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Abstract
Carbon atom vacancies in graphene give rise to a local magnetic moment of σ+π origin, whose
magnitude is yet uncertain and debated. Partial quenching of π magnetism has been ubiquitously
reported in periodic first principles calculations, with magnetic moments scattered in the range
1.0–2.0 µB, slowly converging to the lower or the upper end, depending on how the diluted limit is
approached. By contrast, (ensemble) density functional theory calculations on cluster models
neatly converge to the value of 2 µB when increasing the system size. This stunning discrepancy
has sparked a debate about the role of defect–defect interactions and self-doping, and about the
importance of the self-interaction-error in the density-functional-theory description of the
vacancy-induced states. Here, we settle this puzzle by showing that the problem has a fundamental,
mono-electronic origin which is related to the special (periodic) arrangement of defects that results
when using the slab-supercell approach. Specifically, we report the existence of resonant states that
are anomalously delocalized over the lattice and that make the π midgap band unphysically
dispersive, hence prone to self-doping and quenching of the π magnetism. Hybrid functionals fix
the problem by widening the gap between the spin-resolved π midgap bands, without reducing
their artificial widths. As a consequence, while reconciling the magnetic moment with expectations,
they predict a spin-splitting which is one order of magnitude larger than found in experiments.

1. Introduction

Defects in graphene such as monovalent ad-species or missing carbon atoms—commonly referred to as ‘pZ
vacancies’—play important roles in charge transport, in magnetism and in the chemistry of graphene, since
they induce semi-localized ‘midgap’ states which are known to decay slowly (as 1/r) from the defect position
[1–3]. These resonant states host itinerant electrons, act as strong scatterers determining graphene
conductivity at both zero and finite carrier densities [4–8], and provide spin-half semi-local magnetic
moments which are detectable by magnetometry experiments [9, 10] and bias graphene chemical reactivity
towards specific lattice positions [11–13].

Carbon atom vacancies play a special role in this respect since, besides the above ‘midgap’ state, they
present additional dangling bonds in the σ skeleton originating from the removal of a C atom. In the bare
vacancy a structural (Jahn–Teller) distortion occurs [14–17] and leaves a lonely σ electron which is free to
couple with the above mentioned π one. As a result, the ground state of the bare vacancy in large cluster
models is predicted to be a (planar) ‘triplet’, although a (non-planar) ‘singlet’ with one spin flipped (only
∼0.2 eV higher in energy) can be accessed if ripples in the graphene sheet or interaction with a substrate are
taken into account [18]. Periodic calculations do predict a planar, high-spin configuration but fail in
reproducing the ‘expected’ value of the magnetic moment [15–20].

It is well known that periodic calculations can be plagued by spurious interactions between periodic
images that determine the displacement and the broadening of the defect-related bands, hence causing
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self-doping and partial quenching of the magnetization. However, several works have reported a reduction of
the local magnetic moments upon increasing the cell size thereby suggesting a complete quenching of the π
magnetism in the diluted limit [19]. Others suggest an increase of the magnetic moment towards∼1.5 µB
when decreasing the defect concentrations [14–18, 20], and one of them predicts the ‘expected’ limit of 2 µB
when the limit of an isolated vacancy is carefully approached [21]. As a matter of fact, the computed values of
the magnetic moment scatter in the range 1.0–1.7 µB, and slowly converge to 1 µB or 2 µB, depending on how
the limit of an isolated vacancy is realized. By contrast, calculations based on clusters models show that the
magnetic moment increases with cluster size, clearly tending to the expected value of 2 µB [20]. Therefore,
calculations including periodicity produce the opposite result of cluster based simulations.

This puzzling issue has been recently addressed by employing computationally expensive hybrid
functionals in periodic calculations, with the gratifying reward of a reasonable value of the magnetic
moment, smoothly converging to 2 µB when increasing the supercell size [22, 23]. The immediate conclusion
of these studies is that exact exchange is crucial for the correct description of the vacancy magnetic moment:
hybrid functionals partially correct the self-interaction error (SIE) that notoriously plagues local (LDA) and
semi-local (GGA) functionals and that can seriously affect the degree of electron localization/delocalization,
hence the magnetization. This seems to be a definite answer to the long-debated issue of the magnetic
moment of a C-atom vacancy in graphene, but it is quite unsatisfactory from a theoretical point of view.
Indeed, this ‘magnetic-moment problem’ does not involve at all the σ electron3, rather resides in the
semilocalized (not even normalizable) ‘midgap’ state where e-e interactions hardly play a significant role. All
the more that GGA calculations for other pZ defects, e.g. H atoms, predict the ‘correct’ π moment, with
precisely the same defect-induced π structure underneath [13].

