.15 (average value of the medium
inoculated with autoclaved sediment extracts) were assigned as ‘no-
growth’ at a given temperature. Growth (expressed as OD600) was
normalised in terms of the OD600 of the initial inoculum. The growth
ratewas calculated as the change in the number of cells in a cultureper
unit of time (h)106. A GAM81 was applied to evaluate the effect of tem-
perature, temperature variability level and seasonality on the con-
tinuous response variables of bacterial growth and growth rate.

Total DNA extraction, Illumina sequencing, and taxonomic
analysis of bacterial 16S rRNA gene sequences
The total DNA was extracted from 0.4 ±0.1 g of sediment using a
DNeasy PowerSoil Pro Kit® (Qiagen) and from the final enriched het-
erotrophic bacterial fraction obtained by the cultivation approach
using a DNeasyUltraCleanMicrobial Kit (Qiagen). PCR amplification of
the V3–V4 hypervariable regions of the 16S rRNA gene on DNA in the
sediment samples was performed using the universal primers 341f and
785r107. We constructed libraries with the 96 Nextera XT Index Kit
(Illumina) following the manufacturer’s instructions and sequenced
DNA using the Illumina MiSeq® platform with paired-end sequencing
at the Bioscience Core Lab at KAUST. Raw reads were deposited in the
NCBI database under the SRA accession number PRJNA508596. We
assembled forward and reverse reads for each sample into paired-end
reads (minimum overlap of 50 nucleotides and a maximum of one
mismatch within the region) using the fastq-join algorithm, and the
samples were analysed using the UPARSE v8 and QIIME
v1.9 softwares108. The final reads (average length of 405 bases) were
clustered into operational taxonomic units (OTUs), taking 97%
sequence identity as the cut-off. All samples showed a sufficient
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sequencing depth (Good’s coverage values >90%) for further analysis
(Supplementary Tables S9 and S10). We calculated the compositional
similarity matrix (Bray-Curtis of the log-transformed OTU table) with
Primer 6109. Using the same software, canonical analysis of principal
coordinates (CAP)110 was used to compare the temperature variability
samples (temperature variability levels: HTV, ITV, and LTV; season
levels: August and December) based on the compositional similarity
matrix. We applied permutational multivariate analyses of variance to
the matrix (PERMANOVA; main and multiple comparison tests). We
tested the occurrence of thermal-decay patterns in sediments with
different temperature variability levels using linear regression (Prism
9.2 software, La Jolla California USA, www.graphpad.com) between the
bacterial community similarities (Bray-Curtis) and the temperature
differences among sediments (ΔT°C) at the time of sampling. We cal-
culated alphadiversity indices (richness and evenness) using the
paleontological statistics (PAST) software, and their correlation with
temperature was modelled using linear regression in Prism 9.2.
Spearman correlation among temperature and relative abundance of
OTUs within each sediment sample was evaluated; OTUs were classi-
fied based on their positive (enriched) and negative (depleted) corre-
lation with sediment temperature.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The authors declare that the main data supporting the findings of this
study are available within the paper and related Supplementary
Information, Supplementary Data and Source Data files. Accession
numbers to retrieve metagenomes analysed in this study are reported
in Supplementary Table S3, Supplementary Data S3 and Supplemen-
taryData S4files. Themass spectrometryproteomics data are available
via ProteomeXchange with identifier PXD039714. The data related to
Tp have been deposited at researchdata.hhu.de under the identifier
[https://doi.org/10.25838/d5p-42]101. To use the archive, download the
file, remove the .txt ending, and useWinRAR, for example, to open the
archive. Microbiome sequences extracted from temperature varia-
bility sediments and related enriched heterotrophic bacteria were
deposited in the NCBI database under the SRA accession number
PRJNA508596. Source data are provided with this paper.

Code availability
The scripts for analysis are available on GitHub at github.com/
MarcoFusi1980/Enzyme-adaptation-to-habitat-thermal-legacy-
explains-the-plasticity-of-marine-microbiomes.git.
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