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QUASILINEAR LOGARITHMIC CHOQUARD EQUATIONS

WITH EXPONENTIAL GROWTH IN R
N

CLAUDIA BUCUR, DANIELE CASSANI, AND CRISTINA TARSI

Abstract. We consider theN -Laplacian Schrödinger equation strongly
coupled with higher order fractional Poisson’s equations. When the or-
der of the Riesz potential α is equal to the Euclidean dimension N ,
and thus it is a logarithm, the system turns out to be equivalent to a
nonlocal Choquard type equation. On the one hand, the natural func-
tion space setting in which the Schrödinger energy is well defined is the
Sobolev limiting spaceW 1,N (RN ), where the maximal nonlinear growth
is of exponential type. On the other hand, in order to have the nonlocal
energy well defined and prove the existence of finite energy solutions,
we introduce a suitable log-weighted variant of the Pohozaev-Trudinger
inequality which provides a proper functional framework where we use
variational methods.

1. Introduction and main results

Consider the following system of elliptic equations




−∆mu+ V (x)|u|m−2u = f(u)v,

x ∈ R
N , N ≥ 2

−∆
α
2 v = F (u) ,

(1.1)

where ∆m, m ≥ 2, is the m-Laplace operator defined as follows

∆mu = div(|∇u|m−2∇u),

V : RN → R is the external Schrödinger potential, F is the primitive of f
vanishing at zero and where (−∆)

α
2 , α > 0, is the fractional Laplacian, see

Section 2.1. System (1.1) is in gradient form as the nonlinearity in the right
hand side of (1.1) is the gradient of the potential function G(u, v) = F (u)v.
It is also strongly coupled as u = 0 ⇐⇒ v = 0. However, (1.1) does not
possess in general a variational structure because of the presence of the
nonlocal operator in the second equation, which prevents solutions of the
system to be critical points of an energy functional E(u, v), which may not
exist or may not be well defined.
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The parametersm,N, α play an important role from the theoretical point of
view as well as from that of applications, see [24] and references therein. For
m = 2 we have the linear Schrödinger operator in the left hand side of the
first equation and the problem has been widely studied in dimension N > 2
and for α < N , see [24] for a survey and [11, 13] for related critical cases.
The case of dimension N = 2 and α < N has been studied in [4, 5]. More
recently in [6, 10, 14] it has been considered the limiting case α = N = 2;
see also [3, 9] for related results.
A major difficulty in the limiting case is to construct a proper function
space framework in which to settle the problem. As developed in [10] in
dimension N = 2, in order to consider the maximal exponential growth, a
suitable functional framework can be obtained by means of log-weighted
versions of the Pohozaev–Trudinger inequality [26, 30].
In this paper we tackle the general limiting case

α = N = m > 2 . (1.2)

This leads from one side to handle a quasilinear Schrödinger equation in the
system [12] and on the other side demands for a more general function space
setting. A key ingredient for this purpose, is to extend the fundamental
functional inequality established in [10], in the special case α = N = m = 2,
to the general case (1.2).
Let IN : RN \ {0} → R be the logarithmic Riesz kernel

IN(x) =
1

γN
log

1

|x|
with

γN = 2N−1π
N
2 Γ

(
N

2

)
.

By setting v := IN ∗ F (u), (1.1) is formally equivalent (see Section 2.1) to
the following quasilinear Choquard type equation

−∆Nu+ V |u|N−2u = (IN ∗ F (u))f(u) in R
N , (1.3)

which does have a variational structure.
Indeed, (1.3) is the Euler-Lagrange equation related to the energy func-
tional

E(u) =
1

N

∫

RN

|∇u|N + V |u|N dx− 1

2

∫

RN

(IN ∗ F (u))(x)F (u(x)) dx ,

provided such energy is well defined in a suitable function space which we
are going to construct in the sequel as one of our main results.

Before stating our main results let us introduce a few assumptions:

(V ) V : RN → R is continuous, 1-periodic and there exists V0 > 0 such
that V (x) ≥ V0;

(f1) f : R → R is continuous and differentiable, such that
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(i) f(s) ≥ 0, for all s ≥ 0 and we may also assume (as we look for
positive solutions) f(s) = 0 for s ≤ 0;

(ii) there exists C > 0 such that f(s) ≤ CspeαN s
N

N−1
as s → +∞,

for some p > 0 and where αN is given below;
(iii) f(s) ≍ sq−1, as s → +∞, for some q > N ;

(f2) there exist C > δ > 0 such that

N − 2

N
+ δ ≤ F (s)f ′(s)

f 2(s)
≤ C, s > 0;

(f3) lims→+∞
F (s)f ′(s)
f2(s)

= 1, or equivalently lims→+∞
d
ds

F (s)
f(s)

= 0;

(f4) there exists β > 0 such that

lim
s→+∞

s
2N−1
N−1 f(s)F (s)

e2N(ωN−1)
1

N−1 s
N

N−1

≥ β > ν,

where ν will be explicitly given in Sect. 4.

Notice that from the assumptions on f we also deduce the following:

• there exists s0 > 1 such that

0 ≤ F (s) ≤ C

{|s|q, s ≤ s0,

sp−
1

N−1 eαN s
N

N−1
, s > s0;

(1.4)

• f(s) is monotone increasing, hence F (s) =
∫ s

0
f(τ)dτ ≤ sf(s), while

the quantity F (s)
f(s)

is well defined and vanishes only at s = 0. Fur-

thermore,

d

ds

(
F (s)

f(s)

)
=

f 2(s)− F (s)f ′(s)

f 2(s)
≤ 2

N
− δ (1.5)

which implies F (s) ≤ ( 2
N
− δ)sf(s);

• (f3) implies a fine lower bound on the quotient
Ff ′

f 2
, as s → +∞.

Indeed, for any ε > 0 there exists sε > 0 such that

Ff ′

f 2
(s) ≥






(
2

N
+ δ

)
s, s ≤ sε

(1− ε)s, s > sε;

(1.6)

• (f4) is in the spirit of the de Figueiredo–Miyagaki–Ruf condition [15]
and turns out to be a suitable compactness condition in this context.
The role of condition (f4) will be detailed in Section 4.1.

Examples of functions F (s) satisfying our set of assumptions are given
below:

F (s) =

{
sq, s ≤ s0

eαs
N

N−1
, s > s0

, ∀ q > N ;
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F (s) = speαs
N

N−1
, ∀ p > N ;

F (s) =

{
sq, s ≤ s0

αspeβs
N

N−1
, s > s0

for q ≥ N , p > 1 and suitable constants α, β > 0.

Let us now introduce some basic notation:

‖u‖N := ‖u‖LN (RN )

and

‖u‖ := ‖u‖W 1,N (RN ) =
(
‖∇u‖NN + ‖u‖NN

) 1
N .

Let w(x) := log(e+|x|) and define the weighted Sobolev spaceW 1,NLq
w(R

N)
as the completion of smooth compactly supported functions with respect
to the norm

‖u‖Nq,w = ‖∇u‖NN + ‖u‖NLq(wdx)

=

∫

RN

|∇u|N dx+

(∫

RN

|u|q log(e + |x|) dx
)N/q

.

When q = N , for simplicity we denote W 1,N
w (RN) := W 1,NLN

w (R
N) and

‖u‖Nw := ‖∇u‖NN + ‖u‖NLN (wdx) =

∫

RN

|∇u|Ndx+

∫

RN

|u|N log(e+ |x|) dx.

Let us set

‖u‖V :=

(∫

RN

|∇u|N + V |u|N dx

) 1
N

,

and we use W 1,N
V (RN) to denote the set of all functions with bounded ‖·‖V

norm. Let us also set w0(x) := log(1 + |x|), and

‖u‖Nq,V,w0
:= ‖u‖NV + ‖u‖NLq(w0dx)

= ‖u‖NV +

(∫

RN

|u|q log(1 + |x|)dx
)N

q

,

and consider W 1,N
V Lq

w0
(RN) as the completion of smooth compactly sup-

ported functions with respect to the norm ‖ · ‖q,V,w0.