Here, motivated by these puzzling issues we reinforce some observations made long ago by one of the
present authors (R M) about the existence of anomalously delocalized states in defective graphene that could
hamper the correct calculation of the magnetic moment in a periodic setting [18, 24]. We do this by
scrutinizing the localization properties of the midgap state wavefunctions at both the tight-binding (TB) and
the first principles theory levels (section 3), after providing a comprehensive theoretical frame for their
discussion (section 2) which should clarify the anomalous character of the delocalization. By relating the
anomalous delocalization of the states to the dispersion of the π midgap band we provide evidence for a
spurious self-doping of the band, hence for an unphysical quenching of the magnetization. As we shall show
below, the problem is not limited to the C atom vacancy, although it affects the vacancy more than other pZ
defects.

2. Theory

In this section we present some background material which is necessary to identify as anomalous the
behaviour of the midgap state in a periodic calculation (at least in some regions of the supercell Brillouin
zone, SBZ). We start by providing some analytical results about the expected spatial properties of the
resonance induced by a pZ vacancy in graphene, and then we show why—at the tight binding level with
nearest-neighbors hoppings only—fully delocalized states appear that contrast with the 1/r decaying states
expected for a vacancy. The delocalized solutions are inherited from the pristine system (they are ‘robust’
against some disorder) and, as will be shown numerically in section 3, they survive at higher level of theory
and provide a mechanism for self-doping and for the quenching of the π magnetization.

2.1. Isolated pZ defect
The most complete, yet analytical, description of the zero-mode state induced by a pZ vacancy in graphene is
provided by the non-interacting Anderson model [25] for a simple adsorbed species that covalently binds to
one of the graphene lattice sites [4, 6]4. The limit of a true C-atom vacancy can then be realized by
strengthening the adatom-lattice chemical bond up to the extent that the bonding/antibonding pair of
molecular orbitals describing the bond separates out from the lattice states (the so-called unitary limit). The
ad-species is described by a single level at energy εad (e.g. the 1s level of a H atom) which hybridizes with a
carbon atom of the lattice. If we place the latter at the origin of the lattice, the total Hamiltonian reads as

H=Hlatt +Had (1)

3 This is hosted in a well localized state featuring a strong Coulomb repulsion (∼2.5 eV) that prevents double occupation despite the fact
it is located well below the Fermi level (∼0.7 eV).
4 See also [13] for a detailed description of the model and of the relevant results.
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where

Hlatt =−t
∑
σ

∑
⟨i,j⟩

c†i,σcj,σ (2)

is the TB lattice Hamiltonian with nearest-neighbors hoppings and

Had =
∑
σ

ϵadd
†
σdσ +W

∑
σ

(
c†0,σdσ + d†σc0,σ

)
. (3)

Here,W is the hybridization energy, d†σ (dσ) creates (destroys) an electron with spin σ in the adatom energy
level, c†i,σ (ci,σ) does the same for the lattice site i and t is the hopping energy for the nearest-neighbors pairs
⟨i, j⟩. We are interested in the Green’s operator5 G(λ) of the one-electron Hamiltonian, which can be
obtained upon partitioning the one-electron space into a primary subspace (the lattice) and the remainder
[26]. Its projection onto the lattice—i.e. PG(λ)P, P being the projector onto the primary subspace—takes the
form PG(λ)P= (λ−Heff)

−1 ≡ Geff(λ) where Heff is an effective, energy-dependent Hamiltonian implicitly
accounting for the dynamics in the adatom level. The latter reads as Heff =Hlatt +V(λ) with the local
scattering potential defined by

V(λ) =W2
∑
σ

|χ0,σ⟩⟨χ0,σ|
λ− ϵad

where |χ0,σ⟩ is a pZ spin-orbital at the defective site. The sought for effective Green function can be obtained
from the T matrix [27], T(λ) := V+VGeff(λ)V, since the corresponding Lippmann–Schwinger equation
T(λ) = V+VG0(λ)T(λ) (where G0 is the Green’s operator of the unperturbed lattice) is solved by

T(λ) = t(λ)
∑
σ

|χ0,σ⟩⟨χ0,σ| t(λ) =
W2

λ− ϵad −W2g000(λ)
(4)

when the potential takes a separable form. Here, g000(λ) is the on-site Green’s function of the unperturbed
lattice,

g000(ϵ) = ⟨0σ|G0(λ)|0σ⟩ ≈ − ϵ

ϵ2c
ln

(∣∣∣∣ϵ2cϵ2 − 1

∣∣∣∣)− iπρ0(ϵ),

ρ0(ϵ)≈ |ϵ|
ϵ2c
Θ(ϵc − |ϵ|) is the density of states per C atom per spin channel and ϵc is an energy cutoff that

determines the bandwidth, ϵc ≈ h̄vFd
−1
CC , where dCC ≈ 1.42 Å is the C–C bond length6. Because of the linear

density of states, the real part of the on-site Green’s function features a vertical cusp at zero energy that has a
huge impact on the defect-induced states. Indeed, it makes the position of the resonance defined by
equation (4), i.e. the lowest energy solution of the equation

ϵ− ϵad −W2ℜg000(ϵ) = 0,

rather insensitive to the hybridization energyW and always very close to ϵ= 0. This feature gives an
‘universal’ character to the defect problem, meaning that it does not depend on the details of the defect
originating the pZ vacancy in the lattice.

