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Abstract

Durum wheat (Triticum turgidum spp. durum) is a major cereal adopted since antiquity to

feed humans. Due to its use, dating back several millennia, this species features a wide

genetic diversity and landraces are considered important repositories of gene pools which

constitute invaluable tools for breeders. The aim of this work is to provide a first characteri-

zation of a wheat landrace, referred to as ‘TB2018’, that was collected in the Apulia region

(Southern Italy). ‘TB2018’ revealed, through visual inspection, characters reminiscent of the

traditional variety ‘Senatore Cappelli’, while exhibiting a distinctive trait, i.e., reduced stature.

Indeed, the comparison with a set of Italian durum wheat cultivars conducted in this study, in

which 24 CPVO plant descriptors were adopted, placed the ‘TB2018’ landrace in proximity

to the ‘Senatore Cappelli’ cultivar. In addition, the close similarity between the two geno-

types was confirmed by the analysis of the seed protein pattern. A relative reduction was

detected for ‘TB2018’ root elongation in the early stages of plant growth. The ‘TB2018’

genome sequence, obtained through low-coverage resequencing and comparison to the

reference ‘Svevo’ cultivar is also reported in this study, followed by a genome-wide compari-

son against 259 durum wheat accessions that placed ‘TB2018’ close to the ‘Cappelli’ refer-

ence. Hundreds of genes putatively affected by variants that possess Gene Ontology

descriptors were detected, among which some were shown to be putatively linked to the

morphological traits that distinguish ’TB2018’ from ’Senatore Cappelli’, Overall, this study

poses the basis for a possible exploitation of ’TB2018’ per se in cultivation or as a source of

alternative alleles in the breeding of traditional cultivars. This work also presents a genomic

methodology that exploits the information contained in a low-depth, whole-genome

sequence to derive genotypic data useful for cross-platform (chip data) comparisons.
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Introduction

Durum wheat (Triticum turgidum subsp. durum (Desf.) Husn.) is the most important food

crop widely grown across the Mediterranean basin. In the European Union (EU) it is grown

on over 2.4 × 106 ha, which produce 7.9 × 106 Mg of grain with an average yield of 3.3 Mg

ha−1. Italy is the leading producer with 4.2 × 106 Mg of grain obtained on 1.3 × 106 ha with an

average yield of 3.2 Mg ha−1 [1]. Italy also represents the most important EU producer country

of organic durum wheat with a cropping area constantly increasing in recent years, and reach-

ing about 87.8 × 103 ha, providing 292 × 103 Mg of grain [2]. Regions of southern Italy provide

about 70% of this durum wheat production used mainly for pasta, and also for bread making.

A little more than two years following the Italian national obligation to indicate the origin

of wheat on pasta labels, the value of durum wheat in Italy has grown by 20% [3]. This is due

to the boom of 100% Italian wheat pasta along with the collapse of imports from Canada due

to concerns relating to the use of glyphosate in pre-harvest according to methods prohibited in

Italy. This trend has caused the collapse of durum wheat sowing in Canada, where farmers

have decided to cultivate 18.8% less durum wheat land than previous year.

The phenomenon of the return to local varieties (with cv. ‘Senatore Cappelli’ as the leader)

has exploded in Italy in recent years, with a growth trend that in the 2017–2018 campaign

quintupled the cultivated areas, going from 1,000 hectares in 2017 to 5,000 currently [3].

Southern Italy is one of the regions where, historically, cereal crops were most cultivated

and where the durum wheat varietal biodiversity is particularly high [5]. Old and new durum

wheat commercial varieties are currently cultivated, but so are many ancient landraces or pop-

ulations characterized by specific bio-morphological traits and qualitative features [4, 5].

In recent years, all over the world, the agri-food sector is paying renewed attention to local

and traditional productions. The major drivers of this shift are a response to the lack of diversi-

fication due to globalization and social and economic changes, but also an increased attention

to nutritional and health aspects of food. In Italy too, this trend has led to the rediscovery and

reuse of landraces of both wheat and other crops, addressing the needs for an increasingly

demanding market. The steadily rising prices of these local productions are attracting the pro-

ducers’ interest, often turning an unprofitable activity into a renewed professional opportunity

also for young entrepreneurs. Furthermore, many recent research studies confirm the high

nutraceutical and ecological value of landraces, both for their high content of antioxidant com-

pounds and their natural aptitude for organic production [6]. The active field of recovery of the

precious genetic resources hidden in natural landraces is evidenced by a diverse array of meth-

ods developed to investigate and identify naturally occurring variants [7, 8]. In this respect, it is

of no surprise that several huge research initiatives have undertaken the characterization of the

phenotypic, genetic, and genomic diversity of wide collections of landraces [9, 10].

This growing interest in local landraces has also inspired a search of effective and objective

identification methods, able to distinguish landraces [11]. One of the most valuable and reli-

able approaches is provided by the modern genome sequencing technologies. With the costs of

resequencing and genotyping steadily falling, increasing amounts of variation data are being

produced and stored in databases. To effectively annotate this huge amount of data, access to

considerable computational resources and genomic annotation databases are nowadays a pre-

requisite. Often, the most valuable information about a variant is its alleged effect on the

affected transcript(s) of the relative gene. This may aid selection of variations for genotyping

studies and, in turn, be a determinant in the discovery of target loci and their biological role.