The proper function space setting in which the energy and the variational
framework turns out to be well defined, will be a consequence of the follow-
ing weighted version of the Pohozaev–Trudinger inequality, which we state
here for simplicity in the case q = N (see Section 3 for the case q > N):

Theorem 1.1. The weighted Sobolev space W 1,N
w (RN) embeds into the

weighted Orlicz space LφN
(RN , log(e + |x|)dx) where

φN(t) = et −
N−2∑

j=0

tj

j!
.
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More precisely, the following holds
∫

RN

φN

(
α|u| N

N−1

)
log(e + |x|)dx < ∞ , (1.7)

for any u ∈ W 1,N
w (RN) and any α > 0. Moreover, the following uniform

bound holds

sup
‖u‖Nw≤1

∫

RN

φN

(
αN

(
N

N + 1

)1/(N−1)

|u| N
N−1

)
log(e+ |x|)dx < +∞ , (1.8)

where αN = Nω
1

N−1

N−1 is the sharp Moser exponent, and ωN−1 is the (N −
1)−dimensional surface of the unit sphere in R

N .

Inequality (1.8) and its version in the case q > N (Theorem 3.3), turn out
to be key ingredients to obtain the following result:

Theorem 1.2. Suppose the nonlinearity f satisfies (f1)–(f4) and that the
potential V enjoys (V ). Then, problem (1.3) possesses a nontrivial moun-
tain pass solution which has finite energy in the weighted Sobolev space
W 1,N

V Lq
w0
(RN).

Overview. In the next section we collect some preliminary material. Spe-
cial attention is devoted to discuss equivalence between (1.3) and (1.1).
This is a quite delicate matter and still with some shadows which prevent
to obtain optimal results. We are motivated by a very recent debate on
this topic, towards a better understanding of the higher order fractional
context.
In Section 3, we prove some fundamental results which from one side ex-
tend classical embeddings from Functional Analysis, due independently to
Pohozaev and Trudigner in late sixties, on the other side provide a new
tool in the ‘variational toolbox’ to prove existence results by variational
methods; we are confident these results will be useful in other situations.
Here we extend in a non trivial fashion to any dimension, previous results
obtained in [10] in dimension two and then applied to prove the existence
of finite energy solutions to Schrödinger–Newton systems by variational
techniques.
In Section 4, we exploit the abstract results of Section 3 to provide a suit-
able variational framework in which we can prove the existence of a moun-
tain pass solution to (1.3). Due to the presence of exponential growth in
the nonlinearity and of a sign-changing logarithmic kernel in the nonlocal
part of the equation, here even the most standard variational steps become
somehow delicate. We take care of stressing differences with the two di-
mensional case, in particular passing from semilinear, in dimension N = 2,
to quasilinear nonlocal Schrödinger equations in higher dimensions N ≥ 3,
where some new ideas and efforts are needed.
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2. On the equivalence between nonlocal equations and

higher order fractional systems

Here we discuss the equivalence between the Choquard type equation (1.3)
and the higher order fractional system (1.1). Formally, if in (1.3) we set

Φu := IN ∗ F (u),

then the function u solves the equation

−∆Nu+ V |u|N−2u = Φuf(u), in R
N

and moreover, Φu is the unique solution in R
N to the following fractional

equation

(−∆)
N
2 φ = F (u) .

However, this argument is affected by the notion of solution we deal with,
this is somehow a delicate matter and not yet completely understood. Hav-
ing in mind the commitment to make precise in the sequel what we mean
by solution, we have the following, and for the moment heuristic

Proposition 2.1. Let u ∈ W 1,N
V L1

w0
(RN) be a solution of (1.3). Then u

is a solution to

−∆Nu+ V |u|N−2u = φf(u) in R
N , (2.1)

where φ is the unique solution to

(−∆)
N
2 φ = F (u) in R

N .

Let us begin by recalling the definition in the distributional sense of the
fractional Laplacian of any order. Set for s > 0,

Ls(R
N) :=

{
u ∈ L1

loc(R
N)
∣∣∣
∫

RN

|u(x)|
1 + |x|N+2s

dx < ∞
}
,

the operator (−∆)su is defined for all u ∈ Ls(R
N ) via duality, as

〈(−∆)su, ϕ〉 =
∫

RN

u (−∆)sϕdx, ∀ϕ ∈ S(RN ), (2.2)

where

(−∆)sϕ = F−1
(
|ξ|2sFϕ(ξ)

)
, ∀ϕ ∈ S(RN )

denoting by F the Fourier transform and where S(RN ) denotes the Schwartz
space of rapidly decreasing functions. We remark that the right hand side
of (2.2) is well defined, thanks to the fact that for ϕ ∈ S(RN ),

|(−∆)sϕ(x)| ≤ C

|x|N+2s
,

see e.g. [18, Proposition 2.1].
Let us consider the fractional Poisson’s equation

(−∆)su = f in R
N , with 0 < s ≤ N

2
(2.3)
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If s ∈ (0, 1), the setting and the representation formulas for solutions of this
equation are settled in literature, among which recent studies carried out
in [1,8]. The case s > 1 has been considered in very recent papers [2,7,29],
whereas a general approach, based on the notion of distributional solution
dates back to classical works [20, 27, 28], see also [16].

Definition 2.2. Given f ∈ S ′(RN), we say that u ∈ LN
2
(RN) is a distri-

butional solution of (2.3) if
∫

RN

u(−∆)
N
2 ϕdx = 〈f, ϕ〉

for all ϕ ∈ S(RN ).

It is well known that, if s < N
2
, the distributional solution of (2.3) is given

by

u(x) = F−1

(
1

|ξ|2sFf(ξ)

)
(x)

which is realized also by convolution with the Newtonian potential

u(x) = (I2s ∗ f)(x), where I2s(x) =
1

γN,s
|x|2s−N

for some γN,s > 0, (see [27, Chapter 5]). Note that the Newtonian potential,
in the case 2s = N , is given by

IN(x) =
1

γN
log

1

|x| = F|ξ|−N(x),

Nevertheless, when 2s = N it is not possible to define the solution to (2.3)
by Fourier transform in S(RN ) in general, due to the singularity of |ξ|−N in
zero. However, various assumptions on f , which improve the regularity of
its Fourier transform, allow to recover the notion of distributional solution,
for instance, the assumption

Ff(0) = 0, that is

∫

RN

f(x)dx = 0.

The notion of Fourier transform has to be settled in a suitable framework,
such as Lizorkin’s spaces, defined as the subspace of Schwartz functions
which are orthogonal to polynomials, namely :

Φ =

{
ϕ(x)

∣∣ϕ ∈ S(RN ),

∫
xjϕ(x) = 0, ∀ |j| ∈ N0

}
.

Again, the convolution with a log-kernel does not yield enough L1
loc-regularity

to provide a notion of distributional solution in the general context of
S(RN ). See [27, Chapter 5] for more details.
Notice that when N is even, (−∆)N/2 is an integer order operator, so its
fundamental solution in R

N is known, see e.g. [22, Proposition 22].
When N is odd, the fractional case, an alternative approach to circumvent
the loss of regularity in the borderline case 2s = N is given in [18] (see
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also [17, 19, 23]). We next recall some ideas from [18]. The argument
is simple, the N/2-Laplacian can be seen as the composition of the 1/2-
Laplacian with the Laplacian of integer order (N − 1)/2. The following
proposition ensures that the logarithmic potential IN is the fundamental
solution of the N/2-Laplacian in this sense.

Proposition 2.3. [18, Lemma A.2] Let N ≥ 3 be an odd integer number
and define

Φ(x) := (−∆)
N−1

2 IN(x) =
cn

|x|N−1
.

Then Φ is the fundamental solution of (−∆)
1
2 in R

N , in the sense that for
all f ∈ L1(RN) it holds that Φ ∗ f ∈ L 1

2
(RN) and that

〈(−∆)
1
2 (Φ ∗ f), ϕ〉 :=

∫

RN

(Φ ∗ f)(x)(−∆)
1
2ϕ(x) dx =

∫

RN

fϕ dx,

for all ϕ ∈ S(RN ).