We are interested in the spatial properties of such resonance, i.e. in the scattered component |ψscatt
ϵ ⟩ of the

scattering state |ψϵ+⟩,

|ψϵ+⟩= |ψ0
ϵ⟩+ |ψscatt

ϵ ⟩= |ψ0
ϵ⟩+G0(ϵ)T(ϵ)|ψ0

ϵ⟩

where |ψ0
ϵ⟩ is an eigenstate of the unperturbed lattice with energy ε. Clearly,

ψscatt
ϵ (r)∝ t(ϵ)G0(r,0|ϵ)

where G0(r,0|ϵ) = ⟨rσ|G0(ϵ)|0σ⟩ is the Green function of the unperturbed lattice at r for the adatom sitting
on the site at the origin 0 (which we take to be of A type in the following). This quantity has been considered

5 As usual, λ is understood to be λ= ϵ+ iη, where ϵ is a real energy and η→ 0+.
6 Upon matching ρ0(ϵ) to the known low-energy expression for the density of states in graphene one obtains kc = ϵc/h̄vF =

2
√

2π/3
√
3d−1

CC ≈ 2d−1
CC or ϵc = t

√
π
√
3≈ 6 eV.
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by several authors for different reasons—from STM imaging [28] to RKKY interactions in graphene
[29–31]—and can be obtained numerically as Fourier transform of the (simpler) Green’s function in
k−space, namely from

G0
XA(r,0|ϵ) =

1

ΩBZ

ˆ
BZ
d2keikrG0

XA(k|ϵ)

where X= A,B depending on whether r is a lattice position in the A or B sublattice (A and B, respectively, in
the following). Here, the integral runs over the graphene Brillouin zone (BZ) and ΩBZ is its area. At the low
energies of interest for the defect-induced resonance, the above expression can be integrated analytically in
the linear band approximation with negligible error for not too small distances (r> dCC). The result is

G0
AA(r,0|ϵ) =−i

Ac

2

|ϵ|cos(Kr)
h̄2v2F

H±
0

(
|ϵ|r
h̄vF

)
for r ∈ A (5)

G0
BA(r,0|ϵ) = +i

Ac

2

ϵ sin(Kr+ θ)

h̄2v2F
H±

1

(
|ϵ|r
h̄vF

)
for r ∈ B (6)

where H±
l are Hankel functions of the first and second kind (for positive and negative energies, respectively)

of order l, Ac is the area of the graphene unit cell and θ is the angle between r and vector K. The latter locates
a K corner in the BZ and can be given as 2πK=ΩBZδ ∧ n̂, where δ is the position of the B site relative to the
A one in the (arbitrarily) chosen unit cell, and n̂ is the surface normal. Thus, the scattering resonance turns
out to have the expected threefold symmetry, with maxima along the armchair directions. It further presents
the celebrated 1/r decay in an intermediate distance range dCC < r≪ h̄vF/|ϵ|, that can be effectively rather
wide at the energies of interest (ϵ→ 0). Indeed, upon replacing the Hankel’s functions in equations (5)
and (6) with their low-argument expansion one obtains the approximate expressions

G0
AA(r,0|ϵ)≈

Ac

π

ϵr

h̄vF

cos(Kr)

h̄vFr

[
ln

(
|ϵ|r
2h̄vF

)
+ γ

]
for r ∈ A (7)

G0
BA(r,0|ϵ)≈

Ac

π

sin(Kr+ θ)

h̄vFr
for r ∈ B (8)

(where γ≈ 0.577 is the Eulero–Mascheroni constant) featuring a 1/r decay of G0 on the majority sublattice
(B) and a much smaller magnitude on the minority one (A), vanishing for ϵ→ 0.7 Such algebraic decay of
the wavefuncion was first predicted [1, 2, 32–34] and experimentally observed [3] for carbon atom vacancies
and more recently investigated for hydrogen atoms [35]. The above equations provide a full spatial
description of the π midgap state, which is valid at any distance from the defect position but the smallest
ones (i.e. for r> dCC), which however are irrelevant for the present discussion.