The set of experiments described in this work were performed in the framework of an

investigation of landraces undergoing genetic erosion to determine agronomic attitude and

qualities.
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The aim of this work is to provide a first characterization of a durum wheat landrace,

referred to as ‘TB2018’, which was found in the Lecce province, Italy, and disclosed, through

visual inspection of plant and seed traits, similarity with the historical and celebrated ‘Senatore

Cappelli’ cultivar. This registered variety is characterized by wide adaptability, a greater num-

ber of kernels per ear and an excellent quality of the flour obtained [12]. ‘TB2018’ was also

selected since it exhibited reduced plant stature, a trait of agronomic relevance that attracted

our interest.

The morpho-phenological, agronomic and seed quality tests performed in this study pro-

vide the most accurate and thorough description of a selected landrace and sustain the hypoth-

esis that the two accessions are related. Beside confirming the observed difference in plant

elongation, the present work has highlighted an additional distinct trait related to root elonga-

tion in the early phase of development.

Over the past few decades, global wheat yield has been significantly increased from just

over 1 tonne per hectare in the early 1960s to around 3.5 tonnes in the past decade. However,

it has been estimated that genetic gain has been diminished in improved cereals, including

wheat, and that only 10% of the natural diversity has been captured in the elite germplasm of

our major crops [9]. If we consider that over the coming years, wheat production will be chal-

lenged by a progressively mutable climate, this genetic loss needs to be urgently counterbal-

anced by expanding the allelic diversity available for breeding programs. In this context, the

contribution of this study consists in an in-depth characterization of a novel variety character-

ized for distinctive traits of agronomic interest. By exploiting the recent information produced

by the sequence of the first durum wheat genome [13], our study provides through low-cover-

age resequencing, a first glimpse of the ‘TB2018’ landrace genome identity. To our knowledge,

this represents the first genomic sequence available for a local Italian durum wheat variety, in

which novel genetic variants will be accessible for future research studies as well as for being

adopted in breeding programs.

Materials and methods

Plant materials

Seeds of ‘TB2018’ were derived from about 50 almost ripe ears of wheat found by chance in a

private property located in the territory of Matino (Lecce province, Apulia region, Southern

Italy), on a private property road, and at the following coordinates: 40˚ 00’N, 18˚ 11’ E, 75 m a.

s.l. In living memory, there is no evidence that wheat was produced on this land. After a year

of growth in the same place, the seeds were sown in an experimental field at the CREA

Research Center for Cereal and Industrial Crops (CREA-CI), S.S. 673, km 25,200, 71122 Fog-

gia, Apulia region, Italy.

Triticum turgidum ssp. durum cultivars ‘Marco Aurelio’ and ‘Senatore Cappelli’ were

obtained from “Società Italiana Sementi” (SIS, San Lazzaro di Savena (Bologna), Italy, www.

sisonweb.com).

The pedigree/genealogy of ‘Marco Aurelio’ is ‘Orobel’//’Arcobaleno’/’Svevo’. ‘Senatore

Cappelli’ is an old cultivar of durum wheat, dating back to 1915, obtained by the geneticist

Nazareno Strampelli at the Research Center for Cereal Growing in Foggia, Italy, through gene-

alogical selection (nr. 231/1915) carried out in Foggia on the North African population ‘Jenah

Rhetifah’.

The set of Italian durum wheat cultivars used in the morpho-physiological characterization

is provided in S1 Table.
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Plant growth conditions

A quality testing experiment, programmed for a two-year period, was started in autumn 2018

at the CREA (Consiglio per la Ricerca in Agricoltura e l’analisi dell’Economia Agraria)

Research center for cereals and industrial crops (Foggia, Italy; 41˚ 270 36” N, 15˚ 300 05” E; 75

m a.s.l.) on clayey soil (Typic Chromoxerert). The main characteristics of the soil were 30%

clay, 25% sand; pH 7.5; 12.5 g kg-1 total C.

The climate is typical of a Mediterranean environment characterized by the presence of a

dry season between May and September. Based on 62 years of climatic data (starting 1955), the

annual mean temperature is 15.7˚C (range 9.7–21.8˚C), with a precipitation of 529 mm, and

with a high variability, especially for rainfall (range 272–803 mm).

The experiment was established with 11 wheat accessions and 2 fertilization levels in a ran-

domized block design with 2 replicates and elementary plots of 10 m2, repeated for two years

for a total of 44 plots per year. Within this experiment, we set an a priori contrast between the

main effect on ‘TB2018’ and ‘Senatore Cappelli’ for the analyzed variable.