However, it is not straightforward from here that IN is the fundamental
solution of (−∆)N/2 in the sense of Definition 2.2. Actually, by interpreting
the N/2-Laplacian (when N is odd) as the composition of the Laplacian of
(integer) order (N − 1)/2 and the 1/2-Laplacian, one has that Definition
2.2 turns out to be equivalent to the following

Definition 2.4. [18, Definition 1.1] Given f ∈ S ′(RN), we say u is a
solution of (2.3) if

u ∈ WN−1,1
loc (RN), ∆

N−1
2 u ∈ L 1

2
(RN),

and ∫

RN

(−∆)
N−1

2 u(−∆)
1
2ϕdx = 〈f, ϕ〉

for all ϕ ∈ S(RN ).

Indeed, we have

Proposition 2.5. [18, Proposition 2.6] Let f ∈ L1(RN). Then u is a
solution of (2.3) in the sense of Definition 2.4 if and only if u is a solution
in the sense of Definition 2.2.

As already pointed out, the convolution IN ∗f itself does not provide in gen-
eral a distributional solution of (2.3). Nevertheless, a suitable modification
of the logarithmic potential IN , from one side yields enough L1

loc-regularity,
on the other side it is the fundamental solution of the N/2-Laplacian, in
the distributional sense of Definition 2.2.

Lemma 2.6. [18, Lemma 2.3] Let f ∈ L1(RN), and for all x ∈ R
N ,

ṽ(x) :=
1

γN

∫

RN

log

(
1 + |y|
|x− y|

)
f(y) dy.
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Then ṽ ∈ WN−1,1
loc (RN ) and

∫

RN

ṽ(x)(−∆)
N
2 ϕ(x) dx =

∫

RN

(−∆)
N−1

2 ṽ(x)(−∆)
1
2ϕ(x) dx

=

∫

RN

f(x)ϕ(x) dx

for all ϕ ∈ S(RN ), i.e, ṽ is a distributional solution (in the sense of Defi-
nitions 2.4, 2.2) of (2.3).

Lemma 2.7. [18, Lemma 2.4] Let u be a solution of (2.3) in the sense of
Definition 2.2 with f ∈ L1(RN). Then

u = ṽ + p,

where p is a polynomial of degree at most n− 1.

As a consequence of what we have recalled here from [18], we are now in
the position to proof Proposition 2.1.

Proof of Proposition 2.1. Let u ∈ W 1,NLq
w0
(RN) be a (weak) solution of

(1.3). Then F (u) ∈ Lp(RN) for any p ≥ 1, as a consequence of Theorems
1.1 and 3.3. Let

ṽ(x) =

∫

RN

log

(
1 + |y|
|x− y|

)
F (u(y)) dy.

Let us rewrite equation (1.3) as follows

(−∆)Nu(x) + V (x)|u(x)|N−2u(x)

= ṽ(x)f(u(x)) +
[
(IN ∗ F (u))(x)− ṽ(x)

]
f(u(x)) .

Set

Φ̃(x) := IN ∗ F (u)(x) = ṽ(x) +
[
(IN ∗ F (u))(x)− ṽ(x)

]

and recall that

(IN ∗ F (u))(x)− ṽ(x) =

=
1

γN

∫

RN

(
log

1

|x− y| − log

(
1 + |y|
|x− y|

))
F (u(y)) dy

= − 1

γN

∫

RN

log(1 + |y|)F (u(y)) dy .

Since u ∈ W 1,NLq
w0
(RN), according to Theorem 3.3
∫

RN

log(1 + |y|)F (u(y)) dy < ∞,

hence κN := (IN ∗ F (u))(x)− ṽ(x) is a constant function. Hence

Φ̃(x) = ṽ(x) + κN ∈ WN−1,1
loc (RN)
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and according to Lemma 2.6, for any ϕ ∈ S(RN ) we have
∫

RN

Φ̃(−∆)
N
2 ϕdx =

∫

RN

(−∆)
N−1

2 Φ̃(−∆)
1
2ϕdx

=

∫

RN

(−∆)
N−1

2 (ṽ + κN)(−∆)
1
2ϕdx

=

∫

RN

(−∆)
N−1

2 ṽ(−∆)
1
2ϕdx

=

∫

RN

F (u)ϕdx.

Indeed, we point out that since N is odd, (−∆)
N−1

2 is an integer order

operator and hence (−∆)
N−1

2 κN = 0. Therefore, Φ̃ is a distributional

solution of (−∆)
N
2 φ = F (u), in the sense of Definition 2.2. �

Remark 2.8. Notice that

IN ∗ F (u) ∈ L1
loc(R

N)

since
∫

Ω

|IN ∗ F (u)|dx ≤
∫

Ω×RN

| log |x− y||F (u)dxdy ≤

≤ Cµ

∫

Ω×RN

[
1

|x− y|µ + log(1 + |x|) + log(1 + |y|)
]
F (u(y))dxdy < +∞

where µ > 0. Boundedness follows by the Hardy-Littlewood-Sobolev in-
equality and from Theorems 1.1 and 3.3. Similarly one also has

IN ∗ F (u) ∈ LN
2
(RN)

and that it is a distributional solution of

(−∆)N/2φ = F (u).

We conclude this preliminary section by recalling two classical versions of
the Hardy–Littlewood–Sobolev inequality which will be used later on:

Proposition 2.9 (HLS inequality). Let s, r > 1 and 0 < µ < N with
1/s + µ/N + 1/r = 2, f ∈ Ls(RN) and g ∈ Lr(RN). There exists a
constant C(s,N, µ, r), independent of f, h, such that

∫

RN

[
1

|x|µ ∗ f(x)
]
g(x) ≤ C(s,N, µ, r)‖f‖s‖g‖r.

Proposition 2.10 (Logarithmic HLS inequality). Let f, g be two non-
negative functions belonging to L lnL(RN), such that

∫
f log(1 + |x|) <

∞,
∫
g log(1+ |x|) < ∞ and ‖f‖1 = ‖g‖1 = 1. There exists a constant CN ,

independent of f, g, such that

2N

∫

RN

[
log

1

|x| ∗ f(x)
]
g(x) ≤ CN +

∫

RN

f log fdx+

∫

RN

g log gdx .
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3. A log-weighted Pohozaev–Trudinger type inequality in R
N

In this section, we prove a Pohozaev–Trudinger type inequality in the whole
R

N , with a logarithmic weight which appears just in the mass part of the
energy. The prototype weight is

w = log(e+ |x|),
which plays a role only as |x| → +∞. The main result of this section is a
quite involved extension of [10, Theorem 3.1], where the two dimensional
case was considered. We begin with the case q = N whence the case q > N
will be covered in Theorem 3.3.

Proof of Theorem 1.1. We perform a change of variables, by using hypersh-
perical coordinates in R

N , to pass from W 1,N
w0

(RN) to W 1,N(RN ) as follows

x =





x1 = |x| sin θ1 sin θ2 . . . sin θN−2 sin θN−1

x2 = |x| sin θ1 sin θ2 . . . sin θN−2 cos θN−1

x3 = |x| sin θ1 sin θ2 . . . cos θN−2

. . .

xN = |x| cos θ1,
where θ1, . . . θN−2 ∈ [0, π], whence θN−1 ∈ [0, 2π), |x|2 = x2

1 + · · ·+ x2
N . By

acting only on the radial component of a point in R
N , set

T (|x|) = |y|, y

|y| =
x

|x| , |y| = |x| N
√
log(e+ |x|).

We set r = |x| and s = |y|, hence s = T (r) = r N
√
log(e+ r). We obtain

T ′(r) =
N log(e+ r) + r

e+r

N [log(e+ r)]
N−1
N

> 0, T (0) = 0, lim
r→+∞

T (r) = +∞

and thus T is invertible on R
N (though the inverse map is not explicitly

known). Set
v(y) := u(x)

or, equivalently

u(r sin θ1 . . . sin θN−1, . . . , r cos θ1)

v (T (r) sin θ1 . . . sin θN−1, . . . , T (r) cos θ1) .