2.2. Periodic arrangement of pZ defects
Next we consider the case—which is rather common when it comes to modeling with first principles
means—where the pZ defect is investigated in a periodic setting with a sufficiently large supercell that
minimizes any electronic/structural interaction between the defect and its periodic image. We consider again
a tight binding model with next-neighbors hoppings only and show that, irrespective of the supercell shape
and size there exist regions in the superlattice Brillouin zone where the zero energy modes are anomalous,
i.e. they fully delocalize over the lattice without decaying as 1/r away from the defect positions, as it happens
for the isolated defect. These anomalous states do not disperse at the simple tight binding level of theory but
do it in the presence of inhomogeneities in the lattice, thereby affecting the correct occupation of k-states in
the Brillouin zone and the net induced magnetic moment.

We start observing that, at the above mentioned tight binding level, one of the two linearly independent
states that are found at the K point of pristine graphene is also an exact zero-energy solution for the lattice
with a pZ vacancy (the same happens at the K′ point). To this end we re-write the lattice Hamiltonian of the
unperturbed system, equation (2), by explicitly showing its bipartite nature

Hlatt =−t
∑
σ

∑
R,i

a†R,σbR+δi,σ + c.c.

7 For the minority sublattice contribution notice that, with x= |ϵ|r/h̄vF, one has |x lnx| ⩽ e−1 for any x< 1.
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Here the inner sum runs over the lattice sites, δi are the three vectors joining A sites to B sites, and aR,σ , bR,σ
are the previous ci,σ ’s annihilation operators, now for an A or a B site, respectively, which is located at R. The
Hamiltonian for the defective lattice with a missing A site at the origin R= 0 then reads as

H=H0 + t
∑
σ

3∑
i=1

(
a†0,σbδi,σ + b†δi,σ

a0,σ
)
. (9)

In pristine graphene, the eigenstates at the K (or K′) point, because of degeneracy, can be chosen to localize
on either sublattice, i.e. to have definite projection of the pseudo-spin along z. Let |ϕAK,σ⟩ and |ϕBK,σ⟩ be such
localized states at the K point, respectively forA and B. Since they are eigenstates at zero energy we have

3∑
i=1

a†R,σbR+δi,σ|ϕBK,σ⟩= 0

for any lattice vector R, hence it holds

3∑
i=1

(
a†0,σbδi,σ + b†δi,σ

a0,σ
)
|ϕBK,σ⟩ ≡ 0.

This shows that |ϕBK,σ⟩ is also an eigenstate of the defective Hamiltonian H at the same energy.
Next, we observe that that this property is not limited to a single vacancy, since similar reasoning applies

to an arbitrary number of isolated vacancies, provided they are all placed in the A sublattice. In particular, it
holds for a periodic arrangement of vacancies in large supercells, which is the case of interest when modeling
pZ vacancies with a periodic-supercell approach. In such instance, wherever the K and K′ points fold to into
the SBZ there appear ‘preserved’ states of the pristine lattice that occupy the majority lattice sites only (as the
midgap state ought to) but have an extended character, without decaying as 1/r away from the defect. And,
by continuity, it is expected on general grounds that this anomalous delocalization of the wavefunction is
not limited to the above special points, rather it extends over their neighborhoods in the SBZ. This
feature—while not affecting the dispersion of the midgap π band for the (periodized) Hamiltonian of
equation (9)8—do affect the properties of the corresponding band when, more realistically, e− h symmetry
breaks down. For instance, a slight change of the on-site energy has to be expected around a C atom vacancy
because of the charge re-distribution that unavoidably occurs at an edge of a graphenic structure, and this
suggests that the midgap π band becomes dispersive in those regions of the SBZ where the states are
delocalized. In turn, this affects the occupation of the band and the net magnetic moment that it carries. We
stress that this dispersion is unphysical, meaning that it is a feature of the periodic arrangement of vacancies
rather than of the system one would (most probably) like to describe, i.e. an isolated vacancy in graphene.

3. Results

In this section we present some numerical results that support the above interpretation that the dispersion of
the π midgap band in a periodic model of vacancies is unphysical (for the purpose of describing an isolated
vacancy in the lattice). We start by considering simple TB calculations in which we modelled the vacancy at a
very simple level but using relatively large supercells. Then we move to a more realistic description of the
C-atom vacancy in graphene by considering density functional theory (DFT) calculations that account for
the atomistic details of the defect in the lattice, albeit in a more limited setting.

3.1. Tight-binding
We first investigate the midgap π band in periodic TB Hamiltonians with pZ vacancies, using unperturbed
(i.e. homogeneous) on-site energies. We consider for simplicity n× n superlattices where the anomalies are
easily identified since, depending on the superlattice constant n, K and K′ fold either to K/K ′ or to the Γ
point of the SBZ. Specifically, when n ̸= 3m (m ∈ N) non-degenerate graphene zero-energy modes are
expected at both the K and the K′ point of the SBZ, since K and K′ fold, respectively, into K and K′ for
n= 3m+ 1 and into K′ and K for n= 3m+ 2. When n= 3m, on the other hand, both K and K′ fold into Γ,
a Dirac cone survives, and three states are expected at zero energy, two of which (the ones localizing on the
majority sites) are necessarily the extended K and K′ states of pristine graphene.