Normality of residual distribution and homogeneity of variances was checked, respectively,

with the Shapiro-Wilk and the Levene tests [14]. The sowing was carried out with a plot seeder

on 7 December 2018. The germinability was 95% and 350 germinable seeds were distributed

per m2. In pre-sowing, 92 kg/ha-1 of phosphorus (as P2O5) were distributed; in the growing

period, three fractional fertilizations were carried out with 120 kg/ha-1 of nitrogen (ammo-

nium nitrate at 26%): i) tillering (BBCH 24) with 60 kg/ha-1 (15 March 2019), ii) lifting II node

(BBCH 32) with 30 kg/ha-1 (05 April 2019) and iii) barrel (BBCH 41) with the last 30 kg/ha-1

(23 April 2019).

The control of wild herbs/weeds was carried out with a treatment (herbicide) based on an

Atlantis + Biopower + Zenit formulation. The earing date was about 34 days from 1 April and

the average height was 110 cm.

The harvest was carried out at the physiological maturation stage corresponding to grade

92 of the Zadoks scale [15], with a plot combine. The average yield was 4.11 t/ha.

Morpho-physiological analysis

For the morphological analysis the descriptors employed were those described in the CPVO

TP/120/2 protocol for Distinctness, Uniformity and Stability (DUS) [16, 17] and the corre-

sponding UPOV web site [18]. The growth stages were referred to by the decimal codes of [15].

A principal component analysis (PCA), multivariate approach was followed employing the

above-mentioned descriptors, to describe and classify the accession under study. A set of

Southern Italian durum wheat cultivars and the corresponding descriptors available online, fol-

lowing the same coding scheme, were chosen as reference. The numerical values corresponding

to indicators listed in the CPVO/UPOV identification protocols were used to compose a

spreadsheet file (S1 Table) that was used as input for the R-based software ‘prcomp’ [19]. The

resulting PCA data object was plotted using the R-based software ‘ggbiplot’ v.0.55 [20].

Total protein extraction and SDS-PAGE analysis

Whole mature and dry seeds were ground to a meal and flours were suspended in an extrac-

tion buffer (Urea 6 M, SDS 2%, DTT 5 mM; 1:10 w/v) and stirred for 2 hours at room tempera-

ture. The suspension was then centrifuged at 10,000 x g at 4˚C for 30 min to separate

solubilized proteins. Protein quantification was performed with the Bradford method [21].

SDS-PAGE analysis was carried out according to [22] on 12% polyacrylamide gel under

reducing conditions. Gels were stained with Coomassie Blue G-250 (Bio-Rad, Hercules, CA,
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USA) and the relative molecular mass of polypeptides was determined by comparison with

standard proteins (GE Healthcare, Chicago, IL, USA) [23].

In vitro growth conditions and phenotypic characterization

Seeds were sterilized by soaking in a solution of 50% bleach and sterile water for 15 minutes

followed by a couple of quick washes in sterile water and then five washes for 5 minutes each

in sterile water. Seeds were germinated and grown in 50 mm diameter plates at 22˚C for 3 days

in the dark on 3M filter paper soaked in sterile water or on an alternative substrate composed

of inert vegetable fiber soaked in sterile water.

For the phenotypic observations, images of seedlings were taken. The total root and lateral

root number were counted. The longest primary seminal root length and the lateral root length

of each seedling were also measured using the ImageJ software [24].

Genomic DNA extraction, library preparation and sequencing

Total genomic DNA was extracted from 10 g of ground seeds using the Qiagen Plant DNA kit

(Qiagen). DNA quality was assessed by conventional 0.8% (w/v) agarose gel electrophoresis

[25] and spectrophotometry using a Nanodrop (ThermoFisher) [26].

The Celero TM DNA-Seq kit (NuGEN, San Carlos, CA, USA) was used for library prepara-

tion following the manufacturer’s instructions. Both input and final library were quantified by

a Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA, USA) and quality tested by an Agilent

2100 Bioanalyzer High-Sensitivity DNA assay (Agilent Technologies, Santa Clara, CA, USA).

Libraries were then prepared and sequenced on a NovaSeq 6000 (Illumina) instrument in

paired-end 150 mode (IGATech, Udine, Italy).

Bioinformatic analysis of the ‘TB2018’ genome sequence

A primary bioinformatic analysis included the following steps:

• Base calling and demultiplexing. Processing raw data for both format conversion and de-

multiplexing by Bcl2Fastq v.2.0.2 of the Illumina pipeline [27].

• Adapter sequences were masked with Cutadapt v1.11 [28].

A low (5X) coverage of the ‘TB2018’ genome, yielding 552.82 million reads, was estimated

sufficient for the scope of the analysis.

Quality control and mapping of reads against the reference genome of Triticum turgidum
L. var. durum cv. ‘Svevo’ (genome sequence: GCA_900231445.1.fasta; [13]) was done through

the NGSEP (v.4.01) software [29]. For mapping reads an index of the ‘Svevo’ reference genome

was first obtained through the Bowtie v.2.4.3 software [30].

Quality metrics and statistics of reads were obtained through the Picard v.2.26.3 software [31].

The identification of sequence variants (SNPs, InDels) was performed through the NGSEP

software using the VCFannotate command of the NGSEP (v.4.01) software [29]. Ploidy was

addressed using the appropriate flags as described in the NGSEP manual [29, 32].