Then, denoting θ = (θ1, . . . , θN−1) and

w(r, θ) := u(r sin θ1 . . . sin θN−1, . . . , r cos θ1)

w̃(s, θ) := v (s sin θ1 . . . sin θN−1, . . . , s cos θ1) ,

w(r, θ) = w̃ (T (r), θ) ,

we compute

wr(r, θ) = w̃s (T (r), θ)T
′(r),

wθi (T (r), θ) = w̃θi (T (r), θ) i = 1, . . . , N − 1.
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Therefore

∫

RN

|∇v|N dy

=

∫ 2π

0

∫ π

0

sin θN−2· · ·
∫ π

0

sinN−2 θ1

∫ +∞

0

[
w̃2

s(s, θ) +
w̃2

θ1
(s, θ)

s2
+ . . .

+
w̃2

θN−1
(s, θ)

s2 sin2 θ1 . . . sin
2 θN−2

]N
2

sN−1ds dθ1 . . . dθN−2 dθN−1

=

∫ 2π

0

∫ π

0

sin θN−2· · ·
∫ π

0

sinN−2 θ1

∫ +∞

0

[
w̃2

s(T (r), θ) +
w̃2

θ1
(T (r), θ)

T 2(r)
+ . . .

+
w̃2

θN−1
(T (r), θ)

T 2(r) sin2 θ1 . . . sin
2 θN−2

]N
2

TN−1(r)T ′(r)dr dθ1 . . . dθN−2 dθN−1

=

∫ 2π

0

∫ π

0

sin θN−2· · ·
∫ π

0

sinN−2 θ1

∫ +∞

0

[
w2

r(r, θ)

[T ′(r)]2
+

w2
θ1
(r, θ)

r2
r2

T 2(r)
+ . . .

+
w2

θN−1
(r, θ)

r2
r2

T 2(r) sin2 θ1 . . . sin
2 θN−2

]N
2

TN−1T ′drdθ1 . . . dθN−2dθN−1.

Now, since

1

[T ′(r)]2
=

[log(e+ r)]
2(N−1)

N

[
log(e + r) + r

N(e+r)

]2 ,
r2

T 2(r)
=

1

[log(e+ r)]2/N

we get

N

N + 1

r2

T 2(r)
<

1

[T ′(r)]2
<

r2

T 2(r)
.
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Thus we have

(
N

N + 1

)N
2
∫ 2π

0

∫ π

0

sin θN−2· · ·
∫ π

0

sinN−2 θ1

·
∫ +∞

0

[
w2

r(r, θ) +
w2

θ1
(r, θ)

r2
+ . . .

+
w2

θN−1
(r, θ)

r2 sin2 θ1 . . . sin
2 θN−2

]N
2
rNT ′(r)

T (r)
dr dθ1 . . . dθN−2 dθN−1

≤
∫

RN

|∇v|Ndy1 . . . dyN

≤
∫ 2π

0

∫ π

0

sin θN−2· · ·
∫ π

0

sinN−2 θ1

∫ +∞

0

[
w2

r(r, θ) +
w2

θ1
(r, θ)

r2
+ . . .

+
w2

θN−1
(r, θ)

r2 sin2 θ1 . . . sin
2 θN−2

]N
2
rNT ′(r)

T (r)
dr dθ1 . . . dθN−2 dθN−1 .

On the one hand, from

rNT ′(r)

T (r)
= rN−1

[
1 +

r

N(e + r) log(e + r)

]

one has

rN−1 <
rNT ′(r)

T (r)
<

N + 1

N
rN−1 (3.1)

and then

(
N

N + 1

)N
2
∫

RN

|∇u|N dx <

∫

RN

|∇v|N dy <
N + 1

N

∫

RN

|∇u|N dx. (3.2)

On the other hand,

∫

RN

|v|N dy

=

∫ 2π

0

∫ π

0

sin θN−2· · ·
∫ π

0

sinN−2 θ1

∫ +∞

0

|w̃(s, θ)|NsN−1dsdθ1 . . . dθN−1

=

∫ 2π

0

∫ π

0

sin θN−2· · ·
∫ π

0

sinN−2 θ1

∫ +∞

0

|w̃(T (r), θ)|NT ′TN−1dr . . . dθN−1

=

∫ 2π

0

∫ π

0

sin θN−2· · ·
∫ π

0

sinN−2 θ1

∫ +∞

0

|w(r, θ)|NT ′TN−1dr dθ1 . . . dθN−1.
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Notice that

T ′(r)TN−1(r) = rN−1

[
log(e + r) +

r

N(e + r)

]

= rN−1 log(e+ r)

[
1 +

r

N(e + r) log(e+ r)

]

=
rNT ′(r)

T (r)
log(e+ r)

(3.3)

and hence
∫

RN

|v|Ndy =

∫ 2π

0

∫ π

0

sin θN−2 . . .

· · ·
∫ π

0

sinN−2 θ1

∫ +∞

0

|w(r, θ)|N rNT ′

T
log(e + r)dr . . . dθN−1 .

By (3.1),
∫

RN

|u|N log(e + |x|)dx <

∫

RN

|v|N dy <
N + 1

N

∫

RN

|u|N log(e+ |x|)dx .

Finally,
(

N

N + 1

)N
2

‖u‖Nw < ‖v‖N <
N + 1

N
‖u‖Nw . (3.4)

We have hence proved that the map

T : W 1,N
w (RN) → W 1,N

0 (RN )

u 7→ v

is invertible, continuous and with continuous inverse. Then, similarly as
above,
∫

RN

φN

(
α|u(x)| N

N−1

)
log(e + |x|)dx

=

∫ 2π

0

· · ·
∫ π

0

sinN−2 θ1

∫ +∞

0

φN

(
α|w(r, θ)| N

N−1

)
log(e + r)rN−1dr dθ1 . . . dθN−1

=

∫ 2π

0

· · ·
∫ π

0

sinN−2 θ1

∫ +∞

0

φN

(
α|w̃(T (r), θ)| N

N−1

) log(e+ r)rN−1

T ′(r)T (r)N−1
T ′(r)T (r)N−1dr dθ1 . . . dθN−1

≤
∫ 2π

0

· · ·
∫ π

0

sinN−2 θ1

∫ +∞

0

φN

(
α|w̃(ρ, θ)| N

N−1

)
ρN−1dρ dθ1 . . . dθN−1

=

∫

RN

φN

(
α|v| N

N−1

)
dx < +∞
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for any α > 0, where we have used (3.1), (3.3), and [21, Theorem 1.1] in
the last line. The uniform bound (1.8) follows directly from (3.4). Indeed,

for any u ∈ W 1,N
w (RN) and α ≤ αN

(
N

N+1

)1/(N−1)
one has

∫

RN

φN

(
α

( |u|
‖u‖w

) N
N−1

)
log(e+ |x|)dx

=

∫ 2π

0

· · ·
∫ π

0

sinN−2 θ1

∫ +∞

0

φN

(
α

( |w(r, θ)|
‖u‖w

) N
N−1

)
log(e + r)rN−1dr dθ1 . . . dθN−1

=

∫ 2π

0

· · ·
∫ π

0

sinN−2 θ1

∫ +∞

0

φN

(
α

( |w̃(T (r), θ)|
‖u‖w

) N
N−1

)
log(e+ r)rN−1

T ′(r)T (r)N−1
T ′(r)T (r)N−1dr . . . dθN−1

≤
∫ 2π

0

· · ·
∫ π

0

sinN−2 θ1

∫ +∞

0

φN

(
αN

( |w̃(ρ, θ)|
‖v‖

) N
N−1

)
ρN−1dρ dθ1 . . . dθN−1

=

∫

RN

φN

(
αN

( |v|
‖v‖

) N
N−1

)
dx < C

by (3.4) and using [21, Theorem 1.1] for the last inequality. �

As a byproduct of this embedding result one has the continuity of a weighted
Pohozaev–Trudinger functional on W 1,N

w (RN), namely we have the follow-
ing

Corollary 3.1. For any α > 0, the functional

u 7−→
∫

RN

φN

(
α|u| N

N−1

)
log(e+ |x|) dx

is continuous on W 1,N
w (RN).