8 This remains flat all over the SBZ since it is constrained by e− h symmetry to lie at zero energy.
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Figure 1. Low energy band structure of n× n superlattices with one vacancy from tight-binding calculations with t= 2.7 eV.
n= 30,31,32 from left to right. Full red lines for the midgap band and dashed red lines for the corresponding inverse
participation ratio, see text for details. For n= 30 the latter was computed for a state localized on the majority sublattice.

Figure 2. Probability density of the zero-energy modes found at the special points of the superlattice Brillouin zone for n= 31,
from left to right for Γ,K andM, as indicated. The x axis is placed along one of the three-fold symmetry direction of the defective
lattice. Curves are Akima splines interpolating the numerically determined coefficients and dashed lines on the leftmost and on
the rightmost panels represent the functions+1/r2.

Figure 1 shows the band-structure of three different superlattices with a (super)lattice constant
corresponding to a rather large unit cell, n= 30,31,32 from left to right. In these calculations the hopping
parameter was given the value t= 2.7 eV to ease the comparison with the first principles results discussed
below. In figure 1 the non-dispersive midgap band is plotted in red (full line) and it is accompanied (dashed
red line) by its q= 2 inverse participation ratio, which is defined as

IPRq =
∑
i

|ψi|2q (10)

where the sum runs over the lattice sites of the supercell and ψi is the amplitude of the zero-energy mode at
the ith site. This IPRq (for q> 1) measures the localization of the midgap states in this periodic arrangement
of defects. A (normalized) state which is fully delocalized over the lattice gives IPR2 = 1/n2 , since n2 is the
number of majority sites in a n× n supercell where the midgap state is known to localize. For a state decaying
as 1/r, on the other hand, the inverse participation ratio takes a larger value, namely IPR2 ≈ a/(b+ lnn)2

where a and b are constants and the dependence on n follows from the logarithmic divergence of its squared
norm. Clearly, the real-space localization properties of the midgap state change across the SBZ and the state
does indeed delocalize where the special K and K′ points of graphene are found to fold in the SBZ. Figure 2
shows the details of the zero energy wavefunctions for n= 31 along one of the three-fold symmetry
directions of the vacant lattice, and explicitly proves the existence of delocalized states at special symmetry
points of the superlattice Brilloiun zone. Similar results are found for n= 30,32, with the only caveat that for
n= 30 three delocalized states are found at Γ as a consequence of the residual degeneracy.

These odd findings are not limited to the above (already large) unit cells, rather persist for any supercell
size. This is seen by the IPR2 computed at the K and the Γ points for several n× n superlattices of pZ
vacancies, which is reported in figure 3. (Please notice that in drawing the figure we set n ̸= 3m to free
ourselves from the annoying degeneracy problem that prevents the automatic analysis of the zero

6
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Figure 3. Inverse participation ratio for anomalous (grey triangles) and ordinary (red circles) midgap states in n× n supercells, as
computed at the K and Γ points of the superlattice Brillouin zones, respectively, for n not a multiple of 3. Also shown as full lines,
the corresponding theoretical values, namely IPR2 = 1/n2 for a fully delocalized state (black curve) and a fit to
IPR2 ≈ a/(b+ lnn)2 appropriate for a state decaying as 1/r (red curve).

energy mode.) Also shown in the same figure (full black lines) is the expected behavior of the IPR2, that
confirms the rather different spatial extensions of the states at the selected special points of the SBZ.

Finally, we illustrate how a varying real-space localization may turn a flat band to be dispersive in the
realistic situation where some inhomogeneities in the lattice are present. Figure 4 shows the band structure of
a pZ vacancy in a 6× 6 cell, as obtained at different levels of theory: tight binding for π states only in the left
and middle panels, and first principles calculations (to be described below) for a C-atom vacancy in the
rightmost panel. For the left panel, tight binding calculations used (as above) a uniform distribution of
on-site energies, while for the middle panel we introduced some inhomogeneity in the lattice. Specifically, we
shifted the on-site energy of the three lattice sites closest to the defect by 1.0 eV below the value it takes in
pristine graphene, in oder to mimic the charge redistribution occurring in the σ bands as a consequence of
the removal of a C atom. The figure makes clear that the anomalously delocalized zero energy state that
appears close to Γ leads, in the presence of inhomogeneities, to a dispersive migdap band which (with the
chosen parameters) closely resembles the one found from first principles in the atomistic model of the
vacancy. At the first principles level of theory self-doping necessarily occurs, the Dirac point shifts above the
Fermi level and the spin-up and spin-down bands split. Hence, the majority spin channel is only fractionally
occupied and the magnetization gets partially quenched, if the comparison is made with the situation of a
spin-split but otherwise flat band. We stress that the ‘dispersive region of the SBZ’ shrinks together with the
superlattice Brillouin zone when increasing the supercell size without disappearing. Hence, in self-consistent
calculations, in order to obtain a smooth behavior of the magnetic moment with the system size and to
attempt any kind of extrapolation, the larger the supercell is the finer the kmesh should be, as indeed
observed in calculations [21].