For the annotation to the Triticum durum reference genome, the GFF3 file version 1.51 was

used [33]. For all the analyses the high-performance computing (HPC) cluster at the Univer-

sity of Milano [34] was employed running under a CentOS 7 operating system with a mini-

mum of 16 cores and 64 GB RAM for the most demanding runs of index building and read

mapping.

The effect of any structural and single nucleotide variant detected by the comparison of the

‘TB2018’ genome against the ‘Svevo’ reference genome was estimated through the Variant
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Effect Predictor (VEP) v.104 software [35, 36] hosted at the Ensembl web site [37]. The list of

VEP parameters and values used for the analysis is provided (S2 Table).

Variants were classified according to the VEP scheme [38], and further crossed with biolog-

ical descriptors of gene function retrieved through the Gene Ontology [39] and the BioMart

[40] online bioinformatic resources. The output files following VEP analysis at the single chro-

mosome level were used to filter genes whose mutation(s) are expected to produce a relevant

effect on protein coding (“IMPACT = HIGH” flag).

The analysis of repetitive elements was done on the GenSAS server [41] using the Repeat-

Masker v.4.1.1 program [42] that screens DNA sequences for interspersed repeats and low

complexity DNA sequences. The output of the program is a detailed annotation of the repeats

that are present in the query sequence. The details of parameters followed is reported (S1

Text).

The results of the repetitive element analysis are made available through the GenSAS server

via the Apollo [43] genomic annotation platform which is coupled with JBrowse [44] for view-

ing feature alignments and for manual curation. Raw output data in GFF3 format can be

accessed (https://doi.org/10.13130/RD_UNIMI/SLKJLY).

Genome-wide comparison of ‘TB2018’ against durum wheat germplasm

The methodology followed was based on the derivation, from the whole-genome resequencing

data of ‘TB2018’, of genotypes at selected SNP loci to compare with a collection of 259 durum

wheat cultivars already genotyped for the same loci [45]. The whole-genome sequence of

‘TB2018’ described in the above section was used to derive the SNP positions corresponding to

the 3,541 SNP loci selected in [45].

The list of 3,541 probes spanning the SNP loci was first provided (Dr. Francesca Taranto,

personal communication) and represents a subset of the probes of the Illumina iSelect 15k

wheat SNP array aligned to ‘Durum’ and ‘Zavitan’ genomes. The chip contains 13,600 gene-

associated SNP markers [46] and is an optimized and reduced version of the 90k iSELECT

SNP-chip described by [47].

The iSelect 15k array chip sequences for both Durum and Zavitan wheat species are now

available on the web page of the GrainGenes Database of Triticeae and Avena [48].

The following analytical pipeline was followed:

1. the list of probes was used to run a multiple BLAST v. 2.13.0+ [49] search against a local

database generated from the ‘TB2018’ resequenced consensus genome with the parameters

listed in S1 Text.

2. the output of the BLAST search was formatted to correct the positions of the SNPs relative

to the coordinates of the ‘TB2018’ resequenced genome. Such coordinates were used as an

input file in the next step to obtain the corresponding genotypes through the ‘getfasta’ com-

mand of the ‘Bedtools’ v. 2.25.0 software [50].

3. the output of ‘bedtools getfasta’ was used to derive the complementary sequence at each

SNP position and the list of separate SNPs was joined to form a continuous nucleotide

string (FASTA pseudomolecule) that was used for comparison to the corresponding

sequences of the 259 reference wheat cultivars of [45];

4. the multiple sequence alignment and the phylogenetic tree were generated using the Clus-

talW-based algorithm and pipeline provided by the EMBL-EBI facility [51].

For sake of reproducibility of the analysis and comparison with data shown in [45] a neigh-

bor-joining tree was also generated using MEGA v.11 [52] and a total of 1,000 replicates were
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used to generate bootstrap values. The FigTree v.1.4.4 software [53] was used for the graphical

visualization of the tree.

To further investigate the placing of ‘TB2018’ against the five “Cappelli” entries from [45],

the G-DIRT software [54] was run using the set of 3,509 SNP loci retained from the above

analysis and formatted according to the instructions (S2 Text) with the parameters shown in

S3 Text.

Results

The wheat landrace ‘TB2018’, found in the Lecce province (Apulia region, Italy), revealed,

through visual inspection of its plant architecture and seed morphology, similarity with the

durum wheat registered variety ‘Senatore Cappelli’ (S1 Fig). Visual analysis also evidenced a

distinctive trait consisting of a reduction in plant stature.

A characterization of ‘TB2018’ for agronomic, morphological, and biochemical parameters,

and the comparison to the registered ‘Senatore Cappelli’ cultivar have been performed in this

study. In addition, to strengthen the (preliminary) characterization of this landrace, a whole-

genome resequencing was performed, and the obtained genome sequence was compared with

the Triticum turgidum spp. durum reference genome. Moreover, a novel genomic pipeline was

set up to compare the whole-genome resequencing data of ‘TB2018’ with the chip-based geno-

types of a set of 259 durum wheat cultivars and infer the phylogenetic relationships among

them.

