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a b s t r a c t

Among several approaches to tackle the problem of energy consumption in modern computing
systems, two solutions are currently investigated: one consists of artificial neural networks (ANNs)
based on photonic technologies, the other is a different paradigm compared to ANNs and it is based on
random networks of non-linear nanoscale junctions resulting from the assembling of nanoparticles or
nanowires as substrates for neuromorphic computing. These networks show the presence of emergent
complexity and collective phenomena in analogy with biological neural networks characterized by self-
organization, redundancy, and non-linearity. Starting from this background, we propose and formalize
a generalization of the perceptron model to describe a classification device based on a network of
interacting units where the input weights are non-linearly dependent. We show that this model,
called ‘‘receptron’’, provides substantial advantages compared to the perceptron as, for example, the
solution of non-linearly separable Boolean functions with a single device. The receptron model is used
as a starting point for the implementation of an all-optical device that exploits the non-linearity of
optical speckle fields produced by a solid scatterer. By encoding these speckle fields we generated
a large variety of target Boolean functions. We demonstrate that by properly setting the model
parameters, different classes of functions with different multiplicity can be solved efficiently. The
optical implementation of the receptron scheme opens the way for the fabrication of a completely
new class of optical devices for neuromorphic data processing based on a very simple hardware.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The current prominent approach to neuromorphic computing
s based on the notion that the modification of synaptic con-
ection strengths in the brain allows to learn and to perform
omplex tasks (Ambrogio et al., 2018; Lillicrap et al., 2020; Lynn
Bassett, 2019; Pershin & Di Ventra, 2010; Rajendran, Sebas-

ian, Schmuker, Srinivasa, & Eleftheriou, 2019). The possibility
f adjusting independently the synaptic weights to respond to
ifferent input patterns has been translated in the perceptron
earning rule where a biological or artificial neuron is modeled
s a simple linear summation and thresholding device (Jeong,
im, Ziegler, & Kohlstedt, 2013; McCulloch & Pitt, 1943; Nagy,
991; Rosenblatt, 1958). Ensembles of connected perceptrons
onstitute artificial neural networks (ANNs) where the weight
f each unit can be independently modified, accordingly to a
earning rule, to obtain a target output, given a certain input (Liu,
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Yu, & Chai, 2021; Schuman et al., 2022; Xia & Yang, 2019). The
use of crossbar memristive arrays has been proposed in order to
reduce the energy payload of ANNs: in this approach all nodes
are linearly independent and the equivalent of the corresponding
synaptic weight must be updated avoiding cross-talking between
individual synapse nodes (Burr et al., 2016; Rajendran et al., 2019;
Xia & Yang, 2019).

ANNs based on photonic technologies developed for tele-
com applications (Nakajima, Tanaka, & Hashimoto, 2021; Tomson
et al., 2016) can represent a valid alternative to conventional
electronic hardware for the achievement of a significant reduc-
tion of the operational power and increase of the speed and
parallelism (Shen et al., 2017). Various photonic ANN models
have been reported (Nakajima et al., 2021; Shen et al., 2017;
Vandoorne et al., 2014): as in the case of their electronic counter-
part, the architecture of optical ANNs is characterized by a lack of
similarity with respect to biological neural systems, where self-
organization, redundancy, non-linearity, and non-locality governs
both structure and functions (Diaz-Alvarez et al., 2019; Hochstet-
ter et al., 2021; Milano, Miranda, & Ricciardi, 2022). Neurons
utilize a wealth of non-linear mechanisms to transform synap-

tic input into output firing (Ting-Ho Lo, 2011; Tononi, Boly,
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assimini, & Koch, 2016); the majority of inputs to a neu-
on is received primarily through synapses made onto elaborate
ree-like structures called dendrites (Häusser, Spruston, & Stu-
rt, 2000), allowing transformations that extend far beyond the
imple sum-and-threshold operation (Bicknell & Häusser, 2021).
he morphology and the electrical properties of dendrites define
he input–output relationship of neurons and the rules for the
nduction of synaptic plasticity (Silver, 2010).