3.2. First principles calculations
Next, we consider the results of several first principles calculations that we performed on different periodic
arrangements of C atom vacancies and similar pZ vacancies. In these calculations we used the
pseudo-potential DFT implementation available in SIESTA [36, 37], in the generalized gradient
approximation provided by the Perdew–Burke–Ernzerhof functional. Separable [38] norm conserving
pseudopotentials [39] with partial core corrections [40] were used to replace core electrons, and Kohn–Sham
states were represented on a basis of numerical atomic orbitals with compact support. Such an approach
allows one to tackle efficiently huge-sized problems, at the expense of a reduced control on the convergence
of the one-electron basis. For this reason we used consistently a double-ζ basis set with single polarization
orbitals (DZP) but occasionally checked the results with triple-ζ sets and double polarization orbitals
(TZ2P), finding negligible differences between the two sets of results. We optimized each structure
considered adopting a stringent threshold on the maximum component of the atomic forces (0.005 eVÅ−1),
in conjunction with a large energy cutoff (800 Ry) for the real space integration grid to remove any egg-box
effect.
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Figure 4. Band structure of a carbon atom vacancy in a 6× 6 supercell. Left and middle panels: energy bands (black curves) from
tight binding calculations with hopping parameter t= 2.7 eV. Red curves are for the inverse participation ratio of the midgap
state. Calculations in the middle panel used an energy offset of∆ϵ=−1.0 eV for the on-site energy of the three sites closest to
the vacancy. Right panel: spin-polarized first principles calculations, with black and blue curves for majority spin and minority
spin states, respectively. Energies are referenced to the Fermi level.

The detailed structure of a C-atom vacancy is well-known and well described in the literature. Briefly, the
removal of a C atom creates a pZ defect responsible for a π resonant state and, at the same time, leaves three
dangling orbitals in the σ network. In the D3h point symmetry group of the system the first belongs to the a ′ ′

2

symmetry species, while the second span the a ′
1 + e ′ irreducible representations. Among the latter, a ′

1 is
lowest in energy since it contains a purely bonding combination of σ orbitals. Hence, the lowest energy
configuration of the many-body state is of E′′ symmetry and undergoes a standard E⊗ e Jahn–Teller
distortion driven by the coupling with in-plane e′ vibrations. As a result, a distorted geometry with a
‘pentagonal’ ring and an ‘apical’ carbon atom opposite to it emerges as equilibrium configuration, threefold
degenerate. The vertical position of the apical C atom determines the preferred spin alignment (through a
second order vibronic coupling): in the lowest energy state, this is the high-spin state with the apical C atom
in-plane with the graphene sheet. Periodic DFT calculations correctly predict the in-plane arrangement but
present a difficult convergence for the monovacancy properties, particularly for the magnetization, as
exemplified by table 1 that reports some details for the smallest supercells considered. As we now show, this is
due to the anomalous delocalization and the ensuing unphysical dispersion of the midgap-state π band.

Figure 5 reports the low-energy band-structure of some n× n superlattices with large supercells
(n= 12,13 and 14), featuring two dispersive midgap π bands, one for the majority spin species (black) and
the other for the minority ones (blue). Their width is large enough to compete with the Coulomb splitting of
the band, thereby determining a partial double occupation of the band (hence, a partial quenching of the
magnetization) in a way that sensitively depends on the adopted supercell. To show that this is indeed related
to the anomalous delocalization discussed above, we computed the IPRq (for q= 2) of the first-principles
k-wavefunctions describing the midgap state, namely the integrals

IPRq(k) =

ˆ
U
|ψk(r)|2qd3r (11)

where U is the superlattice unit cell and ψk is the (majority-spin) midgap state for k−vector k. The resulting
IPR2 is reported as red lines in figure 5 and unambiguously shows the presence of delocalized states (small
values of the IPR) at the high-symmetry points of the SBZ where the K,K ′ states of pristine graphene fold to,
i.e. the Γ point for n= 12 and the K,K ′ points otherwise. The behavior of the IPR2 over the SBZ is further
shown in figure 6 where it becomes clear that the anomalously delocalized states occupy finite-sized regions
of the SBZ (darker area in the color maps), which are much larger than expected on the basis of the band
plots alone. Figure 7, on the other hand, provides a real-space picture of the wavefunction delocalization.
Specifically, in that figure we compare the anomalously delocalized density at the Γ point of the 12× 12 SBZ
(left panel) with the ‘normal’ (i.e. 1/r2-decaying) counterpart at the K point of the same SBZ (right panel).