Remark 3.2. The value αN

(
N

N+1

)1/(N−1)
in (1.8) is not sharp and we con-

jecture that the sharp value is αN as in the Moser case [25], though it is
somehow delicate and still out of reach.

Next we consider the case in which the asymptotic growth of the nonlin-
earity near zero is a power q > N . We prove the following

Theorem 3.3. Let f : R → [0,+∞) satisfying (f1) and let q > N . Then,
the spaceW 1,NLq

w(R
N) embeds into the weighted Orlicz space LF (R

N , log(e+
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|x|)dx). More precisely,
∫

RN

F (α|u|) log(e+ |x|) dx < ∞, ∀u ∈ W 1,NLq
w(R

N), ∀α > 0 .

Moreover, for any α < N
q

(
N

N+1

)1/N
the following uniform bound holds

sup
‖u‖Nq,w≤1

∫

RN

F (α|u|) log(e + |x|)dx < +∞ . (3.5)

Proof. For u ∈ W 1,NLq
w(R

N) set

v :=

{
|u| q

N , |u| < 1,

|u|, |u| ≥ 1,

which belongs to W 1,N
w (RN). Indeed,

‖v‖Nw =

∫

RN

|∇v|N dx+

∫

RN

|v|N log(e+ |x|) dx

≤
( q

N

)N ∫

RN

|∇u|N dx+

∫

RN

|u|q log(e + |x|) dx ≤
( q

N

)N
‖u‖Nq,w.

Now recall from (1.4) that for any ‖u‖q,w ≤ 1 one has:

• if p ≤ 1
N−1

,

∫

RN

F (α|u|) log(e+ |x|) dx

≤ C

(∫

RN

αq|u|q log(e+ |x|) dx

+αp− 1
N−1

∫

{|u|>1}
eαN (α|u|)

N
N−1

log(e + |x|) dx
)

= C

(∫

RN

αq|u|q log(e+ |x|) dx

+αp− 1
N−1

∫

{|v|>1}
eαN (α‖v‖w)

N
N−1 (|v|/‖v‖w)

N
N−1

log(e+ |x|) dx
)

≤ C
(
αq‖u‖qLq(wdx)

+αp− 1
N−1

∫

{|v|>1}
φN

(
αN

(
N

N + 1

) 1
N−1

( |v|
‖v‖w

) N
N−1

)
log(e+ |x|) dx

)
≤ C

(where the last bound is independent of u in the unit ball of W 1,NLq
w(R

N));
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• if p > 1
N−1

,

∫

RN

F (α|u|) log(e+ |x|) dx

≤ C

(∫

RN

αq|u|q log(e+ |x|) dx

+

∫

{|u|>1}
(α|u|)p−

1
N−1 eαN (α|u|)

N
N−1

log(e+ |x|) dx
)

= C
(
αq‖u‖qLq(wdx)

+

∫

{|v|>1}
(α|v|)p−

1
N−1 eαN (α‖v‖w)

N
N−1 (|v|/‖v‖w)

N
N−1

log(e+ |x|) dx
)

≤ C
(
αq‖u‖qLq(wdx)

+αp− 1
N−1

∫

{|u|>1}
|u|r′(p− 1

N−1
)

∫

{|v|>1}
erαN (α‖v‖w)

N
N−1 (|v|/‖v‖w)

N
N−1

log(e+ |x|) dx
)

where r =
(

N
N+1

) 1
N−1

(
N
αq

) N
N−1

> 1, provided α < N
q

(
N

N+1

) 1
N and r′ is the

Young conjugate of r. Hence,
∫

RN

F (α|u|) log(e+ |x|) dx

≤ C
(
αq‖u‖qLq(wdx)+

αp− 1
N−1

∫

{|v|>1}
φN

((
N

N + 1

) 1
N−1

αN

( |v|
‖v‖w

) N
N−1

)
log(e+ |x|) dx

)
≤ C

(where the constant C does not depend on u in the unit ball ofW 1,NLq
w(R

N)).
�

Remark 3.4. The analogous of Corollary 3.1 holds also in the case q > N .

4. The variational framework: proof of Theorem 1.2

The energy functional we consider is the following

IV (u) =
1

N
‖u‖NV − F(u),

with

F(u) =
1

2

∫

RN

(IN ∗ F (u))(x)F (u(x)) dx

=
1

2γN

∫

RN

(
log

1

| · | ∗ F (u)

)
(x)F (u(x)) dx

=
1

2γN

∫

RN

∫

RN

log
1

|x− y|F (u(y))F (u(x)) dx dy.

(4.1)
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The regularity of IV can be proved following line by line [10, Lemma 4.2],
namely one has

Theorem 4.1. The energy functional IV is of class C1 on W 1,N
V Lq

w0
(RN).

4.1. Mountain pass geometry. Let us focus here on the geometry of the
energy functional IV .

Lemma 4.2. The energy functional IV satisfies the following:

(i) there exist ρ, δ0 > 0 such that IV |Sρ ≥ δ0 for all u ∈ Sρ

Sρ := {u ∈ W 1,N
V Lq

w0
(RN ) | ‖u‖q,V,w0 = ρ};

(ii) there exists e ∈ W 1,N
V Lq

w0
(RN ), ‖e‖q,V,w0 > ρ such that IV (e) < 0.

Proof. Throughout the proof, constants may change from line to line. No-
tice that from the logarithmic Hardy-Littlewood-Sobolev inequality, Propo-
sition 2.10, we have

F(u) ≤ ‖F (u)‖L1(RN )

(
CN‖F (u)‖L1(RN ) +

1

N

∫

RN

F (u) logF (u) dx

− 1

N
‖F (u)‖L1(RN ) log ‖F (u)‖L1(RN )

)
.

Since ‖u‖V ≤ ‖u‖q,V,w0 = ρ, for ρ small, by (1.4) and noting that for any
s > s0 and p > 0

sp−
1

N−1φN

(
αNs

N
N−1

)
≤ CN,ps

2NφN

(
2αNs

N
N−1

)

we have, for some r > 1,

‖F (u)‖L1(RN ) ≤ C‖u‖qq + C

[∫

RN

|u|2Nr′dx

] 1
r′

·

·
[∫

RN

φN

(
2αNr‖∇u‖

N
N−1

N

( |u|
‖∇u‖N

) N
N−1

)
dx

] 1
r

≤ C
(
‖u‖qV + ‖u‖2NV

)
≤ C

(
‖u‖Nq,V,w0

+ ‖u‖2Nq,V,w0

)
≤ C‖u‖Nq,V,w0

and in turn,

∣∣‖F (u)‖L1(RN ) log ‖F (u)‖L1(RN )

∣∣ ≤ C‖u‖Nq,V,w0
|log ‖u‖q,V,w0| .
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Moreover, combining (f1) with elementary estimates for the function t| log t|,
and since q > N , if p ≥ 1

N−1
we have

∫

RN

F (u) logF (u) dx ≤ C

∫

RN

F (u)| logF (u)| dx

≤ C

(∫

{|u|<1}
|u|N +

∫

{|u>1|}
F (u) log |F (u)| dx

)

≤ C

(
‖u‖NV +

∫

{|u>1|}
|u|p+1eαN |u|

N
N−1

dx

)
≤ C

(
‖u‖NV + ‖u‖p+1

V

)
,

for small ‖u‖V , where we have also applied the classical Moser inequality
on the whole R

N . Similarly, when p < 1
N−1

we obtain

∫

RN

F (u) logF (u) dx ≤ C

∫

RN

F (u)| logF (u)| dx

≤ C

(∫

{|u|<1}
|u|N +

∫

{|u>1|}
F (u) log |F (u)| dx

)

≤ C

(
‖u‖NV +

∫

{|u>1|}
|u| N

N−1 eαN |u|
N

N−1
dx

)
≤ C

(
‖u‖NV + ‖u‖

N
N−1

V

)
.