A radical alternative to the top-down fabrication of electronic
r optical ANNs is based on the use of networks consisting of a
arge number of non-linear nanoscale junctions resulting from the
andom assembling of nanoparticles or nanowires (Li et al., 2020).
hese networks show the presence of emergent complexity and
ollective phenomena in analogy with biological neural networks
nd, in particular, hierarchical collective dynamics (Mallinson
t al., 2019), and heterosynaptic plasticity (Milano et al., 2020).
Networks of interconnected nanojunctions are characterized

y the non-linear and distributed nature of the junction weight
nteractions: the weights are not univocally related to a single
ode since the highly interconnected junctions regulate their
onnectivity and the topology of conducting pathways depend-
ng on the input stimuli (Martini, Mirigliano, Paroli, & Milani,
022; Mirigliano et al., 2021, 2020), in analogy to what observed
n neuronal dendrites (Bicknell & Häusser, 2021). This aspect
as been somehow neglected up to now, not considering that
consequence is the impossibility of applying the perceptron
odel to describe the evolution of the synaptic weights upon the

nteraction with external stimuli (Poirazi & Mel, 2001).
Recently we have shown that nanostructured Au films fabri-

ated by assembling gold clusters, produced in the gas
hase, have complex non-linear electrical properties and resis-
ive switching behavior (Martini et al., 2022; Mirigliano et al.,
020; Mirigliano & Milani, 2021; Mirigliano et al., 2021). By
nterconnecting a generic pattern of electrodes with a cluster-
ssembled Au film, we demonstrated the fabrication of a device
hat can perform the binary classification of input signals, fol-
owing a thresholding process, to generate a set of Boolean
unctions (Mirigliano et al., 2021). Considering the non-linear
onduction properties of cluster-assembled gold films and their
on-local response to input signals we underlined the inadequacy
f a perceptron model with linearly independent weights propos-
ng a model called ‘‘receptron’’ where the weights are not just
ssociated with each input, but with their combinations (Martini
t al., 2022; Mirigliano et al., 2021).
Here, we provide a general formalization of the receptron

howing the fundamental differences between a receptron and
perceptron and we demonstrate that the general receptron
odel is not confined to electrical networks but it can be used
s a starting point for the implementation of an all-optical device
erforming classification. We use a training approach based on
search procedure. The search procedure is independent from

he complexity of the solved function and can be known a priori,
llowing for its optimization. Therefore, the optimization of the
earch procedure can be performed at the maximum efficiency
n terms of time-consuming for any possible function. An ex-
erimental demonstration of the use of an optical receptron for
lassification tasks is reported.

. The receptron model

Starting from the traditional perceptron model (Minsky &
apert, 1970) based on linearly independent weights:

=

n∑
xjwP

j , (1)

j=1

635
where j numbers the inputs (j ∈ [1, n]) and wP
j are constant

real values, we formally introduce a more general form of Eq. (1),
which allows for the non linear interaction of the inputs,

S =

n∑
j=1

xjw̃j(x⃗) | S ∈ R, (2)

where w̃j(x⃗) : Rn
→ C are complex-valued functions and x⃗ =

x1, . . . , xn) is the input vector.
Eq. (2) is the basis of the receptron model: while Eq. (1) is a

inear combination of the inputs (the weights are constant), in
he receptron a modification of the inputs leads, in general, to a
ariation of the weights value w̃j(x⃗), making the system extremely
omplex and allowing for the solution of problems not solvable
hrough the simpler rules of a linear system.

As in the perceptron case the summation in Eq. (2) origins
he activation of the receptron output through the thresholding
rocess,

(x1, . . . , xn) =

{
1 S > th
0 S ≤ th ,

(3)

here th is a constant threshold parameter. Eq. (3) can be written
y using the Heaviside function as

(x1, . . . , xn) = Θ
(
S ′
)
, (4)

where S ′
= b + S and b is a constant bias.

With the aim of investigating the non-linear and statistical
properties as well as the computing performance of the proposed
model, we limit the model to purely Boolean inputs (xj ∈ {0, 1}),
his facilitates the analysis and helps to highlight the most im-
ortant features. In this case, the weight functions w̃j(x⃗) can be

written with a finite number of parameters wj1...jn , simplifying the
odel representation. In particular, we can Taylor-expand w̃j(x⃗)

and use the idempotency of Boolean variables (xj)q = xj∀q ≥ 1
such that S ′

= b +
∑n

j=1 xjw̃j(x⃗) can be written as

′(x⃗) = b +

∑
j

wjxj +
∑
j<k

wjkxjxk +

∑
j<k<l

wjklxjxkxl + · · · , (5)

where wj1...jn are independent parameters that can be seen as the
components of a tensor W (‘‘weight tensor’’) of rank n and type
(n, 0). In Eq. (5) we have contracted, for simplicity of notation,
he indexes of the matrix elements wj1...jn to a single index when
ll the indexes at the right are equals, as shown here below for
= 3,

j H⇒ j = k = l
wjk H⇒ k = l

(6)

or more in general

wj1...jm H⇒ jm = jm+1 = · · · = jn . (7)

The expression in Eq. (5) is the most general Boolean-input
function. In fact, a function defined over a finite set, such as the
case of S ′, is completely specified by the values assumed over all
the elements inside the domain. In the case of Boolean inputs, the
domain contains 2n elements: tuning every one of them allows
to define the value of the function for each input. The number of
coefficients in Eq. (5) is 1 for the bias, n for the diagonal elements
wj, n(n−1)