Finally, we notice that the anomalous delocalization and the unphysical dispersion is not limited to the
C-atom vacancy, rather occurs for any pZ defect, although its effects on the band filling and the
magnetization depends on the details of the defect. This is shown in figure 8 for different pZ defects in the
same 12× 12 supercell, where the spin-splitting and the band dispersion are seen to depend on the nature of
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Table 1. Short (d<) and long (d>) carbon-carbon distances in the monovacancy and corresponding magnetic momentM from the
first-principles calculations described in the main text, for different supercell size and k-mesh. For comparison, plane wave calculations
for the 6× 6 supercell 6× 6 with a 6× 6 k-mesh result in d< = 2.007 Å, d> = 2.557 Å,M= 1.556 µB.

Supercell k-mesh d< (Å) d> (Å) M (µB)

5× 5 4× 4 2.128 2.552 1.767
5× 5 2.132 2.553 1.820
6× 6 2.123 2.551 1.720
8× 8 2.127 2.552 1.752
10× 10 2.129 2.552 1.767
12× 12 2.127 2.552 1.751
24× 24 2.130 2.553 1.762

6× 6 4× 4 2.073 2.551 1.673
5× 5 2.070 2.549 1.667
6× 6 2.067 2.548 1.671
8× 8 2.066 2.548 1.638
10× 10 2.069 2.548 1.654
12× 12 2.069 2.548 1.654
24× 24 2.069 2.549 1.654

7× 7 4× 4 2.026 2.544 1.637
5× 5 2.012 2.542 1.491
6× 6 2.016 2.543 1.562
8× 8 2.015 2.543 1.547
10× 10 2.016 2.543 1.545
12× 12 2.015 2.542 1.540
24× 24 2.014 2.543 1.535

Figure 5. Spin-resolved low energy band structure of the monovacancy in a 12× 12, 13× 13 and 14× 14 supercell (as indicated).
The dispersive midgap band(s) are given as black and blue full lines for the majority and the minority spin components,
respectively. Also shown as red lines the inverse participation ratios for the majority-spin midgap state (magnified by 50 times).

Figure 6. From left to right: behavior of the inverse participation ratio of the majority-spin midgap state in the SBZ of the 12× 12,
13× 13 and 14× 14 supercells with a C atom vacancy. The SBZ with its high-symmetry points is given by the blue hexagons.
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Figure 7. Isocontours of the density |ψk(r)|2 for the Γ- and the K-point midgap-state wavefunctions (left and right panel,
respectively) in the 12× 12 superlattice with a C atom vacancy.

Figure 8. Spin-resolved low energy band structure of the monovacancy and of the F and the OH adsorbates (as indicated), as
obtained in a 12× 12 supercell. The dispersive midgap band(s) are given as black and blue full lines for the majority and the
minority spin components, respectively.

the defect. Hydrogen adatoms (not shown) are rather unique in this respect as they are almost immune to
unphysical dispersion. By this we do not mean that dispersion of the π midgap band is absent for H adatoms,
rather that it is smaller than the spin-splitting of the band, hence irrelevant for its occupation. See, for
instance, [35] (figure S17) for the band structure of one H adatom in a large (and skewed) supercell, which
features a spin-splitting that is small on an absolute scale but large enough to prevail over band dispersion.
The reasons why certain species affect dispersion more than others is yet unknown, but the model
tight-binding calculations described in section 3.1 show that the charge inhomogeneities around the defect
position are crucial for it. In this respect the electronegativity of the adsorbed atom must play an important
role, the closer is this value to that of the C atom the smaller is the charge inhomogeneity, hence the
unphysical dispersion.

4. Discussion

The above results unambiguously show that modeling of a C-atom vacancy in graphene in a periodic setting
introduces anomalies in its electronic structure that hamper the correct occupation of the bands and
determine a partial quenching of the magnetization. Although the difficulties in assessing the magnetic
moment with periodic first principles calculations have been acknowledged by several authors, they have been
attributed to the self-interaction error that plagues local and semi-local functionals and that is known to
seriously affect the degree of electron localization/delocalization. In support to this idea some authors have
recently employed hybrid functionals in periodic calculations to show that they give a magnetic moment that
smoothly and rapidly converges to the expected value of 2 µB when increasing the supercell size [22, 23].
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Similar conclusions can be drawn from Hubbard-corrected DFT calculations9. The use of these hybrid
functionals that mix some fraction of exact (Hartree–Fock) exchange to the semi-local one—thereby
partially correcting the SIE—has led to the immediate conclusion that the SIE is crucial for the correct
description of the vacancy and apparently put an end to the long-debated issue of the magnetic properties of
an isolated C monovacancy in graphene. The conclusion however is incorrect, since it is not physically sound
and is inconsistent with experimental findings.