Combining the two previous estimates we end up with the following

F(u) ≤ C‖u‖Nq,V,w0

(
‖u‖Nq,V,w0

+ ‖u‖Nq,V,w0
| log ‖u‖q,V,w0|+ ‖u‖

N
N−1

q,V,w0

)

≤ C‖u‖
N2

N−1

q,V,w0
.

Hence, for ρ small enough one has

IV (u) ≥
1

N
‖u‖Nq,V,w0

− C‖u‖
N2

N−1

q,V,w0
= δ0 > 0,

with δ0 depending only on ρ, which proves (i).

In order to prove (ii), let us consider a smooth function e ∈ W 1,N
q,V,w0

(RN ),
supported in B1/4. Since F (e(x)), F (e(y)) 6= 0 only for x, y B1/4, let us
evaluate

F(e) =
1

2

∫

RN

(IN ∗ F (e))(x)F (e(x)) dx

=
1

2γN

∫

RN

(∫

RN

log
1

|x− y|F (e(y)) dy

)
F (e(x)) dx

≥ log 2

2γN

(∫

{|x|≤ 1
4
}
F (e) dx

)2

,
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from which we have

IV (te) =
1

N
tN‖e‖NV −F(te)

≤ 1

N
tN‖e‖NV − log 2

2γN

(∫

{|x|≤ 1
4
}
F (te) dx

)2

→ −∞,

as t → +∞, since F has exponential growth. �

By Ekeland’s Variational Principle, there exists a Palais-Smale (PS in the

sequel) sequence {un} ∈ W 1,N
V Lq

w0
(RN) such that

I ′
V (un) → 0, IV (un) → mV ,

where mV is the mountain pass level,

0 < mV := inf
γ∈Γ

max
t∈[0,1]

IV (γ(t)),

and

Γ =
{
γ ∈ C1

(
[0, 1],W 1,N

q,V,w0
(RN)

) ∣∣ γ(0) = 0, IV (γ(1)) < 0}.

Next, a few efforts are needed to extend to the higher dimensional case
N ≥ 3, the mountain pass level estimates carried out in [10, Lemma 5.2].

Lemma 4.3. The mountain pass level mV satisifes

mV <
1

N
.

Proof. We are reduced to exhibit a function v ∈ W 1,N
V Lq

w0
(RN) with unitary

norm and such that

max
t≥0

IV (tv) <
1

N
.

For this purpose let us introduce the following Moser type functions for all
n ≥ 1, supported in Bρ for some ρ > 0,

wn =






Cn logn, 0 ≤ |x| ≤ ρ

n
,

Cn log
ρ

|x| ,
ρ

n
≤ |x| ≤ ρ,

0, ρ ≤ |x|,
with

Cn = (ωN−1 log n)
− 1

N . (4.2)

We have
∫

RN

|∇wn|N dx = ωN−1C
N
n

∫ ρ

ρ
n

r−1 dr = ωN−1C
N
n log n = 1,
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as well as
∫

RN

V (x)|wn|N dx

≤ sup
Bρ

V

(
CN

n (log n)N
∫

Bρ/n

dx+

∫

Bρ\Bρ/n

CN
n

(
log

ρ

|x|

)N

dx

)

= CN
n ωN−1 sup

Bρ

V

(
(logn)N

∫ ρ
n

0

rN−1 dr +

∫ ρ

ρ
n

(
log

ρ

r

)N
rN−1 dr

)

≤
supBρ

V

logn

(
(log n)N

NnN
ρN +

∫ ρ

ρ
n

(
log

ρ

r

)N
rN−1 dr

)
,

recalling from (4.2) that CN
n ωN−1 = 1/ logn. Now

∫

RN

|wn|q log(1 + |x|) dx = (Cn logn)
q

∫

Bρ/n

log(1 + |x|) dx

+ Cq
n

∫

Bρ\Bρ/n

log(1 + |x|)
∣∣∣∣log

ρ

|x|

∣∣∣∣
q

dx

= Cq
nωN−1

(
logq n

∫ ρ
n

0

log(1 + r)rN−1 dr +

∫ ρ

ρ
n

log(1 + r) logq
(ρ
r

)
rN−1 dr

)

≤ Cq
nωN−1 log

q n
(ρ
n

)N+1

+ Cq
nωN−1 log(e+ ρ)

∫ ρ

ρ
n

(
log

ρ

r

)q
rN−1 dr.

Thus,

‖wn‖Nq,V,w0
=

∫

RN

(
|∇wn|N + V |wn|N

)
dx+

(∫

RN

|wn|q log(1 + |x|) dx
)N

q

≤ 1 +
supBρ

V

log n

∫ ρ

ρ
n

(
log

ρ

r

)N
rN−1 dr +O

(
(log n)N−1

nN

)

+
ω

N−q
q

N−1

logn
(log(1 + ρ))

N
q

(∫ ρ

ρ
n

(
log

ρ

r

)q
rN−1 dr

)N
q

+O

(
1

log n

(
log n

n
N+1

q

)N
)

.

Let us estimate explicitly integrals in the above inequality, as for k ∈ N we
have

∫ (
log

ρ

r

)k
rN−1 dr =

rN

N

k∑

j=0

(
log

ρ

r

)k−j k(k − 1) . . . (k − j + 1)

N j
,
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and from the estimate
∫ (

log
ρ

r

)q
rN−1 dr ≤

∫ (
log

ρ

r

)[q]
rN−1 dr +

∫ (
log

ρ

r

)[q+1]

rN−1 dr,

we get

1 ≤ ‖wn‖Nq,V,w0
≤ 1 + δn, with δn → 0, as n → ∞

and

δn =
1

log n

ρN

N

[
sup
Bρ

V
N !

NN
+ ω

N−q
q

N−1(log(e + ρ))
N
q

(
[q]!

N [q]
+

[q + 1]!

N [q+1]

)]

+ o

(
1

logn

)
. (4.3)

Then,

wn =
wn

N
√
1 + δn

, ‖wn‖Nq,V,w ≤ 1.

Claim:

∃n ∈ N such that max
t≥0

IV (twn) <
1

N
. (4.4)

By contradiction, suppose that for all n

IV (tnwn) := max
t≥0

IV (twn) ≥
1

N
,

together with
d

dt
IV (twn)|t=tn = 0 .

As a consequence we obtain

tNn
N

≥ 1

N
+

1

2γN

∫

R2N

log
1

|x− y|F (tnwn(y))F (tnwn(x)) dx dy, (4.5)

and

tNn ≥ 1

γN

∫

R2N

log
1

|x− y|F (tnwn(y))f(tnwn(x))tnwn(x) dx dy. (4.6)

Assume ρ ≤ 1/2, thus if x, y ∈ Bρ, then log(1/|x− y|) ≥ 0. Observe from
(4.5) that, since wn is supported in Bρ,

tn ≥ 1.

Next we prove the following

lim inf
n→+∞

tn ≤ 1 . (4.7)

Indeed, if not there exists some δn > 0 such that for n large enough

tNn ≥ 1 + δn . (4.8)
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Notice that

I :=

∫

R2N

log
1

|x− y|F (tnwn(y))f(tnwn(x))tnwn(x) dx dy

=

∫

B ρ
n
×B ρ

n

log
1

|x− y|F (tnwn(y))f(tnwn(x))tnwn(x) dx dy

+

∫

R2N\
(

B ρ
n
×B ρ

n

)

log
1

|x− y|F (tnwn(y))f(tnwn(x))tnwn(x) dx dy

≥
∫

B ρ
n
×B ρ

n

log
1

|x− y|F (tnwn(y))f(tnwn(x))tnwn(x) dx dy,

again since log(1/|x − y|) ≥ 0 for x, y ∈ Bρ, where wn is supported. By
(f4), for any ε ∈ (0, β/2) small enough, there exists sε > 0 such that for all
s > sε,

s
2N−1
N−1 f(s)F (s) >

β

2
e2Nω

1
N−1
N−1 s

N
N−1

and in turn

sf(s)F (s) >
β

2
s−

N
N−1 e2Nω

1
N−1
N−1 s

N
N−1

.