Agronomic parameters

The ‘TB2018’ landrace was included in an agronomic field trial for a set of reference Southern

Italian durum wheat cultivars, in which, as part of the morpho-physiological characterization,

a principal component analysis investigation was performed, considering 24 CPVO plant

descriptors encompassing the major morphological descriptors of the species. The results

show the relative contribution of each morphological trait (arrows in Fig 1) in the separation

of the analyzed cultivars in the first two principal components, contributing to 25.2% and

20.6% of the total variance, respectively.

Interestingly, the analysis placed the ‘TB2018’ landrace in proximity to the ‘Senatore Cap-

pelli’ cultivar (oval in Fig 1), further supporting the hypothesis that the two are somehow

related.

The comparison of ‘Senatore Cappelli’ and ‘TB2018’, was achieved by cultivation under

standard agronomic conditions. The Shapiro-Wilk and the Levene tests excluded a significant

deviation from normality and homogeneity of variances. No interaction between year, fertili-

zation level and accessions resulted significant. The main effect of accession resulted signifi-

cant (p< 0.01) as well as the contrast between the two accessions. Data analysis confirmed the

striking evidence that ‘TB2018’ featured a shorter stem (average 110 cm) relative to ‘Senatore

Cappelli’ (average 135 cm) which could provide an increased resistance to lodging.

Seed protein analysis confirms the similarity between ‘TB2018’ and

‘Senatore Cappelli’

A comparison between ‘TB2018’ and ‘Senatore Cappelli’ was performed through the analysis

of soluble proteins extracted from flour obtained from mature kernels. The two cultivars were

also compared to the ‘Marco Aurelio’ cv. used as control. Proteins extracted from ‘TB2018’

and ‘Senatore Cappelli’ had comparable yields of 19.3 ± 0.4 and 21.2 ± 0.5 mg of proteins/g of

meal, while in ‘Marco Aurelio’ a slightly higher protein solubilization was obtained, yielding

up to 26.6 ± 0.9 mg of proteins/g of meal.
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The electrophoretic separation performed under reducing conditions allowed the qualita-

tive comparison of total proteins among the three cultivars. Protein distribution patterns of

‘Senatore Cappelli’ (Fig 2 lane A) and ‘TB2018’ (Fig 2 lane B) displayed high similarity, while

both patterns clearly differed from that of ‘Marco Aurelio’(Fig 2 lane C).

Fig 1. Principal Component Analysis (PCA) of durum wheat accessions based on morphological descriptors. The first two components are

shown in the X and Y axes, respectively. Arrows show how each descriptor contributes to the two principal components. The red oval highlights

the proximity of ‘TB2018’ to ‘Senatore Cappelli’.

https://doi.org/10.1371/journal.pone.0291430.g001
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‘Senatore Cappelli’ and ‘TB2018’ presented a higher content of proteins with molecular

weights ranging from about 100 to 65 kDa, among which High-Molecular Weight (HMW)

glutenins can be found (Fig 2 lanes A and B). These samples also differed from ‘Marco Aurelio’

for the electrophoretic pattern of proteins between 60 and 30 kDa where gliadins can be found

[55, 56]. In addition, the Marco Aurelio pattern reported in lane C showed bands in the molec-

ular range of about 30–21 kDa that could belong to Low-Molecular Weight (LMW) glutenins,

while lanes A and B presented a lower content of these proteins.

Analysis of early developmental stages of plant growth revealed distinct

root traits for the ‘TB2018’ landrace

To analyze their seedling phenotype, seeds of ‘TB2018’, ‘Senatore Cappelli’ and ‘Marco Aure-

lio’ were germinated in controlled conditions. After three days, germination rate and shoot

elongation did not reveal any significant difference among the three accessions.

Differences in root development were instead observed (Fig 3A–3C).

A reduction in root elongation was detected for ‘TB2018’ if compared to ‘Senatore Cap-

pelli’. The reduction was found for the primary root length as well as for the sum of primary

Fig 2. SDS-PAGE analysis of total protein extracts from seeds of the three durum wheat cultivars examined,

performed under reducing conditions. A: ‘TB2018’; B: ‘Senatore Cappelli’; C: ‘Marco Aurelio’; MW: molecular

weight standard.

https://doi.org/10.1371/journal.pone.0291430.g002
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and lateral roots lengths measured at the time of sampling (Fig 3D). However, root length of

‘TB2018’ was like that observed for ‘Marco Aurelio’ and the total number of lateral roots was

similar among the three accessions (Fig 3E).