As mentioned in the Introduction, while the SIE argument might be reasonable for a localized resonance
characterized by a large Coulomb ‘on-site’ energy, it is untenable for a semilocalized (not normalizable)
midgap state whose Coulomb energy hardly exceeds some tens of meV. Indeed, carefully conducted
experiments performed on defective graphene samples have demonstrated the presence of spin-split peaks in
the local density of states in the neighborhoods of mono-vacancies, with energy separations in the range
20–60 meV [41]. These values agree with the peak separation found by Gonzalez-Herrero et al [35] in
hydrogenated samples (∼20 meV) for which (as seen above) the involved resonant state is, for any practical
aim, precisely the same as that introduced by a C-atom vacancy. On the other other, the spin-splitting
produced by hybrid functionals is one order of magnitude larger—several hundreds of meV, depending on
the supercell size—hence unphysical, except maybe in the true diluted limit. It is thanks to the presence of
this large splitting that one achieves, with hybrid functionals, the correct occupation of the π midgap band
and the smooth convergence of the magnetic moment. The electronic structure, though, remains ‘distorted’
and features yet an unphysically dispersive π midgap band, which is more than 0.5 eV wide for the largest
supercell considered so far (16× 16, see figure 3 in [23]). This width is by no means comparable with the
‘intrinsic’ width of the mono-vacancy which is experimentally found of the order≲0.05 eV [41]. Hence,
while fixing the problem of filling the midgap band, hybrid functionals do not solve the core problem and, by
providing a distorted picture of the electronic structure, should be considered with caution when
investigating resonance states induced by pZ-vacancies in graphene. To be clear, local and semi-local
functionals share similar difficulties (after all, as shown above, these originate from the one-electron part of
the problem), but at least they describe the spin splitting reasonably well (figure 5).

5. Summary and conclusions

We have shown that pZ defects in graphene, when periodically arranged, generate a π ‘midgap’ band whose
real-space localization properties change across the supercell Brillouin zone, from 1/r decaying expected for
an isolated vacancy to fully delocalized. The latter states are robust features inherited from the pristine
system that spoil the correct description of an isolated vacancy. We emphasize once again how they hamper
the calculation of the magnitude of the local magnetic moment of the monovacancy in graphene: in the
presence of inhomogeneities the (anomalous) delocalization broadens the defect-induced resonance to such
an extent that it spoils its filling. That is, the actual width (∆) of the resonance is much larger than its
intrinsic one (∆0)10 and becomes comparable to (if not larger than) the spin-splitting U determined by the
Coulomb repulsion in the resonant state (∼tens of meV). For the diluted limit of a single vacancy in the
lattice we should have∆0 ≪ U, hence a net π magnetic moment of 1 µB which adds to the one provided by
the σ state (1 µB). However, in the large unit cell limit of a periodic simulation one typically obtains
∆0 ≪∆∼ U, and the magnetization disappears (irrespective of the precise position of the resonance relative
to the Fermi level) unless U is artificially increased. The problem is not fixed by improving the theory
level—e.g. by adding a fraction of exact exchange to alleviate the self-interaction error that plagues popular
density functionals—since it is of monoelectronic origin, as our TB results clearly show.

We have not yet identified any ‘a priori’ guideline that can help to predict whether or not a given point
defect in graphene is affected by the anomalous dispersion, but on the basis of our findings we are tempted to
conclude that any kind of pZ defect is prone to anomalous delocalization and should be treated with care.
The chemical identity of the defect may affect the size of the artificial dispersion—hence the quenching of the
local magnetic moment—however, the correct description of the electronic structure is always prevented by
the mere existence of the anomalous delocalization. Even if the latter does not show up in the computed local
moment (as it happens for H) it may well affect other properties that more sensitively depend on the spatial
features of the resonant state. For these reasons our recommendation is to treat these defects with special

9 We thank the anonymous reviewer for providing the results of their DFT+U calculations showing that application of a Hubbard
correction of U = 3.0 eV to the Carbon p-shell is enough to recover the correct magnetic moment in a 5× 5 supercell calculation.
However, as discussed below for hybrid functionals, both the spin-splitting and the migap-band dispersion turn out to be unreasonably
large.
10 According to equation (4), this is proportional toW2ρ0(ϵ) at the resonant energy ϵ= ϵres ≈ 0.
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attention, for instance by adopting tailored k-sampling strategies in the slab-supercell approach or,
alternatively, by employing embedding techniques.
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