Therefore, by using the explicit value of wn and the fact that |x−y| ≤ 2ρ/n
for x, y ∈ B ρ

n
×B ρ

n
, we have

I ≥ β

2
log

(
n

2ρ

)
ω2
N−1

N2

(ρ
n

)2N
e
2Nω

1
N−1
N−1

(

tnCn log n
N√1+δn

) N
N−1 (

tnCn logn
N
√
1 + δn

) −N
N−1

=
β

2

ω2
N−1

N2
log

(
n

2ρ

)
ρ2Ne−2N logne

2N logn

(

tn
N√1+δn

) N
N−1

·

·
(

tn
N
√
1 + δn

) −N
N−1

ω
1

N−1

N−1

1

logn

≥ β

2N2
ω

2N−1
N−1

N−1 ρ2N
e
2N logn





(

tn
N√1+δn

) N
N−1

−1





(
tn

N√1+δn

) N
N−1

,

recalling the value of Cn given in (4.2). It follows from (4.6) that

tNn ≥ β

2N2γN
ω

2N−1
N−1

N−1 ρ2N
e
2N logn





(

tn
N√1+δn

) N
N−1

−1





(
tn

N√1+δn

) N
N−1

. (4.9)

In both cases when tn → ∞, as n → ∞ or when tn stays bounded, (4.8)
yields a contradiction. Thus (4.7) holds and hence

lim
n→∞

tn = 1 .



24 C. BUCUR, D. CASSANI, AND C. TARSI

Now, from one side we have

e
logn





(

tn
N√1+δn

) N
N−1

−1





≤ C

and thus (
tn

N
√
1 + δn

) N
N−1

≤ 1 +O

(
1

log n

)
.

On the other side, from (4.9) we obtain

1 + o(1) ≥ t
N2

N−1
n ≥ β

2N2γN
ω

2N−1
N−1

N−1 ρ2Ne
2N logn





(

tn
N√1+δn

) N
N−1

−1





(1 + δn)
1

N−1 .

As a consequence we finally get

1 + o(1) ≥ β

2N2γN
ω

2N−1
N−1

N−1 ρ2Ne
2N logn





(

tn
N√1+δn

) N
N−1

−1





(1 + δn)
1

N−1

=
β

2N2γN
ω

2N−1
N−1

N−1 ρ2Ne2N logn[− δn
N−1

+o(δn)].

By substituting (4.3) in the previous inequality and letting n → ∞, we end
up with

1 ≥ β

2N2γN
ω

2N−1
N−1

N−1 ρ2Ne
−2N
N−1

ρN

N

[

supBρ
V N!

NN +ω
N−q

q
N−1 (log(1+ρ))

N
q
(

[q]!

N[q]
+

[q+1]!

N[q+1]

)

]

.

For a fixed ρ ≤ 1/2, set

ν := sup
ρ≤ 1

2

2N2γN
ρ2N

ω
−2N+1
N−1

N−1 e
2N
N−1

ρN

N

[

supBρ
V N!

NN +ω
N−q

q
N−1 (log(1+ρ))

N
q
(

[q]!

N[q]
+

[q+1]!

N[q+1]

)

]

to get a contradiction from (f4), since β > ν. �

4.2. On the Ekeland Palais-Smale sequence. In this section we study
the behavior of the PS sequence provided by Ekeland’s Variational Prin-
ciple. In particular, it is a non trivial fact, in this context, that the weak
limit turns out to be a nontrivial solution of the equation. Boundedness of
PS sequences buys the line of [10, Lemma 6.1], to which we refer for the
proof of the next

Lemma 4.4. Assume (V ) and (f1)–(f4). Let {un} ⊂ W 1,N
V Lq

w0
(RN) be an

arbitrary PS sequence for IV at level c, namely

IV (un) → c and I ′
V (un) → 0 in

(
W 1,N

V Lq
w0
(RN)

)′
, as n → +∞,

the dual space of W 1,N
V Lq

w0
(RN). Then, the following hold:

(i) ‖un‖V ≤ C ;
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(ii) ∣∣∣∣
∫

RN

[
log

1

|x| ∗ F (un)

]
F (un)dx

∣∣∣∣ ≤ C ;

(iii) ∣∣∣∣
∫

RN

[
log

1

|x| ∗ F (un)

]
unf(un)dx

∣∣∣∣ ≤ C .

Remark 4.5. Note that, as a consequence of Lemma 4.4, we may assume
the PS sequence at level c to be positive. Indeed, since un is bounded, we
can test I ′

V (un) against u
−
n = max (−un, 0) to get

∣∣∣∣
∫

{un<0}
|∇un|N + V |un|Ndx

∣∣∣∣ ≤ τnC

Hence, the positive sequence {u+
n } is still a PS sequence at the same level

c, since F (s) = 0 for s ≤ 0.

From now on we will consider only positive PS sequences. Because of the
exponential nonlinearity and the presence of a sign-changing logarithmic
kernel, we cannot exploit standard arguments to obtain the existence of a
solution as byproduct of boundedness of a PS sequence. Here it is funda-
mental to take advantage of the key estimate for the mountain pass level of
Lemma 4.3. The next lemma is an extension of [10, Lemma 6.2]. However,
it is not a virtual transcription, so that, for convenience of the reader, we
recall the main steps of the proof.

Lemma 4.6. Assume (V ) and (f1)–(f4). Let {un} ⊂ W 1,N
V Lq

w0
(RN) be

a (positive) PS sequence for IV at level 0 < c < 1/N . Then, for any
1 ≤ α < 1/(Nc) the following uniform bound holds

sup
n∈N

∫

RN

F α(un) dx < ∞ .

Proof. From Lemma 4.4, there exists u ∈ W 1,N
V (RN) such that:

un ⇀ u in W 1,N
V (RN);

un → u in Ls
loc(R

N) for any 1 ≤ s < ∞;

un → u a.e. in R
N ,

with

lim
n→+∞

‖un‖NV = AN ≥ ‖u‖NV . (4.10)

Let G : R+ → R
+,

G(t) :=

∫ t

0

N

√
N

2

F (s)f ′(s)

f 2(s)
− N − 2

2
ds,
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and notice that G ∈ C1(R+) thanks to (f2). By Hölder’s inequality we
have

GN(t) ≤
(∫ t

0

ds

)N−1 ∫ t

0

(
N

2

F (s)f ′(s)

f 2(s)
− N − 2

2

)
ds

= tN − N

2
tN−1F (t)

f(t)
. (4.11)

Set

vn := G(un) > 0 .

Since un is bounded in W 1,N
V (RN) and thanks to (f2),

∫

RN

|∇vn|Ndx =

∫

RN

|∇un|N
(
N

2

F (un)f
′(un)

f 2(un)
− N − 2

2

)
dx ≤ C

and ∫

RN

V vNn dx =

∫

RN

V GN(un)dx ≤ C

∫

RN

V uN
n dx ≤ C.

We claim that for n large enough

‖∇vn‖NV ≤ 1.

Combining the facts IV (un) → c, (4.1) and (4.10), we have

lim
n→+∞

1

γN

∫

RN

[
log

(
1

|x|

)
∗ F (un)

]
F (un)dx = 2

(
AN

N
− c

)
.

Moreover, since I ′
V (un) → 0 in

(
W 1,N

V Lq
w0
(RN)

)′
, we have

I ′
V (un)

[
F (un)

f(un)

]
→ 0,

and hence
∫

RN

|∇un|N
(
1− F (un)f

′(un)

f 2(un)

)
dx+

∫

RN

V uN−1
n

F (un)

f(un)
dx

− 1

γN

∫

RN

[
log

(
1

|x|

)
∗ F (un)

]
F (un)dx = o(1).