2 for wjk and finally n!
m!(n−m)! for the mth degree term, thus

the total number is given by
n∑

m=0

(
n
m

)
= 2n , (8)

where we used the binomial theorem.
We have thus proved that the total number of independent

parameters equals the number of input combinations, i.e., we
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Fig. 1. Classification of the XOR output states with a single element. The black straight line and the red hyperbole are the decision boundaries for the perceptron
and a receptron respectively, obtained by posing S ′(x⃗) = 0 in Eq. (9). The high states (white circles) are separable from the low states (black circles) with the red
hyperbole obtained with the receptron parameters w11 = 1, w22 = 1, w12 = −1.9 and b = −0.5 but, as is well known, they cannot be separated with the straight
line generated by a single perceptron.
have different degrees of freedom for each input, that can be
adjusted to implement any desired output.

The sum in Eq. (5) reduces to the perceptron case when off-
diagonal terms of W vanish. As an example we consider n = 2,
where we write the sum (5) to

S ′(x⃗) = b + x1w11 + x2w22 + x1x2w12. (9)

In the perceptron case, the vanishing of w12 implies linearity,
S(1, 1) = S(0, 1) + S(1, 0). On the contrary, the off-diagonal
elements yield S(1, 1) ̸= S(0, 1)+S(1, 0) for a receptron, meaning
that the superposition principle is no longer valid, the latter
terms being precisely responsible of the more complex non-linear
interaction between the inputs.

Due to the missing coefficients, the number of independent
parameters for a perceptron grows proportionally to the number
of inputs, while the growth is exponential in a receptron (see
Eq. (8)), highlighting its higher complexity. Therefore, classifica-
tion of non-linearly separable functions can be realized with a
single element, as shown in Fig. 1.

Here the output states of the XOR function are shown with
black (low state) and white (high state) circles. The black straight
line calculated with Eq. (9) by posing S ′(x) = 0 and w12 = 0
cannot separate the black and white circles, therefore the XOR
function cannot be implemented with a perceptron, contrarily the
non-zero off-diagonal elements transform the straight line in the
red hyperbole, separating the black and white circles, and making
the XOR easy to classify.

Considering the generalization of the perceptron, we coined
the term ‘‘receptron’’ (reservoir perceptron). Similarly to the case
of reservoir computing, the variability in our model is generate
by exploiting a static reservoir (a random assembly of electri-
cally connected nanojunctions or the intensities of the optical
speckle field (see below)). The reservoir computing exploits a
high-dimensional dynamical system to convert the injected input
into the trained output function both depending on time (Lukoše-
vičius & Jaeger, 2009). The output function is obtained by means

of a final layer, where the weight should be adjusted to obtain
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the useful function. In our approach, we use the high-dimensional
behavior of a reservoir without exploiting its temporal evolution.

2.1. Optical receptron

In this section, we use the model formalized above to describe
an optical receptron exploiting the interference of a large num-
ber of uncorrelated point-like sources, generating the non-linear
interaction between optical inputs discussed above. The develop-
ment of the optical model allows the explicit analytical calcula-
tion of the weights, useful for predicting the overall behavior of
the device in terms of operation and degree of non-linearity.

Let us consider a set of n sources sj positioned in a plane
as sketched in Fig. 2. Since sources are uncorrelated, each will
produce an electric field Ej with amplitudes Aj and phases φj at
a given observation point P positioned at a distance d from the
source plane

Ej = Ajeiφj . (10)

Let us assume now that the light emission of each group of
sources can be turned ON or OFF. This action can be formalized
in our model, multiplying the field amplitudes in Eq. (10) with
input Boolean variables xj ∈ {0, 1} as

Ej = xjAjeiφj . (11)

The overall intensity in P will be given by

I =

⏐⏐⏐⏐⏐⏐
n∑

j=1

xjAjeiφj

⏐⏐⏐⏐⏐⏐
2

. (12)

If we interpret the intensity at a point on the observation plane
as the interaction between inputs (the input being the on/off
pattern of sources) we see that the squared modulus in Eq. (12)
allows for the non-linearity. We can calculate the weights of the

optical receptron to show that this, rather than the perceptron,
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i

Fig. 2. Sketch of the optical implementation of a receptron exploiting the
nterference to create the non-linear interaction I(x⃗) = S(x⃗) of Eq. (13). The
group of point-like sources sj are independently on/off modulated through the
Boolean inputs xj . The intensity is observed at the point P along the optical axis
z.

fits best such a device:

I =

n∑
j=1

x2j A
2
j +

∑
j̸=k

xjxkAjAkei(φj−φk) =

=

n∑
j=1

xjA2
j +

∑
j<k

xjxkAjAkei(φj−φk) +

∑
j<k

xjxkAjAkei(φk−φj) =

=

n∑
j=1

xjA2
j + 2 ·

∑
j<k

xjxkAjAkcos(φj − φk) .