Genome-wide characterization of the ‘TB2018’ landrace

Overall, data on protein profile and plant development provided evidence supporting the

hypothesis that the ‘TB2018’ landrace and the registered ‘Senatore Cappelli’ durum wheat cul-

tivars are somehow related. It also highlighted the presence in ‘TB2018’ of distinct traits of

agronomic importance. Therefore, to gain insight into the relationship between TB2018 and

other wheat genotypes and in view of its future exploitation as a source of interesting genetic

variants, for the ‘TB2018’ landrace a low-coverage resequencing of its genome was performed

and data were compared against the available ‘Svevo’ reference genome [13]. The bioinfor-

matic pipeline comprised a first quality control of reads to discard those that did not pass a

minimum threshold value [29]. The remaining reads were mapped against the ‘Svevo’ genome

Fig 3. Differences in root length at the seedling stage. Representative images of the three wheat genotypes germinated on paper: ‘Marco Aurelio’ (A),

‘Senatore Cappelli’ (B) ‘TB2018’(C). Plants were grown in vitro on paper and parameters were measured at 3 days after sowing (DAS). Length of primary

root, lateral root, and total roots (D) as well as number of lateral roots (E) were measured for each plant. Values are means of 32 independent biological

replicates. Asterisks indicate statistical significance using Student’s t test (*P< 0.05, ns = not significant). Error bar = standard error.

https://doi.org/10.1371/journal.pone.0291430.g003
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and yielded the Variant Call Format (VCF) files used to feed the Variant Effect Predictor

(VEP) software. Generated data were analyzed at the single chromosome level yielding 14 sets

of data corresponding to the 14 chromosomes of the reference genome covering the 7 A-series

and 7 B-series haploids (S1–S14 Files).

The number of processed variants per chromosome varied from 95,986 (chromosome 1A)

to 437,679 (chromosome 2B) with a range of putatively affected genes between 390 (chromo-

some 4B) and 971 (chromosome 2B) (S2 Fig, S3 Table). Interestingly, all the chromosomes of

the B series featured a higher number of variants than their equivalents of the A series, with a

notable 4.5-fold difference between pair 1B and 1A.

Besides several expected low-quality variants that were discarded from the analysis, most

variants detected fall in the large intergenic non-coding regions and their information value is

expected to be negligible in comparison to that of coding genes. The results of the chromo-

some-wide analysis are shown in S3 Fig.

Several of the hundreds of genes putatively affected by variants possess Gene Ontology

descriptors that are linked to the morphological traits that distinguish ’TB2018’ from ’Senatore

Cappelli’ (S4 Fig., S4 Table).

The most represented descriptor in the Gene Ontology “Biological process” domain is

“Defense response” (GO:0006952), followed by “Protein phosphorylation” (GO:0006468). The

fifth position is occupied by “Regulation of DNA-templated transcription” (GO:0006355)

which includes transcription factors.

In particular, the analysis detected several variants in genes and gene families associated

with known QTL loci for various physiological and agronomic traits. A special case is the

occurrence of a mutation (a stop gained at protein position 438: Y/*) affecting a low-molecu-

lar-weight (LMW) glutenin subunit gene (TRITD1Av1G002790), featuring 4 transcripts

(splice variants), 16 orthologues and 5 paralogues in the ‘Svevo’ reference genome.

The search for variants in regulatory genes involved in root development has highlighted a

mutation (a stop gained at protein position 88: Q/*) in a member (TRITD1Av1G207410) of

the WRKY family, one of the largest TF families in plants whose members, in addition to stress

response and defense regulation, significantly determine plant development and growth [57].

Transposable elements (TEs) are distinct genetic elements that move and spread within the

host genomes in multiple copies. TEs can be major constituents in plant genomes and can

drive genome evolution, plasticity, and expansion [58, 59].

The analysis of repetitive elements carried out on the ‘TB2018’ genome by RepeatMasker

[42] revealed 9,778,301 features distributed along the 14 chromosomes with a maximum of

838,038 on chromosome 3B and a minimum of 558,432 on chromosome 1A (S5a Fig). An

example of the formatted output of the GenSAS server is shown (S5b Fig). Moreover, a study

of the chromosome-wide distribution of the three main long terminal repeat (LTR) retrotran-

sposon superfamilies Gypsy, Copia and EnSpm has been carried out (S5c Fig). The complete

dataset is accessible at https://doi.org/10.13130/RD_UNIMI/SLKJLY.

To investigate the origin of ‘TB2018’, a genome-wide comparison was run against a dataset

of SNP genotypes covering 3,541 marker loci of 259 durum wheat accessions released since the

early 1900s and representative of landraces, old cultivars, and modern varieties [45].

The full list of the 3,541 used SNP loci and corresponding genotypes is shown in the accom-

panying file (S15 File). The vast majority (99.10% of total) of the SNP loci were properly called,

while only a small number, 32 SNP loci (0.90%) were not called by the analytical pipeline.

Notably, two groups of such loci fell in contiguous portions of the genome spanning posi-

tions 11 Mb to 18.5 Mb and 412 Mb to 420 Mb of chromosome 1A and chromosome 5A,

respectively. The unrepresented regions might be due to insufficient coverage of the corre-

sponding genomic sequences at low-level (5x) sequencing, although, due to their extension
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Fig 4. Cluster analysis of the 259 durum wheat accessions compared to ‘TB2018’. The ‘Cappelli’ accessions are indicated by red arrows; ‘Marco

Aurelio’ is indicated by a green arrow; ‘TB2018’ is included in a red box. The subcluster including the ‘Cappelli’-like accessions is highlighted in blue.

https://doi.org/10.1371/journal.pone.0291430.g004
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and contiguity, structural variations (SVs) are a more probable alternative explanation. Inter-

estingly, SVs caused by tandem repeats occurring at chromosome 5A have already been recog-

nized as a factor affecting recombination and major cytological gene-affecting rearrangements

in wheat [60]. Further investigation of the nature of these regions will be addressed in future

work.