(4.12)

Again by (4.10) we get

∫

RN

|∇un|N
(
1− F (un)f

′(un)

f 2(un)

)
dx+

∫

RN

V uN−1
n

F (un)

f(un)
dx+ 2c

− 2

N

∫

RN

|∇un|Ndx− 2

N

∫

RN

V uN
n dx = o(1).
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Therefore, thanks to (4.11)

‖vn‖NV =

∫

RN

|∇G(un)|Ndx+

∫

RN

V GN(un)dx

=

∫

RN

|∇un|N
(
N

2

F (un)f
′(un)

f 2(un)
− N − 2

2

)
dx+

∫

RN

V GN(un)dx

= Nc +

∫

RN

V

(
N

2
uN−1
n

F (un)

f(un)
− uN

n +GN(un)

)
dx+ o(1)

≤ Nc + o(1) < 1
(4.13)

for n large enough.
At this point, we are able to improve the exponential integrability of un.
Thanks to (f3), for any ǫ > 0 there exists tǫ > 0 large enough such that

1− ǫ < N

√
N

2

F (t)f ′(t)

f 2(t)
− N − 2

2
≤ 1 + ǫ, for all t ≥ tǫ .

Next by (f2) we also have either un(x) ≤ tǫ or un(x) ≥ tǫ which implies

vn ≥
∫ tǫ

0

N

√
δ
N

2
dt+

∫ un

tǫ

(1− ǫ)dt

≥ N

√
δ
N

2
tǫ + (1− ǫ)(un − tǫ) ≥ (1− ǫ)(un − tǫ) (4.14)

and in turn

un ≤ tǫ +
vn

1− ǫ
, for any x ∈ R

N .

Hence, by (1.4) and since F is an increasing function, and recalling that
q > N ,
∫

RN

F α(un)dx =

∫

0≤un≤tǫ

F α(un)dx+

∫

un≥tǫ

F α(un)dx

≤ Cǫ

∫

un≤tǫ

uNα
n dx

+

∫

un≥tǫ

[
F

(
tǫ +

vn
1− ǫ

)]α
dx

≤ Cǫ

∫

un≤tǫ

uN
n dx+C

∫

un≥tǫ

(
tǫ +

vn
1− ǫ

)α(p− 1
N−1

)

φN

(
ααN(tε +

vn
1− ǫ

)
N

N−1

)
dx

≤ Cǫ‖un‖NN + Cǫ

∫

un≥tǫ

φN

(
ααN(1 + ǫ)(tǫ +

vn
1− ǫ

)
N

N−1

)
dx

≤ Cǫ‖un‖NN + Cǫ

∫

RN

φN


ααN(1 + ǫ)

N
N−1

v
N

N−1
n

(1− ǫ)
N

N−1


 dx, (4.15)
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where Cǫ > 0 may change from line to line. (The last inequality can be
verified just observing that for large values of un, also vn is large so that

(tǫ +
vn
1−ǫ

)
N

N−1 ∼ ( vn
1−ǫ

)
N

N−1 ).
Set

η :=
1

Nc
− α > 0

and let us fix 0 < ǫα < 1, depending on α < 1
Nc

such that

(1 + ǫα)
N

N−1

(1− ǫα)
N

N−1

(
1− η2(Nc)2

)
< 1.

With these choices we obtain
∫

RN

F α(un)dx ≤ Cα‖un‖NN+

Cα

∫

RN

φN


ααN

(1 + ǫα)
N

N−1

(1− ǫα)
N

N−1

‖vn‖
N

N−1

V

|vn|
N

N−1

‖vn‖
N

N−1

V


 dx .

By (4.13), ‖vn‖NV ≤ Nc + o(1) as n is large enough, so that

‖vn‖NV ≤ Nc + (Nc)2η, as n → +∞ .

Thus,

α
(1 + ǫα)

N
N−1

(1− ǫα)
N

N−1

‖vn‖NV ≤
(

1

Nc
− η

)
(1 + ǫα)

N
N−1

(1− ǫα)
N

N−1

Nc(1 +Ncη)

=
(1 + ǫα)

N
N−1

(1− ǫα)
N

N−1

(
1− (Nc)2η2

)
< 1,

and finally we obtain

∫

RN

F α(un)dx ≤ Cα‖un‖NN + Cα

∫

RN

φN



αN
|vn|

N
N−1

‖vn‖
N

N−1

V



 dx ≤ Cα .

�

Proposition 4.7. Assume that conditions (V ) and (f1)–(f4) are satisfied.
Let {un} ⊂ W 1,N

q,w be a PS sequence for IV at level c < 1/N , weakly con-

verging to u in W 1,N
V (RN). If u 6= 0, then u ∈ W 1,N

V Lq
w0(RN )

and un ⇀ u

weakly in W 1,N
V Lq

w0(RN )
. Furthermore, as n → ∞

(
log |x| ∗ F (un)

)
f(un) −→

(
log |x| ∗ F (u)

)
f(u) in L1

loc(R
N ) (4.16)

and u is a weak solution to (1.3).

For the proof we refer to [10, Proposition 6.3].
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4.3. Proof of Theorem 1.2. The functional IV satisfies the Mountain
Pass geometry thanks to Lemma 4.2. This yields a (PS) sequence {un} ⊂
W 1,N

V Lq
w0
(RN) at level mV . Then, by Lemma 4.6 we have that {un} is

bounded in u ∈ W 1,N
V (RN) and it weakly converges to some u ∈ W 1,N

V (RN ).
It remains to prove that u 6= 0.
Either {un} is vanishing, that is for any r > 0

lim
n→+∞

sup
y∈RN

∫

Br(y)

|un|Ndx = 0

or, there exist r, δ > 0 and a sequence {yn} ⊂ Z
N such that

lim
n→∞

∫

Br(yn)

|un|Ndx ≥ δ.

If {un} is vanishing, by Lions’ concentration-compactness principle we have

un → 0 in Ls(RN) ∀ s > N, (4.17)

as n → ∞. In this case it is standard to show that

‖F (un)‖γ, ‖unf(un)‖γ → 0

for some values of γ > 1 and close to 1, thanks to the improved ex-
ponential integrability given by Lemma 4.6 and the growth assumption
F (t) < N

2
tf(t), see (1.5)). Hence, by applying the HLS inequality (Propo-

sition 2.9) we obtain as n → ∞, similarly to Proposition 4.7:
∫

R2N

log

(
1 +

1

|x− y|

)
F (un(x))F (un(y))dxdy → 0 (4.18)

∫

R2N

log

(
1 +

1

|x− y|

)
F (un(x))un(y)f(un(y))dxdy → 0 (4.19)

Combining (4.18)-(4.19) and the facts IV (un) → c and I ′
V (un)[v] → 0 on

C∞
c (RN) test functions, we obtain

1

γN

∫

R2N

log (1 + |x− y|)F (un(x))

[
F (un(y))−

2

N
un(y)f(un(y))

]
dxdy

= 2mV + o(1)

so that mv ≤ 0 thanks to (1.5), which is not possible. Therefore, the
vanishing case does not occur.

Now set vn := un(· − yn), then∫

Br(0)

|vn|2dx ≥ δ . (4.20)

Using the periodicity assumption, IV and I ′
V are both invariant by the

Z
N -action, therefore {vn} is still a PS sequence at level mV . Then vn ⇀ v

in W 1,N
V (RN) with v 6= 0 by using (4.20), since vn → v in LN

loc(R
N ). We

conclude by Proposition 4.7 that v ∈ W 1,N
V Lq

w0
(RN) is a nontrivial critical

point of IV and IV (v) = mV , which completes the proof of Theorem 1.2.
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Università degli Studi di Milano

Via C. Saldini, 50 – 20133 Milano

Email address : cristina.tarsi@unimi.it

mailto:daniele.cassani@uninsubria.it
mailto:claudiadalia.bucur@uninsubria.it
mailto:cristina.tarsi@unimi.it

	1. Introduction and main results
	Overview

	2. On the equivalence between nonlocal equations and higher order fractional systems
	3. A -weighted Pohozaev–Trudinger type inequality in 
	4. The variational framework: proof of Theorem 1.2
	4.1. Mountain pass geometry
	4.2. On the Ekeland Palais-Smale sequence
	4.3. Proof of Theorem 1.2

	References