(13)

Eq. (13) shows that the intensity produced by the interference
of groups of sources as a function of the input Boolean variables
is consistent with the summation S(x⃗) of the proposed receptron
model in Eq. (2).

Hence we pose I(x⃗) = S(x⃗) to find the weight functions of the
optical receptron as

w̃j(x⃗) = xjA2
j +

N∑
k=1
k̸=j

xkAjAkei(φj−φk) . (14)

Combining Eqs. (13) and (5) we find the components of the
weight tensor,

wj = A2
j (15)

wjk = 2AjAkcos(φj − φk) (16)

wj1..jn = 0 elsewhere, (17)

which demonstrate that the system can be fully described with
the proposed model. The large number of sources used in the
model is essential to impart high variability of the intensity
in the space (depending on many independent parameters): a
limited number of sources would still generate non-linearity of
the intensity as a function of the inputs xj, but the limited number
of free parameters Aj, φj would produce a more regular field.
Our idea is to maximize the variability of the intensities A and
j
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phases φj in the different observation points through a speckle
field (Dainty, 1975; Goodman, 2007) generated with a random
scatterer: this will in turn imply a higher spatial variability of the
function I(x⃗) = S(x⃗) implemented by the network. The state of
each node in the receptron does not evolve recursively in time
as in a conventional reservoir (Rafayelyan, Dong, Tan, Krzakala,
& Gigan, 2020) but only as a function of the input vector x⃗ =

(x1, . . . , xn), regardless of whether inputs vary over time or not.
This is essential because in a receptron the output of the Boolean
function must depend only on the input combination, both during
the training process and during the data processing. Furthermore,
with respect to a typical reservoir a receptron does not make use
of a final layer to convert the reservoir output into the target
output function (Mirigliano et al., 2021), but it uses a single
threshold process applied to the analog outputs (intensity) of the
reservoir, like in a perceptron, to generate a binary classification.

The group of sources described above, is experimentally real-
ized with a scatterer illuminated by means of independent laser
beams, as discussed in the next section.

3. Experimental setup

The experimental setup was realized for a 4-input device as
shown in Fig. 3(a). Here a 5 mW He–Ne laser source was spatially
filtered, collimated and split in four independent beams by means
of a square optical-glass pyramid (the base of the pyramid is
perpendicular to the optical axis). Each beam was sent to a mask
comprising four optical apertures which physically implement
the xj of Eq. (11): all 16 (2n) input combinations can be realized
opening and closing the apertures.

The beams at the exit of the apertures impinge on an opti-
cal polypropylene scatterer (≈ 100 µm thick) at 75 mm from
the pyramid, in order to create four independent groups of un-
correlated point like sources as described in Section 2.1. The
scatterer generates a homodyne speckle field that is detected
with a Charge Coupled Device (CCD) on an observation plane,
orthogonal to the propagation axis of the beams, at a distance
of 125 mm from the scatterer. This distance is chosen in such a
way the ≈ 40 µm speckle size (FWHM) is slightly larger than
the CCD pixel size (7.4 µm). The speckle field is acquired in a
8 bit grey scale. The activation of each pixel, corresponding to
a single receptron output, was implemented computationally by
the thresholding operation (as shown in Eq. (3)), that converts the
grey scale speckle pattern in a black and white Boolean field (see
Fig. 3(b)). The high-resolution of the CCD (1600 × 1200 pixels)
simultaneously detects a multitude of receptrons (with common
inputs) in a completely parallel fashion.

In the current setup the stability has been tested over tens
of minutes, in view of operation for prolonged time periods, two
strategies can be applied in order to reduce the effects of system
instabilities and of the noise: (i) a periodic training that should
be realized in a characteristic period τs = τt + τc , where τt is
the training time and τc is the computing time, with τt ≪ τc ;
(ii) a selection (during the training process) of the pixel solving
the target function and having intensity (for all possible combina-
tions) sufficiently far from the threshold of a noise margin DN . In
this way, the system becomes intrinsically immune to the noise
or external disturbances, when they induce intensity variations
less than DN .