The reconstructed phylogenetic tree placed ‘TB2018’ in proximity with a group of acces-

sions sharing the designation ‘Senatore Cappelli’, among which ‘Senatore Cappelli V-OCs’,

‘Cappelli V-OCs’, ‘Cappelli-MP-OCs’, ‘Cappelli AG-OCs’, and ‘Senatore Cappelli UP-OCs’.

Moreover, in the same group are also present ‘Margherito.UP-L’ and ‘Bidi.UP-L’ which are

known to be close relatives of ‘Senatore Cappelli’ (Fig 4).

The genome-based comparison of ‘TB2018’ to a large set of wheat germplasm resulted in

agreement with data coming from the morpho-physiological characterization that placed

‘TB2018’ close to the ‘Cappelli’ reference (Fig 1).

To further investigate the placement of ‘TB2018’ among the ‘Cappelli’ accessions described

in [45] we performed an analysis with the G-DIRT software [54], a tool for the identification

and removal of duplicate germplasm based on identity-by-state analysis using SNP data. The

results indicate, out of the 3,509 SNP loci left from the genotyping test described above, that

613 markers were retained after linkage disequilibrium (LD) pruning, and 511 markers were

retained after applying the Hardy-Weinberg Equilibrium (HWE) data filtration threshold of

0.05 and Heterozygosity threshold of 0.1. All the six input genotypes were retained after miss-

ing data filtration of 10%. Four genotypes were retained after removing duplicates with less

than 0.1% of Homozygous difference (S3 Text).

Discussion

Landraces are considered an attractive breeding option since they are a reservoir of interesting

traits and genetic biodiversity of wheat landraces has always captured the attention of researchers.

For example, storage proteins, of which the composition and relative abundance are known

to be affected by various environmental factors and growing practices, represent a major target

for breeders and food technologists [61, 62]. The search for new alleles controlling seed pro-

teins in the germplasm of durum wheat testifies the interest in this field and the potential for

the food industry [63]. In addition, Mediterranean durum wheat landraces have previously

shown high levels of polymorphism in glutenin subunit composition and its relationship with

gluten strength, proving to be valuable sources of diversity for quality traits [64]. The differ-

ences observed in HMW glutenins could potentially have implications from a technological

point of view since this class of storage proteins has been reported to play an important role

for the bread making process. In particular, they are relevant determinants of gluten elasticity

and functionality, despite being minor protein components [65].

‘TB2018’ represents a new landrace of Triticum durum which was first identified as natu-

rally occurring in a specific environment in the South of Italy and selected for its reduced

height. The physical distance of the site of its discovery from cultivated fields posed a question

as to its origin and nature, although morphological analysis seemed to place ‘TB2018’ close to

the ‘Senatore Cappelli’ cultivar. Following the detailed characterization conducted in this work

with the traditional agronomical and laboratory investigation techniques, its similarity with

‘Senatore Cappelli’ has been confirmed, but also a distinctive trait, i.e., the reduced plant elon-

gation in comparison with ‘Senatore Cappelli’ and other wheat landraces, has been highlighted

(Fig 1). In addition, differences in seedling root development were detected for ‘TB2018’ when

seeds were germinated in controlled conditions: a reduction in root elongation was observed

in the early stages of seedling growth if compared with the reference cv. ‘Senatore Cappelli’.
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One of the most interesting aspects of this work consists in the re-sequencing, to the best of

our knowledge, of the first durum wheat landrace. We have adopted (and described) a novel

approach, which constitutes the first example of comparison of whole-genome resequencing

(WGR) data to genotyping data obtained through a commercial chip-based technology [40].

While the minimum number of individuals that need to be genotyped in a chip-based platform

(usually 96), is normally a limiting factor for the analytical costs, we demonstrate that it is pos-

sible to compare even a single sample resequenced at low coverage (5x) with data previously

obtained through chip-based technology. Data obtained allowed us to explore both the genetic

biodiversity and the origin for this accession. The analysis placed the landrace in the group of

‘Senatore Cappelli’ cultivars. The many genomic variations encountered in this landrace,

affecting, to a variable degree of importance, several genes recognized as regulators of various

biochemical pathways, might account for the major differences observed until now through

the comparison of ‘TB2018’ with the reference ‘Senatore Cappelli’ and other known cultivars.

To further contribute to the characterization of durum wheat genome structure, we report the

distribution of the repetitive elements belonging to the major retrotransposon classes. That the

repetitive nature of the wheat genome is mainly the result of a high content of transposable ele-

ments and their role in genome plasticity, evolution and gene regulation is widely recognized

[66, 67].