4. Results and discussion

4.1. Uniform speckle fields

In Fig. 4 we show an example of a uniform speckle field
obtained with two different input combinations: (0, 0, 0, 1) and
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Fig. 3. (a) Experimental setup for the optical implementation of the receptron. A He–Ne laser beam is spatially filtered and collimated. The positive lens L1 and L2
re used to match the beam size to the optical pyramid base. The pyramid splits the main beam in four independent beams (the receptron inputs) impinging on
he scatterer, after passing through a mask that modulates the beams ON/OFF. (b) Sketch of the method used to convert the 8 bit grey scale image of the speckle
ield in a corresponding black and white Boolean field. The speckle field, shown in grey scale, is perpendicular to the propagation axis of the laser beams (inputs)
nd generated with the optical pyramid (not shown). The scatterer plane is parallel to the CCD plane. Binarization is realized computationally for all the CCD pixels
hrough a thresholding operation that converts each grey pixel in a black or white pixel as described in Eq. (3). (c) Example of solution of two identical Boolean
unctions. A stack of Boolean fields is obtained by changing the 16 input combinations. The two pixels shown in green and red, along the stack, generate the same
utput sequence Y = 0100110111000101 as a function of the inputs from 0 to 15.
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(1, 1, 1, 1) respectively. Since the average intensity of the raw
images of the speckle fields across the CCD is not uniform due
to the different position of the lasers on the optical scatterer, it is
useful, for statistical analysis, to make uniform the entire image.

Therefore, the uniform speckle fields were numerically ob-
tained by using the ratio I(l,m) = I(l,m)CCD/I(l,m)LPF , where
(l,m)CCD is the intensity of the speckle field acquired with the
CD, I(l,m)LPF is the same intensity filtered using a low-pass filter
ith a spatial frequency of 250 µm−1, and I(l,m) is the intensity
f the corrected speckle field.
Despite in the current setup a conventional data processing

pproach is required to make the speckle fields spatially uniform,
his can be completely compensated with a different choice of
he setup. In particular one can use four microlenses close to the
catterer to overlap, on the observation plane, the centroids of
he speckel fields generated from the four beams. In this way,
he spatial normalization is not necessary. Alternatively one can
eplace the pyramid with a fiber optic splitter. In this case, the
ibers can be oriented before the scattered in such a way the
entroids of the speckle fields, generated from the four fibers, are
verlapped on the observation plane after diffusion.
Note that the speckle fields acquired with the CCD (Fig. 4(b))

re characterized by the interference patterns, given by the su-
erposition of the speckle fields from different inputs. The in-
erference patterns have high contrast in a scale length typical
f the transverse spatial coherence length LC ≈ λz/w, where w
s the transverse beam size on the scatterer, λ is the radiation
avelength and z is the distance between the CCD and the
catterer. The random behavior of the observed intensity that
haracterizes the speckle fields is of fundamental importance for
he receptron implementation, being a consequence of the large
mount of the representing parameters in Eq. (15), providing to
he network high variability and non-linearity.
638
.2. Non-linearity of the optical receptron

We checked the non-linearity of the optical receptron by ap-
lying the superposition principle to the uncorrected intensity
f the speckle field. Since ICCD(x⃗) = S(x⃗) (as discussed in Sec-
ion 2.1) we calculated ID = ICCD(1, 1, 1, 1) − [ICCD(0, 0, 0, 1) +

CCD(0, 0, 1, 0) + ICCD(0, 1, 0, 0) + ICCD(1, 0, 0, 0)]. Non-linearity
of receptron has been represented in Fig. 5 where we show ID
and the relative distribution. We observe that the Root Mean
Square (RMS) of ID (≈ 28, in a grey scale range between 255 and
−255) is comparable with those of the other speckle patterns.
Moreover, we exclude that the observed fluctuations originate
from noise, since noise has substantially lower RMS (σn ≈ 0.42),
concluding that speckle patterns behave with the expected non-
linearity with respect to the inputs. We exploit the non-linearity
(square modulus of the field) shown in Eq. (12), resulting from
the acquisition of the intensity (and not of the radiation field)
with the CCD. More in general, this can be obtained with any
detector sensible to the radiation intensity since the non-linearity
is obtained from the intensity of the speckle field.

While the results shown in Fig. 5 prove that the proposed
system truly implements the receptron model, we are interested
in a more general approach to define the non-linear properties.
In the case of the optical receptron the tensor is reduced to
a matrix, so we can use some of the standard measures for
diagonality of a matrix. In particular, we can measure the rel-
ative importance of off-diagonal versus diagonal elements via
the Frobenius norm (Alyani, Congedo, & Moakher, 2017) for the
optical receptron:

µ =
∥W − diag(W )∥F

∥W∥
=

(
2
∑

j<k w2
jk∑ 2 ∑ 2

)1/2

(18)

F j wj + 2 j<k wjk
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Fig. 4. Images of the speckle fields (in false colors) acquired with the CCD for the two input combinations (x1, x2, x3, x4) = (0, 0, 0, 1) (a) and (x1, x2, x3, x4) =

1, 1, 1, 1) (b). The higher density of the speckles in (b), is due to the formation of interference fringes created by the superposition of the speckle fields produced
ith the four input laser beams. The bottom panels are a zoom of a portion of the top images.
Fig. 5. 3D-view of the speckle field obtained with the difference ID normalized to the maximum intensity. The inset shows the intensity distribution of ID with the
ccurrence f0 normalized to the maximum value. The RMS intensity (ID(RMS) = 28) is not in agreement with the superposition principle for linear systems (ID(RMS) = 0).
a
c
h
i
b

4

o
o

here W is the weights’ tensor and ∥ · ∥F is the Frobenius norm.
he matrix elements of the tensor have been extrapolated from
ata by inverting Eq. (5): the 2n independent parameters for a
iven receptron are obtained from the system of 2n equations
y substituting into Eq. (5) all the possible input combinations
.g. w3 = ICCD(0, 0, 1, 0) − ICCD(0, 0, 0, 0), w12 = ICCD(1, 1, 0, 0) −

CCD(1, 0, 0, 0)− ICCD(0, 1, 0, 0)− ICCD(0, 0, 0, 0). The coefficient µ
ies between 0 and 1, where 0 indicates fully diagonal tensor and
a vanishing diagonal.
The high values achieved (see Fig. 6) demonstrate the re-

arkable capabilities of the optical system, which reproduces
639
lmost all levels of linearity of a theoretical receptron. Apart from
onfirming the result of Fig. 5, this example well demonstrates
ow the weights provide a powerful level of abstraction which
s in turn an additional tool in the characterization of the system
ehavior.

.3. Implementation and classification of the boolean functions

The implementation of different Boolean functions depending
n the input combinations was verified experimentally with a set
f 16 speckle fields as shown in Fig. 3(c). These fields correspond
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t

t

Fig. 6. (a) 2D-view of µ obtained for the same data shown in Fig. 5 (bottom panel is a zoom of the top left corner). (b) Distribution of µ in semilog scale. Notice
hat the µ value of the largest number of pixels are concentrated close to unity, showing the expected highly non-linear properties.
(

l
p

o the digital combination of inputs ranging from x⃗ = (0, 0, 0, 0)
to x⃗ = (1, 1, 1, 1) (or between 0 and 15 in the decimal base
system). The grey scale images are converted in black and white
images (Boolean fields), by applying a threshold th in the range
between 0 and 255 (8 bit grey scale range) in accordance with
the thresholding process in Eq. (3). Note that each pixel of the
CCD (in grey scale) represents an independent function S, thus
the intensity I(l,m) = S(l,m) reproduces a collection of l × m
non-linear functions, characterized by high statistical variability.
Therefore the thresholding process generates l×m digital outputs
Y (l,m), each implementing its own Boolean function.

Thanks to the high variability of the Boolean functions in the
observation plane, the training of the network does not require
an additional modification of the weights to solve a specific
task. Network training is carried out for any function through
the acquisition of 16 images, corresponding to the digital input
combinations, and selecting the pixel (or pixels) that solve the
target function regardless of the complexity of the function (see
Fig. 3(c)). Therefore, the training procedure consists in associating
the position of the Boolean field (pixel coordinates) with the
target function.

An example of Boolean field obtained for th = 55 is shown
in Fig. 7(a). Notice that the white pixels are grouped in corre-
spondence with the speckle areas providing a strongly correlated
statistic. The statistical properties of the Boolean fields generated,
deeply linked with their variability, can be controlled acting on
the speckle spatial coherence length LC or on the threshold pro-
cess. The result can be evaluated with the multiplicity, i.e. the
number of high states, of the Boolean function generated, which
corresponds to the number of success events of a binomial sta-
tistical process made of 2n trials. The experimental distributions
of the multiplicity of the output functions are shown in Fig. 8.
Distributions are obtained on the sample of 1600 × 1200 pixels
and for three different thresholds. Results can be compared with
a binomial distribution, which is valid in the case of fully un-
correlated light intensities, having the success probability given
by

p =

∑
k

∫
∞

th ρk(I)dI
, (19)
2n − 1
640
where ρk is the normalized intensity distribution (
∫

∞

0 ρk(I)dI =

1) of the speckle field with input combination k. The probability
p for the binomial distribution is obtained considering that the
different speckle fields, obtained for different input combinations
k, have small differences in the intensity distributions and hence
different probabilities pk. We thus estimate the average of these
probabilities by means of Eq. (19), where the integral

∫
∞

th ρk(I)dI
is the probability that the pixel intensity overcomes the threshold
th with the speckle field produced by means of the input com-
bination k. The average probability over the input combinations
is therefore

∑
k pk

2n−1 , where n is the number of inputs. Notice that
the number of possible combinations is 2n