Despite the challenging genome size (ca. 10 Gigabases) that makes the analysis of this spe-

cies of uncommon complexity, the possibility of predicting the impact of genomic variation on

physiological characteristics will open the way to a rational characterization and exploitation

of naturally occurring variation.

In this context, one example is constituted by the detection of a mutation in a regulatory

gene belonging to the WRKY family, which represents a candidate gene responsible for the

variation observed in plant or root elongation. The product of TaWRKY51, another member

of this family, was shown to increase lateral root formation through the regulation of ethylene

biosynthesis in wheat. The same study also reported that TaWRKY51 regulates lateral root for-

mation via the ethylene and auxin signaling pathways [68]. More recently, the combined role

of TaWRKY51 in positively regulating root architecture and grain yield contributing traits has

been assessed [69]. Studies have also shown that the number and length of root hairs are

increased in a knockout mutant of AtWRKY75 compared to the WT, suggesting that

AtWRKY75 is a negative regulator of root hair development [70]. A study on rice has demon-

strated that OsWRKY36 plays a negative role in regulating grain size and plant height through

directly binding the promoter of the SLR1 gene and protecting it from GA-mediated degrada-

tion [71].

These observations sustain the hypothesis that the mutation possibly disrupting the WRKY

TF identified in the present investigation could thus explain the changes in plant height or

root structure of ‘TB2018’ in comparison to ‘Senatore Cappelli’.

Genetic diversity of plant size and structure can profoundly affect qualitative and quantita-

tive traits of the production, including seed quality [72–74], influence agronomic practices,

yields and even technological applications in the energy industry [75]. In particular, the plant

root is a central architectural element that profoundly controls and affects the entire plant

physiology and its ability to respond to the environmental conditions and stresses. The ‘steep,

cheap, and deep’ root ideotype for improved nitrogen and water uptake is based on morpho-

logical, anatomical, and physiological traits that promote rapid exploration of deep soil

domains [76]. The availability of candidate genes represents an important tool for the improv-

ing of wheat cultivars.

Roots are complex, dynamic organs interacting with the soil where they develop and play a

fundamental role in plant-environment interaction. Root phenotypes can substantially
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improve soil resource capture and CO2 sequestration by crop plants. These qualities afford

multiple benefits for agroecosystems and the global environment. In high-input agroecosys-

tems, crops with reduced demand for fertilizers and water can reduce production costs and

the risk of losses from drought, while also countering adverse environmental impacts due to

input use [77]. For wheat cultivars an improved root apparatus is essential for their adaptation

to the area of cultivation as well as to fit the plant to unstable environmental conditions. Unlike

common wheat (Triticum aestivum L.), durum wheat is primarily grown in marginal environ-

ments of the Mediterranean and semiarid regions of the world, where moisture is mostly pro-

vided through rain. Annual variation in rainfall normally characterizes the Mediterranean

environment, with late-season droughts occurring frequently. When droughts coincide with

the flowering or grain-filling phase, yield and grain quality can be dramatically affected. Fur-

thermore, due to the warming climate, the steady reduction of seasonal rainfall in the Mediter-

ranean region is predicted to adversely affect the cultivation of durum wheat [77]. According

to modeling studies, wheat yield can increase by 55 kg ha−1 on average for each millimeter of

water extracted from the soil after anthesis [78–80].

Besides crop environmental adaptation, from the agronomic point of view, chemical input

reduction in agricultural systems is being strongly demanded with the aim to improve the

quality and the safety of food/feed products in an environmentally sustainable perspective

[81]. In this respect, we have evidence that the seed protein content (SPC) of this landrace is

not significantly affected under a partial reduction of total nitrogen input. A possible explana-

tion for this behavior can be found in the alleles that reduce plant size and that might mitigate

the overall biomass reduction.

Overall, ‘TB2018’ appears promising as a possible candidate for both direct adoption in the

cultivation and for its use as a donor of interesting alleles for breeding.

A more detailed description of ‘TB2018’ should be undertaken following the huge amount

of information provided by the exploration of its genomic diversity which has been only par-

tially addressed in this work. In fact, the exploitation of naturally occurring genetic resources

has been recognized as an invaluable, yet traditional way to address breeding [6, 82, 83]. The

close interplay between genetics, environment and cultivation practices is at the basis of

modeling this species for enlarging its cultivation area worldwide [84]. For example, nitrogen

increases leaf greenness which, in turn, is expressed by chlorophyll content, plant vitality,

increase in fresh biomass and yield formation in the generative growth stages of durum wheat

[85, 86]. However, higher nitrogen rates can decrease plant resistance to lodging [87]. The

model developed by Berry and Spink [88] predicted that severe lodging up to 90˚ from the ver-

tical plane can reduce yields by approximately 61%.

We expect that the further characterization of this landrace at the molecular, chemical, and

agronomical level will generate additional evidence of the physiological basis of the traits that

have attracted our attention. The present work is also a tribute to the ’Senatore Cappelli’ vari-

ety which has been cultivated for decades and has contributed to the growth of cereal growing

and the Italian agri-food industry. It has also led the way to the modern genetic improvement

of durum wheat and still today feeds a supply chain dedicated to the development of high-

quality sustainable products.
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