−1 instead of 2n since
we omit the trivial combination (0, 0, 0, 0). From an experimental
point of view n = 4 is the number of inputs (number of beams
used as inputs) while k numbers the combinations (1 ≤ k ≤

15): k = 1 implies (x1, x2, x3, x4) = (0, 0, 0, 1), k = 2 implies
(x1, x2, x3, x4) = (0, 0, 1, 0), . . . , k = 15 implies (x1, x2, x3, x4) =

1, 1, 1, 1).
The peak of the experimental distributions can be shifted at

ow, medium and high multiplicity for the three probabilities
= 0, 07, p = 0, 48, p = 0, 83 acting on the threshold:

this provides a method to promote the solution of functions
with a given multiplicity. Note the deviations from the binomial
model especially for the two middle scenarios: we interpret the
difference as due to correlations generated by the coherence areas
of the speckles, as also observed in the Boolean field of Fig. 7(a).
The main assumption necessary for a good matching between the
theory and the experiment is the independency of the statistical
process both from the pixel position and from the input com-
bination. We observed that the first condition is more critical,
because the speckle field is always characterized by a certain
degree of coherence that make the pixel strongly correlated in
the coherence area of each speckle. The consequence is that white
pixels and black pixels appear as clusterized in the Boolean fields.
In other words, the statistical process is not independent on the
pixel position since adjacent pixels are correlated.

To verify our interpretation, we generated a new set of 16
Boolean fields starting from the same experimental data by ap-
plying two thresholds th = 25, th = 30 (in a 8 bit grey scale
1 2
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Fig. 7. Images of the Boolean fields generated with single threshold (a) and double threshold (b) for the input combination (x1, x2, x3, x4) = (0, 0, 0, 1). Despite the
average success probability p of (a) and (b) are similar, the double threshold drastically reduces the white speckles size. The bottom panels are a zoom of a portion
of the top images.
Fig. 8. Experimental distributions of the functions classified with the multiplicity for different probabilities p. Data are compared with the theoretical binomial
distributions. The distribution obtained with the double threshold (right-bottom) is in good agreement with the theory thanks to the minimization of pixel correlations
generated by the speckle fields.
range). The Boolean field was obtained by taking as ‘‘HIGH’’ state
the pixel intensity of the corresponding speckle field in between
the thresholds th1, th2 and by taking as ‘‘LOW’’ state the pixel
intensity outside the two thresholds. Therefore, when the two
thresholds are close each other, we expect a reduced speckles
641
area composed of a few pixels, thus reducing the pixel correla-
tion. By using a double threshold we experimentally observed
that the Boolean field reduces the clustering (see Fig. 7(b)) and
hence we assume that the pixel correlations are also reduced.
Our assumption is confirmed by the good matching between the
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Fig. 9. Number of standard Boolean functions (AND, OR, XOR, NAND and NOR) solved by the network for different thresholds in logarithmic scale. Note that, due to
complementary conditions shown in Eq. (21), the number of NOR and OR is the same, as well as for AND and NAND functions. The checkerboard bars for OR and
NOR stand for zero pixels.
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binomial and the experimental distributions, bottom right plot
in Fig. 8, obtained with the double threshold. The experimen-
tal distribution is compared with the corresponding theoretical
binomial distribution with success probability,

p =

∑
k

∫ th2
th1

ρk(I)dI

2n − 1
. (20)

With the single threshold the clustering is always observed
and hence we do not expect a matching between the theory and
the experiment as also confirmed from the others distribution
in Fig. 8. To reduce the clustering of the Boolean field we need
two thresholds close together which implies a low probability
p, not applicable to obtain the distributions of Fig. 8 with high
probability. These considerations do not exclude the possibility to
modulate the shape of the distributions around the mean value,
for example by increasing (and not reducing) the clustering.

Summarizing, correlations can be used to change the shape
of the multiplicity distribution, while the threshold gives control
over the mean of such a distribution.

We have applied these tools to solve Boolean functions (Fig. 9):
in particular, we show the number of pixels that implement the
functions Y (x1, x2, x3, x4) = x1 · x2 · x3 · x4 (four-input AND gate),
Y (x1, x2, x3, x4) = x1 + x2 + x3 + x4 (four-input OR gate) and
Y (x1, x2, x3, x4) = x2 ⊕ x3 as a function of the chosen threshold.
The three functions have multiplicitiesm = 1,m = 15 andm = 8,
and are solved with higher efficiency (higher number of pixels)
when the multiplicity is closer to the peak probability of the
distributions shown in Fig. 8. It occurs for the three corresponding
distributions having binomial success probabilities p = 0.07,
p = 0.83, p = 0.48 and obtained with the thresholds th = 55,
th = 6, th = 17, respectively. Similar considerations can be done
to effectively solve the functions Y (x1, x2, x3, x4) = x1 · x2 · x3 · x4
NAND universal gate) and Y (x1, x2, x3, x4) = x1 + x2 + x3 + x4
NOR universal gate). In fact, as shown in Fig. 9 we obtain the
ame number of pixels of the corresponding negated functions
ND, OR by using the complementary conditions of Eq. (3) as

(x1, . . . , xn) =

{
1 S ≤ th
0 S > th .

(21)

These results confirm that by controlling the statistical prop-
rties of the resulting intensities we drastically increase the
omputing efficiency for a given Boolean algebraic problem.
oreover, the non-linear behavior experimentally verified in
ection 4.2 makes it possible to solve non-linearly separable
642
unctions, as formally described in the example of Fig. 1. The
xperimental result in Fig. 9 relative to XOR operator gives a
irect proof of the receptron advantages with respect to the
erceptron in terms of the type of generated functions.

. Conclusions

We have developed a formal description of a device, the re-
eptron, which generalizes the perceptron by considering that
he input weights are not univocally related to a single input,
ence they cannot be independently adjusted. This non-linear
haracteristic is more similar to what observed in the interactions
etween synapses in neural dendritic trees (Bicknell & Häusser,
021).
An optical implementation of a receptron has been experi-

entally realized: the setup exploits simple optical elements to
enerate a large number of Boolean functions (≈ 2 ·106) by using

the high variability of the speckle fields. Although a benckmark
between different technologies appears difficult, we provide a
comparison with standard CMOS technology in terms of effective
number of implemented 4-input gates, that in our case is of the
order of 106. A similar number can be realized with standard Very
Large Scale Integration (VLSI) technology. The number of effective
gates is of course not sufficient to assess the computing efficiency,
for instance the computing speed plays a fundamental role in
the overall efficiency of a computing device. Our approach is
fully compatible with existing optical technologies, typically used
in optical telecommunications, which achieve clock frequencies
higher than tens of GHz. However, further developments are
required to assess the overall efficiency by simultaneously taking
into account the integration scale and the computing speed.

The complete set of functions has been classified with the
multiplicity, in order to characterize their statistical properties.
The role of the macroscopic parameters, such as the activation
threshold, is essential to statistically control these properties. In
fact, by changing the threshold the average multiplicity of the
distributions can be changed in a controlled way. Furthermore,
a control of the distribution shapes can be also managed by
properly setting the double threshold in the thresholding process.
These results show a method for solving (by shifting the peak
probability or by changing the shape of the distribution) particu-
lar classes of Boolean functions and hence to statistically promote
the solution of particular Boolean algebra problems.

The support of a conventional computer was necessary in
this proof-of-principle experiment to perform the thresholding
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rocess and the initial training procedure. Once these steps are
ealized, the optical system becomes independent on any con-
entional computer. For example, the speckle fields in correspon-
ence of the CCD pixels, of one or more target functions, can be
irectly coupled with one or more photodiodes and amplifiers.
n this way, the thresholding procedure can be realized with
imple comparator circuits, by properly matching the computa-
ional and comparator thresholds. Note that the CCD and the
hotodiodes can coexist in the same optical setup, since the
bservation plane can be easily duplicated with simple optical
lements (e.g. beam splitters or mirrors). This method drastically
ncreases the computing speed, being substantially limited only
y the time responses of photodiodes, amplifiers and comparators
ith working frequencies above tens of GHz.
The search of a defined function with a suitable conventional

lgorithm is performed by the use of a conventional computer or
microcontroller. In this case, the efficiency in term of computing
peed depends of the device used. At the end of the process we
now that a given pixel (or group of pixels) will provide the target
unction when the threshold is applied to its generated intensity.
he threshold process is an operation that can be realized with
imple comparators.
The optical implementation of the receptron scheme opens

he way for the fabrication of a completely new class of optical
evices for neuromorphic data processing based on a very simple
ardware: a single receptron is already capable of solving non-
inearly functions, therefore a network of receptrons could allow
he combination of the outputs of several units to obtain the tar-
et function easier and faster. In stark contrast with a perceptron
etwork, an optical receptron network would not intrinsically
equire more energy than its single-element counterpart. In other
ords, a receptron can already generate all functions in principle,
ut the search for a desired function could take too long, due
o the exponential increase in the number of possibilities as a
unction of the inputs. A simple combination of receptrons could
nstead simplify the search. Since the number of parameters is
ery large compared to a perceptron, one does not need a fine
ontrol of each parameter to obtain a given result, since it can be
btained with different configurations of the same parameters.
hese aspects are of fundamental interest in view of the fabrica-
ion and scale-up of optical receptron networks for very complex
ata processing tasks.
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